Sample records for nanoscale materials cnm

  1. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  2. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National Laboratory Laboratory Policy(SC)Science

  3. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Joshua David

    2012-07-24T23:59:59.000Z

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.

  4. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10T23:59:59.000Z

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  5. Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics

    E-Print Network [OSTI]

    Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

  6. Exciton-Plasmon States in Nanoscale Materials: Breakdown of the

    E-Print Network [OSTI]

    Marini, Andrea

    Exciton-Plasmon States in Nanoscale Materials: Breakdown of the Tamm-Dancoff Approximation Myrta propagating only forward in time. However, we show that in nanoscale materials excitons and plasmons hybridize, creating exciton-plasmon states where the electron-hole pairs oscillate back and forth in time. Then

  7. Novel Nanoscale Materials Reduce Electricity Needed for Sludge

    E-Print Network [OSTI]

    This project researches the use of nanoscale materials (a broadly defined set of substances that haveNovel Nanoscale Materials Reduce Electricity Needed for Sludge Dewatering Industrial process, requiring up to 6000 kilowatt hours/year per million gallons per day. Project Description

  8. Center for Nanoscale Materials Director Petford-Long chats with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a larger version of the image, click on it. Petford-Long with Center for Nanoscale Materials colleagues (from left) Phil Rash, Ron Tollner, Marvin Kirshenbaum and George Norek...

  9. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15T23:59:59.000Z

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  10. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    Stoehr and H.C. Siegmann, „Magnetism”, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

  11. The Center for Nanoscale Materials at Argonne

    E-Print Network [OSTI]

    Kemner, Ken

    devices systems Key Capabilities Nanoprobe) Custom) Photovoltaics suite: integrated glovebox system, solar that assists materials to evolve and develop solar energy conversion, energy storage, and even cancer scaling

  12. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    materials for harvesting waste heat”. International Journala way to convert waste heat directly into electricity. Ita novel way to harvest waste heat by combining pyroelectric

  13. Electrical and Optical Characterization of Nanoscale Materials for Electronics 

    E-Print Network [OSTI]

    Chang, Chi-Yuan 1980-

    2012-10-05T23:59:59.000Z

    is aimed at demonstrating fabrication processes of nanoscale FETs of graphene and porphyrinoid composites based entirely on scanning probe lithography (SPL). A nanoshaving mechanism was used to define patterns on octadecanethiol self-assembled monolayers...

  14. The effects of stress concentrators on strength of materials at nanoscale: A molecular dynamics study

    E-Print Network [OSTI]

    Deymier, Pierre

    materials. There is evidence that when at least one spatial dimension is below a critical one the effects, suggests that such critical dimensions are in the nanometer range and, of course, depend on the materialThe effects of stress concentrators on strength of materials at nanoscale: A molecular dynamics

  15. Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems

    E-Print Network [OSTI]

    1 Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems Patrick James McCluskey, and Joost J. Vlassak Division of Engineering is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano

  16. Use of Plasmon Spectroscopy to Evaluate the Mechanical Properties of Materials at the Nanoscale

    E-Print Network [OSTI]

    Howe, James M.

    Use of Plasmon Spectroscopy to Evaluate the Mechanical Properties of Materials at the Nanoscale, University of Virginia, Charlottesville, VA 22904-4745, USA Abstract: Relationships between volume plasmon of available data, correlations between the volume plasmon energy, Ep, Young's modulus, Ym, bulk modulus, Bm

  17. Next Generation Optical Fiber for IR Applications: Novel Materials and NanoScale Textures

    E-Print Network [OSTI]

    Van Stryland, Eric

    Next Generation Optical Fiber for IR Applications: Novel Materials and NanoScale Textures Axel, Orlando, FL 32816, USA #12;Outline · Impact of fiber optics · What are next generation optical fibers achievements concerning the transmission of light in fibers for optical communication" Charles K. Kao Brief

  18. A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials

    E-Print Network [OSTI]

    A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials Kechao OF SCIENTIFIC INSTRUMENTS 83, 114901 (2012) A scanning AC calorimetry technique for the analysis of nano 2012) We present a scanning AC nanocalorimetry method that enables calorimetry measurements at heating

  19. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01T23:59:59.000Z

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  20. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials 

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  1. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  2. J. Nanoparticle Res. Computational Materials Chemistry at the Nanoscale

    E-Print Network [OSTI]

    Çagin, Tahir

    modeling is being used to determine the struc­ ture, physical, and chemical properties of materials these scales can lead to new phenomena providing opportunities for new levels of sensing, manipulation, and control. However, being much smaller than the wavelength of visible light but much larger than simple

  3. Nanoscale Synthesis and Functional Assembly Center for Nanophase Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge National Laboratory (865) 574-7690 xiaok@ornl.gov Publications Education East China Institute of Technology, China Chemistry B.A., 1998 Institute of Metal Research, Chinese Acad. of Sci., China Material Science & Engr. M. S., 2001 Institute of Chemistry, Chinese Acad. of Sci., China Physical Chemistry Ph. D

  4. Scientists use world's fastest computer to simulate nanoscale material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorusconditions Materials under

  5. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI): ComputationalGlass

  6. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30T23:59:59.000Z

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  7. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS

    SciTech Connect (OSTI)

    Feygenson, Mikhail [ORNL; Carruth, John William [ORNL; Hoffmann, Ron [ORNL; Chipley, Kenneth King [ORNL; Neuefeind, Joerg C [ORNL

    2012-01-01T23:59:59.000Z

    The Nanoscale Ordered Materials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair dist ribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a $\\delta Q/Q \\sim 0.8\\%$ FWHM (typical), and an achievable $\\delta Q/Q$ of 0.24\\% FWHM (best). The real space resolution is related to the maximum momentum transfer; A maximum momentum transfer of 50\\AA$^{-1}$ can be achieved routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 \\AA$^{-1}$. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

  8. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    SciTech Connect (OSTI)

    Lewis, Jennifer A.

    2009-03-24T23:59:59.000Z

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  9. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe

    E-Print Network [OSTI]

    Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe J. Akola1,2 and R. O. Jones1 1Institut für Festkörperforschung, Forschungszentrum to characterize the amorphous structure of the prototype materials Ge2Sb2Te5 and GeTe. In both, there is long

  10. Atomistic Simulations of Bonding, Thermodynamics, and Surface Passivation in Nanoscale Solid Propellant Materials 

    E-Print Network [OSTI]

    Williams, Kristen

    2012-10-19T23:59:59.000Z

    Engineering new solid propellant materials requires optimization of several factors, to include energy density, burn rate, sensitivity, and environmental impact. Equally important is the need for materials that will maintain ...

  11. Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory

    E-Print Network [OSTI]

    Wu, Zhigang

    optimal designs or even new basic concepts for the solar cell can be developed. One promising class of ``nanoPV'' is the excitonic solar cell where excitons are more strongly bound in the active material be tailored by controlling the material size, shape, and surface while maintaining low cost.2 At the same time

  12. Center for ! Nanoscale Materials!

    E-Print Network [OSTI]

    Kemner, Ken

    D Custom) " !! Electron beam evaporator and sputtering " deposition" !! Magnetometry (QD PPMS & MPMS)" !! Rheometer" !! Solar simulator, QEMS (Oriel)" !! TGA/Luminescence/UV-vis-NIR" !! X-ray diffractometer (Bruker D2 & D8)" Anand Bhattacharya, anand@anl.gov," - oxide MBE " Seth Darling, darling@anl.gov " - solar

  13. Nanoscale Materials in Medicine

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by Auburn University Department of Chemical Engineering held on June 26, 2012

  14. Nanoscale Materials in Medicine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,EnergyNanophosphate technology

  15. Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys

    E-Print Network [OSTI]

    Lesuer, D. R.; Syn, C. K.; Sherby, O. D.

    2010-01-01T23:59:59.000Z

    x ULTRAFINE GRAINED MATERIALS Nano-scale strengthening fromSpringerlink.com Abstract Nano-scale strengthening has beenless than 20 h), develop nano-scale subgrains [15]. These

  16. Structure-Function Analysis of the C-terminal Domain of CNM67, a Core Component of the Saccharomyces cerevisiae

    E-Print Network [OSTI]

    Rayment, Ivan

    are closely associated and contain five proteins; Spc110, Cmd1, Spc29, Spc42, and Cnm67. Spc29 and Cmd1 are located in the central plaque. The C terminus of Spc110 localizes to the central plaque and binds to Cmd1 (cal- modulin). Spc2

  17. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  18. NANO AT HOME: An Experiment That You Can Try PLEASE NOTE: The Center for Nano-and Molecular Science and Technology (CNM) at The

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Science and Technology (CNM) at The University of Texas at Austin (UT-Austin) cannot guarantee better. CAUTION: Strong magnets can pinch flesh and also should never be swallowed. Small magnetic

  19. NANOSCALE STRUCTURALAND MAGNETIC CHARACTERIZATION USING

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    of novel nanoscale storage devices and sensors. However, for successful utilization, it is essential]. Such unique properties of magnetic thin films and nanostructures hold great promise for the development to the characterization of nanostructured magnetic materials. 2. ELECTRON MICROSCOPY METHODS In the transmission electron

  20. Postdoctoral Research Associate Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    Qian Li Postdoctoral Research Associate Imaging and Nanoscale Characterization Group Center-ion battery and fuel cell materials. 2. Surface Charge and Polarization Dynamics of Ferroelectrics The surface

  1. Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.

    SciTech Connect (OSTI)

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01T23:59:59.000Z

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  2. Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response

    SciTech Connect (OSTI)

    Miccio, Luis A., E-mail: luisalejandro-miccio@ehu.es; Colmenero, Juan [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Kummali, Mohammed M.; Alegría, Ángel [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Departamento de Física de Materiales (UPV/EHU), 20080 San Sebastián (Spain); Schwartz, Gustavo A. [Centro de Física de Materiales (CSIC-UPV/EHU), P. M. de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center, P. M. de Lardizabal 4, 20018 San Sebastián (Spain)

    2014-05-14T23:59:59.000Z

    The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

  3. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29T23:59:59.000Z

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  4. Nanoscale relaxation oscillator

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

    2009-04-07T23:59:59.000Z

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  5. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22T23:59:59.000Z

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  6. Nanoscale replicas DOI: 10.1002/smll.200600507

    E-Print Network [OSTI]

    Liu, Jie

    Nanoscale replicas DOI: 10.1002/smll.200600507 Supramolecular Nanomimetics: Replication of Micelles. Samulski, Edward T. Samulski, and Joseph M. DeSimone* Naturally occurring supramolecular objects-assembly"-driven approaches can be tremendously successful in controlling nanoscale shape in organic and inorganic materials

  7. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Surface Enhanced Raman Scattering Fluctuation Dynamics using Correalted AFM and Confocal Ultramicroscopy. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

  8. Supersymmetry Across Nanoscale Heterojunction

    E-Print Network [OSTI]

    B. Bagchi; A. Ganguly; A. Sinha

    2010-02-13T23:59:59.000Z

    We argue that supersymmetric transformation could be applied across the heterojunction formed by joining of two mixed semiconductors. A general framework is described by specifying the structure of ladder operators at the junction for making quantitative estimation of physical quantities. For a particular heterojunction device, we show that an exponential grading inside a nanoscale doped layer is amenable to exact analytical treatment for a class of potentials distorted by the junctions through the solutions of transformed Morse-Type potentials.

  9. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE...

  10. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect (OSTI)

    Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

    2011-02-01T23:59:59.000Z

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  11. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect (OSTI)

    Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

    2014-03-15T23:59:59.000Z

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  12. Microfluidics and Nanoscale Research Profile

    E-Print Network [OSTI]

    Microfluidics and Nanoscale Science Research Profile Our research group is engaged in a broad range of activities in the general area of microfluidics and nanoscale science. At a primary level, our interest that when compared to macroscale tech- nology, microfluidic systems engender a number of distinct advantages

  13. Nanotribology and Nanoscale Friction

    SciTech Connect (OSTI)

    Guo, Yi [Stevens Institute of Technology, Hoboken, New Jersey; Qu, Zhihua [University of Central Florida, Orlando; Braiman, Yehuda [ORNL; Zhang, Zhenyu [ORNL; Barhen, Jacob [ORNL

    2008-01-01T23:59:59.000Z

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  14. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping the Nanoscale

  15. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy ManufacturingMapping the NanoscaleMapping

  16. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  17. Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals

    E-Print Network [OSTI]

    Boyer, Edmond

    the material undergoes a phase transition. Herein, we show that thermotropic phase transitions in 4-Cyano-41 Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals A. Nicholas G-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking

  18. Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing

    E-Print Network [OSTI]

    Huang, Jiaxing

    . P. Dravid*, Department of Materials Science & Engineering, International Institute or signal transducer due to size inconsistencies and poor supramolecular response. We overcame these issues uniform lateral dimension of 20 nm. Due to its nanoscale architecture, its supramolecular response

  19. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slip-sliding away: graphene nanoscrolls enable slick surfaces More Manipulating X-rays with Tiny Mirrors More Porous Platinum Superparticles Make Better Catalysts More...

  20. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    High-ef?ciency direct conversion of heat to electricaloffers a novel direct en- ergy conversion technology byDirect Pyroelectric Energy Converter Pyroelectric energy conversion

  1. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscaleNanotechnology

  2. Nanoscale Materials Safety at the Department's Laboratories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley About Us Nancy Sutley U.S.

  3. Carbon-bearing fluids at nanoscale interfaces

    SciTech Connect (OSTI)

    Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL

    2013-01-01T23:59:59.000Z

    The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.

  4. A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage{

    E-Print Network [OSTI]

    Gao, Hongjun

    A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage-planar organic molecule with electron donor and acceptor capabilities was synthesized for nano-scale data storage the demand of expansive storage capacity in the future. Recently, organic materials have received much

  5. Nanoscale Charge Transport in Excitonic Solar Cells

    SciTech Connect (OSTI)

    Venkat Bommisetty, South Dakota State University

    2011-06-23T23:59:59.000Z

    Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  6. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C. (Oakland, CA); Aloni, Shaul (Albany, CA); Zettl, Alexander K. (Kensington, CA)

    2008-03-11T23:59:59.000Z

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  7. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07T23:59:59.000Z

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  8. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

  10. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of Methanol and Ethanol. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of...

  11. Site-Specific Raman Spectroscopy and Chemical Dynamics of Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Spectroscopy and Chemical Dynamics of Nanoscale Interstitial Systems. Site-Specific Raman Spectroscopy and Chemical Dynamics of Nanoscale Interstitial Systems. Abstract:...

  12. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  13. Assembly of biological building blocks for nano- and micro-fabrication of materials

    E-Print Network [OSTI]

    Chiang, Chung-Yi

    2008-01-01T23:59:59.000Z

    Experimental studies were performed to fabricate various material structures using genetically engineered M13 bacteriophage. This virus template showed superior controls of material syntheses from nanoscale to microscale. ...

  14. Nanoscale Surface Topography to Guide Bone Growth

    E-Print Network [OSTI]

    Nanoscale Surface Topography to Guide Bone Growth P R O J E C T L E A D E R : Jirun Sun (American T S Designed and fabricated devices with nanoscale surface topography. Controlled cell alignment by varying the height and aspect ratio of the surface features. R E F E R E N C E Exploring cellular contact guidance

  15. Oxygen Detection via Nanoscale Optical Indicators

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Oxygen Detection via Nanoscale Optical Indicators Ruby N. Ghosh Dept. of Physics Michigan State University East Lansing, MI, USA weekschr@msu.edu Abstract--Oxygen plays a ubiquitous role in terrestrial developed an optical technique for monitoring oxygen in both gas and liquid phases utilizing nanoscale metal

  16. of Basic Energy S Present, Shaping

    E-Print Network [OSTI]

    Kemner, Ken

    , Office of Basic Energy Sciences In July of 1996, the camera recording APS construction captured; the Argonne central campus and the APS central laboratory office building are beneath the lightning strike for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our p

  17. In case of emergency or if you need help or assistance dial Argonne's Protective Force

    E-Print Network [OSTI]

    Kemner, Ken

    In case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National

  18. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31T23:59:59.000Z

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  19. Sandia National Laboratories: Nanoscale Effects on Heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CoreShell Nanowires Nanoscale Effects on Heterojunction Electron Gases in GaNAlGaN CoreShell Nanowires Jeff Tsao participates in "Energy Efficiency and the Rebound Effect"...

