National Library of Energy BETA

Sample records for nanoscale materials cnm

  1. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  2. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  3. Materials synthesis at the CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials synthesis at the CNM Titiania Nanoparticles 1 of 5 Titiania Nanoparticles Molecular model of titania nanoparticles covalently bound to biological molecules at Argonne's Center for Nanoscale Materials. Image: Photo courtesy of Argonne National Laboratory Titiania Nanoparticles 1 of 5 Titiania Nanoparticles Molecular model of titania nanoparticles covalently bound to biological molecules at Argonne's Center for Nanoscale Materials. Image: Photo courtesy of Argonne National Laboratory SEM

  4. CNM Scientific Contact List | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM Scientific Contact List A list of scientific contacts for the Center for Nanoscale Materials PDF icon CNM Scientific Contact sheet 915...

  5. Argonne Site Map Showing CNM Location | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Site Map Showing CNM Location Find your way to the Center for Nanoscale Materials on the Argonne National Laboratory campus. PDF icon CNM-Argonne_map

  6. CNM User Access Program Overview | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Access Program Overview The Center for Nanoscale Materials (CNM) user program provides access to equipment, facilities, and personnel that support CNM's overall focus on nanoscale materials. The CNM makes access available to the international scientific community through a general user access program. Proposals are submitted through a web-based process. PDF icon CNM User Access Program Overview

  7. Electronic & magnetic materials and devices at the CNM | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic & magnetic materials and devices at the CNM Graphene Micrograph 1 of 24 Graphene Micrograph Ultra-high vacuum scanning tunneling microscopy image of a point defect in...

  8. 2011 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  9. 2012 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  10. 2013 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  11. 2015 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events RESEARCH HIGHLIGHTS COLLOQUIUM SERIES SEMINAR SERIES Argonne Press

  12. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Ratiometric Sensing of Toxins using Quantum Dots More One Direction: nanocircuitry with semiconducting graphene nanoribbons More Keys to Access: Argonne-INCREASE partnership opens doors to collaboration More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices

  13. CNM Users Executive Committee By-Laws | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Executive Committee By-Laws This charter defines the roles and responsibilities of Argonne's Center for Nanoscale Materials Users Executive Committee. PDF icon CNM_users_organization_bylaws

  14. CNM Participation in Nature of Nano Event | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participation in Nature of Nano Event December 1, 2013 Tweet EmailPrint Center for Nanoscale Materials (CNM) Director Amanda Petford-Long and CNM user Adam Khan, of AKHAN Technologies, presented lectures at "The Nature of Nano" event held on December 11, 2013, at Northwestern University. The event was sponsored by C2ST, the Chicago Council on Science and Technology. Materials scientist Amanda Petford-Long, who is also the Director of Argonne's Nanoscience and Technology Division,

  15. Center for Nanoscale Materials Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The Center for Nanoscale Materials at Argonne National Laboratory is a premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. PDF icon cnm_fact_sheet

  16. CNM Strategic Plan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan The 2015-2019 goal for Argonne's Center for Nanoscale Materials (CNM) is to enhance its position at the forefront of nanoscience. This will be achieved by emphasizing activities in two strategic scientific directions that we have identified as being of critical importance: Hybrid Nanomaterials for Energy Conversion and Storage, and Tailoring Interactions at the Nanoscale. We will make both strategic hires and cutting-edge-equipment procurements designed to optimize staff and user

  17. CNM End-of-Experiment Survey | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne CNM End-of-Experiment Survey Please let us know about your experience as a facility user at Argonne's Center for Nanoscale Materials. Project Information What is your proposal number? * Administrative Support The processing of my experiment proposal was * Excellent Satisfactory Marginal Unsatisfactory The

  18. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Academic, industrial, and international researchers from across the globe can access the center through its user program. Brief proposals are peer- reviewed for both non-proprietary (at no cost to the user) and proprietary (with cost-recovery rates) research. The center's goal is to support and explore ways to create functional hybrid nanomaterials and to tailor nanoscale interactions for grand

  19. X-ray microscopy at CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jorg Maser, CNM XMG Group Leader; Dean Carbaugh (APS); Robert Winarski (CNM); Rodney Porter (CNM); Brian Stephenson (APS and CNM); Volker Rose (APS); missing - Martin Holt (CNM)....

  20. NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology | Argonne National Laboratory NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and Nanotechnology August 1, 2014 Tweet EmailPrint Organized by Center for Nanoscale Materials and Advanced Photon Source The International Workshop on Nanoscale Spectroscopy and Nanotechnology 8 (NSS-8), organized by the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), was held under sunny, summer skies from July 28-31, 2014, in the world-class Gleacher

  1. Probing nanoscale behavior of magnetic materials with soft x...

    Office of Scientific and Technical Information (OSTI)

    Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy Citation Details In-Document Search Title: Probing nanoscale behavior of magnetic materials with...

  2. 2009 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 CNM Users Meeting October 5-7, 2009 Full Information Available Here Meeting Summary Plenary Session Views from DOE and Washington Keynote Presentations Stephen Chou (Princeton University), "Nanostructure Engineering: A Path to Discovery and Innovation" Andreas Heinrich (IBM Almaden Research Center), "The Quantum Properties of Magnetic Nanostructures on Surfaces" User Science Highlights Focus Sessions Nanostructured Materials for Solar Energy Utilization Materials and

  3. 2007 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 CNM Users Meeting Please see the Users Meeting Week site for details regarding registration, deadlines, program, exhibits, lodging, and travel. Wednesday, May 9, 2007 7:00-10:00 p.m. Joint User Facilities Banquet Thursday, May 10, 2007 9:00 a.m.-4:30 p.m. Workshops Workshop 8. Hard X-Ray Nanoprobe (CNM/APS) Jörg Maser (CNM/APS), Brian Stephenson (MSD/CNM), Stephen Streiffer (CNM) Workshop 9. Nanotomography (CNM/EMC/APS) Derrick Mancini (CNM), Bernd Kabius (EMC), Mark Rivers (APS/UChicago)

  4. Nanoscale Materials Safety at the Department's Laboratories

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and

  5. Center for Nanoscale Materials Brochure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brochure Changing the World with Nanoscience PDF icon CNM Brochure 2014

  6. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  7. CNM Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Organizational structure of Argonnne's Center for Nanoscale Materials PDF icon CNMOrg Chart_March2016

  8. Access to CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access to CNM An authorized official from every user's home institution must sign a User Agreement (UA) before user projects can begin; complete a user agreement questionnaire if necessary. UA's spell out liability and intellectual property concerns. You must be registered to work at the CNM and have an accepted proposal. Read Preparing for Your Visit and review Working at CNM. Schedule instrument time with your CNM contact. Inform the User Administrator when your instrument time is confirmed.

  9. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Joshua David

    2012-07-24

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.

  10. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  11. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology Drives New Levels of Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nanotechnology Drives New Levels of Performance GE scientists are discovering new material properties at the nanoscale that drive new performance levels in jet engines, gas and steam turbines, electronic devices and disease

  12. DOE A9024 Final Report Functional and Nanoscale Materials Systems...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory Citation...

  13. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  14. 2008 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 CNM Users Meeting Tuesday, May 6, 2008 4:45-5:45 CNM Facility Tour 7:00-9:30 Users Week Banquet Wednesday, May 7, 2008 CNM Plenary and Science Session Bldg. 402 Lecture Hall 8:45-8:50 Welcome, Paul Evans, University of Wisconsin-Madison, CNM UEC Chair 8:50-9:00 Welcome from Laboratory Directorate,Al Sattelberger, Associate Laboratory Director for Energy Sciences & Engineering, Argonne National Laboratory 9:00-9:30 Update from Washington: Eric Rohlfing, Associate Director of Science for

  15. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  16. Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography October 1, 2012 Tweet EmailPrint Users of the Center for Nanoscale Materials (CNM) from IBM exploited nanofocused X-ray Bragg projection ptychography to determine the lattice strain profile in an epitaxial SiGe stressor layer of a silicon prototype device. The theoretical and experimental framework of this new coherent diffraction strain imaging approach was developed by Argonne's Materials

  17. Proprietary Research at the Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proprietary R esearch a t t he C enter f or N anoscale M aterials ( CNM) This handout provides details on the mechanism for carrying out proprietary user research at the CNM at Argonne National Laboratory (ANL). * Access to the CNM User Facility is granted via a peer-reviewed proposal system. * Users provide sufficient information to ensure that each planned experiment can be performed safely. Argonne personnel provide appropriate safety training and oversight. * Users are charged for

  18. CNM Participates in 2014 NanoDays Outreach Event | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Participates in 2014 NanoDays Outreach Event May 1, 2014 Tweet EmailPrint On April 14, 2014, the CNM held a Nanoscale Informal Science Education Network (NISE) NanoDays Event for 62 local fifth-grade science students and their teachers. CNM has a strong committment to activities that increase science, technology, engineering, and math (STEM) literacy and enthusiasm among students, their families, and educators. The NanoDays kits were an excellent resource for this audience, and

  19. 2014 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 APS/CNM/EMC Users Meeting May 12-15, 2014 Meeting web site CNM-Specific Events Andreas Roelofs, Interim CNM Director CNM Facility Status Update CNM Plenary Session Keynote Speaker : Federico Capasso Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering Harvard University "Flat Optics with Metasurfaces" David Schuster Physics Department and James Franck Institute University of Chicago "Hybrid Quantum Computing with

  20. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  1. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  2. Preparing for Your Visit | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  3. Shipping Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shipping Materials General Users are not permitted to transport hazardous material on the Argonne site or to arrange for shipment directly to the CNM. Hazardous materials must be processed through Argonne's hazardous materials receiving area. Inbound Shipments Before you ship anything to the CNM, you must notify the User Office and your CNM contact. Nonhazardous Material To ensure that samples and equipment that you ship to the CNM gets here without unnecessary delays, address your shipments as

  4. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  5. Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions

    DOE Patents [OSTI]

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2003-09-02

    A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.

