Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

2

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

3

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

4

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

5

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

New Route to Nanoscale Conducting Channels in Insulating Oxides Print New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

6

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

7

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

8

Nanoscale heat conduction across tunnel junctions  

E-Print Network (OSTI)

?2005? Nanoscale heat conduction across tunnel junctions Y.May 2005? Nanoscale heat conduction across tunnel junctionsprevailing theory of heat conduction in highly disordered

Ju, Y. Sungtaek; Hung, M T; Carey, M J; Cyrille, M C; Childress, J R

2005-01-01T23:59:59.000Z

9

Nanoscale Heat Conduction across Metal-Dielectric Interfaces  

E-Print Network (OSTI)

006 " Nanoscale Heat Conduction across Metal-Dielectricdirectly. Nanoscale Heat Conduction across Metal-Dielectricstudy of nanoscale heat conduction across nanolaminates

Ju, Y. Sungtaek

2005-01-01T23:59:59.000Z

10

Conductive Channel for Energy Transmission  

SciTech Connect

For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

2011-11-10T23:59:59.000Z

11

Free Energy Barrier for Electric Field Driven Polymer Entry into Nanoscale Channels  

E-Print Network (OSTI)

Free energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.

Narges Nikoofard; Hossein Fazli

2011-04-27T23:59:59.000Z

12

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

scale is comparable to the electron wavelength). A multi-orbital two-dimensional electron gas created at the surface of transition-metal oxides, such as SrTiO3 and KTaO3, upon...

13

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network (OSTI)

absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling conductance · Pump probe apparatus · Transient absorption ­ Carbon nanotubes and thermal transport at hard optical absorption of nanoparticles and nanotubes in liquid suspensions. ­ Measure the thermal relaxation

Braun, Paul

14

The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels  

Science Conference Proceedings (OSTI)

The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

2009-06-15T23:59:59.000Z

15

Piecewise uniform conduction-like flow channels and method therefor  

SciTech Connect

A low-dispersion methodology for designing microfabricated conduction channels for on-chip electrokinetic-based systems is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed on chips using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions with differing permeability. Regions bounded by interfaces form flow "prisms" that can be combined with other designed prisms to obtain a wide range of turning angles and expansion ratios while minimizing dispersion. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.

Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Livermore, CA)

2006-02-28T23:59:59.000Z

16

DC Electrical Conductivity of Silicon Carbide Ceramics and Composites for Flow Channel Insert Applications  

SciTech Connect

High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined for temperature dependent (RT to 800 C) electrical conductivity and the influence of neutron irradiation on it. In the 2D composites, trans-thickness electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. The Influence of neutron irradiation on electrical properties appeared very strong for SiC, resulting typically in by orders lower ambient conductivity and steeper temperature dependency. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase will likely in the order of 10 S/m in the typical operating temperature range for flow channel inserts. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

Katoh, Yutai [ORNL; Kondo, Sosuke [ORNL; Snead, Lance Lewis [ORNL

2009-01-01T23:59:59.000Z

17

Nanoscale relaxation oscillator  

DOE Patents (OSTI)

A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

2009-04-07T23:59:59.000Z

18

A Mathematical Model for Voltage Gated Ion-channel Stationary Conductance  

E-Print Network (OSTI)

are LVA and show fast macroscopic inactivation where as L-Type calcium channels are HVAs. 37 #12;-80 -60

Duffy, Ken

19

Structure of the gating ring from the human large-conductance Ca[superscript 2+]-gated K[superscript +] channel  

SciTech Connect

Large-conductance Ca{sup 2+}-gated K{sup +} (BK) channels are essential for many biological processes such as smooth muscle contraction and neurotransmitter release. This group of channels can be activated synergistically by both voltage and intracellular Ca{sup 2+}, with the large carboxy-terminal intracellular portion being responsible for Ca{sup 2+} sensing. Here we present the crystal structure of the entire cytoplasmic region of the human BK channel in a Ca{sup 2+}-free state. The structure reveals four intracellular subunits, each comprising two tandem RCK domains, assembled into a gating ring similar to that seen in the MthK channel and probably representing its physiological assembly. Three Ca{sup 2+} binding sites including the Ca{sup 2+} bowl are mapped onto the structure based on mutagenesis data. The Ca{sup 2+} bowl, located within the second RCK domain, forms an EF-hand-like motif and is strategically positioned close to the assembly interface between two subunits. The other two Ca{sup 2+} (or Mg{sup 2+}) binding sites, Asp367 and Glu374/Glu399, are located on the first RCK domain. The Asp367 site has high Ca{sup 2+} sensitivity and is positioned in the groove between the amino- and carboxy-terminal subdomains of RCK1, whereas the low-affinity Mg{sup 2+}-binding Glu374/Glu399 site is positioned on the upper plateau of the gating ring and close to the membrane. Our structure also contains the linker connecting the transmembrane and intracellular domains, allowing us to dock a voltage-gated K{sup +} channel pore of known structure onto the gating ring with reasonable accuracy and generate a structural model for the full BK channel.

Wu, Yunkun; Yang, Yi; Ye, Sheng; Jiang, Youxing (Zhejiang); (UTSMC)

2010-11-12T23:59:59.000Z

20

A mesoscopic description of radiative heat transfer at the nanoscale  

E-Print Network (OSTI)

We present a formulation of the nanoscale radiative heat transfer (RHT) using concepts of mesoscopic physics. We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The formalism provides a convenient framework to analyse the physics of RHT at the nanoscale. Finally, we propose a RHT experiment in the regime of quantized conductance.

Svend-Age Biehs; Emmanuel Rousseau; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Light-induced switching in the back-gated organic transistors with built-in conduction channel  

E-Print Network (OSTI)

We report on observation of a light-induced switching of the conductance in the back-gated organic field-effect transistors (OFETs) with built-in conduction channel. In the studied devices, the built-in channel is formed owing to the self-sensitized photo-oxidation of rubrene surface. In the dark, the back gate controls the charge injection from metal contacts into the built-in channel: the high-current ON state corresponds to zero or negative back-gate voltage; the low-current OFF state - to a positive back-gate voltage that blocks the Schottky contacts. Illumination of the OFET in the OFF state with a short pulse of light switches the device into the ON state that persists in the dark for days. The OFF state can be restored by cycling the back gate voltage. The observed effect can be explained by screening of the back-gate electric field by the charges photo-generated in the bulk of organic semiconductor.

V. Podzorov; V. M. Pudalov; M. E. Gershenson

2004-06-29T23:59:59.000Z

22

Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid Films  

E-Print Network (OSTI)

Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface. In order to properly simulate the flow and heat transfer in nano-scale channels, an interactive thermal wall model is developed. Using this model, the Fouriers law of heat conduction is verified in a 3.24 nm height channel, where linear temperature profiles with constant thermal conductivity is obtained. The thermal conductivity is verified using the predictions of Green-Kubo theory. MD simulations at different wall wettability ( ??f /? ) and crystal bonding stiffness values (K) have shown temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance. Using systematic studies, the thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature and thermal gradient. An empirical model for the thermal resistance length, which could be used as the jump-coefficient of a Navier boundary condition, is developed. Temperature distributions in the nano-channels are predicted using analytical solution of the continuum heat conduction equation subjected to the new temperature jump condition, and validated using the MD results. Momentum and heat transfer in shear driven nanochannel flows are also investigated. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions. Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation rates are presented. The energy dissipation rate is almost a constant for ??f /? < 0.6, which results in parabolic temperature profiles in the domain with temperature jumps due to the Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in this study, the analytical solutions are obtained for the temperature profiles, which agree well with the MD results.

Kim, Bo Hung

2009-05-01T23:59:59.000Z

23

Nanoscale heat conduction across tunnel junctions  

E-Print Network (OSTI)

protec- tion coatings for gas turbine blades, machining toolbarrier coatings for gas turbine blades. 13 Controlled

Ju, Y. Sungtaek; Hung, M T; Carey, M J; Cyrille, M C; Childress, J R

2005-01-01T23:59:59.000Z

24

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

25

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

26

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

27

Nanoelectronics and Nanoscale Electronics Portal  

Science Conference Proceedings (OSTI)

... illustration showing how researhcers watched nanosize batteries with TEM Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithium Batteries. ...

2012-12-31T23:59:59.000Z

28

The NIST Center for Nanoscale Science and Technology ...  

Science Conference Proceedings (OSTI)

Page 1. CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 Page 2. ...

2012-09-15T23:59:59.000Z

29

Simulating nanoscale semiconductor devices.  