  20. NANOSCALE OPTICAL COMPUTING USING RESONANCE ENERGY

    E-Print Network [OSTI]

    Lebeck, Alvin R.

    OPTICAL COMPUTING USING RESONANCE ENERGY TRANSFER LOGIC A NEW NANOSCALE DEVICE BASED ON A SINGLE-MOLECULE OPTICAL PHENOMENON CALLED RESONANCE ENERGY TRANSFER. THIS DEVICE ENABLES A COMPLETE INTEGRATED TECHNOLOGY, PROVIDING A POTENTIAL PATH TO MOLECULAR-SCALE COMPUTING

  1. High-Affinity DNA Base Analogs as Supramolecular, Nanoscale Promoters of Macroscopic Adhesion

    E-Print Network [OSTI]

    Sottos, Nancy R.

    High-Affinity DNA Base Analogs as Supramolecular, Nanoscale Promoters of Macroscopic Adhesion Cyrus and Engineering, § Beckman Institute for Advanced Science and Technology, and Department of Materials Science and manufac- tured coatings and composites. Supramolecular interactions are often implicated in various

  2. Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes Yun Jung as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study

  3. 60th Anniversary Issue: Physical Picoscale science and nanoscale engineering by electron

    E-Print Network [OSTI]

    Wang, Zhong L.

    th Anniversary Issue: Physical Picoscale science and nanoscale engineering by electron microscopy Zhong Lin Wang* School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta.wang@mse.gatech.edu Abstract A future scanning/transmission electron microscope is proposed to be a comprehensive machine

  4. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09T23:59:59.000Z

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  5. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    E-Print Network [OSTI]

    Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruña, Héctor D; Muller, David A

    2013-01-01T23:59:59.000Z

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

  6. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect (OSTI)

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01T23:59:59.000Z

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  7. lame synthesis is one of the most versatile and promising technologies for large-scale production of nanoscale

    E-Print Network [OSTI]

    Beaucage, Gregory

    andenvironmental24 concern. Inorganic, nanostructured materials can be produced by doping a flame with inorganicLETTERS F lame synthesis is one of the most versatile and promising technologies for large-scale production of nanoscale materials1­3 . Pyrolysis has recently been shown to be a useful route

  8. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  9. Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale Sn0.99Co0.01O. Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale Sn0.99Co0.01O. Abstract: In...

  10. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03T23:59:59.000Z

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  11. Parallel optical nanolithography using nanoscale bowtie aperture array

    E-Print Network [OSTI]

    Xu, Xianfan

    Parallel optical nanolithography using nanoscale bowtie aperture array Sreemanth M.V. Uppuluri of parallel optical nanolithography using nanoscale bowtie aperture array. These nanoscale bowtie aperture1805 photoresist. An interference-based optical alignment system was employed to position the bowtie

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscaleNanoscale

  13. Nanoscale mapping of the W/Si(001) Schottky barrier

    SciTech Connect (OSTI)

    Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203 (United States)

    2014-07-14T23:59:59.000Z

    The W/Si(001) Schottky barrier was spatially mapped with nanoscale resolution using ballistic electron emission microscopy (BEEM) and ballistic hole emission microscopy (BHEM) using n-type and p-type silicon substrates. The formation of an interfacial tungsten silicide is observed utilizing transmission electron microscopy and Rutherford backscattering spectrometry. The BEEM and BHEM spectra are fit utilizing a linearization method based on the power law BEEM model using the Prietsch Ludeke fitting exponent. The aggregate of the Schottky barrier heights from n-type (0.71?eV) and p-type (0.47?eV) silicon agrees with the silicon band gap at 80?K. Spatially resolved maps of the Schottky barrier are generated from grids of 7225 spectra taken over a 1??m?×?1??m area and provide insight into its homogeneity. Histograms of the barrier heights have a Gaussian component consistent with an interface dipole model and show deviations that are localized in the spatial maps and are attributed to compositional fluctuations, nanoscale defects, and foreign materials.

  14. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect (OSTI)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06T23:59:59.000Z

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  15. Controlling Magnetism at the Nanoscale

    E-Print Network [OSTI]

    Wong, Jared

    2012-01-01T23:59:59.000Z

    systems and in rare-earth metal multilayer systems [7– 9].materials, rare-earths, transition metals, oxides, and/ormetals iron (as BCC a ferrite), cobalt, nickel, and some of the rare earth

  16. Contacts Integration into functional nanoscale devices

    E-Print Network [OSTI]

    Metlushko, Vitali

    from the very beginning of the design process. While the properties of nano-scale magnetic devices by magnetoresistive random- access memory (MRAM). The design challenges faced by CMOS and MRAM are very similar of this, the topographical influence of contacts on the overlying magnetic device must be taken account

  17. Nanoscale Thermal Transport andMicrorefrigeratorsonaChip

    E-Print Network [OSTI]

    be cooled down by 20 C­30 C. Finally we will review some of the more exotic techniques hotter than the rest of the chip. Most of the conventional cooling techniques can be used to coolINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

  18. LAMELLAR MAGNETISM ASSOCIATED WITH NANOSCALE EXSOLUTION

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    LAMELLAR MAGNETISM ASSOCIATED WITH NANOSCALE EXSOLUTION IN THE ILMENITE-HEMATITE SOLID SOLUTION-hematite (FeTiO3-Fe2O3) solid solution is one of the most important magnetic phases in nature. Unusual magnetic, magnetic ordering, and exsolution. This presentation describes how this interaction leads to the phenomenon

  19. Nanolithography Using High Transmission Nanoscale Bowtie

    E-Print Network [OSTI]

    Xu, Xianfan

    Nanolithography Using High Transmission Nanoscale Bowtie Apertures Liang Wang, Sreemanth M demonstrate that bowtie apertures can be used for contact lithography to achieve nanometer scale resolution. The bowtie apertures with a 30 nm gap size are fabricated in aluminum thin films coated on quartz substrates

  20. Method and system for nanoscale plasma processing of objects

    DOE Patents [OSTI]

    Oehrlein, Gottlieb S. (Clarksville, MD); Hua, Xuefeng (Hyattsville, MD); Stolz, Christian (Baden-Wuerttemberg, DE)

    2008-12-30T23:59:59.000Z

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  1. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04T23:59:59.000Z

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  2. Trapping atoms using nanoscale quantum vacuum forces

    E-Print Network [OSTI]

    D. E. Chang; K. Sinha; J. M. Taylor; H. J. Kimble

    2013-10-22T23:59:59.000Z

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here, we show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. The trapping scheme takes advantage of the attractive ground state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyze realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  3. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10T23:59:59.000Z

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  4. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01T23:59:59.000Z

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscale

  6. Growth of and defect reduction in nanoscale materials

    DOE Patents [OSTI]

    Jensen, Kenneth J. (Berkeley, CA); Mickelson, William E. (San Francisco, CA); Zettl, Alex K. (Kensington, CA)

    2011-01-04T23:59:59.000Z

    Methods by which the growth of a nanostructure may be precisely controlled by an electrical current are described here. In one embodiment, an interior nanostructure is grown to a predetermined geometry inside another nanostructure, which serves as a reaction chamber. The growth is effected by a catalytic agent loaded with feedstock for the interior nanostructure. Another embodiment allows a preexisting marginal quality nanostructure to be zone refined into a higher-quality nanostructure by driving a catalytic agent down a controlled length of the nanostructure with an electric current. In both embodiments, the speed of nanostructure formation is adjustable, and the growth may be stopped and restarted at will. The catalytic agent may be doped or undoped to produce semiconductor effects, and the bead may be removed via acid etching.

  7. Nanoscale fabrication and modification of selected battery materials

    SciTech Connect (OSTI)

    Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim; McLarnon, Frank

    2001-06-22T23:59:59.000Z

    Carbon is an integral part of many battery electrodes. We explored the use of semiconductor-processing techniques that involve photolithography to pattern photoresists and subsequent pyrolysis to form carbon microstructures that function as microelectrodes. In this study, we describe the status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist. Electrochemical nanometer-scale patterning of the surface of a conducting lithium manganese oxide (LiMn{sub 2}O{sub 4}) by scanning probe microscopy (SPM) was studied. We show that a localized surface chemical change can be confined to a depth which depends on the oxide-tip voltage difference and ambient humidity The ability to produce nanometer-size patterns of chemically modified oxide or nanometer-sized alterations of the oxide morphology is demonstrated and discussed with reference to possible mechanisms.

  8. Dynamics of Excitons and Phonons in Disordered Nanoscale Materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamic Switching of the SpinMIT-Harvard

  9. Nano-scale magnetic film formation by decompression of supercritical CO?/ferric acetylacetonate solutions

    E-Print Network [OSTI]

    De Dea, Silvia

    2008-01-01T23:59:59.000Z

    GROWTH OF NANO-SCALE MAGNETIC FILMS USING CO 2 RESS EX-113 GROWTH OF NANO-SCALE MAGNETIC FILMS USING A SUPERCRIT-of EDX analysis on nano-scale ?lms. . . . . . . . . . . 109

  10. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22T23:59:59.000Z

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  11. Center for Nanoscale Control of Geologic CO2 (EFRC) - Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary The objective of the DOE Energy Frontier Research Center (EFRC) for Nanoscale Control of Geologic CO2 (NCGC) is to use new investigative tools, combined with experiments...

  12. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine...

  13. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  14. Nanoscale Alloying, Phase-Segregation, and Core-Shell Evolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alloying, Phase-Segregation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect Nanoscale Alloying, Phase-Segregation, and Core-Shell...

  15. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the...

  16. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry via Scanning Ion Conductance Microscopy A. L. Lipson, R. S. Ginder, and M. C. Hersam, Northwestern University...

  17. Nanoscale Phase Transitions under Extreme Conditions within an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under extreme conditions. Citation: Zhang J, M Lang, RC Ewing, R Devanathan, WJ Weber, and M Toulemonde.2010."Nanoscale Phase Transitions under Extreme Conditions within an...

  18. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  19. Thermodynamics of Nanoscale Calcium and Strontium Titanate Perovskites

    E-Print Network [OSTI]

    Sahu, Sulata Kumari

    2013-01-01T23:59:59.000Z

    and A. Navrotsky, “Thermodynamics of Nanoscale Lead Titanate2007. A. Navrotsky, “Thermodynamics of Solid Electrolytesand Y. Fei, “The Thermodynamics of Ordered Perovskites on

  20. High-Efficiency, Self-Concentrating Nanoscale Solar Cell - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High-Efficiency, Self-Concentrating Nanoscale Solar Cell Lawrence Berkeley National Laboratory Contact...

  1. Thermal and Non-thermal Physiochemical Processes in Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition...

  2. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    E-Print Network [OSTI]

    He, Q.

    2011-01-01T23:59:59.000Z

    Controllable Spontaneous Magnetism in Nanoscale Mixed Phase2001). Chakhalian, J. et al. Magnetism at the interfacelocal nature of this magnetism. We find that the spontaneous

  3. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User...

  4. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have...

  5. Measuring oxygen reduction/evolution reactions on the nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Ciucci, Francesco [Harvard-Smithsonian Center for Astrophysics

    2011-01-01T23:59:59.000Z

    The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions (ORR/OER). Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nanometer resolution. In electrochemical strain microscopy (ESM), the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometer-scale volume of material, and bias-induced, picometer-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and Pt-functionalized yttria-stabilized zirconia (YSZ) surfaces is demonstrated. This approach allows directly visualization of ORR/OER activation process at the triple-phase boundary, and can be extended to broad spectrum of oxygen-conductive and electrocatalytic materials.

  6. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu [National Institute of Standards and Technology] National Institute of Standards and Technology; Crozier, Peter [Arizona State University] Arizona State University; Adams, James [Arizona State University] Arizona State University

    2013-09-19T23:59:59.000Z

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  7. www.rsc.org/nanoscale ISSN 2040-3364

    E-Print Network [OSTI]

    Lin, Zhiqun

    morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor organization and nanoscale morphology for high performance low bandgap polymer solar cells Volume 6 Number 8 21 performance low bandgap polymer solar cells Ming He,a Mengye Wang,ab Changjian Linb and Zhiqun Lin*a Rational

  8. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30T23:59:59.000Z

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  9. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie

    E-Print Network [OSTI]

    Xu, Xianfan

    Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture experimental demonstration of field enhancement using such ridge antenna apertures in a bowtie shape integrated with nanoscale bowtie aperture. Consistent lines with width of 59 nm and as small as 24 nm have

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscale Chemical

  11. Towards rational design of peptides for selective interaction with inorganic materials

    E-Print Network [OSTI]

    Krauland, Eric Mark

    2007-01-01T23:59:59.000Z

    Utilizing molecular recognition and self-assembly, material-specific biomolecules have shown great promise for engineering and ordering materials at the nanoscale. These molecules, inspired from natural biomineralization ...

  12. Jaszczak et al. 1 MICRO-AND NANO-SCALE GRAPHITE CONES AND TUBES FROM HACKMAN

    E-Print Network [OSTI]

    Jaszczak, John A.

    of micro- and nano-scale RGS. The largest of the RGS are hollow scrolls, with the c-axis predominantly at the micro- and nano-scales. The nano-scale cones tend not to be hollow and may have a cone-helix structureJaszczak et al. 1 MICRO- AND NANO-SCALE GRAPHITE CONES AND TUBES FROM HACKMAN VALLEY, KOLA

  13. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOE Patents [OSTI]

    Welle, Eric J. (Niceville, NM); Tappan, Alexander S. (Albuquerque, NM); Palmer, Jeremy A. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  14. Control of friction at the nanoscale

    DOE Patents [OSTI]

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06T23:59:59.000Z

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  15. Center for Nanoscale Control of Geologic CO2 (EFRC) - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager (Energy Sciences Area, LBNL) An organization chart of the Center for Nanoscale Control of Geologic CO2 Research Teams: Thrust 1: Fractured Shale Ian Bourg, Thrust 1 Lead,...

  16. Nano-scale scratching in chemical-mechanical polishing

    E-Print Network [OSTI]

    Eusner, Thor

    2008-01-01T23:59:59.000Z

    During the chemical-mechanical polishing (CMP) process, a critical step in the manufacture of ultra-large-scale integrated (ULSI) semiconductor devices, undesirable nano-scale scratches are formed on the surfaces being ...

  17. Secretarial Policy Statement on Nanoscale Safety - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    56.1, Secretarial Policy Statement on Nanoscale Safety by Bill McArthur Functional areas: Nano Technology, Safety The safety of its employees, the public, and the environment is...

  18. Nanoscale Pore Network and Pore Fluid Characterization from Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Pore Network and Pore Fluid Characterization from Neutron Scattering and Modeling Techniques Jul 22 2015 10:00 AM - 11:00 AM Gernot Rother, Chemical Sciences Division...