  6. CNM Scientific Contact sheet 3_16.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Materials Quantum & Energy Materials Major Tools Scientific Contacts § UHV SPM (AFM/STM) (Omicron Nanotechnology) § 4-probe SEM (Omicron UHV Nanoprobe) § VT-AFM (Omicron XA), LT-STM § Scanning probe microscope, AFM (Veeco) § Complex Oxide MBE (DCA R450D Custom) § Kurt Lesker electron beam evaporator and sputtering, deposition § Magnetometry (QD PPMS & MPMS) § Solar simulator, QEMS (Oriel) § TGA/DSC § Luminescence/UV-vis-NIR § X-ray

  7. DOE A9024 Final Report Functional and Nanoscale Materials Systems...

    Office of Scientific and Technical Information (OSTI)

    as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and...

  8. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  9. Exploring nanoscale magnetism in advanced materials with polarized...

    Office of Scientific and Technical Information (OSTI)

    Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Materials Science and Engineering. R, Reports; Journal Volume: 72; Journal Issue: 5;...

  10. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  11. Microsoft PowerPoint - CNM_CNMS_NatComm-Jan2014.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A research team led by users from Pennsylvania State University, in collaboration with the X-ray Microscopy Group at the Center for Nanoscale Materials and with the Center for Nanophase Materials Sciences, recently reported observation of novel monoclinic sub-phases in ferroelectric BaTiO3. These new low-symmetry intermediate phases are found to be locally stabilized near thermotropic phase boundaries in simple ferroelectrics and exhibit large enhancements in the existing nonlinear optical and

  12. Piezoelectrically enhanced ferroelectric polymers via nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control nanoscale material properties and molecular orientation using intensive local stress. Significance and Impact Nanoscale mechanical annealing process can be used to improve...

  13. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    SciTech Connect (OSTI)

    Wirth, Brian

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to particular, the interfacial structure of embedded nanoscale precipitates will be evaluated by electronic- and atomic-scale modeling methods, and the efficiency of the validated interfaces for trapping point defects will next be evaluated by atomic-scale modeling (e.g., determining the sink strength of the precipitates), addressing key questions related to the optimal interface characteristics to attract point defects and enhance their recombination. Kinetic models will also be developed to simulate microstructural evolution of the nanoscale features and irradiation produced defect clusters, and compared with observed microstructural changes.

  14. Scientists use world's fastest computer to simulate nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under...

  15. DOE Designated User Facilities Multiple Laboratories

    Broader source: Energy.gov (indexed) [DOE]

    Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF)...

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source), CNM (Center for Nanoscale Materials), the Electron Microscopy Center for Materials Research, and the Advanced Leadership Computing Facility. The Department of...

  17. NanoBio Interfaces | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events Research Nanofabrication & Devices Nanophotonics & Biofunctional Structures Quantum & Energy Materials Theory & Modeling X-Ray Microscopy

  18. 2011 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Seminars Archive 2015 Seminars Archive 2014 Seminars Archive 2013 Seminars Archive 2012 Seminars Archive 2011 Seminars Archive 2010 Seminars Archive 2009 Seminars Archive 2008 Seminars Archive 2007 Seminars Archive 2006 Seminars Archive Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About

  19. 2012 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Seminars Archive 2015 Seminars Archive 2014 Seminars Archive 2013 Seminars Archive 2012 Seminars Archive 2011 Seminars Archive 2010 Seminars Archive 2009 Seminars Archive 2008 Seminars Archive 2007 Seminars Archive 2006 Seminars Archive Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About

  20. User Training | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Training Before performing work at the CNM, you must take certain orientation and safety training courses. We encourage you to take these courses remotely before you arrive at Argonne. Go to the Remote Training web site. Enter your Argonne badge number. Locate the "CNM Facilitiy Core Courses" section and follow the links to the courses. For your information, the CNM core courses are: CNM 101: Center for Nanoscale Materials User Orientation (2-year training interval) ESH 100U:

  1. Nanoscale Materials in Medicine

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by Auburn University Department of Chemical Engineering held on June 26, 2012

  2. Nanoscale Materials in Medicine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Drug Delivery Rev. 60(11): 1252-1265. Veiseh, O. et al. 2008. Cancer Res. 69(15): 6200-6207. * Enhanced imaging contrast was achieved in mice brain tumors using functionalized iron ...

  3. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  4. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  5. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  6. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  8. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  9. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical...

  10. Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.

    SciTech Connect (OSTI)

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  11. Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response

    SciTech Connect (OSTI)

    Miccio, Luis A. Colmenero, Juan; Kummali, Mohammed M.; Alegra, ngel; Schwartz, Gustavo A.

    2014-05-14

    The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

  12. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect (OSTI)

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or ?¢????electron tweezers?¢??? - of a solid metal nanoparticle inside a liquid metal. This phenomenon is analogous to that of optical trapping of solid microparticles in solution known as "optical tweezers", which is currently being used to manipulate molecules and inorganic materials in a variety of nanotechnology applications.

  13. Nanoscale relaxation oscillator

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  14. For Industrial Users | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through

  15. Watch copper deposited in a chemical reaction at the nanoscale | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Watch copper deposited in a chemical reaction at the nanoscale Share Topic Programs Materials science Nanoscience

  16. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  17. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  18. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facility Center for Nanoscale Materials Center for Nanoscale Materials More Electron Microscopy Center More The Nanoscience and Technology Division hosts the following user facility: The Center for Nanoscale Materials (CNM) at Argonne National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research.

  19. Muge Acik | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At Argonne's Center for Nanoscale Materials (CNM), Acik researches how nanomaterials important to energy and biotechnology applications function, and she addresses fabrication issues at the surfaces and interfaces of nanoelectrodes with creative designs. At Argonne's Center for Nanoscale Materials (CNM), Acik researches how nanomaterials important to energy and biotechnology applications function, and she addresses fabrication issues at the surfaces and interfaces of nanoelectrodes with creative

  20. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave

  1. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links DOE Nanoscale Science Research Center DOE NSRC Community Portal About the CNM The Center for Nanoscale Materials (CNM) at Argonne National Laboratory is a premier user facility providing expertise, instrumentation, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. The center's goal is to perform basic

  2. Call for Proposals | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Proposals Next Deadline: March 4, 2016 The Center for Nanoscale Materials (CNM) at Argonne National Laboratory solicits proposals for user-initiated nanoscience research three times per year (nominally in March, July, and November). The CNM nanoscience and nanotechnology research program provides users with access to a broad range of capabilities for design, synthesis, characterization, and theory & modeling in order to significantly advance the understanding of nanoscale phenomena

  3. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  4. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic and Ionic Functionality on the Nanoscale * Developing instrumentation and techniques to image and understand the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the nanoscale * Understand energy transfer at nanoscale interfaces Functional Polymer and Hybrid Architectures * Advancing our fundamental understanding of the links between polymer structure, property and

  5. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  6. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  7. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  8. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  9. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  10. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  11. Nanoscale friction properties of graphene and graphene oxide | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication 2015 Authors Berman, D, Erdemir, A, Zinovev, AV, Sumant, AV Journal Diamond and Related materials Volume 54 Start Page 91 Pagination 7 Date Published 04012015 Keywords adhesion, AFM lateral force, friction, oxidation Abstract Achieving superlow friction and wear at the micro/nano-scales through

  12. Annihilating nanoscale defects | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annihilating nanoscale defects Author: Justin H.S. Breaux January 13, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version Target dates are critical when the semiconductor industry adds small, enhanced features to our favorite devices by integrating advanced materials onto the surfaces of computer chips. Missing a target means postponing a device's release, which could cost a company millions of dollars or, worse, the loss of competitiveness and an entire industry. But meeting

  13. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  14. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  15. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect (OSTI)

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  16. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties. In this talk, I will discuss our recent research in the area of nanoscale materials modeling, using various atomistic simulation techniques, aimed at uncovering the...

  17. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect (OSTI)

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (pcAFMs) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  18. Nanoscale Materials and Architectures for Energy Conversion

    SciTech Connect (OSTI)

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  19. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  20. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  1. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  2. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  3. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  4. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  5. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  6. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  7. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  8. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  9. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  10. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C. (Oakland, CA); Aloni, Shaul (Albany, CA); Zettl, Alexander K. (Kensington, CA)

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  11. Mapping photovoltaic performance with nanoscale resolution (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Mapping photovoltaic performance with nanoscale resolution This content will become publicly available on October 16, 2016 Title: Mapping photovoltaic performance with nanoscale resolution Photo-conductive AFM spectroscopy ('pcAFMs') is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit

  12. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Anodes | Department of Energy Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es061_kumta_2012_p.pdf More Documents & Publications Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Novel

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  14. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  15. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  16. Nanophotonic Architectures for Nanoscale Light Control (invited).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nanophotonic Architectures for Nanoscale Light Control (invited). Citation Details In-Document Search Title: Nanophotonic Architectures for Nanoscale Light Control (invited). Abstract not provided. Authors: Subramania, Ganapathi Subramanian ; Fischer, Arthur Joseph ; Koleske, Daniel ; Xiao, Xiaoyin ; Wang, George T. ; Brener, Igal ; Wright, Jeremy Benjamin ; Liu, Sheng ; Wierer, Jonathan , ; Luk, Ting S. ; Tsao, Jeffrey Yeenien Publication Date:

  17. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced...