SciTech Connect

The next generation of electronic devices will be developed at the nanoscale and molecular level, where quantum mechanical effects are observed. These effects must be accounted for in the design process for such small devices. One prototypical nanoscale semiconductor device under investigation is a resonant tunneling diode (RTD). Scientists are hopeful the quantum tunneling effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations. To simulate the electron transport within the RTD, the Wigner-Poisson equations are used. These equations describe the time evolution of the electrons distribution within the device. In this paper, this model and a parameter study using this model will be presented. The parameter study involves calculating the steady-state current output from the RTD as a function of an applied voltage drop across the RTD and also calculating the stability of that solution. To implement the parameter study, the computational model was connected to LOCA (Library of Continuation Algorithms), a part of Sandia National Laboratories parallel solver project, Trilinos. Numerical results will be presented.

Salinger, Andrew Gerhard; Zhao, P. (North Carolina State University, Raleigh, NC); Woolard, D. L. (U. S. Army Research Laboratory, NC); Kelley, C. Tim (North Carolina State University, Raleigh, NC); Lasater, Matthew S. (North Carolina State University, Raleigh, NC)

2005-03-01T23:59:59.000Z

30

NIST Nanoscale Science and Technology Center Now ...  

Science Conference Proceedings (OSTI)

NIST Nanoscale Science and Technology Center Now Accepting Proposals. For Immediate Release: May 1, 2007. ...

2013-07-19T23:59:59.000Z

31

NIST Highlight about investigating nanoscale pattern shape ...  

Science Conference Proceedings (OSTI)

NIST researchers validate new method for investigating nanoscale pattern shape evolution. NIST researchers successfully ...

2010-10-05T23:59:59.000Z

32

Nanoscale heat transfer - from computation to experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

Luo, Tengfei

2013-04-09T23:59:59.000Z

33

Available Technologies: Nanoscale Parametric Amplifier  

A research team led by Berkeley Labs Alex Zettl has developed a nanoscale electro-mechanical amplifier that can be used for enhanced radio wave detection and ...

34

Nanoscale Electromechanical Properties of Novel Materials for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanoscale Electromechanical Properties of Novel Materials for Actuator and Energy Harvesting Applications. Author(s), Andrei Kholkin.

35

CNST Researchers Observe Nanoscale Charge Transport in ...  

Science Conference Proceedings (OSTI)

... The efficiency is strongly dependent on the material morphology, making ... of nanoscale charge transport in bulk heterojunction solar cells, BH ...

2011-08-10T23:59:59.000Z

36

Magnetoresistance of Nanoscale Molecular Devices  

E-Print Network (OSTI)

are of fundamental nature, leading to the understanding of current-voltage relations. Due to their small flux is how to set up a nanoscale device so that the magnetic field can control the current flowing through it, Jerusalem 91904, Israel Received April 5, 2005 ABSTRACT Affecting the current through a molecular

Rabani, Eran

37

Nanoscale heat conduction with applications in nanoelectronics and thermoelectrics  

E-Print Network (OSTI)

When the device or structure characteristic length scales are comparable to the mean free path and wavelength of energy carriers (electrons, photons, phonons, and molecules) or the time of interest is on the same order as ...

Yang, Ronggui, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

38

NREL: Energy Sciences - Chemical and Nanoscale Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Science Nanoscale Science Learn about our research staff including staff profiles, publications, and contact information. The primary goal of the Chemical and Nanoscale Science Group, within NREL's Chemical and Materials Science Center, is to understand photoconversion processes in nanoscale, excitonic photoconversion systems, such as semiconductor quantum dots, molecular dyes, conjugated molecules and polymers, nanostructured oxides, and carbon nanotubes. Closely associated with this goal are efforts to gain an understanding of how to use chemistry and physical tools to control and maximize the photoconversion process. The innovative chemistry and physics that evolve from these fundamental studies are used on a number of applied projects, maximizing the benefits from these discoveries.

39

Available Technologies: Improving the Efficiency of Nanoscale ...  

Alex Zettl, Jeffrey Grossman, and colleagues at Berkeley Lab have developed several approaches for improving the conversion efficiency of nanoscale photovoltaic devices.

40

Nanoscale Characterization of Polymer Precursor Derived Silicon ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale mechanical properties of silicon carbide derived ... Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix Composites.

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

42

Catalysis on the Nanoscale: Preparation, Characterization and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis on the Nanoscale: Preparation, Characterization and Reactivity of Metal-Based Nanostructures The purpose of this program is to explore and manipulate the size, morphology...

43

PNNL Nanoscale Research Safety Program Brown Bag  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL's Nanoscale Research Safety Program Brown Bag Carbon nanotube research is a critical research capability at Pacifi c North- west National Laboratory (Digisource) Do you work...

44

Nanoscale Heat Transfer: from Computation to Experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both computational and experimental studies, and discussion on current understanding of these novel phenomena. Our perspectives on challenges and opportunities on computational and experimental methods are also presented.

Luo, Tengfei

2013-01-01T23:59:59.000Z

45

ATTACHMENT CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE MATERIALS, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND,WASH[NGTON Proposed Adion: The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct indoor small-scale research and development projects and small-scale pilot projects using nanoscale materials. Nanoscale materials are engineered materials consisting of, or containing structures of between 1 and 100 nanometers (nm) that make use of properties unique to nanoscale forms of materials. Location of Action: The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) Site and in the vicinity ofPNNL facilities in the State of Washington. Description of the Proposed Action:

46

Material's Properties Control by Nano-Scale Surface Functionalization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Material's Properties Control by Nano-Scale Surface Functionalization Material's Properties Control by Nano-Scale Surface Functionalization Theme We aim at developing an original...

47

Scientists use world's fastest computer to simulate nanoscale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under...

48

Probabilistic neural computing with advanced nanoscale MOSFETs  

Science Conference Proceedings (OSTI)

The use of intrinsic nanoscale MOSFET noise for probabilistic computation is explored, using the continuous restricted Boltzmann machine (CRBM), a probabilistic neural model, as the exemplar architecture. The CRBM is modified by localising noise in its ... Keywords: Nanoscale MOSFET noise, Neuromorphic VLSI systems, Probabilistic computing

Nor Hisham Hamid; Tong Boon Tang; Alan F. Murray

2011-02-01T23:59:59.000Z

49

Experimental investigations of solid-solid thermal interface conductance  

E-Print Network (OSTI)

Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to ...

Collins, Kimberlee C. (Kimberlee Chiyoko)

2010-01-01T23:59:59.000Z

50

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths  

E-Print Network (OSTI)

Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs ...

Schmidt, A. J.

51

Analyzing the distribution of threshold voltage degradation in nanoscale transistors by using reaction-diffusion and percolation theory  

Science Conference Proceedings (OSTI)

Continued scaling of transistors into the nanoscale regime has led to large device-to-device variation in transistor characteristics. These variations reflect differences in substrate doping, channel length, interface and/or oxide defects, etc. among ... Keywords: Exponential distribution, Interface defect statistics, Markov Chain Monte-Carlo, Reaction-diffusion model, Skew-normal distribution, Threshold voltage degradation

Ahmad Ehteshamul Islam; Muhammad Ashraful Alam

2011-12-01T23:59:59.000Z

52

Argonne National Laboratory Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

53

Harvesting nanoscale thermal radiation using pyroelectric materials  

E-Print Network (OSTI)

exceeding Plancks blackbody radiation law. Applied PhysicsA] I b ? spectral blackbody radiation intensity [W/m 2 ] kNanoscale radiation blackbody radiation limit. In addition,

Fang, Jin; Frederich, Hugo; Pilon, Laurent

2010-01-01T23:59:59.000Z

54

Nanoscale Structure and Modification of Biomaterials  

Science Conference Proceedings (OSTI)

... et al, Adv Mater 20, 1488 (2008)[6]C Brown et al, Nanoscale 3, 3805 (2011)[7] C Brown et al, ACS Nano 6, 1961 (2012)[8]O Seddiki et al, in preparation.

55

Nanoscale Ferroelectricity in Crystalline -Glycine  

SciTech Connect

Ferroelectrics are multifunctional materials that reversibly change their polarization under an electric field. Recently, the search for new ferroelectrics has focused on organic and bio-organic materials, where polarization switching is used to record/retrieve information in the form of ferroelectric domains. This progress has opened a new avenue for data storage, molecular recognition, and new self-assembly routes. Crystalline glycine is the simplest amino acid and is widely used by living organisms to build proteins. Here, it is reported for the first time that {gamma}-glycine, which has been known to be piezoelectric since 1954, is also a ferroelectric, as evidenced by local electromechanical measurements and by the existence of as-grown and switchable ferroelectric domains in microcrystals grown from the solution. The experimental results are rationalized by molecular simulations that establish that the polarization vector in {gamma}-glycine can be switched on the nanoscale level, opening a pathway to novel classes of bioelectronic logic and memory devices.

Meunier, Vincent [ORNL; Agarwal, Pratul K [ORNL; Sumpter, Bobby G [ORNL

2012-01-01T23:59:59.000Z

56

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

57

Multilayer Nanoscale Thermal Barrier Coatings  

Science Conference Proceedings (OSTI)

Advanced high-efficiency gas turbines require thermal barrier coatings (TBCs) with low thermal conductivity and excellent thermal-cycling resistance. The multilayer TBC developed in this project has a thermal conductivity about half that of conventional TBCs and also rejects up to 70 percent of incoming radiant energy.