  19. Nanoscale surface topography reshapes neuronal growth in culture

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale surface topography reshapes neuronal growth in culture Ghislain Bugnicourt1. Moreover, when confronted to a differential surface topography, neurons specify an axon preferentially onto neurites, elongate faster, and differentiate an axon earlier than those grown on flat silicon surfaces

  20. Shedding light on Nature's nanoscale control of solar energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light on Nature's nanoscale control of solar energy July 30, 2012 Tweet EmailPrint Across billions of years of evolution, nature has retained a common light-absorbing hexameric...

  1. Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC FLOW along the wire. Together, these experiments illustrate the versatility of microfluidics MICROFLUIDIC FLOW CONTROL By Chad Ropp Dissertation submitted to the Faculty of the Graduate School

  2. Nanoscale structure and transport : from atoms to devices

    E-Print Network [OSTI]

    Evans, Matthew Hiram

    2005-01-01T23:59:59.000Z

    Nanoscale structures present both unique physics and unique theoretical challenges. Atomic-scale simulations can find novel nanostructures with desirable properties, but the search can be difficult if the wide range of ...

  3. Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid Films

    E-Print Network [OSTI]

    Kim, Bo Hung

    2010-07-14T23:59:59.000Z

    Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface...

  4. Electronic structure and transport in molecular and nanoscale electronics

    E-Print Network [OSTI]

    Qian, Xiaofeng

    2008-01-01T23:59:59.000Z

    Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical ...

  5. Perspectives Nanotechnology and the public: Effectively communicating nanoscale science

    E-Print Network [OSTI]

    Crone, Wendy C.

    Perspectives Nanotechnology and the public: Effectively communicating nanoscale science August 2006 Key words: nanotechnology, communication, public knowledge, public understanding the public on concepts and applications associated with nanotechnology. The goal of our work

  6. Proton-Conducting Films of Nanoscale Ribbons Formed by Exfoliation of the Layer Perovskite H2SrTa2O7

    E-Print Network [OSTI]

    Proton-Conducting Films of Nanoscale Ribbons Formed by Exfoliation of the Layer Perovskite H2SrTa2OTa2O7 were grown and characterized as solid-state proton conductors. The ribbons, made by exfoliation membranes made from layered materials such as exfoliated zirconium phosphate.12 Unfortunately, the proton

  7. New Dark Matter Detector using Nanoscale Explosives

    E-Print Network [OSTI]

    Lopez, Alejandro; Freese, Katherine; Kurdak, Cagliyan; Tarle, Gregory

    2014-01-01T23:59:59.000Z

    We present nanoscale explosives as a novel type of dark matter detector and study the ignition properties. When a Weakly Interacting Massive Particle WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of energy deposited can trigger an explosion. For specificity, this paper focuses on a type of two-component explosive known as a nanothermite, consisting of a metal and an oxide in close proximity. When the two components interact they undergo a rapid exothermic reaction --- an explosion. As a specific example, we consider metal nanoparticles of 5 nm radius embedded in an oxide. One cell contains more than a few million nanoparticles, and a large number of cells adds up to a total of 1 kg detector mass. A WIMP interacts with a metal nucleus of the nanoparticles, depositing enough energy to initiate a reaction at the interface between the two layers. When one nanoparticle explodes it initiates a chain reaction throughout the cell. A number of possible thermite mat...

  8. Vision for the University of Connecticut Technology Park Materials Discovery, Product Design & Development

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    · Additive Manufacturing and Nanoscale Processing · Fuel Cells, Sustainable Energy & Energy Management & Development and Advanced Manufacturing: Partnering with Industry to Accelerate Manufacturing Innovation for the Tech Park which will house the Connecticut Collaboratory for Materials & Manufacturing (C2M2

  9. Debonding in bi-layer material systems under moisture effect : a multiscale approach

    E-Print Network [OSTI]

    Lau, Tak-bun, Denvid

    2012-01-01T23:59:59.000Z

    Bi-layer material systems are found in various engineering applications ranging from nano-scale components, such as thin films in circuit boards, to macro-scale structures such as adhesive bonding in aerospace and civil ...

  10. Nano-scale positioning, control and motion planning in hard disk drives

    E-Print Network [OSTI]

    Boettcher, Uwe

    2011-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Nano-scale Positioning, Control andABSTRACT OF THE DISSERTATION Nano-scale Positioning, Controlmm) height (mm) mini micro nano pico femto Figure 2.8:

  11. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it...

  12. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01T23:59:59.000Z

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  13. BELGIAN MATHEMATICAL Comite National de Mathematique CNM

    E-Print Network [OSTI]

    Einmahl, Uwe

    16h00, ULB, Solvay Room (2NO507) Pierre DELIGNE (Institute for Advanced Study) La famille de courbes

  14. 3/04/2008 Center for Nanoscale Systems, FAS, Harvard University

    E-Print Network [OSTI]

    for Nanoscale Systems, FAS, Harvard University 5 Filling Out Hazardous Waste Tags 1 of 2 ·Fill In Full Chemical This Blank #12;3/04/2008 Center for Nanoscale Systems, FAS, Harvard University 6 Filling Out Hazardous Waste3/04/2008 Center for Nanoscale Systems, FAS, Harvard University 1 Protocol For User Supplied

  15. Electron Spin Resonance Spectroscopy via Relaxation of Solid-State Spin Probes at the Nanoscale

    E-Print Network [OSTI]

    L. T. Hall; P. Kehayias; D. A. Simpson; A. Jarmola; A. Stacey; D. Budker; L. C. L. Hollenberg

    2015-03-03T23:59:59.000Z

    Electron Spin Resonance (ESR) describes a suite of techniques for characterising electronic systems, with applications in physics, materials science, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring the ESR spectrum of nanoscale electronic environments by measuring the relaxation time ($T_1$) of an optically addressed single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept we extract the spectral distribution for the P1 electronic spin bath in diamond using an ensemble of nitrogen-vacancy centres, and demonstrate excellent agreement with theoretical expectations. As the response of each NV spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7\\,nm, the extension of this all-optical technique to the single NV case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems.

  16. Guiding Polymers to Perfection: Macroscopic Alignment of Nanoscale

    E-Print Network [OSTI]

    Sibener, Steven

    frequently with (3) a complete absence of defects. This methodology can be exploited in hybrid hard/soft matter systems for electronics, catalysis, and sensors. Fabrication of macroscopic domains of periodic nanoscale structures using self-organizing systems has garnered sig- nificant attention because

  17. Title of dissertation: NANOSCALE BEHAVIOR OF 90 IN FERROELECTRIC FILMS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: NANOSCALE BEHAVIOR OF 90 DOMAINS IN FERROELECTRIC FILMS Zhengkun Ma, Doctor of Philosophy, 2005 Dissertation directed by: Professor Alexander L. Roytburd Department Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park

  18. Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate

    E-Print Network [OSTI]

    Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate Geoffrey B. Saupe, Chad C. Waraksa. Revised Manuscript Received March 27, 2000 The exfoliation of acid-exchanged K4Nb6O17 with tetra formed early in the exfoliation process, which are found only as flat sheets. Tubules in colloidal

  19. Mediated Enzyme Electrodes with Combined Micro-and Nanoscale Supports

    E-Print Network [OSTI]

    Hone, James

    Mediated Enzyme Electrodes with Combined Micro- and Nanoscale Supports Scott Calabrese Barton which is grown multiwall nanotubes by chemical vapor deposition combined with ohmic heating. Power systems based on ambient fuels will be feasible if the power device itself is capable

  20. Low Power Nanoscale Buffer Management for Network on Chip Routers

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    Low Power Nanoscale Buffer Management for Network on Chip Routers Suman K. Mandal Texas A power dissipation. We present a novel dynamic power management technique for low power NoC router buffers using nano CMOS SRAMS. A feedback controller was designed for block level power management

  1. Analysis and specificities of adhesive forces between microscale and nanoscale

    E-Print Network [OSTI]

    is the packaging of NEMS which require handling, positioning, assembling and joining strategies in the mesoscale of the mesoscale in comparison with nanoscale and microscale. Firstly, it is shown that the distributions are presented. Thirdly, the van der Waals forces are increased by local deformations on the mesoscale contrary

  2. Nanoscale Current Imaging of the Conducting Channels in Proton

    E-Print Network [OSTI]

    Buratto, Steve

    Nanoscale Current Imaging of the Conducting Channels in Proton Exchange Membrane Fuel Cells David A area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic particle at its end. This is due to the formation of protons, at the carbon cloth side of the cell

  3. Bioremediation of Uranium Plumes with Nano-scale

    E-Print Network [OSTI]

    Fay, Noah

    (IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

  4. Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing 

    E-Print Network [OSTI]

    Rahmani, David G.

    2010-07-14T23:59:59.000Z

    as round wires are presented and discussed. Processes were developed to increase flux pinning in Nb3Sn by utilizing powder metallurgy techniques to introduce a heterogeneously homogenous distribution of nanoscale inclusions of candidate materials in Nb rod...

  5. Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing

    E-Print Network [OSTI]

    Rahmani, David G.

    2010-07-14T23:59:59.000Z

    as round wires are presented and discussed. Processes were developed to increase flux pinning in Nb3Sn by utilizing powder metallurgy techniques to introduce a heterogeneously homogenous distribution of nanoscale inclusions of candidate materials in Nb rod...

  6. Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer

    E-Print Network [OSTI]

    Karalis, Aristeidis, 1978-

    2008-01-01T23:59:59.000Z

    A set of novel mechanisms for the manipulation of light in the nanoscale is provided. In the class of all-dielectric material systems, techniques for the suppression of radiative loss from incomplete-photonic-bandgap ...

  7. Clare Boothe Luce Assistant Professor Position in Hard Materials The Departments of Mechanical Engineering (me.udel.edu) and Materials Science and Engineering

    E-Print Network [OSTI]

    Gao, Guang R.

    Engineering (me.udel.edu) and Materials Science and Engineering (mseg.udel.edu) at the University of Delaware appointment will be in Mechanical Engineering or Materials Science and Engineering with additional parallel faculty searches in Soft Materials (www.udel.edu/udjobs #101714) and Nanoscale engineering (www

  8. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect (OSTI)

    Zhang, Zhen; Lee, James D., E-mail: jdlee@gwu.edu [Department of Mechanical and Aerospace Engineering, the George Washington University, Washington, DC 20052 (United States); Wang, Xianqiao [College of Engineering, University of Georgia, Athens, Georgia 30602 (United States)

    2014-03-21T23:59:59.000Z

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  9. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12T23:59:59.000Z

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  10. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    SciTech Connect (OSTI)

    Patridge, Christopher J. [NRC/NRL Cooperative Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Love, Corey T., E-mail: corey.love@nrl.navy.mil [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Swider-Lyons, Karen E. [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Twigg, Mark E. [Electronics Science and Technology Division, Code 6812, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Ramaker, David E. [Chemistry Division, Code 6189, U.S. Naval Research laboratory, Washington, DC 20375 (United States)

    2013-07-15T23:59:59.000Z

    The local structure of nanoscale (?10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (??) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a ?? EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple scattering calculations are used to support ?? analysis.

  11. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24T23:59:59.000Z

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  12. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)

    2014-02-10T23:59:59.000Z

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  13. CNEEC - TRG3: Nanoscale Control in Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN9 HighAnalysis

  14. A robust, scanning quantum system for nanoscale sensing and imaging

    E-Print Network [OSTI]

    P. Maletinsky; S. Hong; M. S. Grinolds; B. Hausmann; M. D. Lukin; R. -L. Walsworth; M. Loncar; A. Yacoby

    2011-08-22T23:59:59.000Z

    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy.

  15. Growth and control of microscale to nanoscale carbon nitride particles

    SciTech Connect (OSTI)

    Li, H. Y.; Shi, Y. C.; Feng, P. X. [Physics Department, Dong Hua University, Shanghai 200051 (China); University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00931 (Puerto Rico) and Physics Department, Dong Hua University, Shanghai 200051 (China)

    2006-10-02T23:59:59.000Z

    Microscale to nanoscale carbon nitride (China) particles are prepared using plasma sputtering deposition techniques. The preferred orientation of nanoscale CN particle distributions is obtained. Particles are examined using scanning electron microscopy (SEM) and Raman scattering spectroscopy. SEM micrographs show that the CN particles are spherical with nearly the same diameters of 2.5 {mu}m prepared without setting bias voltage. The distribution of these particles is random. Setting bias voltage up to 5 kV, plasma sputtering deposition yields several dispersed ring patterns of particle distributions where many small groups of nanoscale particles are observed. Each group of these particles is in a sunflower type of distribution, in which the biggest (85 nm) particle at the center is surrounded by many small sizes (30 nm) of CN particles. Disk type of the particles with a diameter of 10 {mu}m is also observed at different deposition conditions. Typical carbon bands and CN band in the Raman spectra of the samples are identified. The intensity of the bands obviously varies at the different deposition conditions.

  16. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

    2006-01-01T23:59:59.000Z

    of interpenetrating networks of conjugated polymer and TiO2Photodiodes from Interpenetrating Polymer Networks. Naturepolymer solar cells with nanoscale control of the interpenetrating network

  17. Mid Infrared Focal Plane Arrays With Nanoscale Quantum Dots and Superlattices

    E-Print Network [OSTI]

    Krishna, Sanjay

    Mid Infrared Focal Plane Arrays With Nanoscale Quantum Dots and Superlattices S. Krishna Center- Molecular beam epitaxy, Nanoscale, Quantum Dots Superlattices, Antimonides, Mid-infrared photodetector. I. INTRODUCTION Presently, the state of the art photon detectors for the mid wave infrared (MWIR, 3-5 µm) and long

  18. Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE-cluster interaction. #12;INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE ATOMIC AND MOLECULAR., Department of Electrical and Computer Engineering We study the interaction of intense laser pulses with gases

  19. Electrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

    E-Print Network [OSTI]

    Borguet, Eric

    attractive for a wide range of applications such as the fabrication of nanoscale devices, energy storage of nanostructures into 2D or 3D arrays is necessary for the further hierarchical development of devices. TemplatingElectrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

  20. Local Heating in Nanoscale Conductors Yu-Chang Chen, Michael Zwolak, and Massimiliano Di Ventra*

    E-Print Network [OSTI]

    Zwolak, Michael

    Local Heating in Nanoscale Conductors Yu-Chang Chen, Michael Zwolak, and Massimiliano Di Ventra Received October 2, 2003 ABSTRACT We report first-principles calculations of local heating in nanoscale heat dissipation, the single molecule heats less than the gold point contact. We also find that

  1. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  2. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging

    E-Print Network [OSTI]

    Xu, Xianfan

    High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging Liang Wang probe integrated with nanoscale bowtie aperture for enhanced optical transmission is demonstrated. The bowtie-shape aperture allows a propagating mode in the bowtie gap region, which enables simultaneous

  3. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces

    E-Print Network [OSTI]

    Nielsen, Steven O.