  18. Emerging Nanoscale Memory Technologies: The Solution to Extreme...

    Office of Scientific and Technical Information (OSTI)

    Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to ...

  19. Nanoscale Imaging of Lithium Ion Distribution During In Situ...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Citation Details In-Document Search Title: Nanoscale Imaging of Lithium ...

  20. Nanoscale friction properties of graphene and graphene oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication...

  1. Other: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Machines: These Squeaky Wheels Will Get No Grease Citation Details Title: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

  2. Melt Processing of Covetic Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    www.netl.doe.gov U.S. DOE Advanced Manufacturing Office Program ... of integrally-bound nano-scale carbon phase (i.e., "covetic" nano- materials) in order to produce materials ...

  3. Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting

    SciTech Connect (OSTI)

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-08-28

    SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 5 nm STO, and 6.5 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 ?mol H2 g1 h1 (bulk STO), to 19.4 ?mol H2 g1 h1 (30 nm STO), and 3.0 ?mol H2 g1 h1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  4. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  15. Development of Nanoscale Ceramics for Advanced Power Applications

    SciTech Connect (OSTI)

    Miriam Leffler; Joseph Helble

    1999-09-30

    Bulk structures of unstabilized ZrO{sub 2-x}, with x in the range of 0 {<=} x {<=} 0.44, at ambient pressure have been found to exist in three different structures. (monoclinic, tetragonal and cubic.). At ambient temperature and elevated pressures above 3.5 GPa, unstabilized zirconia at these same compositions is found as a fourth phase, the orthorhombic phase. Work done in this project has demonstrated that nanoscale zirconia particles containing the orthorhombic phase in addition to amorphous material can be produced through solgel methods. Extensive characterization of this material including recent high temperature x-ray diffraction work has indicated that the structure of the synthesized zirconia appears to be linked to the oxygen vacancy population in the material, and that water appears to be a critical factor in determining the type of material formed during synthesis. These results suggest that surface energy alone is not the controlling factor in determining crystal phase.

  16. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  17. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  18. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  19. Working at CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Policies Safety at Work EMC User Safety Scheduled Maintenance Periods Transportation For Industrial Users Acknowledgment Statements for Publications End of Experiment...

  20. Nanophotonics at CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 8 Semiconductor nanocrystals Artist's rendition of semiconductor nanocrystals near a gold film representing work by nanoscientist Matt Pelton in the Nanophotonics Group of the...

  1. 2007 Colloquium Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  2. 2008 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINAR SERIES 2016 Seminars Archive 2015 Seminars Archive 2014 Seminars Archive 2013 Seminars Archive 2012 Seminars Archive 2011 Seminars Archive 2010 Seminars Archive 2009 Seminars Archive 2008 Seminars Archive 2007 Seminars Archive 2006 Seminars Archive Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  3. 2009 Colloquium Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  4. 2009 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINAR SERIES 2016 Seminars Archive 2015 Seminars Archive 2014 Seminars Archive 2013 Seminars Archive 2012 Seminars Archive 2011 Seminars Archive 2010 Seminars Archive 2009 Seminars Archive 2008 Seminars Archive 2007 Seminars Archive 2006 Seminars Archive Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  5. 2010 Colloquium Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  6. 2011 Colloquium Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  7. 2012 Colloquium Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  8. Colloquium Series | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Colloquium Archgive 2015 Colloquium Archive 2014 Colloquium Archive 2013 Colloquium Archive 2012 Colloquium Archive 2011 Colloquium Archive 2010 Colloquium Archive 2009 Colloquium Archive 2008 Colloquium Archive 2007 Colloquium Archive SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale

  9. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect (OSTI)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  10. Magnetics + Mechanics + Nanoscale = Electromagnetics Future (Tuesday, March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15) | The Ames Laboratory Magnetics + Mechanics + Nanoscale = Electromagnetics Future (Tuesday, March 15) DATE: Tuesday, March 15, 1:10 pm LOCATION: 3043 Coover Hall Greg P. Carman, Professor, Mechanical and Aerospace Engineering Department, UCLA Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles. Efficient control of small scale magnetism presents a significant problem for future miniature electromagnetic devices. In most macroscale

  11. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  12. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  13. Method and system for nanoscale plasma processing of objects

    DOE Patents [OSTI]

    Oehrlein, Gottlieb S. (Clarksville, MD); Hua, Xuefeng (Hyattsville, MD); Stolz, Christian (Baden-Wuerttemberg, DE)

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  14. Methods and devices for fabricating three-dimensional nanoscale structures

    DOE Patents [OSTI]

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  15. Probing nanoscale behavior of magnetic materials with soft x...

    Office of Scientific and Technical Information (OSTI)

    DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology Reviews; Journal Volume: 1; Related Information: Journal Publication Date: 2191...

  16. Growth of and defect reduction in nanoscale materials

    DOE Patents [OSTI]

    Jensen, Kenneth J.; Mickelson, William E.; Zettl, Alex K.

    2011-01-04

    Methods by which the growth of a nanostructure may be precisely controlled by an electrical current are described here. In one embodiment, an interior nanostructure is grown to a predetermined geometry inside another nanostructure, which serves as a reaction chamber. The growth is effected by a catalytic agent loaded with feedstock for the interior nanostructure. Another embodiment allows a preexisting marginal quality nanostructure to be zone refined into a higher-quality nanostructure by driving a catalytic agent down a controlled length of the nanostructure with an electric current. In both embodiments, the speed of nanostructure formation is adjustable, and the growth may be stopped and restarted at will. The catalytic agent may be doped or undoped to produce semiconductor effects, and the bead may be removed via acid etching.

  17. AUDIT REPORT Follow-up Audit of Nanoscale Materials Safety

    Broader source: Energy.gov (indexed) [DOE]

    over the handling of nanomaterials, we recommend that the Acting Director, Office of Science and the Associate Administrator for Safety, Infrastructure, and Operations,...

  18. Exploring nanoscale magnetism in advanced materials with polarized...

    Office of Scientific and Technical Information (OSTI)

    Date: 2011-05-01 OSTI Identifier: 1051277 Report Number(s): LBNL-5104E Journal ID: ISSN 0927-796X; MIGIEA; TRN: US201218%%1364 DOE Contract Number: DE-AC02-05CH11231 Resource...

  19. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the

  20. Daniel Rosenmann | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosenmann Engineering Specialist Senior Responsibilities at the CNM include the operation, maintenance, and upgrade of UHV oxide MBE, sputtering and e-beam deposition systems, and the design and development of high-quality experimental techniques to synthesize and characterize nanoscale materials. News Dialing in the Properties of Dual Metallic-Insulating Materials Fast Times and Hot Spots in Plasmonic Nanostructures Combining Elemental Fingerprints with Atomic Level Sensitivity Telephone

  1. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the...

  2. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  3. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  4. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  5. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  6. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  7. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  8. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu National Institute of Standards and Technology; Crozier, Peter Arizona State University; Adams, James Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  9. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  10. Career Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Opportunities Career Opportunities Argonne's Center for Nanoscale Materials advances the basic science behind nanotechnology and spurs the development of products based on nanomaterials. Employment Opportunities Argonne National Laboratory occasionally seeks talented, enthusiastic scientists, and engineers in all CNM technical areas to participate in its scientific program and serve its collaborative user-engaging mission. Visit Argonne's careers web site and select the "NST"

  11. Control of friction at the nanoscale

    DOE Patents [OSTI]

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  12. Synthesizing High-Quality Calcium Boride at Nanoscale - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boride at Nanoscale Argonne National Laboratory Contact ANL About This Technology CaB6 particles coated for 20 cycles at 1600 C. CaB6 particles...

  13. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microscale Features | Department of Energy Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon superhydrophobic_surfaces.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 Low-Cost Self-Cleaning Coatings for CSP Collectors Advanced Heat/Mass

  14. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  15. Nanoscale characterization of the biomechanical properties of collagen

    Office of Scientific and Technical Information (OSTI)

    fibrils in the sclera (Journal Article) | SciTech Connect Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera Citation Details In-Document Search Title: Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We

  16. Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale

    Office of Scientific and Technical Information (OSTI)

    Problems. (Conference) | SciTech Connect Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Abstract not provided. Authors: Marinella, Matthew Publication Date: 2014-03-01 OSTI Identifier: 1140869 Report Number(s): SAND2014-2102C 505337 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Nano and

  17. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Citation Details In-Document Search Title: Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR

  18. Thermal Transport at the Nanoscale. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Thermal Transport at the Nanoscale. Citation Details In-Document Search Title: Thermal Transport at the Nanoscale. Abstract not provided. Authors: Harris, Charles Thomas Publication Date: 2012-09-01 OSTI Identifier: 1116414 Report Number(s): SAND2012-8231C 480452 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: CINT User Workshop held September 19, 2012 in Albuquerque, NM.; Related Information: Proposed for presentation at the CINT User Workshop held

  19. Non-Equilibrium Nanoscale Self-Organization

    SciTech Connect (OSTI)

    Aziz, Michael J

    2006-03-09

    Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

  20. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caltech. She received her Ph.D. in Materials Science from Caltech with a thesis entitled "Optics at the Nanoscale: Light Emission in Plasmonic Nanocavities" in 2010. She also...