1999-05-26T23:59:59.000Z

58

Nanoscale Center Dedication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanoscale Center Dedication Nanoscale Center Dedication Nanoscale Center Dedication May 6, 2005 - 12:44pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, Bob [Rosner] for that introduction. And let me also thank you, along with [University of Chicago] President Randel, for the leadership you are showing here. Argonne has long been a world class institution. It will soar to new heights under your joint direction. I also want to acknowledge Illinois Governor Rod Blagojevich. Thank you for being here. More than that, thank you for your strong backing of Argonne and its employees. Congresswoman Judy Biggert, who chairs the Science Subcommittee on Energy, is also a good friend to this lab, and we value her support as well. I took over as Secretary of Energy three months ago, and I have to say this

59

Nanoscale Ordered MAterials Diffractometer Workshop (NOMAD 2011)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Ordered MAterials Diffractometer Workshop Nanoscale Ordered MAterials Diffractometer Workshop NOMAD 2011 September 12 - 13, 2011 High-Flux Isotope Reactor * Spallation Neutron Source * Oak Ridge National Laboratory About the Workshop Contact Information Important Dates Application Form Sample Description NOMAD at SNS filler About the Workshop The acronym NOMAD stands for Nanoscale Ordered MAterials Diffractometer. It is a diffractometer located at the Spallation Neutron Source and is designed for the determination of pair distribution functions from a wide range of materials spanning from dense gases to long range ordered crystalline materials. It combines a large accessible Q range, large detector coverage with high intensity while maintaining good resolution. For a typical sample of the order of ~0.5cm3 good statistical accuracy can be achieved in minutes or even seconds of data acquisition time.

60

Nanoscale Materials Safety at the Department's Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and development program in 200 1. As a part of the Initiative, the Department of Energy (Energy) is in the process of constructing Nanoscale Science Research Centers at six national laboratories. In addition to funding the construction and operation of these

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vortex Dynamics in NanoScale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Into the Vortex: Dynamics in Nanoscale Materials Into the Vortex: Dynamics in Nanoscale Materials Micron and nanosized magnets are of great interest for their potential applications in new electronic devices, such as magnetic random access memories. As the size of magnets is reduced to a 1-micron scale and below, the boundaries (surfaces, perimeters, etc) of the objects begin to profoundly influence both the static and dynamic behavior of the materials. Researchers from Argonne's Materials Science Division (MSD), Center for Nanoscale Materials (CNM), and Advanced Photon Source (APS) have recently examined the dynamics of 3- to 7-micron-diameter NiFe alloy disks with a combination of theoretical calculations and a new time-resolved magnetic imaging technique using synchrotron-based x-ray photoemission electron

62

Nanoscale Center Dedication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanoscale Center Dedication Nanoscale Center Dedication Nanoscale Center Dedication May 6, 2005 - 12:44pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, Bob [Rosner] for that introduction. And let me also thank you, along with [University of Chicago] President Randel, for the leadership you are showing here. Argonne has long been a world class institution. It will soar to new heights under your joint direction. I also want to acknowledge Illinois Governor Rod Blagojevich. Thank you for being here. More than that, thank you for your strong backing of Argonne and its employees. Congresswoman Judy Biggert, who chairs the Science Subcommittee on Energy, is also a good friend to this lab, and we value her support as well. I took over as Secretary of Energy three months ago, and I have to say this

63

Carbon nanotube-based nanoscale ad hoc networks  

Science Conference Proceedings (OSTI)

Recent developments in nanoscale electronics allow current wireless technologies to function in nanoscale environments. Especially due to their incredible electrical and electromagnetic properties, carbon nanotubes are promising physical phenomenon that ...

Baris Atakan; Ozgur B. Akan

2010-06-01T23:59:59.000Z

64

Nano-Scale Materials Design of Pyrochlore for Enhanced Radiation ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale design strategy is important for developing advanced materials with enhanced performance for nuclear engineering applications.

65

The NIST Center for Nanoscale Science and Technology  

Science Conference Proceedings (OSTI)

... NANO LAB ... to be determined with unprecedented spatial and energy resolution. ... Center for Nanoscale Science and Technology National Institute of ...

2013-07-14T23:59:59.000Z

66

CNST Co-sponsors Global Workshop on Nanoscale ...  

Science Conference Proceedings (OSTI)

... The other sponsors include the ASME, the National Renewable Energy Laboratory, and the College of Nanoscale Science and Engineering (CNSE ...

2013-11-10T23:59:59.000Z

67

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

under NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;2 NSEC Annual Report 2007 ­ 2008 and Continuation Request for FY2008 Center for Nanoscale Systems in Information and Patents #12;1. PROJECT SUMMARY The Center for Nanoscale Systems (CNS) has assembled interdisciplinary

Gaeta, Alexander L.

68

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;Annual Report: 2005 - 2006 Center for Nanoscale Systems in Information Technologies Table of Contents 1. Project Annual Report 2005 ­ 2006 3 1. PROJECT SUMMARY The Center for Nanoscale Systems (CNS) has assembled

Gaeta, Alexander L.

69

Pressure Driven Flow of Polymer Solutions in Nanoscale Slit Pores  

E-Print Network (OSTI)

Polymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. We investigated the effect of molecular weight, polymer concentration and flow rate on the profiles across the channel of the fluid and polymer velocities, polymers density, and the three components of the polymers radius of gyration. We found that the mean streaming fluid velocity decreases as the polymer molecular weight or/and polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration. We also found that the distribution of polymers conformation is highly anisotropic and non-uniform across the channel. The polymer density profile is also found to be non-uniform, exhibiting a local minimum in the center-plane followed by two symmetric peaks. We found a migration of the polymer chains either from or towards the walls. For relatively long chains, as compared to the thickness of the slit, a migration towards the walls is observed. However, for relatively short chains, a migration away from the walls is observed.

J. A. Millan; W. Jiang; M. Laradji; Y. Wang

2006-10-16T23:59:59.000Z

70

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

71

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

72

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

73

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

74

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

75

Traceable nanoscale measurement at NML-SIRIM  

Science Conference Proceedings (OSTI)

The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

2012-06-29T23:59:59.000Z

76

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

77

Argonne Chemical Sciences & Engineering - National Security - Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Engineering Nanoscale Engineering * Members * Contact * Publications * Overview * Nanospheres * Gel for Radioactive Decontamination * Advanced Radionuclide Sensor * Removal/Decontamination of Metal Substrates * Advanced Water Purification National Security Home National Security - Nanoscale Engineering Nanoscale Engineering Physical chemist Carol Mertz mixes a polyethylene glycol (PEG) coating for synthesized polymer nanospheres as polymer chemist Martha Finck examines a different PEG formulation. The coated nanospheres can be injected into humans following exposure to chemical, biological, or radiological toxins. The nanospheres selectively pick up these toxins and then are drawn out through a magnetic filtration system outside the body. Researchers in Nanoscale Engineering seek to bridge the gap between

78

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

Nanoscale Heat Transfer Processes . . 7 1.4:1.3 Nanoscale Heat Transfer Processes When studying heat

Yuen, Taylor S.

79

Programmed assembly of nanoscale structures using peptoids.  

Science Conference Proceedings (OSTI)

Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

2011-02-01T23:59:59.000Z

80

Phase transitions in nanoscale ferroelectric structures.  

Science Conference Proceedings (OSTI)

Over decades of effort, investigations of the intrinsic phase transition behavior of nanoscale ferroelectric structures have been greatly complicated by materials processing variations and by the common and uncontrolled occurrence of spacecharge, which interacts directly with the polarization and can obscure fundamental behavior. These challenges have largely been overcome, and great progress in understanding the details of this class of phase transitions has been made, largely based on advances in the growth of high-quality, epitaxial ferroelectric films and in the theory and simulation of ferroelectricity. Here we will discuss recent progress in understanding the ferroelectric phase transition in a particular class of model systems: nanoscale perovskite thin-film heterostructures. The outlook for ferroelectric technology based on these results is promising, and extensions to laterally confined nanostructures will be described.