    A mean field approach for computing solid-liquid surface tension for nanoscale interfaces Chi are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension

  4. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect (OSTI)

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-06-09T23:59:59.000Z

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  5. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict4VacancyVacancy-Induced Nanoscale Wire

  6. Crystallization of Ge2Sb2Te5 nanometric phase change material clusters made by gas-phase condensation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Crystallization of Ge2Sb2Te5 nanometric phase change material clusters made by gas- phase=pdfcov Published by the AIP Publishing Articles you may be interested in Nanoscale nuclei in phase change materials phase change material clusters made by gas-phase condensation G. E. Ghezzi,1,2 R. Morel,3 A. Brenac,3 N

  7. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  8. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect (OSTI)

    Sahin, R.; Akturk, S., E-mail: selcuk.akturk@itu.edu.tr [Department of Physics, Istanbul Technical University, Maslak 34469, Istanbul (Turkey); Simsek, E. [Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States)

    2014-02-03T23:59:59.000Z

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400?nm wide ablation channels could be achieved over 100??m length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  9. High-pressure lubricity at the meso- and nanoscale

    E-Print Network [OSTI]

    A. Vanossi; A. Benassi; N. Varini; E. Tosatti

    2013-01-11T23:59:59.000Z

    The increase of sliding friction upon increasing load is a classic in the macroscopic world. Here we discuss the possibility that friction rise might sometimes turn into a drop when, at the mesoscale and nanoscale, a confined lubricant film separating crystalline sliders undergoes strong layering and solidification. Under pressure, transitions from N to N-1 layers may imply a change of lateral periodicity of the crystallized lubricant sufficient to alter the matching of crystal structures, influencing the ensuing friction jump. A pressure-induced friction drop may occur as the shear gradient maximum switches from the lubricant middle, marked by strong stick-slip with or without shear melting, to the crystalline slider-lubricant interface, characterized by smooth superlubric sliding. We present high pressure sliding simulations to display examples of frictional drops, suggesting their possible relevance to the local behavior in boundary lubrication.

  10. Nanoscale spatially resolved infrared spectra from single microdroplets

    E-Print Network [OSTI]

    Müller, Thomas; Kulik, Andrzej J; Shimanovich, Ulyana; Mason, Thomas O; Knowles, Tuomas P J; Dietler, Giovanni

    2014-01-01T23:59:59.000Z

    Droplet microfluidics has emerged as a powerful platform allowing a large number of individual reactions to be carried out in spatially distinct microcompartments. Due to their small size, however, the spectroscopic characterisation of species encapsulated in such systems remains challenging. In this paper, we demonstrate the acquisition of infrared spectra from single microdroplets containing aggregation-prone proteins. To this effect, droplets are generated in a microfluidic flow-focussing device and subsequently deposited in a square array onto a ZnSe prism using a micro stamp. After drying, the solutes present in the droplets are illuminated locally by an infrared laser through the prism, and their thermal expansion upon absorption of infrared radiation is measured with an atomic force microscopy tip, granting nanoscale resolution. Using this approach, we resolve structural differences in the amide bands of the spectra of monomeric and aggregated lysozyme from single microdroplets with picolitre volume.

  11. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    E-Print Network [OSTI]

    David T. Limmer; Adam P. Willard

    2014-10-06T23:59:59.000Z

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering an new direction for study in heterogeneous catalysis at the nanoscale.

  12. ADVANCED HEAT EXCHANGERS USING TUNABLE NANOSCALE-MOLECULAR ASSEMBLY

    SciTech Connect (OSTI)

    Kwang J. Kim; Thomas W. Bell; Srinivas Vemuri; Sailaja Govindaraju

    2004-01-01T23:59:59.000Z

    Steam condensation heat transfer on smooth horizontal tubes and enhanced tubes (TURBO-CDI and TURBO-CSL) along with nanoscale hydrophobic coated tubes was studied experimentally. Hydrophobic coatings have been created through self-assembled mono layers (SAMs) on copper alloy (99.9% Cu, 0.1% P) surfaces to enhance steam condensation through dropwise condensation. In general, a SAM system with a long-chain, hydrophobic group is nano-resistant, meaning that such a system forms a protective hydrophobic layer with negligible heat transfer resistance but a much stronger bond. When compared to complete filmwise condensation, the SAM coating on a plain tube increased the condensation heat transfer rate by a factor of 3 for copper alloy surfaces, under vacuum pressure (33.86 kPa) and by a factor of about 8 times when operated at atmospheric pressure (101 kPa). Lifetime of maintaining dropwise condensation is greatly dependent on the processing conditions.

  13. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains

    SciTech Connect (OSTI)

    Chatterjee, Sabornie [ORNL; Jones, Eric B [ORNL; Clingenpeel, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; McKenna, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; Rios, Orlando [ORNL; McNutt, Nicholas W [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Johs, Alexander [ORNL

    2014-01-01T23:59:59.000Z

    Lignin is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fiber, monolithic structures or powders that could be used directly in the production of anodes for lithium-ion batteries. In this work, we report processing parameters relevant for the conversion of lignin precursors into electrochemically active carbon fibers, the impact of lignin precursor modification on melt processing and the microstructure of the final carbon material. The conversion process encompasses melt spinning of the lignin precursor, oxidative stabilization and a low temperature carbonization step in a nitrogen/hydrogen atmosphere. To assess electrochemical performance, we determined resistivities of individual carbon fiber samples and characterized the microstructure by scanning electron microscopy and neutron diffraction. The chemical modification and subsequent thermomechanical processing methods reported here are effective for conversion into carbon fibers while preserving the macromolecular backbone structure of lignin. Modification of softwood lignin produced functionalities and rheological properties that more closely resemble hardwood lignin thereby enabling the melt processing of softwood lignin in oxidative atmospheres (air). Structural characterization of the carbonized fibers reveals nanoscale graphitic domains that are linked to enhanced electrochemical performance.

  14. POLYMER PROGRAM SEMINAR "Single-chain Nanoparticles: Synthesis of Nano-scale

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Single-chain Nanoparticles: Synthesis of Nano-scale Architectures:00 AM, IMS Room 20 Recent efforts by our lab to fold single polymer chains into nano

  15. Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy Douglas Howe....................................................................................................................... 4 Surface Plasmons used. The coupling of optical energy with the surface plasmons that occur on the surface of metals

  16. The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

    E-Print Network [OSTI]

    Travis, Adrian

    The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solventsm00343c The power conversion efficiency in a conjugated polymer-functionalized fullerene bulk heterojunction organic photovoltaic (OPV) device is dependent both on the electronic properties

  17. Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications 

    E-Print Network [OSTI]

    Verma, Shobhit

    2005-11-01T23:59:59.000Z

    This dissertation presents two novel 6-axis magnetic-levitation (maglev) stages that are capable of nanoscale positioning. These stages have very simple and compact structure that is advantageous to meet requirements in ...

  18. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    E-Print Network [OSTI]

    Wang, Zhong L.

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

  19. University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale Optofluidics for

    E-Print Network [OSTI]

    Lee, Herbie

    University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale;University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Background Microfluidics Single molecule analysis Integrated optics Singleparticle Optofluidics Optofluidics: combination

  20. Atomic-Level Study of Ion-Induced Nanoscale Disordered Domains...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on SiC using ion-beam-induced order-disorder transformation. Citation: Gao F, and WJ Weber.2003."Atomic-Level Study of Ion-Induced Nanoscale Disordered Domains in Silicon...

  1. Nanoscale organic transistors that use sourcedrain electrodes supported by high resolution rubber stamps

    E-Print Network [OSTI]

    Rogers, John A.

    Nanoscale organic transistors that use sourceÕdrain electrodes supported by high resolution rubber resolution rubber stamps bilayers of two different types of the elastomer polydimethylsiloxane 3,4 by casting

  2. Toward Nanoscale Three-Dimensional Printing: Nanowalls Built of Electrospun Nanofibers

    E-Print Network [OSTI]

    Kim, Ho-Young

    . This novel 3D printing scheme can be applied to the development of various 3D nanoscale objects including manufacturing for several decades.1 So- called 3D printing is reaching a stage where the desired products can

  3. Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology

    E-Print Network [OSTI]

    Huang, Hao, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

  4. Development of nano-scale and biomimetic surfaces for biomedical applications 

    E-Print Network [OSTI]

    Henry, James Edward

    2006-10-30T23:59:59.000Z

    . Both sensors developed in this work take advantage of the unique optical properties associated with nanoscale metal particles, however they use different types of spectroscopies for optical detection of the presence of the disease associated abnormal...

  5. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy

    SciTech Connect (OSTI)

    Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Lesniewska, E. [ICB, UMR CNRS 6303 CNRS-University of Bourgogne, Dijon F-21078 (France); Tetard, L. [Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826 (United States)

    2014-08-04T23:59:59.000Z

    This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f{sub p} and the sample f{sub s} with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale.

  6. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets Dapeng Wang a

    E-Print Network [OSTI]

    Liu, J. Ping

    t Nanoscale hybrid magnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel magnetization and energy products compared to the single-phase SmCo5 counterpart. & 2012 Elsevier B.V. All-coupled fully dense nanoscale hybrid magnets of different hard magnetic phases ``in one pot''. The SmCo5/Nd2Fe14

  7. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect (OSTI)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24T23:59:59.000Z

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure of magnetite (Fe{sub 3}O{sub 4}) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe{sub 3}O{sub 4}) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging and result in low yields of nanomagnetite. Despite these limitations, magnetotactic bacteria have bee

  8. Novel approaches to tailor and tune light-matter interactions at the nanoscale

    E-Print Network [OSTI]

    W. J. M. Kort-Kamp

    2015-05-10T23:59:59.000Z

    In this thesis we propose new, versatile schemes to control light-matter interactions at the nanoscale. In the first part of the thesis, we envisage a new class of plasmonic cloaks made of magneto-optical (MO) materials. We demonstrate that the application of a uniform magnetic field B in these cloaks may not only switch on and off the cloaking mechanism, but also mitigate the electromagnetic (EM) absorption. We also prove that the scattered field profile can be effectively controlled by changing B. The second part of the thesis is devoted to the study of light-matter interactions mediated by fluctuations of the vacuum EM field. Firstly, we demonstrate that the Purcell effect can be effectively suppressed for an excited atom near a cloaking device. Furthermore, the decay rate of a quantum emitter near a graphene-coated wall under the influence of an external magnetic field is studied. We show that the MO properties of graphene strongly affect the atomic lifetime and that B allows for an unprecedented control of the decay channels of the system. In addition, we discuss the dispersive interaction between an atom and suspended graphene in a magnetic field. For large atom-graphene separations and low temperatures we show that the interaction energy is a quantized function of B. Besides, we show that at room temperature, thermal effects must be taken into account even in the extreme near-field regime. Finally, the third part of the thesis deals with the study of near-field heat transfer. We analyze the energy transfered from a semi-infinite medium to a composite sphere made of metallic inclusions embedded in a dielectric host medium. We show that the heat transfer can be strongly enhanced at the percolation phase transition. We show that our results apply for different effective medium models and are robust against changes in the inclusions' shape and materials.

  9. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    technologies would require the equivalent of 230 nuclear power plants. One promising candidate to replace existing

  10. Nanoscale Synthesis and Functional Assembly Center for Nanophase Materials Science and

    E-Print Network [OSTI]

    Pennycook, Steve

    Society 2001­p Journal Reviewer: Applied Catalysis, Catalysis Communications, Chemical Communications catalysis, nanomaterials for catalysis and photocatalysis, and applied spectroscopy. Specific techniques­2003 Research Associate, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, China

  11. Atomistic Simulations of Bonding, Thermodynamics, and Surface Passivation in Nanoscale Solid Propellant Materials

    E-Print Network [OSTI]

    Williams, Kristen

    2012-10-19T23:59:59.000Z

    , the properties of COOH-terminated passivating agents were modeled with the GPW method. It is confirmed that fluorinated polymers bind to both Al(111) and Al(100) at two Al surface sites. The oligomers HCOOH, CH3CH2COOH, and CF3CF2COOH chemisorb onto Al(111...

  12. Research Areas The Laboratory for Nanoelectronics investigates the potential of nanoscale materials in electronic devices

    E-Print Network [OSTI]

    in electronic devices at each point in the energy life-cycle ­ collection, storage, and usage. Using devices including solar cells, batteries, and efficient LEDs. Guided by insights from proof-of-concept devices, we also investigate methods for low cost, high throughput manufacturing, with particular focus

  13. Mechanics and tribology of MEMS materials.

    SciTech Connect (OSTI)

    Prasad, Somuri V.; Dugger, Michael Thomas; Boyce, Brad Lee; Buchheit, Thomas Edward

    2004-04-01T23:59:59.000Z

    Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.

  14. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    SciTech Connect (OSTI)

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26T23:59:59.000Z

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in the public domain. However, for those findings and knowledge that have not been published yet, more detailed information will be provided. The report will be divided into 4 major sections based on the material systems investigated.

  15. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  16. Mechanisms of budding of nanoscale particles through lipid bilayers

    E-Print Network [OSTI]

    Teresa Ruiz-Herrero; Enrique Velasco; Michael F. Hagan

    2012-02-21T23:59:59.000Z

    We examine the budding of a nanoscale particle through a lipid bilayer using molecular dynamics simulations, free energy calculations, and an elastic theory, with the aim of determining the extent to which equilibrium elasticity theory can describe the factors that control the mechanism and efficiency of budding. The particle is a smooth sphere which experiences attractive interactions to the lipid head groups. Depending on the parameters, we observe four classes of dynamical trajectories: particle adhesion to the membrane, stalled partially wrapped states, budding followed by scission, and membrane rupture. In most regions of parameter space we find that the elastic theory agrees nearly quantitatively with the simulated phase behavior as a function of adhesion strength, membrane bending rigidity, and particle radius. However, at parameter values near the transition between particle adhesion and budding, we observe long-lived partially wrapped states which are not captured by existing elastic theories. These states could constrain the accessible system parameters for those enveloped viruses or drug delivery vehicles which rely on exo- or endocytosis for membrane transport.

  17. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  18. Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible of protons and lithium ions into solid materials has led to the success of nickel metal hydride and lithium materials have been studied extensively.15,16,18,20-23 Electrodeposited PB thin films have demonstrated

  19. Proposal to Lead the Virtual Center on Carbon Materials, and support the Chemical Hydrides Center

    E-Print Network [OSTI]

    of nanoscale carbons, SWNTs, MWNTs by laser vaporization, chemical vapor deposition, hot wire CVD, and arc-discharge methods. Experience with dopant and/or catalyst incorporation NREL Capabilities in Carbon Materials laser by transition metal hydride complexes (funded by DOE BES) Lead DOE lab for new SiH4 production process ­ pilot

  20. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05T23:59:59.000Z

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to â??real-worldâ? materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  1. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    SciTech Connect (OSTI)

    Epstein, Arthur J. [Professor

    2013-09-10T23:59:59.000Z

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  2. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg (Center for Functional Nanomaterials) [Center for Functional Nanomaterials

    2012-01-18T23:59:59.000Z

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  3. ORNL researchers tune friction in ionic solids at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models. This work builds on extensive efforts at CNMS exploring the electrical manipulation of mechanical, electrochemical and ferroelectric properties of materials. "We...

  4. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural vacancies are a source of numerous interesting structural, electronic, and optical properties, and materials scientists often rely them as an important building...