  1. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  2. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leite, Marina S.; National Inst. of Standards and Technology; Abashin, Maxim; National Inst. of Standards and Technology; Lezec, Henri J.; Gianfrancesco, Anthony; Talin, A. Alec; Sandia National Lab.; Zhitenev, Nikolai B.

    2014-10-15

    The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs).more » The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.« less

  3. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  4. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  5. Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical

    Office of Scientific and Technical Information (OSTI)

    Heterogeneity in Cycled LiCoO2 (Journal Article) | SciTech Connect Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Citation Details In-Document Search Title: Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Authors: Diercks, D. R. ; Musselman, M. ; Morgenstern, A. ; Wilson, T. ; Kumar, M. ; Smith, K. ; Kawase, M. ; Gorman, B. P. ; Eberhart, M. ; Packard, C. E. Publication Date: 2014-01-01

  6. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOE Patents [OSTI]

    Welle, Eric J. (Niceville, NM); Tappan, Alexander S. (Albuquerque, NM); Palmer, Jeremy A. (Albuquerque, NM)

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  7. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  8. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying amore » connection between the structural phase separation and the shape of the superconducting dome.« less

  9. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  10. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less

  11. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect (OSTI)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  12. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  13. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    SciTech Connect (OSTI)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone of only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.

  14. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect (OSTI)

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms digestive ripening and nanomachining and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity of gold superlattices obtained by digestive ripening for oxidation of CO to CO2 at room temperature. (7) Determine the photocatalytic activity of metal nanoparticles like Au, Ag,Cu, and Pd supported on TiO2 toward photocatalytic hydrogen production.

  15. Nanoscale Studies of Pyroelectric and Thermoelectric Phenomena

    SciTech Connect (OSTI)

    Gruverman, Alexei; Ducharme, Stephen

    2014-07-31

    This research project is focused on (1) development of novel scanning probe microscopy techniques for investigation of the thermally and electrically induced changes in the physical properties of organic polymer ferroelectrics; (2) fabrication of ferroelectric nanostructures and investigation of their functional behavior; (3) fabrication and testing of the organic photovoltaic devices with enhanced energy conversion efficiency. Research activities throughout this project resulted in novel effects and exciting physics reported in 10 papers published in high-profile journals, including Nature Materials, Nano Letters, Advanced Materials, Energy and Environmental Science and Applied Physics Letters. These findings have been presented at a number of domestic and international conferences such as MRS Spring and Fall meetings, International Symposium on Integrated Functionalities, International Symposium on Applications of Ferroelectrics (in total 9 presentations). Below we summarize the most important findings of this project.

  16. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  17. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  18. Predictive modeling of synergistic effects in nanoscale ion track formation

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electronlattice coupling.

  19. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. October 25, 2013 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos

  20. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  1. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  2. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  3. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  4. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  5. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  6. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Surfaces with Nanoscale and Microscale Features Enhanced Boiling, Condensation, and Water Repellency through the Fabrication of Structured Surfaces In nature, extremely hydrophobic surfaces such as the lotus plant leaf are called superhydrophobic (SHP). These surfaces appear to be macroscopically smooth, but are actually composed of nano- and micro-structured surfaces, the key to their SHP prop- erties. The industrial production of SHP surfaces, which are not yet available commercially, would

  7. Nanoscale Morphological and Chemical Changes of High Voltage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Manganese Rich NMC Composite Cathodes with Cycling | Stanford Synchrotron Radiation Lightsource Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the future of humankind. One bottleneck is energy storage because the harvest and consumption of energy are typically separated in time and/or location. Hence, efficient, low-cost, safe and durable batteries are

  8. Los Alamos scientists detect and track single molecules with nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon cylinders Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  9. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect (OSTI)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 C and 400 C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  10. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  11. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  12. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  13. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect (OSTI)

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  14. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect (OSTI)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  15. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect (OSTI)

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near Tg, on a typical laboratory time scale (e.g. {approx}1000 s), a water molecule moves less than a molecular distance. For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquid at these low temperatures. ASW films can be used for investigating the non-thermal reactions relevant to radiolysis. In this account we will present a survey of our research on the thermal and non thermal properties of ASW using this approach.

  16. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect (OSTI)

    Zhang, Zhen; Lee, James D.; Wang, Xianqiao

    2014-03-21

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  17. Melt Processing of Covetic Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D. Jablonski National Energy Technology Laboratory www.netl.doe.gov U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The purpose of this research is to improve the melt processing of metal alloys with significant additions of integrally-bound nano-scale carbon phase (i.e., "covetic" nano- materials) in order to

  18. High Speed SPM of Functional Materials

    SciTech Connect (OSTI)

    Huey, Bryan D.

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  19. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect (OSTI)

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-06-09

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  20. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    SciTech Connect (OSTI)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  1. UNCLASSIFIED Institute for Materials Science Sponsored Lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August 27, 2015 3:00 - 4:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: As the theoretical physicist, Sir Frederick Charles Franck, said, 'Crystals are like people: it is the defects in them that make them interesting.' Fundamental research in Materials Science and Engineering focuses on linking structure and

  2. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect (OSTI)

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  3. Safety at Work | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In case of emergency If you need help or assistance dial 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Approval(s) and/or work planning and control documents prior to beginning your work. For safety

  4. Recent Device Developments with Advanced Bulk Thermoelectric Materials at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RTI | Department of Energy Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners PDF icon venkatasubramanian.pdf More Documents & Publications Nano-structures Thermoelectric Materals - Part 1 Nano-structures Thermoelectric

  5. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect (OSTI)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  6. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  7. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials (CNM), The Argonne Leadership Computing Facility (ALCF), The Argonne Tandem Linac Accelerator System (ATLAS), and The Intermediate Voltage Electron Microscopy...

  8. Nano-Scale Hydroxyapatite: Synthesis, Two-Dimensional Transport Experiments, and Application for Uranium Remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanel, S. R.; Clement, T. P.; Barnett, M. O.; Goltz, M. N.

    2011-01-01

    Synthetic nano-scale hydroxyapatite (NHA) was prepared and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. The XRD data confirmed that the crystalline structure and chemical composition of NHA correspond to Ca 5 OH(PO 4 ) 3 . The SEM data confirmed the size of NHA to be less than 50 nm. A two-dimensional physical model packed with saturated porous media was used to study the transport characteristics of NHA under constant flow conditions. The data show that the transport patterns of NHA were almost identical to tracer transport patterns. This result indicates that the NHA material canmore » move with water like a tracer, and its movement was neither retarded nor influenced by any physicochemical interactions and/or density effects. We have also tested the reactivity of NHA with 1 mg/L hexavalent uranium (U(VI)) and found that complete removal of U(VI) is possible using 0.5 g/L NHA at pH 5 to 6. Our results demonstrate that NHA has the potential to be injected as a dilute slurry for in situ treatment of U(VI)-contaminated groundwater systems.« less

  9. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    SciTech Connect (OSTI)

    Rajauria, Sukumar Canchi, Sripathi V. Schreck, Erhard; Marchon, Bruno

    2015-02-23

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10?nm apart and move at sliding speeds of 510?m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  10. Solid State Theory of Photovoltaic Materials: Nanoscale Grain Boundaries and Doping CIGS

    SciTech Connect (OSTI)

    Zunger, A

    2005-01-01

    We use modern first-principles electronic structure theory to investigate (1) why are grain boundaries in chalcopyrites passive; (2) can chalcopyrites be doped by transition metals, and; (3) can hot electrons and carrier multiplication be efficient in quantum-dot solar cells.

  11. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of

    Office of Scientific and Technical Information (OSTI)

    Battery Electrode and Electrolyte (Journal Article) | SciTech Connect Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Citation Details In-Document Search Title: Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Authors: Holtz, Megan E. ; Yu, Yingchao ; Gunceler, Deniz ; Gao, Jie ; Sundararaman, Ravishankar ; Schwarz, Kathleen A. ; Arias, T. A. ; Abruña, Héctor D. ; Muller,

  12. Center for Nanoscale Controls on Geologic CO2 (NCGC) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Nanoscale Controls on Geologic CO2 (NCGC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Nanoscale Controls on Geologic CO2 (NCGC) Print Text Size: A A A FeedbackShare Page NCGC Header Director Donald DePaolo Lead Institution Lawrence Berkeley National Laboratory Year Established 2009 Mission To enhance the performance and

  13. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of

  14. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon brosha_lanl_kickoff.pdf More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  15. Center for Nanophase Materials Sciences (CNMS) - Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEMES Electronic and Ionic Functionality on the Nanoscale (EIFN) The overarching goal of the EIFN theme is to explore electronic and ionic material functionalities on the atomic scale and extend this knowledge to the emergent behaviors at the scales of individual nanoparticles and defects and finally to the macroscale, where function can be translated into new technologies. We aim to harness this knowledge to understand and control fundamental mechanisms of coupling between electronic and ionic

  16. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    SciTech Connect (OSTI)

    Epstein, Arthur J.