Streiffer, S. K.; Fong, D. D. (Center for Nanoscale Materials); ( MSD)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nanoscale Science, Engineering and Technology Research Directions  

Science Conference Proceedings (OSTI)

This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

1999-01-01T23:59:59.000Z

82

Electrical and Optical Characterization of Nanoscale Materials for Electronics  

E-Print Network (OSTI)

Due to a lack of fundamental knowledge about the role of molecular structures in molecular electronic devices, this research is focused on the development of instruments to understand the relation between device design and the electronic properties of electroactive components. The overall goal is to apply this insight to obtain a more efficient and reliable scheme and greater functional control over each component. This work developed a fabrication method for porphyrinoids on graphene-based field effect transistors (FETs), and a chemical sensing platform under an ambient environment by integrating a tip-enhanced Raman spectroscope (TERS), atomic force microscope (AFM), and electronic testing circuit. The study is divided into three aspects. The first is aimed at demonstrating fabrication processes of nanoscale FETs of graphene and porphyrinoid composites based entirely on scanning probe lithography (SPL). A nanoshaving mechanism was used to define patterns on octadecanethiol self-assembled monolayers on gold film evaporated on graphene flakes, followed by metal wet etching and/or oxygen plasma etching to develop patterns on Au films and graphene, respectively. The integrity and optoelectronic properties were examined to validate the processes. The second area of study focused on the development of the chemical sensing platform, enabling chemical changes to be monitored during charge transports under an ambient environment. The localized Raman enhancement was induced by exciting surface plasmon resonance in nanoscale silver enhancing probes made by thermal silver evaporation on sharp AFM tips. As the system was designed along an off-axis illumination/collection scheme, it was demonstrated that it was capable of observing molecular decomposition on opaque and conductive substrates induced by an electric bias. The third line of work proposed a novel TERS system and a probe preparation method. Silver nanowires mounted on AFM tips were used to locally enhance the Raman scattering. The observed Raman enhancement allows quick chemical analysis from a nanoscale region, and thus enables chemical mapping beyond the diffraction limit. Compared with other TERS geometries, the new optical design not only allows analysis on large or opaque samples, but also simplifies the design of the optical components and the alignment processes of the setup.

Chang, Chi-Yuan 1980-

2012-12-01T23:59:59.000Z

83

TMS 2010 Tutorial on "Nanoscale Computational Materials Science"  

Science Conference Proceedings (OSTI)

TMS 2010: Tutorial on Nanoscale Computational Materials Science February 14-18, 2010 Washington State Convention Center Seattle, WA. This tutorial...

84

Electric potential distribution in nanoscale electroosmosis: from molecules to continuum  

E-Print Network (OSTI)

correlations in the electric double layer. 1. Counterionsand correlations in the electric double layer. 2 . SymmetricElectric potential distribution in nanoscale electroosmosis:

Wang, M.; Liu, J.; Chen, S.

2007-01-01T23:59:59.000Z

85

Method for Mass Production of Nanoscale Carbon Tips with Cylinder ...  

A method for fabricating nanoscale carbon tips with improved shape is described. The tips have excellent mechanical ... field emission at low applied electric fields.

86

Whirlpools on the Nanoscale Could Multiply Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either...

87

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward...

88

Argonne CNM: Materials Design and Discovery at the Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Design and Discovery at the Nanoscale This pillar aligns well with Argonne's overall strategic interest in materials design and discovery. Geometrical confinement and...

89

Mapping Nanoscale Variations in the Photoresponse of an ...  

Science Conference Proceedings (OSTI)

... for high-performance, next-generation solar cells. *The Origin of Nanoscale Variations in Photoresponse of an Organic Solar Cell, BH Hamadani, S ...

2012-01-13T23:59:59.000Z

90

Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics  

E-Print Network (OSTI)

Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

91

Utilizing Nanoscale Interfacial Films to Tailor Battery and Other Ionic ...  

Science Conference Proceedings (OSTI)

Such nanoscale intergranular and surficial films can be utilized to engineer lithium-ion battery cathode and anode materials, as well as solid-state ionic...

92

Nanoscale Interfacial Films in Battery and Ionic Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Nanoscale Interfacial Films in Battery and Ionic Materials. Author(s), Jian Luo, Jiajia Huang, Mojtaba Samiee. On-Site Speaker (Planned)...

93

Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys  

E-Print Network (OSTI)

x ULTRAFINE GRAINED MATERIALS Nano-scale strengthening fromSpringerlink.com Abstract Nano-scale strengthening has beenless than 20 h), develop nano-scale subgrains [15]. These

Lesuer, D. R.; Syn, C. K.; Sherby, O. D.

2010-01-01T23:59:59.000Z

94

Nano-scale magnetic film formation by decompression of supercritical CO?/ferric acetylacetonate solutions  

E-Print Network (OSTI)

GROWTH OF NANO-SCALE MAGNETIC FILMS USING CO 2 RESS EX-113 GROWTH OF NANO-SCALE MAGNETIC FILMS USING A SUPERCRIT-of EDX analysis on nano-scale ?lms. . . . . . . . . . . 109

De Dea, Silvia

2008-01-01T23:59:59.000Z

95

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

96

Citizens and Service Channels: Channel Choice and Channel Management Implications  

Science Conference Proceedings (OSTI)

The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost ... Keywords: Channel Behavior, Channel Choice, Channel Usage, Multi-Channel Management, Public Service Delivery, Service Channels, e-Government

Willem Pieterson

2010-04-01T23:59:59.000Z

97

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

on the development of light emitters and potential solar cells as well as on a new type of optical fiber which under NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;NSEC Annual Report 2008 ­ 2009 and Continuation Request for FY2009 Center for Nanoscale Systems in Information

Gaeta, Alexander L.

98

NSF -Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

on the development of light emitters and potential solar cells as well as on a new type of optical fiber which under NYSTAR Contracts # C020071, C070106 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;NSEC Annual Report 2009 ­ 2010 and Continuation Request for FY2010 Center for Nanoscale Systems

Gaeta, Alexander L.

99

Argonne CNM: Manipulation of Nanoscale Materials for Energy & Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulation of Nanoscale Materials for Energy & Information Transduction Manipulation of Nanoscale Materials for Energy & Information Transduction Nanoscale materials absorb, dissipate, and propagate energy very differently from bulk materials. These properties offer unusual opportunities to induce, optimize, and control the conversion and transfer of energy and information at the nanoscale. The CNM applies recent advances in materials, theory, and characterization to create novel nanoscale materials for the control and transfer of energy, charge, and/or spin between homogeneous and heterogeneous materials. Propagation, Localization, and Interaction of Spin, Charge, Photons, and Phonons Realizing the promise of nanoscience hinges on the ability to understand and ultimately control the propagation of, localization of, and interaction between the basic quanta of energy and information - spin, charge, photons, and phonons - at the nanoscale. Key factors include continued advances in generating homogeneous nanoscale building blocks, finding means to hierarchically assemble the building blocks, and advanced scanning probe or other techniques for precisely initiating and monitoring propagation of these quanta at the nanoscale.

100

Method to determine thermal profiles of nanoscale circuitry  

DOE Patents (OSTI)

A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

Zettl, Alexander K; Begtrup, Gavi E

2013-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Bounds for Fault-Tolerant Nanoscale Designs  

Science Conference Proceedings (OSTI)

The problem of determining lower bounds for the energy cost of a given nanoscale design is addressed via a complexity theory-based approach. This paper provides a theoretical framework that is able to assess the trade-offs existing in nanoscale designs ...

Diana Marculescu

2005-03-01T23:59:59.000Z

102

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

103

Optical bistability in artificial composite nanoscale molecules: Towards all optical processing at the nanoscale  

E-Print Network (OSTI)

Optical response of artificial composite nanoscale molecules comprising a closely spaced noble metal nanoparticle and a semiconductor quantum dot have been studied theoretically. We consider a system composed of an Au particle and CdSe or CdSe/ZnSe quantum dot and predict optical bistability and hysteresis in its response, which suggests various applications, in particular, all-optical processing and optical memory.

A. V. Malyshev; V. A. Malyshev

2010-12-28T23:59:59.000Z

104

Safety at the Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

case of emergency or if you need help or assistance case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Authorization(s) and/or work planning and control documents prior to beginning your work. For safety and security reasons, it is necessary to know of all facility users present in the CNM (Buildings 440 and 441). Users are required to sign in and out in the visitors logbook located in Room A119. Some detailed emergency information is provided on the Argonne National

105

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1995-09-05T23:59:59.000Z

106

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1995-09-05T23:59:59.000Z

107

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1997-02-04T23:59:59.000Z

108

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1997-02-04T23:59:59.000Z

109

Nanoscale characterization of engineered cementitious composites (ECC)  

Science Conference Proceedings (OSTI)

Engineered cementitious composites (ECC) are ultra-ductile fiber-reinforced cementitious composites. The nanoscale chemical and mechanical properties of three ECC formulae (one standard formula, and two containing nanomaterial additives) were studied using nanoindentation, electron microscopy, and energy dispersive spectroscopy. Nanoindentation results highlight the difference in modulus between bulk matrix ({approx} 30 GPa) and matrix/fiber interfacial transition zones as well as between matrix and unreacted fly ash ({approx} 20 GPa). The addition of carbon black or carbon nanotubes produced little variation in moduli when compared to standard M45-ECC. The indents were observed by electron microscopy; no trace of the carbon black particles could be found, but nanotubes, including nanotubes bridging cracks, were easily located in ultrafine cracks near PVA fibers. Elemental analysis failed to show a correlation between modulus and chemical composition, implying that factors such as porosity have more of an effect on mechanical properties than elemental composition.