  5. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

    SciTech Connect (OSTI)

    Raja A. Jadhav

    2006-05-31T23:59:59.000Z

    Several different types of nanocrystalline metal oxide sorbents were synthesized and evaluated for capture of mercury (Hg) from coal-gasifier warm fuel gas. Detailed experimental studies were carried out to understand the fundamental mechanism of interaction between mercury and nanocrystalline sorbents over a range of fuel gas conditions. The metal oxide sorbents evaluated in this work included those prepared by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) as well as those prepared in-house. These sorbents were evaluated for mercury capture in GTI's Mercury Sorbent Testing System. Initial experiments were focused on sorbent evaluation for mercury capture in N{sub 2} stream over the temperature range 423-533 K. These exploratory studies demonstrated that NanoActive Cr{sub 2}O{sub 3} along with its supported form was the most active of the sorbent evaluated. The capture of Hg decreased with temperature, which suggested that physical adsorption was the dominant mechanism of Hg capture. Desorption studies on spent sorbents indicated that a major portion of Hg was attached to the sorbent by strong bonds, which suggested that Hg was oxidized by the O atoms of the metal oxides, thus forming a strong Hg-O bond with the oxide. Initial screening studies also indicated that sulfided form of CuO/alumina was the most active for Hg capture, therefore was selected for detailed evaluation in simulated fuel gas (SFG). It was found that such supported CuO sorbents had high Hg-sorption capacity in the presence of H{sub 2}, provided the gas also contained H{sub 2}S. Exposure of supported CuO sorbent to H{sub 2}S results in the formation of CuS, which is an active sorbent for Hg capture. Sulfur atom in CuS forms a bond with Hg that results into its capture. Although thermodynamically CuS is predicted to form unreactive Cu{sub 2}S form when exposed to H{sub 2}, it is hypothesized that Cu atoms in such supported sorbents are in ''dispersed'' form, with two Cu atoms separated by a distance longer than required to form a Cu{sub 2}S molecule. Thus CuS remains in the stable reactive form as long as H{sub 2}S is present in the gas phase. It was also found that the captured Hg on such supported sorbents could be easily released when the spent sorbent is exposed to a H2-containing stream that is free of Hg and H{sub 2}S. Based on this mechanism, a novel regenerative process has been proposed to remove Hg from fuel gas at high temperature. Limited multicyclic studies carried out on the supported Cu sorbents showed their potential to capture Hg from SFG in a regenerative manner. This study has demonstrated that supported nanocrystalline Cu-based sorbents have potential to capture mercury from coal syngas over multiple absorption/regeneration cycles. Further studies are recommended to evaluate their potential to remove arsenic and selenium from coal fuel gas.

  6. Intrinsic Nanoscience of ? Pu-Ga Alloys: Local Structure and Speciation, Collective Behavior, Nanoscale Heterogeneity, and Aging Mechanisms

    SciTech Connect (OSTI)

    Conradson, Steven D.; Bock, Nicolas; Castro, Julio M.; Conradson, Dylan R.; Cox, Lawrence E.; Dmowski, Wojtek; Dooley, David E.; Egami, Takeshi; Espinosa-Faller, Francisco J.; Freibert, Franz J.; Garcia-Adeva, Angel J.; Hess, Nancy J.; Holmstrom, Erik; Howell, Rafael C.; Katz, Barbara A.; Lashley, Jason C.; Martinez, Raymond J.; Moore, David P.; Morales, Luis A.; Olivas, J David; Pereyra, Ramiro A.; Ramos, Michael; Terry, Jeff H.; Villella, Phillip M.

    2014-04-24T23:59:59.000Z

    Because diffraction measurements are sensitive only to the long range average arrangement of the atoms in the coherent portion of a crystal, complementary local structure measurements are required for a complete understanding of the structure of a complex material. This is particularly an issue in solid solutions where even random distributions of a solute will result in nanometer-scale fluctuations in the local composition. The structure will be further complicated if collective and cooperative phenomena organize the solute distribution via longer range interactions between non-bonded solute sites. If the solute affects the phase stability then the question is raised of whether the atoms in domains with local compositions outside the limits of the bulk phase will rearrange into the structure stable for that composition and temperature or if the resulting stress would prevent such a local phase transition. If the former, then phase separated, heterogeneous structures at or below the diffraction limit will form. This nanometerscale competition between the phase transition and the epitaxial mismatch – exacerbated by the added strain if the transition involves a volume change – raises the potential for the formation of novel structures that do not occur in bulk material, e.g., fcc Fe. This coupling over multiple scales between inhomogeneity ordering, elastic forces, phase competition, and texture in the form of coexisting structures is a hallmark of martensites, a class of complex materials that includes ?-stabilized PuGa and that often exhibit correlated atomic and electronic properties. The enigmatic and extreme nature of Pu is consistent with its exhibiting unusual structural behavior of this type, including nanoscale heterogeneity in ?-stabilized PuGa and its enhanced homogeneity on aging that has been suggested based on earlier X-ray Absorption Fine Structure (XAFS) spectroscopy and x-ray pair distribution function (pdf) measurements. Measurements on a defined set of laboratory-prepared materials now corroborate and better describe this heterogeneity while additional aged samples demonstrate the role of heterogeneity in aging processes in Pu.

  7. Probing extraordinary nanoscale energy transfer using bimaterial microcantilevers

    E-Print Network [OSTI]

    Shen, Sheng, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Nanostructured materials have recently drawn a great deal of attention in the field of energy research such as for solar photovoltaic, thermophotovoltaic and thermoelectric applications. The energy transport properties of ...

  8. Microsoft Word - Dynamic Chemical Imaging at Nanoscale bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to engineers striving to reduce the amount of inactive materials such as conductive additives and binders so as to increase the energy density of a system. In this study,...

  9. Postdoctoral Research Associate Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    for Nanophase Materials Sciences Oak Ridge National Laboratory (865)241-4174 linw@ornl.gov Publications Education Xiamen University, China Physics & Electrical Communication B.S., 2001 Xiamen University, China

  10. Comit National de Mathmatique CNM NCW Nationaal Comit voor Wiskunde

    E-Print Network [OSTI]

    Einmahl, Uwe

    '´epargner sa vie. Les choses se pass`erent diff´eremment : au soldat qui l'avait trouv´e en train de tracer des

  11. Advances in Surface Plasmon Resonance Imaging Enable Quantitative Tracking of Nanoscale Changes in Thickness and

    E-Print Network [OSTI]

    Dutcher, John

    Advances in Surface Plasmon Resonance Imaging Enable Quantitative Tracking of Nanoscale Changes: To date, detailed studies of the thickness of coatings using surface plasmon resonance have been limited a significant improvement to surface plasmon resonance imaging (SPRi) that allows this sensitive technique

  12. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam.1063/1.3643035] Lithium-ion batteries are of great interest due to their high energy density, however, various safety properties, many applications are pos- sible.10,11 One is the electrolyte of the lithium-ion batteries, where

  13. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts

    E-Print Network [OSTI]

    King, William P.

    Nanoscale Joule heating, Peltier cooling and current crowding at graphene­metal contacts Kyle L are the Joule and Peltier effects. The Joule effect9 occurs as charge carriers dissipate energy within the lattice, and is pro- portional to resistance and the square of the current. The Peltier effect17

  14. A Mossbauer spectroscopy study of nanoscale GeSn dispersions prepared by ball milling

    E-Print Network [OSTI]

    Boolchand, Punit

    A Mo¨ssbauer spectroscopy study of nanoscale Ge­Sn dispersions prepared by ball milling P by 119 Sn Mo¨ssbauer spectroscopy. The Mo¨ssbauer measurements in general reveal two sites for the Sn of the Sn was detected by Mo¨ssbauer spectroscopy at Sn-poor concentrations (x # 0.10) when the milling vial

  15. Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement

    E-Print Network [OSTI]

    Sibener, Steven

    beyond the confined channel volumes. This graphoepitaxial methodology can be exploited in hybrid hard/soft-organize at these length scales. For this reason, hybrid systems where soft matter self-organizes into a nanoscale template analysis of the capacity of this system to accommodate lithographic defects and observations of alignment

  16. Nanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Magnetic Resonance Imaging & Spectroscopy User Facility, University of Florida Chemical Engineering We haveNanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory Advanced for the facility's future use. This will serve to enhance infrastructure for research and education at the Magnet

  17. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale hydrogen embrittlement of ferritic steels has been a subject of significant research, one of the major challenges in tackling hydrogen embrittlement is that the mechanism of embrittlement is not fully resolved

  18. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    E-Print Network [OSTI]

    Southern California, University of

    films that form on aluminum and aluminum alloys in air protect the surface against further oxidationMolecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations

  19. Last Revised: 04/03/2014 UNDERGRADUATE MINOR IN "NANOSCALE SCIENCE AND ENGINEERING"

    E-Print Network [OSTI]

    Subramanian, Venkat

    . It is open to any UG student pursuing an Engineering or Arts & Sciences (Chemistry, Physics, BiologyLast Revised: 04/03/2014 UNDERGRADUATE MINOR IN "NANOSCALE SCIENCE AND ENGINEERING" SCHOOL OF ENGINEERING AND APPLIED SCIENCE Available to any UG pursuing an Arts and Science or Engineering degree I

  20. Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion

  1. Self-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors

    E-Print Network [OSTI]

    New South Wales, University of

    a reactor for a bottom-up control of the chemical synthesis with the ultimate goal of improvingSelf-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors Eisa Zarepour1 Mahbub networks (NSNs) can be applied in many chemical applications to monitor and control the chemical process

  2. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    E-Print Network [OSTI]

    Cai, Long

    A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes Nian Liu1 lithium-ion batteries and in more recent Li­O2 and Li­S batteries as a replacement for the dendrite to the level of commercial lithium-ion batteries (3.7 mAh cm22 ). Particle fracture and loss of electrical

  3. Nanoscale Strainability of Graphene by Laser Shock-Induced Three-Dimensional Shaping

    E-Print Network [OSTI]

    Chen, Yong P.

    Nanoscale Strainability of Graphene by Laser Shock-Induced Three- Dimensional Shaping Ji Li,, Ting, West Lafayette, Indiana 47907, United States ABSTRACT: Graphene has many promising physical properties. It has been discovered that local strain in a graphene sheet can alter its conducting properties

  4. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres P-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single

  5. Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

    E-Print Network [OSTI]

    Metlushko, Vitali

    Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor A. PACS: 74.25.Ha; 74.76.)w Keywords: Nanostructures; Anti-dots; Commensurability 1. Introduction atomic layers on periodical substrate [5], magnetic bubble arrays [6] and the magnetically induced Wigner

  6. Nanoscale high-temperature superconductivity P. Mohanty a,*, J.Y.T. Wei b

    E-Print Network [OSTI]

    Mohanty, Raj

    of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings-Tc superconducting (HTS) cuprate structures are only a few nanometers in size [1]. Scan- ning tunneling microscopy on a typical HTS surface gives microscopic length scales of unit cells and do- mains, typically in the range

  7. A computational contact model for nanoscale rubber adhesion Roger A. Sauer

    E-Print Network [OSTI]

    A computational contact model for nanoscale rubber adhesion Roger A. Sauer Institute for Continuum Mechanics, Leibniz Universit¨at Hannover, Germany published in Constitutive Models for Rubber VI, G mechanical contact model which is capable of describing and simulating rubber adhesion at the nanometer scale

  8. Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate

    E-Print Network [OSTI]

    Byer, Robert L.

    Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

  9. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  10. Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005

  11. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna

    E-Print Network [OSTI]

    Xu, Xianfan

    Three-dimensional mapping of optical near field of a nanoscale bowtie antenna Rui Guo*, Edward C. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie

  12. Graphitic Phase of NaCl. Bulk Properties and Nanoscale Stability Alexander G. Kvashnin,,,

    E-Print Network [OSTI]

    Tománek, David

    Graphitic Phase of NaCl. Bulk Properties and Nanoscale Stability Alexander G. Kvashnin,,,§ Pavel B approach to evaluate the stability and physical properties of the nanometer-thickness NaCl layered films and found that the rock salt films with a (111) surface become unstable with thickness below 1 nm

  13. From self-assembly to engines: Simulating the nanoscale D. C. Rapaport, Bar-Ilan University

    E-Print Network [OSTI]

    Adler, Joan

    a small fraction of the most highly bonded forms. The second is the Stirling engine, an externalFrom self-assembly to engines: Simulating the nanoscale D. C. Rapaport, Bar-Ilan University Two combustion engine with a history dating back to the industrial revolution. The model considered here employs

  14. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  15. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect (OSTI)

    Zbib, Hussein M [Washington State University; Bahr, David F [Purdue University

    2014-10-22T23:59:59.000Z

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PI’s were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.

  16. accelerating materials innovation Argonne's HigH THrougHpuT reseArcH LAborATory

    E-Print Network [OSTI]

    Kemner, Ken

    catalysis u Energy storage u Fuel cells u Artificial photosynthesis u Gas separation and storage u nanoscale the discovery and optimization of new materials, leading to "quantum jump" improvements and fast development. This allows scientists to synthesize and screen large numbers of compounds and optimize

  17. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  18. Exchange bias in nanoscale antidot arrays D. Tripathy,1

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National lithography tools for fab- ricating nanostructures with controlled dimensions and ge- ometry has stimulated miniaturization of devices and drastic increase in the areal density of magnetic record- ing media however, has

  19. APPLIED PHYSICS REVIEWS Nanoscale thermal transport. II. 20032012

    E-Print Network [OSTI]

    Cahill, David G.

    thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics devices and new generations of magnetic storage that will use highly localized heat sources to reduce

  20. C. D. (Chengdu) Liang Nanoscale Synthesis and Functional Assembly

    E-Print Network [OSTI]

    Pennycook, Steve

    Materials Sciences Oak Ridge National Laboratory (865) 574-8408 liangcn@ornl.gov Publications Education Xiangtan University, Xiangtan, China Chemistry B.S., 1995 Xiangtan University, Xiangtan, China Chemistry M University, Xiangtan, China 1995­1998 Graduate Teaching Assistant, Department of Chemistry, Xiangtan

  1. M. H. (Minghu) Pan Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    Materials Sciences Oak Ridge National Laboratory (865) 574-2988 panm@ornl.gov Publications Education Hunan University, China Applied Physics B.A., 1996 Nanjing University, China Physics Ph.D., 2001 Professional, Institute of Physics, Chinese Academy of Sciences, China Professional and Synergistic Activities 2005­p

  2. R&D staff member Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    Materials Sciences Oak Ridge National Laboratory (865) 574-1648 gaiz@ornl.gov Publications Education Peking University, Beijing, China Surface Science Ph.D. 1995 Peking University, Beijing, China Condensed Matter/5 ­ 2005/8 Professor, Physics Department, Peking University, Beijing, P. R. China 2004/5 ­ 2005/8 Visiting

  3. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect (OSTI)

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

    2010-09-15T23:59:59.000Z

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

  4. Interlaminar Fracture Toughness of Laminated Woven Composites Reinforced with Aligned Nanoscale Fibers: Mechanisms at the Macro, Micro, and Nano Scales

    E-Print Network [OSTI]

    Wicks, Sunny S.

    Several hybrid architectures with aligned nanoscale fibers have been shown to provide inter- and intra-laminar reinforcement of fiber reinforced polymer composites. In one architecture, aligned carbon nanotubes (CNTs) grown ...

  5. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L. [comp.

    1993-06-01T23:59:59.000Z

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  6. The material dependence of temperature measurement resolution in thermal scanning electron microscopy

    SciTech Connect (OSTI)

    Wu, Xiaowei; Hull, Robert [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)] [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2013-03-18T23:59:59.000Z

    Thermal scanning electron microscopy is a recently developed temperature mapping technique based on thermal diffuse scattering in electron backscatter diffraction in a scanning electron microscope. It provides nano-scale and non-contact temperature mapping capabilities. Due to the specific temperature sensitive mechanism inherent to this technique, the temperature resolution is highly material dependent. A thorough investigation of what material properties affect the temperature resolution is important for realizing the inherent temperature resolution limit for each material. In this paper, three material dependent parameters-the Debye-Waller B-factor temperature sensitivity, backscatter yield, and lattice constant-are shown to control the temperature resolution.

  7. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

    2011-01-01T23:59:59.000Z

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  8. Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers

    E-Print Network [OSTI]

    Mezzapesa, F P; De Risi, G; Brambilla, M; Dabbicco, M; Spagnolo, V; Scamarcio, G

    2015-01-01T23:59:59.000Z

    We demonstrate a sensor scheme for nanoscale target displacement that relies on a single Quantum Cascade Laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical re-injection and their ultra-stability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with {\\lambda}/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.