    2013-09-10

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  17. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  18. Techniques of Nanoscale Silicon Texturing of Solar Cells - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative that uses nontoxic materials.Benefits Cost effective "Green" technology Renewable energy Process is non-toxic Applications and Industries Energy storage Use in...

  19. Nanoscale thermal transport. II. 2003-2012 (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    thermal conductivity of a thin layer with micron-scale ... Department of Materials Science and Engineering and the ... CONDUCTIVITY; THIN FILMS Word Cloud More Like This ...

  20. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ways to exploit the novel properties that result are frontier areas of today's solid-state physics and materials science. However, before exploring and exploiting comes making....

  1. High-speed Visualization of Polarization Charges using a Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tip in the absence of surface screening charges. Research Team Seungbum Hong, Woon Ik Park (Argonne Materials Science Division), Sheng Tong, Andreas Roelofs (Argonne...

  2. CNEEC - TRG1: Nanoscale Control of Thermodynamic Potentials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pristine materials. We are also studying nanomaterials incorporated into nanoporous aerogels, where the nanometer size is controlled and stabilized by the aerogel scaffold...

  3. Fundamental Mechanisms of Transient States in Materials Quantified by DTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoffrey Campbell is the Principal Investigator for Fundamental Mechanisms of Transient States in Materials Quantified by DTEM. Fundamental Mechanisms of Transient States in Materials Quantified by DTEM Research We study the coupled dynamics of phase transformation nucleation and growth, microstructure, and thermodynamics in nanoscale systems evolving on nanosecond to microsecond time scales using time resolved in situ microscopy (and other) techniques. DTEM enables in situ characterization of

  4. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CNMS USER MEETING Center for Nanophase Materials Sciences Oak Ridge National Laboratory September 14, 2012 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User Meeting Agenda and Abstract Booklet Agendas for featured workshops: Nanoscale Imaging for Energy Applications September 11-13, 2012 (begins 1pm on 9/11) Transmission Electron Microscopy for Soft Materials September 12-13, 2012 Second Photovoltaics School (Photovoltaics from

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An optimized nanoparticle separator enabled by elecron beam induced deposition J. D. Fowlkes,1 M. J. Doktycz2 and P. D. Rack1,3 1Nanofabricatin Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 2Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory 3Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN Achievement Size-based separations technologies will inevitably benefit from

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Xiang Zhang Principal Investigator Xiang Zhang Xiang Zhang, Ernest S. Kuh Endowed Chaired Professor of Mechanical Engineering and LBNL Materials Sciences Division Director Lawrence Berkeley National Laboratory Professor Xiang Zhang is the inaugural Ernest S. Kuh Endowed Chaired Professor at UC Berkeley and Director of NSF Nano-scale Science and Engineering Center. He is the Director of the Materials Sciences Division at Lawrence Berkeley National Laboratory, and a member

  7. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laserassisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materialslayered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  8. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect (OSTI)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.

  9. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    SciTech Connect (OSTI)

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

  10. Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN

    Office of Scientific and Technical Information (OSTI)

    nanostructure arrays on GaN/sapphire template (Journal Article) | SciTech Connect Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Citation Details In-Document Search Title: Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Authors: Sundaram, S. [1] ; Puybaret, R. [2] ; El Gmili, Y. [1] ; Li, X. [2] ; Bonanno, P. L. [1] ; Pantzas, K. [3] Search SciTech

  11. Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) A Nanoscale "Tune-Up" for Fuel Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.11.12 Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells Print Text Size: A A A Subscribe FeedbackShare Page Using sophisticated techniques, EFRC researchers are observing, at the molecular

  12. Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} Citation Details In-Document Search Title: Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} We investigated the size-dependent high-pressure phase transition behavior of nanocrystalline anatase TiO{sub 2} with synchrotron x-ray diffraction and Raman spectroscopy to 45 GPa at ambient temperature. Pressure-induced amorphization results in a high-density amorphous (HDA)

  13. Soft x-ray ptychography studies of nanoscale magnetic and structural

    Office of Scientific and Technical Information (OSTI)

    correlations in thin SmCo5 films (Journal Article) | SciTech Connect Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films Citation Details In-Document Search This content will become publicly available on March 2, 2017 Title: Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films Authors: Shi, X. [1] ; Fischer, P. [2] ; Neu, V. [3] ; Elefant, D. [3] Search SciTech Connect for author "Elefant,

  14. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures joining each other, for example, as molecules can form, atom-by-atom you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNAs natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFNs leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  15. Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for...

    Office of Science (SC) Website

    This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported by the Energy Materials Center at Cornell (emc2), an EFRC led by Hctor D. Abrua ...

  16. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  17. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect (OSTI)

    Zbib, Hussein M; Bahr, David F

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they dont permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PIs were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.

  18. Mechanics and tribology of MEMS materials.

    SciTech Connect (OSTI)

    Prasad, Somuri V.; Dugger, Michael Thomas; Boyce, Brad Lee; Buchheit, Thomas Edward

    2004-04-01

    Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.

  19. Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

    SciTech Connect (OSTI)

    Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.

    1999-11-01

    Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

  20. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  1. Materials Science of Actinides (MSA) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Science of Actinides (MSA) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Materials Science of Actinides (MSA) Print Text Size: A A A FeedbackShare Page MSA Header Director Peter Burns Lead Institution University of Notre Dame Year Established 2009 Mission To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Interaction Between Nanoscale Building Blocks and Biologically Relevant Molecules X. Zhao (CNMS Postdoc), A. Striolo (U of Oklahoma, now CNMS User), and P. T. Cummings (CNMS Staff) Scientists at Oak Ridge National Laboratory's new Center for Nanophase Materials Sciences (CNMS) are leading the way in developing detailed molecular-level understanding of how nanomaterials may interact with biologically important molecules. A provocative experimental study, published in 2004,

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertically Aligned Carbon Nanofibers Arrays Record Electrophysiological Signals Zhe Yu and Barclay Morrison III, (Department of Biomedical Engineering, Columbia University), T. E. McKnight, M. N. Ericson, (ESTD, ORNL) A. V. Melechko, and M. L. Simpson (CNMS, ORNL) Achievement The controlled synthesis and directed assembly of nanoscale materials is a key requirement to create functional interfaces between synthetic and biological systems. Along these lines, recent advances in the controlled

  5. Subtask 2: Molecules, Materials, and Systems for Solar Electricity | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory 2: Molecules, Materials, and Systems for Solar Electricity Home > Research > Subtask 2 The above figure depicts the structure of active polymer layers in organic solar cells. The above figure depicts the structure of active polymer layers in organic solar cells. ANSER Center research tests theory-driven ideas to understand at a fundamental level how photovoltaic cell performance is affected by nanoscale/mesoscale

  6. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to ??real-world? materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  7. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Hu, Michael Z.

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  8. A Nanoscale "Tune-Up" for Fuel Cells | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A Nanoscale "Tune-Up" for Fuel Cells News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 06.11.12 A Nanoscale "Tune-Up" for Fuel Cells Using sophisticated techniques, EFRC researchers are

  9. Solar Energy Technologies Program Peer Review: Center for Nanoscale Energy

    SciTech Connect (OSTI)

    Philip Boudjouk; Larry Pederson; Doug Schulz

    2010-05-26

    The purpose of this project is to develop plant-derived polymers with high potential for replacing petroleum-derived polymers. Important considerations include reduced swelling, lower price, equal or greater strength, and improved processability. Polymer precursors and other high value chemicals are derived by selective oxidation of renewable resources including oil seeds and cellulosics. High throughput combinatorial methods were applied to optimize oxidative catalysis as well as to formulate polymer families. Long chain dicarboxylic acids have been derived in >80% yields from fatty acids found in oil seeds by selective oxidative cleavage using tungsten-based and other catalysts. Furan dicarboxylic acids have been synthesized in high yields by selective catalytic oxidation of cellulosic materials. This product is a precursor to a new class of polyamide polymers. A series terephthalamide/adipamide copolymers have been prepared from long-chain dicarboxylic acids derived from renewable feedstocks. Compositions have been identified that exhibit significant processing advantages over commercial nylons.

  10. The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale Friday, August 9, 2013 - 10:30am SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen vacancy centers represent a unique class of fluorophores due to their long-lived electron spin properties, all-carbon matrix, and long-term photostability. While this class

  11. Near Zero Friction from Nanoscale Lubricants | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Near Zero Friction from Nanoscale Lubricants Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information »

  12. Microsoft PowerPoint - Agapov_2015_CNMS Staff Science Highlight_Nanoscale.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays of tilted pillars with heights ranging from hundreds of nanometers to tens of micrometers were fabricated and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct

  13. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  14. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  15. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  16. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  17. Biological and Biomimetic Low-Temperature Routes to Materials for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es047_morse_2012_p.pdf More Documents & Publications Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion

  18. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  19. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  20. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  1. Nanoscale interplay of strain and doping in a high-temperature superconductor

    SciTech Connect (OSTI)

    Zeljkovic, Ilija; Gu, Genda; Nieminen, Jouko; Huang, Dennis; Chang, Tay-Rong; He, Yang; Jeng, Horng-Tay; Xu, Zhijun; Wen, Jinsheng; Lin, Hsin; Markiewicz, Robert S.; Bansil, Arun; Hoffman, Jennifer E.