Sakulich, Aaron Richard, E-mail: asakulic@umich.edu; Li, Victor C.

2011-02-15T23:59:59.000Z

110

Whirlpools on the Nanoscale Could Multiply Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Whirlpools on the Nanoscale Could Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the scientist's point of view, magnetism is about controlling electron spin," says Peter Fischer of the Materials Sciences Division, who leads the work at beamline 6.1.2. Four orientations could provide multibits in a new kind of memory. The next step is to control the states independently and simultaneously.

111

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

112

Safe Handling of Engineering Nanoscale Materials: DOE Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. H. Carim A. H. Carim Basic Energy Sciences Basic Energy Sciences 5 DOE Policy 456.1: DOE Policy 456.1: Secretarial Policy Statement On Nanoscale Safety Secretarial...

113

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

114

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

115

Nanoscale structure and transport : from atoms to devices  

E-Print Network (OSTI)

Nanoscale structures present both unique physics and unique theoretical challenges. Atomic-scale simulations can find novel nanostructures with desirable properties, but the search can be difficult if the wide range of ...

Evans, Matthew Hiram

2005-01-01T23:59:59.000Z

116

Stable Storage of Helium in Nanoscale Platelets at Semicoherent Interfaces  

E-Print Network (OSTI)

He implanted into metals precipitates into nanoscale bubbles that may later grow into voids, degrading the properties of engineering alloys. Using multiscale modeling, we show that a different class of He precipitates may ...

Kashinath, Abishek

117

The Micro- and Nanoscale Tensile Testing of Materials  

Science Conference Proceedings (OSTI)

The pertinent questions at the micro- and nanoscale become: What ..... Understanding the fundamental response of the building blocks of complex ... Y. Gogotsi, editor, Nanomaterials Handbook (Oxford, U.K.: Taylor and Francis, Inc., 2006). 2.

118

Name: Judi Yaeger Title: Chemical Manager, Center for Nanoscale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Nanoscale Materials Education: BS Chemistry, University of Missouri-Kansas City, Missouri, 1985 Job Elements: At the CNM, you should contact me if you need or are...

119

A Probabilistic-Based Design Methodology for Nanoscale Computation  

Science Conference Proceedings (OSTI)

As current silicon-based techniques fast approach their practicallimits, the investigation of nanoscale electronics, devices andsystem architectures becomes a central research priority. It is expectedthat nanoarchitectures will confront devices and interconnectionswith ...

R. Iris Bahar; Joseph Mundy; Jie Chen

2003-11-01T23:59:59.000Z

120

Design and implementation of nanoscale fiber mechanical testing apparatus  

E-Print Network (OSTI)

The rapid growth in the synthetic manufacturing industry demands higher resolution mechanical testing devices, capable of working with nanoscale fibers. A new device has been developed to perform single-axis tensile tests ...

Brayanov, Jordan, 1981-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nanoscale strength distribution in amorphous versus crystalline metals  

E-Print Network (OSTI)

Low-load nanoindentation can be used to assess not only the plastic yield point, but the distribution of yield points in a material. This paper reviews measurements of the so-called nanoscale strength distribution (NSD) ...

Packard, C.E.

122

Synthesizing High-Quality Calcium Boride at Nanoscale  

N-type thermoelectric materials Synthesizing High-Quality Calcium Boride at Nanoscale (IN-10-044) CaB 6 particles coated for 20 cycles at 1600 C.

123

Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings  

Science Conference Proceedings (OSTI)

The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

Rajendra Bordia

2009-07-31T23:59:59.000Z

124

Conductive Polymers  

DOE Green Energy (OSTI)

Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

Bohnert, G.W.

2002-11-22T23:59:59.000Z

125

Non-Equilibrium Nanoscale Self-Organization  

SciTech Connect

Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

Aziz, Michael J

2006-03-09T23:59:59.000Z

126

Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces  

SciTech Connect

Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

Epstein, Arthur J. [Professor

2013-09-10T23:59:59.000Z

127

Laser ablation of nanoscale particles with 193 nm light  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser ablation of nanoscale particles with 193 nm light Laser ablation of nanoscale particles with 193 nm light Title Laser ablation of nanoscale particles with 193 nm light Publication Type Journal Article Year of Publication 2007 Authors Choi, Jong Hyun, Donald Lucas, and Catherine P. Koshland Journal Journal of Physics: Conference Series Volume 59 Start Page 54 Issue 1 Pagination 54-59 Abstract Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics.

128

Nanoscale chemical and mechanical characterization of thin films: sum frequency generation (SFG) vibrational spectroscopy at buried interfaces  

E-Print Network (OSTI)

free interfaces due to chemical and environmental effects.Nanoscale chemical and mechanical characterization of thin2006 Nanoscale chemical and mechanical characterization of

Kweskin, S.J.

2006-01-01T23:59:59.000Z

129

Argonne CNM Highlight: Graphene Research at the Center for Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene Research at the Center for Nanoscale Materials Graphene Research at the Center for Nanoscale Materials graphene research The 2010 Nobel Prize in Physics was recently awarded to Andre Geim and Konstantin Novoselov from the University of Manchester "for groundbreaking experiments regarding the two-dimensional material graphene." Graphene is an extraordinary material made up of hexagonally packed carbon atoms that are sp2 bonded. A sheet of graphene is only one atom thick making it nature's version of an ideal two-dimensional material. At the Center for Nanoscale Materials we are exploring state-of-the-art synthesis, characterization, processing, and novel applications of graphene. With the highest resolution microscopes we are able to characterize the structural, electronic, and chemical properties of

130

Peering into the Interfaces of Nanoscale Polymeric Materials | Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Ironing Out the Details of the Earth's Core Ironing Out the Details of the Earth's Core Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Peering into the Interfaces of Nanoscale Polymeric Materials JANUARY 6, 2012 Bookmark and Share Schematic configuration of the marker XPCS experiments. The use of resonance enhanced X-ray scattering for XPCS enables one to intensify, by more than one order of magnitude, the probing electrical field in the regions of interest within single nanometer polymer films. The development of polymer nanostructures and nanoscale devices for a wide variety of applications could emerge from new information about the interplay between nanoscale interfaces in polymeric materials, thanks to

131

2-5 Interfacial & Nanoscale Science Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

INSF Overview INSF Overview Interfacial & Nanoscale Science Facility The Interfacial & Nanoscale Science (I&NS) Facility is a world-class resource for scientific expertise and instrumentation related to the study of interfacial phenomena and nanoscience and technology. This section summarizes the capabilities that exist in the I&NS Facility, along with research programs associated with facility users. Activities in the I&NS Facility address national needs in environmental restoration, waste management, pollution preven- tion, energy, and national security through research that specializes in preparation, charac- terization, interactions, and reactivity of interfaces and nanoscale materials. The range of scientific expertise and instrumentation within the I&NS Facility provides a unique envi-

132

Energy Bounds for Fault-Tolerant Nanoscale Designs  

E-Print Network (OSTI)

The problem of determining lower bounds for the energy cost of a given nanoscale design is addressed via a complexity theory-based approach. This paper provides a theoretical framework that is able to assess the trade-offs existing in nanoscale designs between the amount of redundancy needed for a given level of resilience to errors and the associated energy cost. Circuit size, logic depth and error resilience are analyzed and brought together in a theoretical framework that can be seamlessly integrated with automated synthesis tools and can guide the design process of nanoscale systems comprised of failure prone devices. The impact of redundancy addition on the switching energy and its relationship with leakage energy is modeled in detail. Results show that 99% error resilience is possible for fault-tolerant designs, but at the expense of at least 40% more energy if individual gates fail independently with probability of 1%.

Marculescu, Diana

2011-01-01T23:59:59.000Z

133

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

134

Nano-scale positioning, control and motion planning in hard disk drives  

E-Print Network (OSTI)

OF CALIFORNIA, SAN DIEGO Nano-scale Positioning, Control andABSTRACT OF THE DISSERTATION Nano-scale Positioning, Controlmm) height (mm) mini micro nano pico femto Figure 2.8:

Boettcher, Uwe

2011-01-01T23:59:59.000Z

135

Device Physics of Nanoscale Interdigitated Solar Cells (Poster)  

Science Conference Proceedings (OSTI)

Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

Metzger, W.; Levi, D.

2008-05-01T23:59:59.000Z

136

Toward in vivo nanoscale communication networks: utilizing an active network architecture  

Science Conference Proceedings (OSTI)

A safe and reliable in vivo nanoscale communication network will be of great benefit for medical diagnosis and monitoring as well as medical implant communication. This review article provides a brief introduction to nanoscale and molecular ... Keywords: active network, in vivo network, molecular communication, molecular motor, nanoscale network, neural coding

Stephen F. Bush

2011-09-01T23:59:59.000Z

137

Understanding Li-ion battery processes at the atomic to nano-scale.  