  9. Stick-Slip Control in Nanoscale Boundary Lubrication by Surface Wettability

    E-Print Network [OSTI]

    Wei Chen; Adam S. Foster; Mikko J. Alava; Lasse Laurson

    2015-02-13T23:59:59.000Z

    We study the effect of atomic scale surface-lubricant interactions on nanoscale boundary-lubricated friction, by considering two example surfaces - hydrophilic mica and hydrophobic graphene - confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic scale details affect the wettability of the confining surfaces, and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.

  10. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01T23:59:59.000Z

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  11. Development of nano-scale and biomimetic surfaces for biomedical applications

    E-Print Network [OSTI]

    Henry, James Edward

    2006-10-30T23:59:59.000Z

    -Chairs of Committee, Theresa Good Daniel z Committee Members, Gerard Cot? Rosana ira Head of Department, Kenneth Hall August 2005 Major Subject: Chemical Engineering iii ABSTRACT Development of Nano-scale and Biomimetic Surfaces... for Biomedical Applications. (August 2005) James Edward Henry, B.S.; M.S., University of Arkansas Co-Chairs of Advisory Committee: Dr. Theresa Good Dr. Daniel Shantz The work described in this dissertation details the development of a biomimetic...

  12. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeural probeNeutronsMaterials

  13. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeural probeNeutronsMaterialsNew ALS

  14. CNEEC - TRG1: Nanoscale Control of Thermodynamic Potentials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN9 HighAnalysis andTRG1:

  15. CNEEC - TRG2: Nanoscale Control over Photons and Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN9 HighAnalysis andTRG1:TRG2:

  16. Solar Energy Technologies Program Peer Review: Center for Nanoscale Energy

    SciTech Connect (OSTI)

    Philip Boudjouk; Larry Pederson; Doug Schulz

    2010-05-26T23:59:59.000Z

    The purpose of this project is to develop plant-derived polymers with high potential for replacing petroleum-derived polymers. Important considerations include reduced swelling, lower price, equal or greater strength, and improved processability. Polymer precursors and other high value chemicals are derived by selective oxidation of renewable resources including oil seeds and cellulosics. High throughput combinatorial methods were applied to optimize oxidative catalysis as well as to formulate polymer families. Long chain dicarboxylic acids have been derived in >80% yields from fatty acids found in oil seeds by selective oxidative cleavage using tungsten-based and other catalysts. Furan dicarboxylic acids have been synthesized in high yields by selective catalytic oxidation of cellulosic materials. This product is a precursor to a new class of polyamide polymers. A series terephthalamide/adipamide copolymers have been prepared from long-chain dicarboxylic acids derived from renewable feedstocks. Compositions have been identified that exhibit significant processing advantages over commercial nylons.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  20. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  1. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  2. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOE Patents [OSTI]

    Giannakopoulos, Antonios E. (Somerville, MA); Suresh, Subra (Wellesley, MA)

    1999-01-01T23:59:59.000Z

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  3. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for AbNanoscale

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale Measurements of

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale Measurements

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis of

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis ofTheory

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis

  11. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  12. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  13. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  14. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  15. INTERNATIONAL WORKSHOP ON Nanoscale Energy Conversion and Information Processing Devices, Nice 2006 S. Dilhaire, W. Claeys, S. Grauby, J.M. Rampnoux, Y. Ezzahri,

    E-Print Network [OSTI]

    Optical delay Ti:Sa Laser Probe beam Pump beam AOMModulation Translation command unit Modulation filter WORKSHOP ON Nanoscale Energy Conversion and Information Processing Devices, Nice 2006 Metal Cap layer Super latticeLaser Nano Ultrasonics #12;INTERNATIONAL WORKSHOP ON Nanoscale Energy Conversion and Information

  16. Nanoscale interplay of strain and doping in a high-temperature superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeljkovic, Ilija [Harvard Univ., Cambridge, MA (United States); Boston College, Chestnut Hills, MA (United States); Gu, Genda [Brookhaven National Lab. (BNL), Upton, NY (United States); Nieminen, Jouko [Tampere Univ. of Technology (Finland); Northeastern Univ., Boston, MA (United States); Huang, Dennis [Harvard Univ., Cambridge, MA (United States); Chang, Tay-Rong [National Tsing Hua Univ., Hsinchu (Taiwan); He, Yang [Harvard Univ., Cambridge, MA (United States); Jeng, Horng-Tay [National Tsing Hua Univ., Hsinchu (Taiwan); Academia Sinica, Taipei (Taiwan); Xu, Zhijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Wen, Jinsheng [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Hsin [Academia Sinica, Taipei (Taiwan); Northeastern Univ., Boston, MA (United States); Markiewicz, Robert S. [Northeastern Univ., Boston, MA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Hoffman, Jennifer E. [Harvard Univ., Cambridge, MA (United States)

    2014-12-10T23:59:59.000Z

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi?Sr?CaCu?O??x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  17. Free Energy Barrier for Electric Field Driven Polymer Entry into Nanoscale Channels

    E-Print Network [OSTI]

    Narges Nikoofard; Hossein Fazli

    2011-04-27T23:59:59.000Z

    Free energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.

  18. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect (OSTI)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09T23:59:59.000Z

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  19. Nanoscale interplay of strain and doping in a high-temperature superconductor

    SciTech Connect (OSTI)

    Zeljkovic, Ilija [Harvard Univ., Cambridge, MA (United States); Boston College, Chestnut Hills, MA (United States); Gu, Genda [Brookhaven National Lab. (BNL), Upton, NY (United States); Nieminen, Jouko [Tampere Univ. of Technology (Finland); Northeastern Univ., Boston, MA (United States); Huang, Dennis [Harvard Univ., Cambridge, MA (United States); Chang, Tay-Rong [National Tsing Hua Univ., Hsinchu (Taiwan); He, Yang [Harvard Univ., Cambridge, MA (United States); Jeng, Horng-Tay [National Tsing Hua Univ., Hsinchu (Taiwan); Academia Sinica, Taipei (Taiwan); Xu, Zhijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Wen, Jinsheng [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Hsin [Academia Sinica, Taipei (Taiwan); Northeastern Univ., Boston, MA (United States); Markiewicz, Robert S. [Northeastern Univ., Boston, MA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Hoffman, Jennifer E. [Harvard Univ., Cambridge, MA (United States)

    2014-12-10T23:59:59.000Z

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi?Sr?CaCu?O??x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  20. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  1. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    v List of Tables vii 1 Introduction 1.1 Photovoltaicsand J. V. Manca. Prog. Photovoltaics Res. Appl. , 15:713,polymer blends. Prog. Photovoltaics Res. Appl. , 15:727,

  2. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    for harvesting solar energy by Anna Monro Zaniewski Amaterials for harvesting solar energy Copyright 2012 by Annafor harvesting solar energy by Anna Monro Zaniewski Doctor

  3. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    is called the short circuit current. The value of thecircuit voltage and short circuit current. The fill factorvoltage (V OC ), short circuit current (I SC ) and ?ll

  4. Charge-free low-temperature method of forming thin film-based nanoscale materials and structures on a substrate

    DOE Patents [OSTI]

    Hoffbauer, Mark (Los Alamos, NM); Mueller, Alex (Santa Fe, NM)

    2008-07-01T23:59:59.000Z

    A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.

  5. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    output” means the power output of the solar cell with theof a solar cell is de?ned by [46]: max power output sunlightsolar cell for various values of an applied voltage. This is equivalent to measuring the power output

  6. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15T23:59:59.000Z

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  7. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  8. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  9. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  10. REPORT ON 6TH U.S.-JAPAN JOINT SEMINAR ON NANOSCALE TRANSPORT PHENOMENA.SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Maruyama, Shigeo

    electricity (PV), solar fuel (biomass), and solar thermal, and thermoelectricity related issues for discussing and identifying outstanding science and technology issues in the area of nanoscale thermophysics from MIT, Fushinobu Kazuyoshi from Tokyo Institute of Technology, Shigeo Maruyama from Tokyo University

  11. Direct Observation of Nanoscale Peltier and Joule Effects at Metal-Insulator Domain Walls in Vanadium Dioxide Nanobeams

    E-Print Network [OSTI]

    Wu, Junqiao

    Direct Observation of Nanoscale Peltier and Joule Effects at Metal- Insulator Domain Walls localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain the monoclinic phase identification. KEYWORDS: Vanadium dioxide, thermoreflectance microscopy, Peltier effect

  12. Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas Jingjing Li, Alessandro Salandrino, and Nader Engheta*

    E-Print Network [OSTI]

    Li, Jingjing

    Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas Jingjing Li, Alessandro; published 5 May 2009 Here we present and analyze an optical spectrum analyzer at the nanometer scale that is able to distribute different frequency contents of the radiation of an optical dipole source

  13. Direct Measurement of the Nanoscale Mechanical Properties of NiTi Shape Memory Gordon A. Shaw1

    E-Print Network [OSTI]

    Crone, Wendy C.

    Direct Measurement of the Nanoscale Mechanical Properties of NiTi Shape Memory Alloy Gordon A. Shaw.S.A. ABSTRACT The mechanical properties of sputter-deposited NiTi shape memory alloy thin films ranging the findings, which suggest that the substrate tends block the shape memory effect as film thickness decreases

  14. Single-polymer `flyfishing' effect for nanoscale motors and machines: an exact worm-like-chain model study

    E-Print Network [OSTI]

    Bao, Weizhu

    Single-polymer `flyfishing' effect for nanoscale motors and machines: an exact worm University of Singapore, Singapore 119076 Single-polymer control effects are abundant in biological motors/machines for nanotechnology. Understanding motor-relevant polymer effects in a general

  15. Y-Shaped Polymer Brushes: Nanoscale Switchable Duangrut Julthongpiput, Yen-Hsi Lin, Jing Teng, Eugene R. Zubarev,* and

    E-Print Network [OSTI]

    Zubarev, Eugene

    Y-Shaped Polymer Brushes: Nanoscale Switchable Surfaces Duangrut Julthongpiput, Yen-Hsi Lin, Jing incompatible polymer chains (arms) attached to a single focal point capable of chemical grafting dissimilar (hydrophobic and hydrophilic) polymer arms in such Y-shaped molecules lead to the formation

  16. Direct Evidence of Nanoscale Carrier Localization in InGaN/GaN Structures Grown on Si Substrates

    E-Print Network [OSTI]

    Nabben, Reinhard

    Direct Evidence of Nanoscale Carrier Localization in InGaN/GaN Structures Grown on Si Substrates: time-resolved photoluminescence, quantum dots, InGaN, Si substrate There exists a strong continuous expensive and are limited in size. Thus, heteroepitaxial growth of GaN on silicon substrates seems

  17. PHYSICAL REVIEW E 85, 031117 (2012) Stochastically driven single-level quantum dot: A nanoscale finite-time thermodynamic

    E-Print Network [OSTI]

    Lindenberg, Katja

    2012-01-01T23:59:59.000Z

    as a nanoscale finite-time thermodynamic machine. The dot is driven by an external stochastic force that switches that extracts heat from the cold reservoir via the work input of the stochastic driving. The efficiency coupling conditions, familiar features are recovered in appropriate limits: Carnot efficiency

  18. Design, simulation and analysis of a molecular nano-sensor operating at terahertz frequencies for energetic materials

    E-Print Network [OSTI]

    Shenoy, Sukesh

    2007-09-17T23:59:59.000Z

    properties at the nano level. Nanoparticle probes consisting of two gold particles with covalently bound oligonucleotides [7] have been used in a scanometric approach to sensing. When they encounter target strands, these probes undergo polymerization... 1 1. INTRODUCTION Nanotechnology and nanoscale materials are a new and are an exciting field of research. The unusual optical, electrical and mechanical properties coupled with inherently small sizes of nanoparticles provide an ability to make...

  19. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  20. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  1. Poiseuille flow past a nanoscale cylinder in a slit channel: Lubrication theory versus molecular dynamics analysis

    E-Print Network [OSTI]

    Rahmani, Amir M; Jupiterwala, Mehlam; Colosqui, Carlos E

    2015-01-01T23:59:59.000Z

    Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displace...

  2. Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO{sub 2}

    SciTech Connect (OSTI)

    Kluth, P.; Giulian, R.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Pakarinen, O. H.; Djurabekova, F.; Nordlund, K. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki (Finland); Byrne, A. P. [Department of Nuclear Physics, Australian National University, Canberra ACT 0200 (Australia)

    2011-12-15T23:59:59.000Z

    We report on the observation of nanoscale density fluctuations in 2 {mu}m thick amorphous SiO{sub 2} layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 x 10{sup 12} ions/cm{sup 2}, where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track ''annihilation'' process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.

  3. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

    SciTech Connect (OSTI)

    Morris, James R [ORNL] [ORNL; Averill, Frank [ORNL] [ORNL; Cooper, Valentino R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

  4. Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids

    E-Print Network [OSTI]

    Jia-lin Wu

    2011-05-25T23:59:59.000Z

    A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes' mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the in-herency maximum order-potential structure in random systems.

  5. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09T23:59:59.000Z

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  6. DE-FG02-06ER15364: Final Technical Report Nanoscale Reactivity of Clays, Clay Analogues (Micas), and Clay Minerals

    SciTech Connect (OSTI)

    Nagy, Kathryn L.

    2008-07-03T23:59:59.000Z

    The project objectives were to determine the nanoscale to molecular scale structure of the interface between muscovite mica and aqueous solutions containing various sorbates and to explore systematics that control the incorporation of inorganic and organic chemical components during aging of nanoparticles of iron-oxides and aluminosilicate clays. The basal surface of phyllosilicates is a primary sorbent of environmental contaminants, natural organic matter, and nutrients. Micas are also superb atomically-flat substrates used in materials science and surface physics applications. We applied X-ray scattering techniques using high brilliance synchrotron radiation to investigate molecular-scale details of mica’s interface structure in solutions containing common and toxic cations, anions, and natural organic molecules. Nanoparticles are ubiquitous in the environment and have a high capacity for sorbing contaminants through the combined effects of their high surface areas and pH-dependent surface charge. Aging of nanoparticles from metastable to stable phases can be inhibited by sorption of nonstructural components, but exact mechanisms are unknown. We synthesized Fe-oxides and aluminosilicate clay minerals from aqueous solutions in the presence of selected anions, and organic molecules, and quantified the uptake of these additives during aging and some implications for nanoparticle formation.

  7. Growth of Nanoscale Nickel Ferrite on Carbonaceous Matrix- A Novel Method of Turning Harmful Particulates into a Functional Nanocomposite: An XAFS Study

    SciTech Connect (OSTI)

    Pattanaik, S.; Huggins, F; Huffman, G

    2010-01-01T23:59:59.000Z

    Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM - a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Ni ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite.

  8. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  9. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  10. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  11. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  12. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L. (University of Colorado, Boulder, CO); Talmage, Mellisa J. (University of Colorado, Boulder, CO); McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K (Georgia Institute of Technology, Atlanta, GA)

    2006-10-01T23:59:59.000Z

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  13. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  14. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  15. MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES

    SciTech Connect (OSTI)

    D. M. PARKIN; L. CHEN; ET AL

    2000-09-01T23:59:59.000Z

    We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution. Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.

  16. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  17. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  18. Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang, L. Q. Chen, and C. W. Nan

    E-Print Network [OSTI]

    Chen, Long-Qing

    Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang://scitation.aip.org/termsconditions. Downloaded to ] IP: 146.186.211.66 On: Thu, 09 Jan 2014 19:48:21 #12;Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu,1,a) T. N. Yang,2 L. Q. Chen,1,2 and C. W. Nan1,a) 1

  19. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  3. Amplitude Contrast High-Resolution Transmission Electron Microscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Advanced Materials March 13, 2015 11:00AM to 12:00PM Presenter Jianguo Wen, (EMC) and (CNM) Location Building 203 Type Colloquium Series Physics Division Colloquium...