    2014-11-07

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi?Sr?CaCu?O??x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  2. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect (OSTI)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  3. Nanoscale interplay of strain and doping in a high-temperature superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeljkovic, Ilija; Gu, Genda; Nieminen, Jouko; Huang, Dennis; Chang, Tay-Rong; He, Yang; Jeng, Horng-Tay; Xu, Zhijun; Wen, Jinsheng; Lin, Hsin; et al

    2014-11-07

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi₂Sr₂CaCu₂O₈₊x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  4. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  5. Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  6. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect (OSTI)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  7. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  9. Charge-free low-temperature method of forming thin film-based nanoscale materials and structures on a substrate

    DOE Patents [OSTI]

    Hoffbauer, Mark (Los Alamos, NM); Mueller, Alex (Santa Fe, NM)

    2008-07-01

    A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-02-01 08:07:17

  11. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    SciTech Connect (OSTI)

    Mangalampalli S. R. N., Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-01-01

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.

  12. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mangalampalli S. R. N., Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-01-01

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that themore » dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.« less

  13. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  14. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  15. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials (continued) * Generators are required to avoid Las Vegas metropolitan area and Hoover Dam (Section 6.4 of NNSS Waste Acceptance Criteria, available at ...

  1. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  2. Spins and Heat in Nanoscale Electronic Systems (SHINES) | U.S...

    Office of Science (SC) Website

    Research Topics phonons, thermal conductivity, thermoelectric, spin dynamics, spintronics Materials Studied Materials: metal, oxide Interfaces: metaloxide Nanostructured ...

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  4. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-02-01 08:06:5

  5. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader Ross Muenchausen Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  6. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  7. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  9. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  10. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  11. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOE Patents [OSTI]

    Giannakopoulos, Antonios E. (Somerville, MA); Suresh, Subra (Wellesley, MA)

    1999-01-01

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  12. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  13. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  14. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  15. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  16. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  17. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  18. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and BER usage as a function of time A powerpoint template you can use at the requirements review Downloads RequirementsWorkshopCaseStudyTemplate.doc | Word document

  19. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  20. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  1. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  2. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  3. Critical Materials:

    Office of Environmental Management (EM)

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  4. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    SciTech Connect (OSTI)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Zhang, Weijing

    2013-11-01

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (1616) force curves in local areas (500500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. The nanoscale distribution of CD20 on cancer cells was characterized. The distribution of CD20 was non-uniform on the surface of cancer cells.

  5. Nanoscale transport of phonons: Dimensionality, subdiffusion, molecular damping, and interference effects

    SciTech Connect (OSTI)

    Walczak, Kamil; Yerkes, Kirk L.

    2014-05-07

    We examine heat transport carried by acoustic phonons in the systems composed of nanoscale chains of masses coupled to two thermal baths of different temperatures. Thermal conductance is obtained by using linearized Landauer-type formula for heat flux with phonon transmission probability calculated within atomistic Green's functions (AGF) method. AGF formalism is extended onto dissipative chains of masses with harmonic coupling beyond nearest-neighbor approximation, while atomistic description of heat reservoirs is also included into computational scheme. In particular, the phonon lifetimes and the phonon frequency shifts are discussed for harmonic lattices of different dimensions. Further, resonant structure of phonon transmission spectrum is analyzed with respect to reservoir-induced effects, molecular damping, and mass-to-mass harmonic coupling. Analysis of transmission zeros (antiresonances) and their accompanied Fano-shape resonances are discussed as a result of interference effects between different vibrational modes. Finally, we also predict subdiffusive transport regime for low-frequency ballistic phonons propagated along a linear chain of harmonically coupled masses.

  6. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach

    SciTech Connect (OSTI)

    Lu, Jun; Zhan, Chun; Wu, Tianpin; Wen, Jianguo; Lei, Yu; Kropf, A. Jeremy; Wu, Huiming; Miller, Dean J.; Elam, Jeffrey W.; Sun, Yang-Kook; Qiu, Xinping; Amine, Khalil

    2014-12-16

    The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn(III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries.

  7. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOE Patents [OSTI]

    Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

    2010-02-23

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  8. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    SciTech Connect (OSTI)

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A.

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  9. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan (Piscataway, NJ); Forrest, Stephen R. (Ann Arbor, MI)

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  10. Opto-nanomechanical spectroscopic material characterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less

  11. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  13. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  14. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-05-14

    Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

  15. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  16. Foam-assisted delivery of nanoscale zero valent iron in porous media

    SciTech Connect (OSTI)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  17. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  18. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  19. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect (OSTI)

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  20. Soft x-ray ptychography studies of nanoscale magnetic and structural...

    Office of Scientific and Technical Information (OSTI)

    correlations in thin SmCo5 films Citation Details ... Oregon 97401, USA Materials Sciences Division, ... Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, ...

  1. Users Executive Committee | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides advice to the Director on matters affecting the user community, and ensures good communication between the CNM user community and CNM management. The CNM UEC is also...

  2. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L.; Talmage, Mellisa J.; McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  3. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  4. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  5. Real time nanoscale structural evaluation of gold structures on Si (100) surface using in-situ transmission electron microscopy

    SciTech Connect (OSTI)

    Rath, A. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com; Juluri, R. R.; Satyam, P. V. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com

    2014-05-14

    Transport behavior of gold nanostructures on Si(100) substrate during annealing under high vacuum has been investigated using in-situ real time transmission electron microscopy (TEM). A comparative study has been done on the morphological changes due to annealing under different vacuum environments. Au thin films of thickness ?2.0?nm were deposited on native oxide covered silicon substrate by using thermal evaporation system. In-situ real time TEM measurements at 850?C showed the isotropic growth of rectangular/square shaped gold-silicon alloy structures. During the growth, it is observed that the alloying occurs in liquid phase followed by transformation into the rectangular shapes. For similar system, ex-situ annealing in low vacuum (10{sup ?2} millibars) at 850?C showed the spherical gold nanostructures with no Au-Si alloy formation. Under low vacuum annealing conditions, the rate of formation of the oxide layer dominates the oxide desorption rate, resulting in the creation of a barrier layer between Au and Si, which restricts the inter diffusion of Au in to Si. This work demonstrates the important role of interfacial oxide layer on the growth of nanoscale Au-Si alloy structures during the initial growth. The time dependent TEM images are presented to offer a direct insight into the fundamental dynamics of the sintering process at the nanoscale.

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Overview of Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Vehicles Technologies Materials Program Jerry Gibbs Technology Development Manager Propulsion Materials Vehicle Technologies Program Overview of Propulsion Materials Project ID PM000 Vehicle Technologies Program eere.energy.gov Materials for Combustion Systems / High Efficiency Engines Turbocharger, Valve Train, Fuel Injection, Structural Components Head/Block, Sensors, Materials/Fuel Compatibility Materials for Exhaust and Energy Recovery DPFs, Catalysts, Thermoelectric Materials,

  9. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  10. Chapter 6: Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from

  11. Chapter 6: Materials

    Broader source: Energy.gov [DOE]

    Chapter 6 of the LANL Sustainable Design Guide contains information on material selection, sustainable building materials, and system integration issues.

  12. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including transitions from magnetic to nonmagnetic phases in a broad pressure-temperature range; using X-ray methods including the newly developed RIXS high-pressure technique to explore pressure-tuned electronic excitations in strongly correlated 3d-materials; and advancing transport and magnetic techniques for measurements on small samples at very high pressures in a wide temperature range, with the application of focused ion beam technology and photolithography tailored to the design of microcircuits down to a nanoscale size, thus expanding the horizon in the search for novel physical phenomena at ultrahigh pressures. Apply new optical magnetic sensing techniques with NV- centers in diamond to detect superconductivity and magnetic transitions with unprecedented spatial resolution.

  13. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  14. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices arent new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the devices efficiency and enable electronics manufacturers to more easily integrate them into their products.

  15. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  16. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  17. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina Balke; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  18. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect (OSTI)

    Lee, M.H.; Kim, B.S.; Kim, D.H.; Ott, R.T.; Sansoz, F.; Eckert, J.

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  19. Identification of the stimulated-emission threshold in high-{beta} nanoscale lasers through phase-space reconstruction

    SciTech Connect (OSTI)

    Hachair, X.; Elvira, D.; Le Gratiet, L.; Lemaitre, A.; Abram, I.; Sagnes, I.; Robert-Philip, I.; Beveratos, A.; Braive, R.; Lippi, G. L.

    2011-05-15

    Nanoscale lasers sustain a few optical modes so that the fraction of spontaneous emission {beta} funnelled into the useful (lasing) mode is high (of the order of 10{sup -1}) and the threshold, which traditionally corresponds to an abrupt kink in the light-in-light-out curve, becomes ill defined. We propose an alternative definition of the threshold that is based on the dynamical response of the laser and is valid even for {beta}=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitations. Crossing the threshold, brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous determination of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic-crystal laser.

  20. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    SciTech Connect (OSTI)

    Zhang, X.; Misra, A.; Wang, H.; Swadener, J.G.; Lima, A.L.; Hundley, M.F.; Hoagland, R.G.

    2005-12-05

    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 deg. C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films.

  1. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOE Patents [OSTI]

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  2. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  3. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    SciTech Connect (OSTI)

    Brosha, Eric L.; Elbaz Alon, Lior; Henson, Neil J.; Rockward, Tommy; Roy, Aaron; Serov, Alexey; Ward, Timothy

    2012-08-13

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to predict the thermodynamic and activation barriers for fundamental electrode processes occurring at platinum surfaces supported on thin films of the ceramic support materials. The results of this work will be used in order to optimize support properties.