Science Conference Proceedings (OSTI)

Reducing battery materials to nano-scale dimensions may improve battery performance while maintaining the use of low-cost materials. However, we need better characterization tools with atomic to nano-scale resolution in order to understand degradation mechanisms and the structural and mechanical changes that occur in these new materials during battery cycling. To meet this need, we have developed a micro-electromechanical systems (MEMS)-based platform for performing electrochemical measurements using volatile electrolytes inside a transmission electron microscope (TEM). This platform uses flip-chip assembly with special alignment features and multiple buried electrode configurations. In addition to this platform, we have developed an unsealed platform that permits in situ TEM electrochemistry using ionic liquid electrolytes. As a test of these platform concepts, we have assembled MnO{sub 2} nanowires on to the platform using dielectrophoresis and have examined their electrical and structural changes as a function of lithiation. These results reveal a large irreversible drop in electronic conductance and the creation of a high degree of lattice disorder following lithiation of the nanowires. From these initial results, we conclude that the future full development of in situ TEM characterization tools will enable important mechanistic understanding of Li-ion battery materials.

Zhan, Yongjie (Rice University, Houston, TX); Subramanian, Arunkumar; Hudak, Nicholas; Sullivan, John Patrick; Shaw, Michael J.; Huang, Jian Yu

2010-05-01T23:59:59.000Z

138

Introduction & History The Center for Nanoscale Science exploits  

E-Print Network (OSTI)

, and the control of light in nanostructures, Center activities involve forty eight students and post behavior of nanoscale systems with common themes of new materials synthesis and nano- fabrication, theory ferroelectric ferromagnetic, highly tunable dipole-spring ferroics, and other systems with new physical proper

Yener, Aylin

139

Monte Carlo study of self-heating in nanoscale devices  

Science Conference Proceedings (OSTI)

Progress in device miniaturization combined with the increase in integrated circuit packing density, as described by Moore's law, have been accompanied by an exponential increase in on-chip heat generation. In this context, there is an increasing demand ... Keywords: Electron transport, Electrothermal modeling, Monte Carlo, Nanoscale semiconductor devices, Nanowire MISFETs, Self-heating, Si/III-V heterostructure FETs, Thermal transport

Toufik Sadi; Robert W. Kelsall; Neil J. Pilgrim; Jean-Luc Thobel; Franois Dessenne

2012-03-01T23:59:59.000Z

140

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network (OSTI)

Bioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - Mobilization

Cushing, Jim. M.

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Construction of Channels (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Permission is required from the Natural Resources Commission is required for the construction or alteration of artificial channels or improved channels of natural watercourses that connect to any...

142

ST ATEMENT OF CONSIDERATIONS Nanoscale Science Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ST ST ATEMENT OF CONSIDERATIONS Nanoscale Science Research Center Class Waiver, W(C)-200S-001 The 21st Century Nanotechnology Research and Development Act, 15 U.S.c. §7501 et seq., (the "Nanotechnology Act"), signed into lawon December 3,2003, codifies programs and activities supported by the National Nanotechnology Initiative (NNI) and provides for the establishment of a network of advanced technology user facilities and centers. An "advanced technology user facility" is defined as "a nanotechnology research development facility supported, in whole or in part, by Federal funds that is open to all United States researchers on a competitive, merit- reviewed basis." 15 U.S.c. § 7509(5). DOE has established five user facilities under the Nanotechnology Act, known as Nanoscale Science Research Centers (NSRCs), which are funded by the

143

New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Patterning High-density Arrays of Nanospheres with Self Assembly Patterning High-density Arrays of Nanospheres with Self Assembly Cells Forming Blood Vessels Send Their Copper to the Edge A Molecular Cause for One Form of Deafness Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles MARCH 7, 2007 Bookmark and Share Nenad Markovic and Vojislav Stamenkovic with the new three-chamber UHV system at Argonne. Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering - a

144

The Nanoscale-Ordered Materials Diffractometer at SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale-Ordered Materials Diffractometer Nanoscale-Ordered Materials Diffractometer Inside the NOMAD detector tank. Inside the NOMAD detector tank. NOMAD is a high-flux, medium-resolution diffractometer that uses a large bandwidth of neutron energies and extensive detector coverage to carry out structural determinations of local order in crystalline and amorphous materials. It enables studies of a large variety of samples ranging from liquids, solutions, glasses, polymers, and nanocrystalline materials to long-range-ordered crystals. The enhanced neutron flux at SNS, coupled with the advanced neutron optics and detector features of NOMAD, allows for unprecedented access to high-resolution pair distribution functions, small-contrast isotope substitution experiments, small sample sizes, and parametric studies.

145

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

146

Argonne CNM Highlight: Quasi-Crystalline Order at Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Quasi-Crystalline Order at Nanoscale Quasi-Crystalline Order at Nanoscale Polyimide Nanofilter TEM showing the two-dimensional dodecagonal quasi-crystalline structure self-assembled from 5-nm Au and 13.4-nm Fe3O4 nanoparticles. Nanoparticles have a strong tendency to form periodic structures. Mixing and matching of two different types of nanoparticles allows the formation of binary nanoparticle superlattices isostructural to ionic or intermetallic compounds. In addition to periodic superlattices, binary mixtures of nearly spherical nanoparticles could lead to the growth of quasi-crystals. CNM staff in the Nanobio Interfaces Group, together with colleagues from the University of Chicago and the University of Pennsylvania, have found that two-dimensional dodecagonal quasi-crystals can be formed in mixtures

147

A Simple Protocol to Communicate Channels over Channels  

Science Conference Proceedings (OSTI)

In this paper we present the communication protocol that we use to implement first class channels. Ordinary channels allow data communication (like CSP/Occam); first class channels allow communicating channel ends over a channel. This enables processes ...

Henk L. Muller; David May

1998-09-01T23:59:59.000Z

148

Nanoscale design to enable the revolution in renewable energy  

E-Print Network (OSTI)

The creation of a sustainable energy generation, storage, and distribution infrastructure represents a global grand challenge that requires massive transnational investments in the research and development of energy technologies that will provide the amount of energy needed on a sufficient scale and timeframe with minimal impact on the environment and have limited economic and societal disruption during implementation. In this opinion paper, we focus on an important set of solar, thermal, and electrochemical energy conversion, storage, and conservation technologies specifically related to recent and prospective advances in nanoscale science and technology that offer high potential in addressing the energy challenge. We approach this task from a two-fold perspective: analyzing the fundamental physicochemical principles and engineering aspects of these energy technologies and identifying unique opportunities enabled by nanoscale design of materials, processes, and systems in order to improve performance and reduce costs. Our principal goal is to establish a roadmap for research and development activities in nanoscale science and technology that would significantly advance and accelerate the implementation of renewable energy technologies. In all cases we make specific recommendations for research needs in the near-term (25 years), mid-term (510 years) and long-term (>10 years), as well as projecting a timeline for maturation of each technological solution.

unknown authors

2008-01-01T23:59:59.000Z

149

Nanoscale Synthesis and Characterization Laboratory Annual Report 2007  

Science Conference Proceedings (OSTI)

The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

Hamza, A V

2008-04-07T23:59:59.000Z

150

Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting  

SciTech Connect

SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 5 nm STO, and 6.5 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 ?mol H2 g1 h1 (bulk STO), to 19.4 ?mol H2 g1 h1 (30 nm STO), and 3.0 ?mol H2 g1 h1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

2012-08-28T23:59:59.000Z

151

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic ...  

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic and Martensitic Steels Produced by a Thermo-Mechanical Treatment Process Note: The technology ...