  4. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  5. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    SciTech Connect (OSTI)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-11-01T23:59:59.000Z

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: • Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. • The nanoscale distribution of CD20 on cancer cells was characterized. • The distribution of CD20 was non-uniform on the surface of cancer cells.

  8. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  9. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan (Piscataway, NJ); Forrest, Stephen R. (Ann Arbor, MI)

    2011-06-07T23:59:59.000Z

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  10. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  11. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  12. Poiseuille flow past a nanoscale cylinder in a slit channel: Lubrication theory versus molecular dynamics analysis

    E-Print Network [OSTI]

    Amir M. Rahmani; Yang Shao; Mehlam Jupiterwala; Carlos E. Colosqui

    2015-04-13T23:59:59.000Z

    Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displacements. Analytical expressions and numerical results in this work provide useful insights into the hydrodynamics of colloidal solids and macromolecules in confinement.

  13. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOE Patents [OSTI]

    Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

    2010-02-23T23:59:59.000Z

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  14. Foundations for in vivo nano-scale measurement of memory processes.

    SciTech Connect (OSTI)

    Forsythe, James Chris

    2006-09-01T23:59:59.000Z

    An ongoing program of research and development is utilizing nanomaterials as a basis for observing and measuring neurophysiological processes. Work commencing in fiscal year 2007 will focus on expanding current capabilities to create nanoelectrode arrays that will allow nanoscale measurement of the activity of 10's to 100's of neurons. This development is a vital step in gaining scientific insights concerning network properties associated with neural representations and processes. Specifically, attention will be focused the representation of memory in the hippocampus, for which extensive research has been conducted using laboratory rats. This report summarizes background research providing a foundation for work planned for fiscal year 2007 and beyond. In particular, the neuroanatomy and neurophysiology of the hippocampus is described. Additionally, several programs of research are described that have addressed the relationship between neurophysiological processes and behavioral measures of memory performance. These studies provide insight into methodological and analytic approaches for studying the representation of memory processes in the hippocampus. The objective of this report is to document relevant literature in a reference document that will support future research in this area.

  15. Ab-initio friction forces on the nanoscale: A DFT study of fcc Cu(111)

    E-Print Network [OSTI]

    Michael Wolloch; Gregor Feldbauer; Peter Mohn; Josef Redinger; András Vernes

    2014-08-26T23:59:59.000Z

    While there are a number of models that tackle the problem of calculating friction forces on the atomic level, providing a completely parameter-free approach remains a challenge. Here we present a quasi-static model to obtain an approximation to the nanofrictional response of dry, wearless systems based on quantum mechanical all-electron calculations. We propose a mechanism to allow dissipative sliding, which relies on atomic relaxations. We define two different ways of calculating the mean nanofriction force, both leading to an exponential friction-versus-load behavior for all sliding directions. Since our approach does not impose any limits on lengths and directions of the sliding paths, we investigate arbitrary sliding directions for an fcc Cu(111) interface and detect two periodic paths which form the upper and lower bound of nanofriction. For long aperiodic paths the friction force convergences to a value in between these limits. For low loads we retrieve the Derjaguin generalization of Amontons-Coulomb kinetic friction law which appears to be valid all the way down to the nanoscale. We observe a non-vanishing Derjaguin-offset even for atomically flat surfaces in dry contact.

  16. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization

    SciTech Connect (OSTI)

    Heyderman, L.J.; Solak, H.H.; David, C.; Atkinson, D.; Cowburn, R.P.; Nolting, F. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Nanomagnetism Group, Department of Physics, University of Durham, Rochester Building, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2004-11-22T23:59:59.000Z

    X-ray interference lithography (XIL) was employed in combination with electrodeposition to fabricate arrays of nanoscale nickel dots which are uniform over 40 {mu}m and have periods down to 71 nm. Using extreme-ultraviolet light, XIL has the potential to produce magnetic dot arrays over large areas with periods well below 50 nm, and down to a theoretical limit of 6.5 nm for a 13 nm x-ray wavelength. In the nickel dot arrays, we observed the effect of interdot magnetic stray field interactions. Measuring the hysteresis loops using the magneto-optical Kerr effect, a double switching via the vortex state was observed in the nickel dots with diameters down to 44 nm and large dot separations. As the dot separations are reduced to below around 50 nm a single switching, occurring by collective rotation of the magnetic spins, is favored due to interdot magnetic stray field interactions. This results in magnetic flux closure through several dots which could be visualized with micromagnetic simulations. Further evidence of the stray field interactions was seen in photoemission electron microscopy images, where bands of contrast corresponding to chains of coupled dots were observed.

  17. Nanoscale transport of phonons: Dimensionality, subdiffusion, molecular damping, and interference effects

    SciTech Connect (OSTI)

    Walczak, Kamil; Yerkes, Kirk L. [Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-05-07T23:59:59.000Z

    We examine heat transport carried by acoustic phonons in the systems composed of nanoscale chains of masses coupled to two thermal baths of different temperatures. Thermal conductance is obtained by using linearized Landauer-type formula for heat flux with phonon transmission probability calculated within atomistic Green's functions (AGF) method. AGF formalism is extended onto dissipative chains of masses with harmonic coupling beyond nearest-neighbor approximation, while atomistic description of heat reservoirs is also included into computational scheme. In particular, the phonon lifetimes and the phonon frequency shifts are discussed for harmonic lattices of different dimensions. Further, resonant structure of phonon transmission spectrum is analyzed with respect to reservoir-induced effects, molecular damping, and mass-to-mass harmonic coupling. Analysis of transmission zeros (antiresonances) and their accompanied Fano-shape resonances are discussed as a result of interference effects between different vibrational modes. Finally, we also predict subdiffusive transport regime for low-frequency ballistic phonons propagated along a linear chain of harmonically coupled masses.

  18. Effect of nano-scale twinning on the fracture, fatigue and wear properties of copper

    E-Print Network [OSTI]

    Singh, Aparna, Ph.D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Grain refinement in materials has been one of the most common strategies for improving the strength of materials. However this comes at the price of reduced ductility, fracture toughness and stable fatigue crack propagation ...

  19. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process

  20. Precursor nanoscale strain textures: from cross-hatched to mottled structure

    SciTech Connect (OSTI)

    Saxena, Adadh [Los Alamos National Laboratory; Porta, Marcel [Los Alamos National Laboratory; Lloveras, Pol [UNIV DE BARCELONA; Castan, Teresa [UNIV DE BARCELONA; Planes, Toni [UNIV DE BARCELONA

    2009-01-01T23:59:59.000Z

    We present a theoretical of study the influence of the elastic anisotropy on structural patterns observed in cubic materials.

  1. Size of nanoobjects in oil and gas species and materials with positron annihilation spectroscopy

    E-Print Network [OSTI]

    Grafutin, V I; Elnikova, L V

    2012-01-01T23:59:59.000Z

    The analytical method to determine geometry and size of nano-scale defects in oil and gas species and materials is proposed. The modeling is carried out with the parameters of the positron spectra in the angular distribution method of positron annihilation spectroscopy, and is based on the 'free electron' approximation. From the annihilation decay kinetics, it is possible to express the trapping velocity of parapositronium in pores via intensities of the positronium components and to define the concentration and radii of pores in a porous layer. As the result, size and the concentration of micro-porous cylindrical nano-objects in the silicon samples are estimated.

  2. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    None

    2009-12-11T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  3. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01T23:59:59.000Z

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  4. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  5. Charge migration in organic materials: Can propagating charges affect the key physical quantities controlling their motion?

    E-Print Network [OSTI]

    Gollub, C; Gutierrez, R; Berlin, Y; Cuniberti, G

    2012-01-01T23:59:59.000Z

    Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology and materials science. The long-term vision of designing functional materials with tailored molecular scale properties has triggered an increasing quest to identify prototypical systems where truly molecular conduction pathways play a fundamental role. Such pathways can be formed due to the molecular organization of various organic materials and are widely used to discuss electronic properties at the nanometer scale. Here, we present a computational methodology to study charge propagation in organic molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that moving charge carriers strongly affect the values of the physical quantities controlling their motion. The approach is also expected to find broad application in the field of charge migration in soft matter systems.

  6. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  7. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  8. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect (OSTI)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15T23:59:59.000Z

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  9. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L [ORNL; Black, Jennifer M [ORNL; Wisinger, Nina [ORNL; Dudney, Nancy J. [Oak Ridge National Laboratory (ORNL); More, Karren Leslie [ORNL; Unocic, Raymond R [ORNL

    2015-01-01T23:59:59.000Z

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  10. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect (OSTI)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)] [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)] [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)] [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06T23:59:59.000Z

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  11. Oscillating spin-orbit interaction as a source of spin-polarized wave packets in two-terminal nanoscale devices

    E-Print Network [OSTI]

    Viktor Szaszko-Bogar; Peter Foldi; F. M. Peeters

    2014-03-18T23:59:59.000Z

    Ballistic transport through nanoscale devices with time-dependent Rashba-type spin-orbit interaction (SOI) can lead to spin-polarized wave packets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. Particularly, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytic solution of the time-dependent Schr\\"odinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and reflected waves.

  12. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    SciTech Connect (OSTI)

    Ping Liu; John J. Vajo

    2010-02-28T23:59:59.000Z

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  13. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  14. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  15. The influence of interface roughness on electrical transport in nanoscale metallic multilayers

    E-Print Network [OSTI]

    Holtz, Mark

    high- temperature synthesis,2,3 and in metallization for microelectronics.4,5 Materials with dimensions areas. These include corrosion and oxidation resistant coatings,1 preparation of materials by self-propagating- fusion can take place during deposition, under ambient con- ditions, and when high-temperature annealing

  16. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  17. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  18. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materials Science Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University,...

  19. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  20. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  1. EMSL - Energy Materials & Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials...

  2. Propulsion Materials Research Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Materials for Electric and Hybrid Drive Systems - Address materials issues impacting power electronics, motors, and other hybrid drive system components * Combustion System...

  3. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of these as mixed- material systems. Additionally, materials such as titanium, polycarbonate, acrylics, and metal matrix composites, and approaches to their use must be...

  4. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13T23:59:59.000Z

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  5. Biological and Biomimetic Low-Temperature Routes to Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode...

  6. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  7. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  8. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  9. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  10. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  11. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  12. University Materials Institute INTRODUCTION

    E-Print Network [OSTI]

    Escolano, Francisco

    University Materials Institute INTRODUCTION The University Materials Science Institute of Alicante the needed multidisciplinary character of the materials area. It is important to highlight the fact participate in the Materials Science PhD program which is imparted at the UA. Scientific research

  13. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  14. Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion

    E-Print Network [OSTI]

    Minnich, Austin Jerome

    2011-01-01T23:59:59.000Z

    Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful ...

  15. A nanoscale probe of the quasiparticle band structure for two dimensional electron systems

    E-Print Network [OSTI]

    Soumyanarayanan, Anjan

    2013-01-01T23:59:59.000Z

    The advent of a broad class of two-dimensional (2D) electronic materials has provided avenues to create and study designer electronic quantum phases. The coexistence of superconductivity, magnetism, density waves, and other ...

  16. Nanoscale Engineering for the Design of Efficient Inorganic-Organic Hybrid Thermoelectrics 

    E-Print Network [OSTI]

    Brockway, Lance Robert

    2014-04-14T23:59:59.000Z

    of the prediction that nanostructuring could increase the thermoelectric performance of materials; semiconductor nanowires comprised of non-toxic, low cost, and earthabundant elements were synthesized and studied for their thermoelectric performance...

  17. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this...

  18. Electrochemical lithiation and delithiation for control of magnetic properties of nanoscale transition metal oxides

    E-Print Network [OSTI]

    Sivakumar, Vikram

    2008-01-01T23:59:59.000Z

    Transition metal oxides comprise a fascinating class of materials displaying a variety of magnetic and electronic properties, ranging from half-metallic ferromagnets like CrO2, ferrimagnetic semiconductors like Fey's, and ...

  19. `Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating

    E-Print Network [OSTI]

    Zhang, Liangfang

    biomimetic surface functionalization presents an emerging stealth strategy for developing long of colloidal emulsions.6 Synthetic materials covalently conjugated with recombinant CD47 further improved this biomimetic stealth approach, yielding polymeric microspheres7 and implant surfaces with reduced affinity

  20. Optical characterization of thermal transport from the nanoscale to the macroscale

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2008-01-01T23:59:59.000Z

    The thermal properties of thin films and material interfaces play an important role in many technologies such as microelectronics and solid-state energy conversion. This thesis examines the characterization of thermal ...

  1. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  2. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  3. Course: ECE 597EN/697EN Energy Transport and Conversion at the Nanoscale Instructor: Zlatan Aksamija (zlatana@engin.umass.edu)

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and Energy Quantization 3. Energy States in Solids 4. Statistical Thermodynamics and Thermal Energy Storage 5. This course aims to provide a detailed look at thermal, electrical, and optical energy transportCourse: ECE 597EN/697EN Energy Transport and Conversion at the Nanoscale Instructor: Zlatan

  4. 3M-NANO is the annual International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale; it will be held in 2014 in Taipei, Taiwan. The ultimate

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    3M-NANO is the annual International Conference on Manipulation, Manufacturing and Measurement markets. The advanced technologies for manipulation, manufacturing and measurement at nanoscale promise, Int. J of Optomechatronics, J of Micro-Bio Robotics, and other SCI/Ei journals. Organizers: Industrial

  5. Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wua)

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals Hongwen Ren, Yun-Hsing Fan May 2003; accepted 27 June 2003 An electrically tunable Fresnel zone plate lens is demonstrated using by voltage. The major advantages of such a Fresnel lens are simple fabrication, large aperture size

  6. Supporting Online Material Materials and Methods

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

  7. SUPPORTING ONLINE MATERIAL Materials and Methods

    E-Print Network [OSTI]

    Newsome, William

    SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

  8. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  9. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL conducts lightweight materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

  10. Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Photodiodes from Interpenetrating Polymer Networks. NaturePolymer Solar Cells with Nanoscale Control of the Interpenetrating Network

  11. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16T23:59:59.000Z

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  12. User Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Proposal Submission System CNM Tool Scheduler Scientific Contacts List CNM Users Organization Find CNM on the Argonne Map 2015 Maintenance Periods Key Research Areas...

  13. Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials

    SciTech Connect (OSTI)

    Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

    2010-09-28T23:59:59.000Z

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  14. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  15. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  16. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  17. Identification of the stimulated-emission threshold in high-{beta} nanoscale lasers through phase-space reconstruction

    SciTech Connect (OSTI)

    Hachair, X.; Elvira, D.; Le Gratiet, L.; Lemaitre, A.; Abram, I.; Sagnes, I.; Robert-Philip, I.; Beveratos, A. [Laboratoire de Photonique et de Nanostructures, CNRS-UPR20, Route de Nozay, 91460 Marcoussis (France); Braive, R. [Laboratoire de Photonique et de Nanostructures, CNRS-UPR20, Route de Nozay, 91460 Marcoussis (France); Universite Paris Denis Diderot, 75205 Paris, Cedex 13 (France); Lippi, G. L. [Institut Non Lineaire de Nice, Universite de Nice-Sophia Antipolis, 1361 Route des Lucioles, F-06560 Valbonne (France); Institut Non Lineaire de Nice, CNRS UMR 6618, 1361 Route des Lucioles, F-06560 Valbonne (France)

    2011-05-15T23:59:59.000Z

    Nanoscale lasers sustain a few optical modes so that the fraction of spontaneous emission {beta} funnelled into the useful (lasing) mode is high (of the order of 10{sup -1}) and the threshold, which traditionally corresponds to an abrupt kink in the light-in-light-out curve, becomes ill defined. We propose an alternative definition of the threshold that is based on the dynamical response of the laser and is valid even for {beta}=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitations. Crossing the threshold, brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous determination of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic-crystal laser.