  4. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  5. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Critical Materials Critical materials are found in many commonly used tools, including batteries, cell phones and vehicles. 10 things you didn't know about critical materials Rare Earths -- The Fraternal Fifteen CMI factsheet What would we do without rare earths? The Ames Laboratory channel on YouTube Timelines related to rare earth elements and materials Other sources of information about rare earths: GE: Understanding rare earth metals, includes links to a whitepaper "Understanding

  6. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  7. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect (OSTI)

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  8. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  9. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  10. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn04_schutte_lm_2011_o.pdf More Documents & Publications Overview of Lightweight Materials Lightweight Materials Overview Summary of the Output from the VTP Advanced Materials Workshop

  11. DOE Solar Energy Technologies Program Peer Review Technical Track: Nanostructures and Quantum Dots Project Name: Center for Nanoscale Energy Related Materials

    SciTech Connect (OSTI)

    Douglas L. Schulz; Philip R. Boudjouk

    2009-03-09

    Some major accomplishments of the program are: (1) First crystal structures of Si{sub 6}H{sub 12}-related molecules; (2) PECVD of both a-Si and alloys (i.e., SiN and SiO{sub x}) using Si{sub 6}H{sub 12}; (3) Establishment of a system that couples a printing methodology with laser annealing; and (4) Developed schematics and electrical models for power-point tracking system and filed invention disclosure.

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  13. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  14. Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Innovating tomorrow's materials today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make revolutionary advances in the science of materials discovery and synthesis, and is designing new materials with advantageous properties - one atom at a time. Examples of these include Argonne's patented technologies for nanoparticle applications, heat transfer and materials for advanced

  15. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Co-ordinator & Visiting Professor Oxford University Materials United Kingdom "Magnetic" Molecular Dynamics and Other Models for Fusion Reactor Materials Tuesday, September 15,...

  16. Tuning the Optical Properties of Mesoporous TiO2 Films by Nanoscale Engineering

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Wang, Liang; Swensen, James S.; Padmaperuma, Asanga B.; Silverman, Gary; Korotkov, Roman; Gaspar, Daniel J.

    2012-07-03

    Introducing mesoscale pores into spincoated titanium dioxide films, prepared by spincoating different sol-gel precursor solutions on silicon substrates and subsequent annealing at 350 C, 400 C or 450 C, respectively, affects several optical properties of the material. The change in refractive index observed for different mesoporous anatase films directly correlates with changes in pore size, but is also in a more complex manner influenced by the film thickness and the density of pores within the films. Additionally, the band gap of the films is blueshifted by the stress the introduction of pores exerts on the inorganic matrix. The differently sized pores were templated by Pluronic{reg_sign} block copolymers in the solgel solutions and tuned by employing different annealing temperatures for the film preparation. This study focused on elucidating the effect different templating materials (F127 and P123) have on the pore size of the final mesoporous titania film, and on understanding the relation of varying polymer concentration (taking P123 as an example) in the sol-gel solution to the pore concentration and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, nitrogen adsorption, ellipsometery, UV/Vis spectrometry and other techniques to understand the interplay between mesoporosity and optical properties.

  17. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  18. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    SciTech Connect (OSTI)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  19. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  20. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  1. Spin and orbital moments of nanoscale Fe{sub 3}O{sub 4} epitaxial thin film on MgO/GaAs(100)

    SciTech Connect (OSTI)

    Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Wong, P. K. J.; Maltby, N. J.; Li, S. P.; Wang, X. F.; Zhang, R. E-mail: rzhang@nju.edu.cn; Du, J.; You, B.; Wu, J.; Bencok, P.

    2014-04-07

    Nanoscale Fe{sub 3}O{sub 4} epitaxial thin film has been synthesized on MgO/GaAs(100) spintronic heterostructure, and studied with X-ray magnetic circular dichroism. We have observed a total magnetic moment (m{sub l+s}) of (3.32 ± 0.1)μ{sub B}/f.u., retaining 83% of the bulk value. Unquenched orbital moment (m{sub l}) of (0.47 ± 0.05)μ{sub B}/f.u. has been confirmed by carefully applying the sum rule. The results offer direct experimental evidence of the bulk-like total magnetic moment and a large orbital moment in the nanoscale fully epitaxial Fe{sub 3}O{sub 4}/MgO/GaAs(100) heterostructure, which is significant for spintronics applications.

  2. Nanoscale Laser-Induced Spallation in SiO2 Films Containing Gold Nanoparticles

    SciTech Connect (OSTI)

    Kudryashov, S.I.; Allen, S.D.; Papernov, S.; Schmid, A.W.

    2006-02-16

    A phenomenological theory of ultraviolet pulsed-laser-induced spallation is proposed to interpret crater formation in SiO2 thin films containing absorbing 18.5-nm gold particles. The theory considers a spherical thermoacoustic stress wave propagating from a thermal source produced by laser-energy absorption inside the particle and surrounding ionized volume. Calculations show that the tensile stress associated with such an acoustic wave may exceed the local strength of the material and cause fracture and spallation of the top film portion. The theory provides an explanation of the experimentally observed complex (two-cone) shape of craters formed in the film with particle-lodging depth exceeding 110 nm. Theoretical estimates for the threshold stress amplitude and peak temperature in the thermal source are in qualitative agreement with the experimental observations.

  3. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-11-15

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  4. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect (OSTI)

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10m x 10m) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  5. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  6. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  7. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  8. Materials Analysis and Modeling of Underfill Materials.

    SciTech Connect (OSTI)

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  9. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  10. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  11. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  12. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for the Future Materials for the Future The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion Mary Hockaday Email Pillar Contact Toni Taylor Email Pillar Contact David Teter Email Materials for the Future Science Overview At Los Alamos National Laboratory, we anticipate the advent of a new era in materials science, when we will transition from observing and exploiting the properties of materials to a science-based

  13. Multi Material Paradigm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept Composites Advanced Steel body Coil-coated shell Steel thin wall casting High strength Steels Al-Spaceframe Steel Unibody Stainless Steel Spaceframe Affordability of weight reduction Design Materials Processes Approach Advanced M-Spaceframe L > 2012 Multi Material Paradigm Joining problems and methods f Joining

  14. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  15. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Materials at the Mesoscale Los Alamos's bold proposal to understand and control material properties December 12, 2015 Materials at the Mesoscale Between the atomic and macro scales lies a gap in our knowledge of materials known as the mesoscale. A gap remains in the understanding of mesoscale properties and responses, especially in extreme temperature,

  16. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  17. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  18. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    SciTech Connect (OSTI)

    Lin, Jau-Wen

    2014-08-07

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied.

  19. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    SciTech Connect (OSTI)

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate the effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.

  20. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A.; K?os, J. W.; Krawczyk, M.

    2014-01-28

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain isofrequency contours of spin waves. Isofrequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  1. Center for Nanophase Materials Sciences (CNMS) - Core Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Core materials characterization

  2. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  3. Enhanced magnetocaloric effect material

    DOE Patents [OSTI]

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  4. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  5. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  6. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  7. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  8. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  9. Cybersecurity Awareness Materials

    Broader source: Energy.gov [DOE]

    The OCIO develops and distributes a variety of materials to enhance cyber awareness campaigns, address emerging cyber threats, and examine hot topics. These materials are available to all DOE organizations, and public and private institutions.

  10. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  11. Quantification of Electrochemical Nanoscale Processes in Lithium Batteries By OperandoEC-(S)TEM

    SciTech Connect (OSTI)

    Mehdi, Beata L.; Qian, Jiangfeng; Nasybulin, Eduard; Welch, David A.; Park, Chiwoo; Faller, Roland; Mehta, Hardeep S.; Henderson, Wesley A.; Xu, Wu; Evans, James E.; Liu, Jun; Zhang, Jiguang; Mueller, Karl T.; Browning, Nigel D.

    2015-07-27

    Lithium (Li)-ion batteries are currently used for a wide variety of portable electronic devices, electric vehicles and renewable energy applications. In addition, extensive worldwide research efforts are now being devoted to more advanced beyond Li-ion battery chemistries - such as lithium-sulfur (Li-S) and lithium-air (Li-O2) - in which the carbon anode is replaced with Li metal. However, the practical application of Li metal anode systems has been highly problematic. The main challenges involve controlling the formation of a solid-electrolyte interphase (SEI) layer and the suppression of Li dendrite growth during the charge/discharge process (achieving dendrite-free cycling). The SEI layer formation continuously consumes the electrolyte components creating highly resistive layer, which leads to the rapid decrease of cycling performance and degradation of the Li anode. The growth of Li metal dendrites at the anode contributes to rapid capacity fading (the presence of dead Li created during the discharge leads to an increased overpotential) and, in the case of continuous growth, leads to internal short circuits and extreme safety issues. Here we demonstrate the application of an operando electrochemical scanning transmission electron microscopy (ec-(S)TEM) cell to study the SEI layer formation and the initial stages of Li dendrite growth - the goal is to develop a mechanism for mitigating the degradation processes and increasing safety. Bright field (BF) STEM images in Figure 1 A-C show Li metal deposition and dissolution processes at the interface between the Pt working electrode and the lithium hexafluorophosphate (LiPF6) in propylene carbonate (PC) electrolyte during three charge/discharge cycles. A contrast reversal caused by Li metal being lighter/less dense than surrounding electrolyte (Li appears brighter than the background in BF STEM images) allows Li to be uniquely identified from the other components in the system - the only solid material that is less dense than the electrolyte is Li metal. Using these images, we can precisely quantify the total volume of Li deposition, the thickness of the SEI layer (observed as a ring of positive contrast around the electrode) and alloy formation due to Li+ ion insertion during each cycle. Furthermore, at the end of each discharge cycle we can quantify the presence of dead Li detached from the Pt electrode, thereby demonstrating the degree of irreversibility (and degradation of Pt electrode) associated with insertion/removal of Li+during this process with direct correlation to electrochemical performance. Such analyses provide significant insights into Li metal dendrite growth, which is critical to understand the complex interfacial reactions needed to be controlled for future Li-based and next generation energy storage systems.