152

Electrical Transport Through a Single Nanoscale SemiconductorBranch Point  

DOE Green Energy (OSTI)

Semiconductor tetrapods are three dimensional branched nanostructures, representing a new class of materials for electrical conduction. We employ the single electron transistor approach to investigate how charge carriers migrate through single nanoscale branch points of tetrapods. We find that carriers can delocalize across the branches or localize and hop between arms depending on their coupling strength. In addition, we demonstrate a new single-electron transistor operation scheme enabled by the multiple branched arms of a tetrapod: one arm can be used as a sensitive arm-gate to control the electrical transport through the whole system. Electrical transport through nanocrystals, molecules, nanowires and nanotubes display novel quantum phenomena. These can be studied using the single electron transistor approach to successively change the charge state by one, to reveal charging energies, electronic level spacings, and coupling between electronic, vibrational, and spin degrees of freedom. The advent of colloidal synthesis methods that produce branched nanostructures provides a new class of material which can act as conduits for electrical transport in hybrid organic-inorganic electrical devices such as light emitting diodes and solar cells. Already, the incorporation of branched nanostructures has yielded significant improvements in nanorod/polymer solar cells, where the specific pathways for charge migration can have a significant impact on device performance. Progress in this area requires an understanding of how electrons and holes migrate through individual branch points, for instance do charges delocalize across the branches or do they localize and hop between arms. Here we employ the single electron transistor approach to investigate the simplest three dimensional branched nanostructure, the semiconductor tetrapod, which consists of a pyramidal shaped zinc blende-structured ''core'' with four wurzite-structured arms projecting out at the tetrahedral angle. Monodisperse CdTe tetrapods with arms 8 nm in diameter and 150 nm in length were synthesized as previously reported. The tetrapods dispersed in toluene were deposited onto {approx}10 nm thick Si{sub 3}N{sub 4} dielectrics with alignment markers and a back gate (see Supporting Information). A tetrapod spontaneously orients with one arm pointing perpendicularly away from the substrate and three arms projecting down towards the surface. Individual 60 nm-thick Pd electrodes were placed by EBL onto each of the three arms downwards so that there are four terminals (three arms and a back gate) as shown schematically in Fig. 1 top inset. Figure 1 bottom inset shows a typical scanning electron micrograph (SEM) of the devices. The center brighter spot is due to the fourth arm pointing up away from the substrate although its controlled breaking is possible. The separation between the metal electrodes and the tetrapod branch point ranges from 30 to 80 nm in our devices. The devices were loaded into a He{sup 4}-flow cryostat for low-temperature ({approx}5K) electrical measurements.

Cui, Yi; Banin, Uri; Bjork, Mikael T.; Alivisatos, A. Paul

2005-06-09T23:59:59.000Z

153

Conduction and Moisture Diffusion  

Science Conference Proceedings (OSTI)

Table 2   Equivalent physical quantities...conduction Temperature Temperature gradient Heat flux Heat conductivities Resistivities Electric conduction Electric potential Electric field intensity Current density Electric conductivities Resistivities Electrostatics Electric potential Electric field intensity Electric induction, electric...

154

Concrete Electrical Conductivity Test  

Science Conference Proceedings (OSTI)

Concrete Electrical Conductivity Test. Description/Summary: ... Details. Type of software: Virtual concrete electrical conductivity test. Authors: ...

2013-06-11T23:59:59.000Z

155

Fading channel simulator  

DOE Patents (OSTI)

This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

Argo, P.E.; Fitzgerald, T.J.

1991-12-31T23:59:59.000Z

156

Heat conductivity in linear mixing systems  

E-Print Network (OSTI)

We present analytical and numerical results on the heat conduction in a linear mixing system. In particular we consider a quasi one dimensional channel with triangular scatterers with internal angles irrational multiples of pi and we show that the system obeys Fourier law of heat conduction. Therefore deterministic diffusion and normal heat transport which are usually associated to full hyperbolicity, actually take place in systems without exponential instability.

Baowen Li; Giulio Casati; Jiao Wang

2002-08-06T23:59:59.000Z

157

Phosphatidylinositol (4,5)-bisphosphate (PIP2) modulation of TRPV1 and functional interactions between A' helices in the C-linkers of open CNG channels.  

E-Print Network (OSTI)

??Ion channels are membrane proteins that rapidly pass ions through their conduction pores. Ion channel gating is modulated by a variety of signaling molecules and (more)

Hua, Li, 1972-

2007-01-01T23:59:59.000Z

158

Fidelity of Gaussian Channels  

Science Conference Proceedings (OSTI)

A noisy Gaussian channel is defined as a channel in which an input field mode is subjected to random Gaussian displacements in phase space. We introduce the quantum fidelity of a Gaussian channel for pure and mixed input states, and we derive a universal ...

Carlton M. Caves; Krzysztof Wdkiewicz

2004-12-01T23:59:59.000Z

159

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network (OSTI)

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam August 2011; accepted 29 August 2011; published online 22 September 2011) Formation of lithium dendrite to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our

Endres. William J.

160

Beyond biology: designing a new mechanism for self-replication and evolution at the nanoscale  

Science Conference Proceedings (OSTI)

As biology demonstrates, evolutionary algorithms are an extraordinarily powerful way to design complex nanoscale systems. While we can harness the biological apparatus for replicating and selecting DNA sequences to evolve enzymes and to some extent, ... Keywords: nanoscale systems, self-replication

Rebecca Schulman

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy conversion device with support member having pore channels  

DOE Patents (OSTI)

Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

2014-01-07T23:59:59.000Z

162

Lipid ion channels and the role of proteins  

E-Print Network (OSTI)

Synthetic lipid membranes in the absence of proteins can display quantized conduction events for ions that are virtually indistinguishable from those of protein channel. By indistinguishable we mean that one cannot decide based on the current trace alone whether conductance events originate from a membrane, which does or does not contain channel proteins. Additional evidence is required to distinguish between the two cases, and it is not always certain that such evidence can be provided. The phenomenological similarities are striking and span a wide range of phenomena: The typical conductances are of equal order and both lifetime distributions and current histograms are similar. One finds conduction bursts, flickering, and multistep-conductance. Lipid channels can be gated by voltage, and can be blocked by drugs. They respond to changes in lateral membrane tension and temperature. Thus, they behave like voltage-gated, temperature-gated and mechano-sensitive protein channels, or like receptors. Lipid channels are remarkably under-appreciated. However, the similarity between lipid and protein channels poses an eminent problem for the interpretation of protein channel data. For instance, the Hodgkin-Huxley theory for nerve pulse conduction requires a selective mechanism for the conduction of sodium and potassium ions. To this end, the lipid membrane must act both as a capacitor and as an insulator. Non-selective ion conductance by mechanisms other than the gated protein-channels challenges the proposed mechanism for pulse propagation. ... Some important questions arise: Are lipid and protein channels similar due a common mechanism, or are these similarities fortuitous? Is it possible that both phenomena are different aspects of the same phenomenon? Are lipid and protein channels different at all? ... (abbreviated)

Lars D. Mosgaard; Thomas Heimburg

2013-07-11T23:59:59.000Z

163

Nanoscale Science Research Centers | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nanoscale Science Research Centers Nanoscale Science Research Centers Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Nanoscale Science Research Centers Print Text Size: A A A RSS Feeds FeedbackShare Page The five NSRCs are DOE's premier user centers for interdisciplinary research at the nanoscale, serving as the basis for a national program that encompasses new science, new tools, and new computing capabilities. Each center has particular expertise and capabilities in selected theme areas, such as synthesis and characterization of nanomaterials; catalysis; theory,

164

ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Mendez-Torres, A.; Torres, R.; Lam, P.

2011-07-15T23:59:59.000Z

165

ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Torres, R.; Mendez-Torres, A.; Lam, P.

2011-06-09T23:59:59.000Z

166

Formation flow channel blocking  

SciTech Connect

A method is claimed for selectively blocking high permeability flow channels in an underground hydrocarbon material bearing formation having flow channels of high permeability and having flow channels of lesser permeability. The method includes the following steps: introducing a blocking material fluid comprising a blocking material in a carrier into the flow channels through an injection well in communication with the formation; introducing a buffer fluid into the formation through the injection well for the buffer fluid to displace the blocking material fluid away from the injection well; allowing the blocking material to settle in the channels to resist displacement by fluid flowing through the channels; introducing a quantity of an activating fluid into the channels through the injection well at a sufficient rate for the activating fluid to displace the buffer fluid and finger into the high permeability channels to reach the blocking material in the high permeability channels without reaching the blocking material in the low permeability channels, the activating fluid being adapted to activate the blocking material which it reaches to cause blocking of the high permeability channels.

Kalina, A.I.

1982-11-30T23:59:59.000Z

167

First-Principles Study on Electron Conduction in Sodium Nanowire  

E-Print Network (OSTI)

Abstract. We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ? 1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ? 1 G0 during elongation. First-Principles Study on Electron Conduction in Sodium Nanowire 2 1.