  18. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect (OSTI)

    Lee, M.H.; Kim, B.S.; Kim, D.H.; Ott, R.T.; Sansoz, F.; Eckert, J.

    2014-04-25T23:59:59.000Z

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  19. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOE Patents [OSTI]

    Lee, James W.; Thundat, Thomas G.

    2005-06-14T23:59:59.000Z

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  20. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  2. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  3. Electronic digital materials

    E-Print Network [OSTI]

    Langford, William Kai

    2014-01-01T23:59:59.000Z

    Digital materials are constructions assembled from a small number of types of discrete building blocks; they represent a new way of building functional, multi-material, three-dimensional structures. In this thesis, I focus ...

  4. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  5. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  6. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  7. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31T23:59:59.000Z

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  8. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30T23:59:59.000Z

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  9. ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale

    E-Print Network [OSTI]

    Hill, Wendell T.

    tests newly created nanostructures for their energy storage capacities. His work in micro devices, sensor-actuators and renewable energy storages, and remove the main obstacles preventing and cancelling out each other's weaknesses. Lee produces energy storage devices by introducing battery materials

  10. Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives

    E-Print Network [OSTI]

    Stephens, Matthew Aaron

    2009-05-15T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  11. TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES

    E-Print Network [OSTI]

    Stephens, Matthew

    2010-07-14T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  12. TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES 

    E-Print Network [OSTI]

    Stephens, Matthew

    2010-07-14T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  13. Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives 

    E-Print Network [OSTI]

    Stephens, Matthew Aaron

    2009-05-15T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  14. THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Division of Nanoscale Science

    E-Print Network [OSTI]

    Katsumoto, Shingo

    , superconductors, magnetic materials and their hybrid structures. - Study of local electronic states and transportAs/AlGaAs Srr C Srr C rr/rr Srr C Thermpower of two-dimensional electron system (2DES) at a Ga, a Corbino- type electrode geometry, and a microwave heating technique are employed. The radial diffusion

  15. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    SciTech Connect (OSTI)

    Brosha, Eric L. [Los Alamos National Laboratory; Elbaz Alon, Lior [Los Alamos National Laboratory; Henson, Neil J. [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Roy, Aaron [University of New Mexico; Serov, Alexey [University of New Mexico; Ward, Timothy [University of New Mexico

    2012-08-13T23:59:59.000Z

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to predict the thermodynamic and activation barriers for fundamental electrode processes occurring at platinum surfaces supported on thin films of the ceramic support materials. The results of this work will be used in order to optimize support properties.

  16. Research Councils UK materials

    E-Print Network [OSTI]

    Berzins, M.

    as completely new materials such as super-strong graphene, or developments of traditional materials such as graphene is still being realised, with the Research Councils investing in both the further exploitation to UK growth. For example, the 2004 `discovery' of wonder-material graphene sparked a host of global

  17. MATERIALS SCIENCE ENGINEERING

    E-Print Network [OSTI]

    California at Irvine, University of

    MATERIALS SCIENCE AND ENGINEERING GRADUATE MANUAL COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY October 23, 2013 #12;Materials Science and Engineering University of California at Berkeley Page 2 Subject Matter · Outcome of the Preliminary Exam #12;Materials Science and Engineering University

  18. MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Knobloch,Jürgen

    MATERIALS SCIENCE AND ENGINEERING BACHELOR OF SCIENCE MASTER OF SCIENCE Get your own impression. Materials Science and Engineering in Ilmenau stands for: + a broad and practical university education Catòlica del Peru (PUCP) in Lima/Peru and to receive a double degree in Materials Science and Engineering

  19. Radioactive Materials License Commitments

    E-Print Network [OSTI]

    Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

  20. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  1. Rose of APS and CNM One of Four DOE Early Career Award Winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influenza Virus Clever Apes on WBEZ: Breaking the Fossil Record Gerig to Chair Particle Accelerator School Board A Record Run for the APS X-ray Source APS News Archives: 2014 |...

  2. Microsoft PowerPoint - CNM_CNMS_NatComm-Jan2014.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustreMeasuresPowerfamily of new A

  3. DOE Solar Energy Technologies Program Peer Review Technical Track: Nanostructures and Quantum Dots Project Name: Center for Nanoscale Energy Related Materials

    SciTech Connect (OSTI)

    Douglas L. Schulz; Philip R. Boudjouk

    2009-03-09T23:59:59.000Z

    Some major accomplishments of the program are: (1) First crystal structures of Si{sub 6}H{sub 12}-related molecules; (2) PECVD of both a-Si and alloys (i.e., SiN and SiO{sub x}) using Si{sub 6}H{sub 12}; (3) Establishment of a system that couples a printing methodology with laser annealing; and (4) Developed schematics and electrical models for power-point tracking system and filed invention disclosure.

  4. Tuning the Optical Properties of Nanoscale Materials on Surfaces Through Controlled Exchange Reactions on Cadmium Selenide Quantum Dots and Patterning of Gold and QD Nanoparticle Arrays 

    E-Print Network [OSTI]

    Pravitasari, Arika

    2013-11-11T23:59:59.000Z

    nanostructure arrays serve as great platforms not only for future applications in plasmonic based sensing and optical devices but also for the fundamental studies of their localized surface plasmon resonance (LSPR). An alternative method of patterning, a...

  5. Tuning the Optical Properties of Nanoscale Materials on Surfaces Through Controlled Exchange Reactions on Cadmium Selenide Quantum Dots and Patterning of Gold and QD Nanoparticle Arrays

    E-Print Network [OSTI]

    Pravitasari, Arika

    2013-11-11T23:59:59.000Z

    and economical ways to pattern QDs with different optical and surface properties on the same platform. This could be beneficial for the development of some QD based devices, such as: QD based light emitting diodes (LED), where each emitted color can... photobleaching as compared to organic fluorophores.50 Applications of QDs have emerged in numerous areas such as bio-imaging,9 labeling and sensing,51 solar cells,7, 18, 52 and light emitting diodes (LEDs).16, 53-59 CdSe QDs were chosen for the interest...

  6. Nanotechnol Rev 1 (2012): 515 2012 by Walter de Gruyter Berlin Boston. DOI 10.1515/ntrev-2011-0001 Probing nanoscale behavior of magnetic materials with

    E-Print Network [OSTI]

    Fadley, Charles

    of electrolysis, which laid foundation for technological inventions such as AC power systems by Nikola Tesla. John

  7. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01T23:59:59.000Z

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  8. Nanoscale Manipulation of Surfaces and Interfaces: Engineering Electrical Properties Through Nanofabrication

    E-Print Network [OSTI]

    Smith, Gregory J.

    2013-05-31T23:59:59.000Z

    expansion and reduction during charging and recharging, reducing the performance of the battery. Research is being performed studying new electrode materials, such as tin alloys, formed with nanostructure built in to help stabilize the electrode... is of importance in solar cells, fuel cells, and batteries. Solar cells involve conversion of light to electronic energy and excited Figure 1.1 Log scale plot of transistor count vs. date of introduction for commercially available microprocessors. The line...

  9. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  10. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  11. ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

  12. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Vibrational Damping of Composite Materials

    E-Print Network [OSTI]

    Biggerstaff, Janet M.

    2006-01-01T23:59:59.000Z

    Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. “Electroviscoelastic Materials As Active Dampers”,Smart Structures and Materials, 4695:345-350. Biggerstaff,

  15. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01T23:59:59.000Z

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  16. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  17. Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils

    E-Print Network [OSTI]

    D. A. Abdushukurov; D. V. Bondarenko; Kh. Kh. Muminov; D. Yu. Chistyakov

    2008-02-04T23:59:59.000Z

    We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

  18. 596 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 4, APRIL 2005 Nanoscale Spatial Phase Modulation of GaN on

    E-Print Network [OSTI]

    New Mexico, University of

    Modulation of GaN on a V-Grooved Si Substrate--Cubic Phase GaN on Si(001) for Monolithic Integration S. C Abstract--Nanoscale spatial phase modulation of GaN gorwn on a 355-nm period array of V-grooves fabricated in a Si(001) substrate is reported. Orientation-dependent selective nucleation of GaN in metal

  19. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    Materials Madhu Chinthavali Oak Ridge National Laboratory May 15, 2012 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted...

  20. Critical Materials Strategy Summary

    Broader source: Energy.gov (indexed) [DOE]

    in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address...

  1. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  2. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  3. UESC Workshop Materials

    Broader source: Energy.gov (indexed) [DOE]

    Policy Act (NEPA) Detailed disposal requirements statement for hazardous materials related to the project are essential It is in the FAR Subpart 23.3. Acquisition...

  4. Geopolymer Sealing Materials

    Broader source: Energy.gov (indexed) [DOE]

    Geopolymer Sealing Materials PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory May 18, 2010 This presentation does not contain any proprietary...

  5. Materials for MA 182.

    E-Print Network [OSTI]

    Materials for MA 182. INSTRUCTOR: Richard Penney. Office: MATH 822: Telephone: 494-1968: e-mail: rcp@math.purdue.edu: Office Hours: Mon, Tu, Fri,

  6. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  7. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  8. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  9. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  10. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  11. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1986-11-04T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  12. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain, Austin, TX 78731); Dumitru, Earl T. (10116 Aspen St., Austin, TX 78758)

    1990-02-13T23:59:59.000Z

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  13. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19T23:59:59.000Z

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  14. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  15. DOE Automotive Lightweighting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials for fiber reinforced composites. Until now, they have only been used in the automotive industry with thermoplastics and not as a matrix for fiber reinforced...

  16. Webinar: Materials Genome Initative

    Broader source: Energy.gov [DOE]

    Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

  17. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  18. Applications of a new theory extending continuum mechanics to the nanoscale

    E-Print Network [OSTI]

    Fu, Kaibin

    2005-11-01T23:59:59.000Z

    for three different sizes of the bubble. . . . . . . 100 V Computational results from Equation (5.60). . . . . . . . . . . . . . . 100 x LIST OF FIGURES FIGURE Page 1 A material body consisting of two adjoining phases, A and B. . . . . 13 2 Two semi... observations are from Specovius and Findenegg (1978). The dashed-dot curve represents the computations of Sokolowski (1982). . 19 4 ?? (? mol/m2) as a function of P (MPa) for argon on Graphon at 25?C predicted by (2.11) (the solid curve). The experimental...

  19. Materials and Metallurgy Materials Science and Metallurgical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Materials and Metallurgy Materials Science and Metallurgical Engineering Objective Students "Rocks and Materials Science" Presentation. Review uses of rocks. Explain that engineers extract Engineers to efficiently and safely extract ore, Metallurgical Engineers to refine the copper, and Materials

  20. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    SciTech Connect (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  1. Tuning the Optical Properties of Mesoporous TiO2 Films by Nanoscale Engineering

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Wang, Liang; Swensen, James S.; Padmaperuma, Asanga B.; Silverman, Gary; Korotkov, Roman; Gaspar, Daniel J.

    2012-07-03T23:59:59.000Z

    Introducing mesoscale pores into spincoated titanium dioxide films, prepared by spincoating different sol-gel precursor solutions on silicon substrates and subsequent annealing at 350 C, 400 C or 450 C, respectively, affects several optical properties of the material. The change in refractive index observed for different mesoporous anatase films directly correlates with changes in pore size, but is also in a more complex manner influenced by the film thickness and the density of pores within the films. Additionally, the band gap of the films is blueshifted by the stress the introduction of pores exerts on the inorganic matrix. The differently sized pores were templated by Pluronic{reg_sign} block copolymers in the solgel solutions and tuned by employing different annealing temperatures for the film preparation. This study focused on elucidating the effect different templating materials (F127 and P123) have on the pore size of the final mesoporous titania film, and on understanding the relation of varying polymer concentration (taking P123 as an example) in the sol-gel solution to the pore concentration and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, nitrogen adsorption, ellipsometery, UV/Vis spectrometry and other techniques to understand the interplay between mesoporosity and optical properties.

  2. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  3. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    SciTech Connect (OSTI)

    Chelikowsky, James R. [University of Texas at Austin] [University of Texas at Austin

    2014-04-14T23:59:59.000Z

    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plus Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.

  4. From Smart Materials to Cognitive Materials Requirements and Challenges

    E-Print Network [OSTI]

    Bremen, Universität

    From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz materials are materials that are either capa- ble of changing some of their properties according to external within the material itself. The latter is also called sensorial material (Lawo et. al., 2009). Recently

  5. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  6. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  7. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  8. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  9. Impacted material placement plans

    SciTech Connect (OSTI)

    Hickey, M.J.

    1997-01-29T23:59:59.000Z

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

  10. MATERIAL TRACKING USING LANMAS

    SciTech Connect (OSTI)

    Armstrong, F.

    2010-06-07T23:59:59.000Z

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  11. Detecting Illicit Nuclear Materials

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2005-09-01T23:59:59.000Z

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide.

  12. JOM March 200750 OverviewNanocomposite Materials

    E-Print Network [OSTI]

    Sawyer, Wallace

    interesting properties. A defining feature of polymer nano- composites is that the small size of the fillers of high-performance multifunc- tional nanocomposites. For example, transparent conducting polymer-diametercarbonfiber. Thesefeaturesofnanoparticlesprovide an opportunity for creating polymer composites with unique properties. Second, nanoscale fillers

  13. Zero Energy Peak and Triplet Correlations in Nanoscale SFF Spin-Valves

    E-Print Network [OSTI]

    Mohammad Alidoust; Klaus Halterman; Oriol T. Valls

    2015-06-17T23:59:59.000Z

    Using a self-consistent Bogoliubov-de Gennes approach, we theoretically study the proximity-induced density of states (DOS) in clean SFF spin-valves with noncollinear exchange fields. Our results clearly demonstrate a direct correlation between the presence of a zero energy peak (ZEP) in the DOS spectrum and the persistence of spin-1 triplet pair correlations. By systematically varying the geometrical and material parameters governing the spin-valve, we point out to experimentally optimal system configurations where the ZEPs are most pronounced, and which can be effectively probed via scanning tunneling microscopy. We complement these findings in the ballistic regime by employing the Usadel formalism in the full proximity limit to investigate their diffusive SFF counterparts. We determine the optimal normalized ferromagnetic layer thicknesses which result in the largest ZEPs. Our results can serve as guidelines in designing samples for future experiments.

  14. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lai Qiongyu, E-mail: laiqy5@hotmail.co [College of Chemistry, Sichuan University, Chengdu 610064 (China); Xu Xiaoyun [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2010-11-15T23:59:59.000Z

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  15. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect (OSTI)

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01T23:59:59.000Z

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  16. ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Science Chemistry Physics Engineering Nanomaterials Introductory Engineering 5 CP #12;

  17. Degrees in Metallurgy and Materials

    E-Print Network [OSTI]

    Birmingham, University of

    Degrees in Metallurgy and Materials Course outline School of Metallurgy and Materials Materials us? Dr Alessandro Mottura Undergraduate Admissions Tutor for Metallurgy and Materials What difference will you make? #12;Degrees in Metallurgy and Materials Understanding the properties of new materials

  18. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    SciTech Connect (OSTI)

    Palo, Daniel R.

    2011-04-26T23:59:59.000Z

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  19. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect (OSTI)

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2008-11-15T23:59:59.000Z

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  20. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    E-Print Network [OSTI]

    Kubo, Takayuki

    2014-01-01T23:59:59.000Z

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...