  12. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  13. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader (acting) Michael Hundley Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division

  14. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  15. ARM - Public Information Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  16. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

  17. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? - Kirstin Persson, Berkeley Lab Last edited: 2016-02-01 08:07:07

  18. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  19. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  20. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf).

  1. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  2. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  5. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  6. Critical Materials Strategy Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Strategy Summary 2010 T he United States is on the cusp of a clean energy rev- olution. In its first Critical Materials Strategy, the U.S. Department of Energy (DOE) focuses on materials used in four clean energy technologies: wind turbines, elec- tric vehicles, solar cells and energy-efficient lighting (Table 1). The Strategy evaluates the extent to which widespread deployment of these technologies may increase worldwide demand for rare earth elements and certain other

  7. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Materials in the news Discover more about the wide-ranging scope of materials research at Los Alamos National Laboratory. Contact Us ADEPS Communications Email Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Read more... Materials science at Los

  8. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  9. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  10. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  11. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  12. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  13. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  14. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  15. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  16. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  17. Material Safety Data Sheets

    Broader source: Energy.gov [DOE]

    Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a hazardous substance and other health and safety information.

  18. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  19. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique...

  20. FY 2008 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Materials Crosscutting Research and Development FY 2008 Progress Report for ... Lightweighting Materials focuses on the development and validation of advanced materials ...

  1. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials - 12. Materials Crosscutting Research and Development Overview of Lightweight Materials Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

  2. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect (OSTI)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  3. Hydrocarbonaceous material upgrading method

    DOE Patents [OSTI]

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  4. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  5. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Materials Management U.S. Department of Energy | Who We Are | Current Requests for Proposal | Requests for Information | Expression of Interest | Subcontractor Information | Small Business Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small Business Calendar Terms & Conditions Procedures to Subcontractors Instructions Forms Vendor Registration Solicitations Small Bus. Events Procedures

  6. Energy Materials Network

    Broader source: Energy.gov [DOE]

    High performance materials hold the key to innovation in many critical clean energy technologies. But with ambitious national targets to reduce America’s carbon footprint, advanced materials’ traditional 15-20 years-to-market timeframe isn’t keeping pace with America’s goals to achieve a clean energy economy. Through the Energy Materials Network (EMN), the Energy Department is taking a different approach to materials research and development (R&D) that aims to solve industry’s toughest clean energy materials challenges. EMN’s targeted, growing network of consortia led by the Energy Department’s national labs is better integrating all phases of R&D, from discovery through deployment, and facilitating industry access to its national laboratories’ capabilities, tools, and expertise to accelerate the materials development cycle and enable U.S. manufacturers to deliver innovative, made-in-America products to the world market. This effort supports the President’s Materials Genome Initiative, which is working to discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost. EMN also supports the recommendations of the Advanced Manufacturing Partnership 2.0, a working group with leaders from industry, academia, and labor, which highlighted the importance of producing advanced materials for technologies critical to U.S. competitiveness in manufacturing.

  7. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  8. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  9. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsTara...

  10. Patent: Electrode material comprising graphene-composite materials in a

    Office of Scientific and Technical Information (OSTI)

    graphite network | DOEpatents Electrode material comprising graphene-composite materials in a graphite network Citation Details Title: Electrode material comprising graphene-composite materials in a graphite network

  11. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composition maps (5 m x 5 m) of F8BT:TFB blend films (left and center). Comparative atomic-force microscopy (AFM) surface images (right) reveal micrometer-sized domains in...

  12. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  13. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    SciTech Connect (OSTI)

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-28

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Currentvoltage (IV) characteristics show an excellent rectification ratio (I{sub ON}/I{sub OFF} = 10?) at a bias voltage of 1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on IV (0.62 eV) and high frequency capacitancevoltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.352.5 ?m under different reverse bias conditions (0.01.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  14. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    SciTech Connect (OSTI)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  15. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography: Comparison Of Experiments And Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Kaspar, Tiffany C.; Ramanan, Sathvik; Walvekar, Sarita K.; Bowden, Mark E.; Shutthanandan, V.; Kurtz, Richard J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxial (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation it is very challenging to characterize by conventional techniques. Therefor laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr0.61Mo0.39, Cr0.77Mo0.23, and Cr0.32V0.68 alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were thus confirmed.

  16. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation

    SciTech Connect (OSTI)

    Devaraj, A.; Ramanan, S.; Walvekar, S.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Kurtz, R. J.

    2014-11-21

    Tailored metal alloy thin film-oxide interfaces generated using molecular beam epitaxy (MBE) deposition of alloy thin films on a single crystalline oxide substrate can be used for detailed studies of irradiation damage response on the interface structure. However, the presence of nanoscale phase separation in the MBE grown alloy thin films can impact the metal-oxide interface structure. Due to nanoscale domain size of such phase separation, it is very challenging to characterize by conventional techniques. Therefore, laser assisted atom probe tomography (APT) was utilized to study the phase separation in epitaxial Cr{sub 0.61}Mo{sub 0.39}, Cr{sub 0.77}Mo{sub 0.23}, and Cr{sub 0.32}V{sub 0.68} alloy thin films grown by MBE on MgO(001) single crystal substrates. Statistical analysis, namely frequency distribution analysis and Pearson coefficient analysis of experimental data was compared with similar analyses conducted on simulated APT datasets with known extent of phase separation. Thus, the presence of phase separation in Cr-Mo films, even when phase separation was not clearly observed by x-ray diffraction, and the absence of phase separation in the Cr-V film were confirmed.

  17. FY 2008 Progress Report for Lightweighting Materials - 12. Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research and Development | Department of Energy 2. Materials Crosscutting Research and Development FY 2008 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 12_materials_crosscutting_rd.pdf More Documents & Publications FY 2009

  18. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    SciTech Connect (OSTI)

    Chelikowsky, James R.

    2014-04-14

    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plus Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.

  19. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  1. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  2. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  4. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  5. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  6. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  7. Overview of VTO Material Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of VTO Material Technologies Stephen Goguen, Jerry Gibbs, Carol Schutte, and Will Joost LM000 June 9, 2015 VEHICLE TECHNOLOGIES OFFICE eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials,

  8. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  9. Reactor Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Materials Reactor Materials The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE objectives. This will be accomplished through innovative materials development, promoting the use of modern materials science and establishing new, shared research partnerships. Research into specific degradation modes or material needs unique to a particular reactor

  10. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    SciTech Connect (OSTI)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  11. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    SciTech Connect (OSTI)

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials microscopic morphology and alter their properties. Likewise, understanding a crystals response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  12. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  13. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  14. Cookoff of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  15. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notice of intent to issue FOA (December 2013) Energy Department Announces 3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials, February 14,...

  16. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  17. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  18. Spectroscopy of semiconductor materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag 3 VO 4 as a New p-Type Transparent Conducting Material Using systematic design principles, the Center for Inverse Design is exploring a new class of ternary p-type transparent...

  19. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  1. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency, or expand space. The loan can be applied toward building materials, freight or...

  2. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  3. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  4. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  5. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  6. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  7. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tool into a more permanent, flexible and scalable data service built on top of rich modern web interfaces and state-of-the-art NoSQL database technology." The Materials...

  8. Energy Materials Network News

    Broader source: Energy.gov [DOE]

    Below are news stories and blog posts related to the Energy Materials Network (EMN) from the Energy Department and the Office of Energy Efficiency and Renewable Energy. Please see the Consortia and...

  9. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  10. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  11. Next Generation Materials:

    Office of Environmental Management (EM)

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  12. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  13. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Advanced Materials Laboratory Home/Tag:Advanced Materials Laboratory - Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine

  14. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  15. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  16. CRITICAL MATERIALS MUSEUM DISPLAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 04-01-2015 Introduction The Critical Materials display was initiated by the Outreach and Education Coordinator for the Critical Materials Institute (CMI) and the Director of the Colorado School of Mines (CSM) Geology Museum as an opportunity to leverage the relationship between CSM's very successful museum outreach and CMI's desire to reach audiences of all ages across the nation. The display will be designed to provide a visual outreach opportunity with visitors and guests to the Colorado

  17. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM) provide an intriguing new path for the design of algorithms that are poised to scale to billions of cores [4]. These methods are particularly important for simulating various phases in the presence of extreme deformation and topological change. This brings about the possibility of new simulations enabled at the exascale

  18. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth modes for ZnO at the nanoscale. Under typical growth conditions the surface migration of adatoms across a hexagonally-faceted ZnO protrusion will lead to growth of a...

  20. Materials Characterization Capabilities at the High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory: Focus Lightweighting Materials | Department of Energy Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm039_watkins_2011_o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User