Yoshiyuki Egami; Takashi Sasaki; Tomoya Ono

2004-01-01T23:59:59.000Z

168

Engineered Nano-scale Ceramic Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward Los Alamos National Laboratory Timothy Ward, Plamen Atanassov University of New Mexico Karren More Oak Ridge National Laboratory Fuel Cell Technologies Program Kick-off Meeting September 30 - October 1, 2009 Washington DC Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives  Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode that exhibits an enhanced resistance to corrosion and Pt coalescence while preserving positive attributes of carbon such as

169

Los Alamos scientists detect and track single molecules with nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube "glowsticks" transform surface science tool kit Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

170

NERSC Visualization and Analysis for Nanoscale Control of Geologic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanocontrol of CO2 Nanocontrol of CO2 Visualization and Analysis for Nanoscale Control of Geologic Carbon Dioxide Goals * Collect experimental 2D-3D imaging data in order to investigate fluid-fluid and fluid-rock interactions; * Provide algorithms for better understanding of processes governing fluid-fluid and fluid-rock systems, related to geologic sequestration of CO2; * Develop image processing methods for analyzing experimental data and comparing it to simulations; * Detect/reconstruct material interfaces, quantify contact angles, derive contact angle distribution, etc. Impact * Unveil knowledge required for developing technology to store CO2 safely in deep surface rock formations, thus reducing amount of CO2 in atmosphere; More Personnel * CRD: Wes Bethel, Dani Ushizima, Gunther Weber (SciDAC-e award)

171

ADVANCED HEAT EXCHANGERS USING TUNABLE NANOSCALE-MOLECULAR ASSEMBLY  

Science Conference Proceedings (OSTI)

Steam condensation heat transfer on smooth horizontal tubes and enhanced tubes (TURBO-CDI and TURBO-CSL) along with nanoscale hydrophobic coated tubes was studied experimentally. Hydrophobic coatings have been created through self-assembled mono layers (SAMs) on copper alloy (99.9% Cu, 0.1% P) surfaces to enhance steam condensation through dropwise condensation. In general, a SAM system with a long-chain, hydrophobic group is nano-resistant, meaning that such a system forms a protective hydrophobic layer with negligible heat transfer resistance but a much stronger bond. When compared to complete filmwise condensation, the SAM coating on a plain tube increased the condensation heat transfer rate by a factor of 3 for copper alloy surfaces, under vacuum pressure (33.86 kPa) and by a factor of about 8 times when operated at atmospheric pressure (101 kPa). Lifetime of maintaining dropwise condensation is greatly dependent on the processing conditions.

Kwang J. Kim; Thomas W. Bell; Srinivas Vemuri; Sailaja Govindaraju

2004-01-01T23:59:59.000Z

172

Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS  

E-Print Network (OSTI)

We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

2013-04-04T23:59:59.000Z

173

Nanoscale Synthesis and Characterization Laboratory Annual Report 2005  

SciTech Connect

The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

Hamza, A V; Lesuer, D R

2006-01-03T23:59:59.000Z

174

Code of Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

175

Control of Test Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric Transportation Applications Prepared by: Date: Garrett P....

176

THERMAL HEAT TRANSPORT AT THE NANO-SCALE LEVEL AND ITS APPLICATION TO NANO-MACHINING.  

E-Print Network (OSTI)

??Nano-manufacturing is receiving significant attention in industry due to the ever-growing interest in nanotechnology in research institutions. It is hypothesized that single-step or direct-write nano-scale (more)

Wong, Basil T.

2006-01-01T23:59:59.000Z

177

Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology  

E-Print Network (OSTI)

This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

Huang, Hao, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

178

3D/4D/5D visualization of material at nano-scale using Transmission...  

NLE Websites -- All DOE Office Websites (Extended Search)

3D4D5D visualization of material at nano-scale using Transmission X-ray Microscopy Wednesday, May 22, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Yijin Liu, SSRL The...

179

Simulated nanoscale peeling process of monolayer graphene sheet: effect of edge structure and lifting position  

Science Conference Proceedings (OSTI)

The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps ...

Naruo Sasaki; Hideaki Okamoto; Shingen Masuda; Kouji Miura; Noriaki Itamura

2010-01-01T23:59:59.000Z

180

CONDUCT OF OPERATIONS (CO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCT OF OPERATIONS (CO) CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and programs are inplace to maintain this formality and discipline. (Core Requirement 13) Criteria 1. Programmatic elements of conduct of operations are in place for TA-55 SST operations. 2. The TA-55 SST operations personnel adequately demonstrate the principles of conduct ofoperations requirements during the shift performance period. Approach Record Reviews: Review procedures and other facility documents to verify compliance with conduct of operations principles. Interviews: Interview a sampling of the TA-55 SST associated personnel to validate their understanding of the conduct of operations principles (e.g., procedure usage,

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nonlinear Klein-Gordon equation fot nanoscale heat and mass transport  

E-Print Network (OSTI)

In this paper nonlinear Klein-Gordon equation for heat and mass transport in nanoscale was proposed and solved. It was shown that for ultra-short laser pulses nonlinear Klein-Gordon equation is reduced to nonlinear d`Alembert equation. The implicit solution of the d`Alembert equation for ultrashort laser pulses was obtained Key words: nonlinear Klein-Gordon equation, d`Alembert equation, nanoscale transport

Janina Kozlowska; Miroslaw Kozlowski; Magdalena Pelc

2006-11-26T23:59:59.000Z

182

Domain wall conduction in multiaxial ferroelectrics  

Science Conference Proceedings (OSTI)

The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5-10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Svechnikov, S. V. [National Academy of Science of Ukraine, Kiev, Ukraine; Maksymovych, Petro [ORNL; Kalinin, Sergei V [ORNL

2012-01-01T23:59:59.000Z

183

Fractional channel multichannel analyzer  

DOE Patents (OSTI)

A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

Brackenbush, L.W.; Anderson, G.A.

1994-08-23T23:59:59.000Z

184

High conductance surge cable  

DOE Patents (OSTI)

An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

1998-12-08T23:59:59.000Z

185

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

186

Research Conduct Policies  

Office of Science (SC) Website

Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB)...

187

Radio Channel Simulator  

Radio Channel Simulator (RCSim) is a simulation package for making site-specific predictions of radio signal strength. The software computes received power atdiscrete grid points as a function of the transmitter location and propagation environment. ...

188

NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.  

SciTech Connect

The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

SUGAMA,T.

2003-06-26T23:59:59.000Z

189

PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS  

DOE Green Energy (OSTI)

The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

Thomas E. Mallouk

2007-05-27T23:59:59.000Z

190

Nano-Scale Multilayer Mask for EUV Lithography Applications and ...  

Science Conference Proceedings (OSTI)

Effect of Initial Microstructure on the Processing of Titanium Using Equal Channel ... Investigation of Mechanical Properties of Silica/Epoxy Nano-Composites by ... of Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer Films ... Sonochemistry as a Tool for Synthesis of Ion-Substituted Calcium Phosphate...

191

Electrically conductive diamond electrodes  

DOE Patents (OSTI)

An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

2009-05-19T23:59:59.000Z

192

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

alpha1=k1/(density1*cp1); %Thermal diffusivity of PMMA B1=Simon R. Phillpot, Nanoscale Thermal Transport, Journal of9] E.T. Swartz, R.O. Pohl, Thermal Boundary Resistance,

Yuen, Taylor S.

193

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

Science Conference Proceedings (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

194

Photon Channelling in Foams  

E-Print Network (OSTI)

Experiments by Gittings, Bandyopadhyay, and Durian [Europhys. Lett.\\ \\textbf{65}, 414 (2004)] demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting {\\em et al.} without any free parameters. It links the photon's path-length fraction $f$ in the liquid phase to the liquid fraction $\\epsilon$. We then construct two-dimensional Voronoi foams, replace the cell edges by channels to represent the liquid films and simulate photon paths according to the laws of ray optics using transmission and reflection coefficients from Fresnel's formulas. In an exact honeycomb foam, the photons show superdiffusive behavior. It becomes diffusive as soon as disorder is introduced into the foams. The dependence of the diffusion constant on channel width and refractive index is explained by a one-dimensional random-walk model. It contains a photon channelling state that is crucial for the understanding of the numerical results. At the end, we shortly comment on the observation that photon channelling only occurs in a finite range of $\\epsilon$.

Michael Schmiedeberg; MirFaez Miri; Holger Stark

2005-05-17T23:59:59.000Z

195

Conducting fiber compression tester  

DOE Patents (OSTI)

The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail. 3 figs.

DeTeresa, S.J.

1989-12-07T23:59:59.000Z

196

NSLS Conduct of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing the X-Ray Tunnel (LS-OPS-0003) Qualified Search Personnel for NSLS Accelerators (LS-ESH-0009) General Procedures Caution Tags (LS-OPS-0004) Conduct of...

197

Channel plate for DNA sequencing  

DOE Patents (OSTI)

This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

Douthart, Richard J. (Richland, WA); Crowell, Shannon L. (Eltopia, WA)

1998-01-01T23:59:59.000Z

198

Channel plate for DNA sequencing  

DOE Patents (OSTI)

This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

Douthart, R.J.; Crowell, S.L.

1998-01-13T23:59:59.000Z

199

DNA SieveNanoscale Pores Can Be Tiny Analysis Labs  

Science Conference Proceedings (OSTI)

... to those in living cells, and "drilling" a pore ... point, by an applied electric current. ... molecule reduced the nanopore's electrical conductance differently ...

200

DNA Sieve: Nanoscale Pores Can Be Tiny Analysis Labs  

Science Conference Proceedings (OSTI)

... to those in living cells, and drilling a pore ... point, by an applied electric current. ... molecule reduced the nanopore's electrical conductance differently ...

2011-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

202

Nanostructured polymer membranes for proton conduction  

DOE Patents (OSTI)

Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

Balsara, Nitash Pervez; Park, Moon Jeong

2013-06-18T23:59:59.000Z

203

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents (OSTI)

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z

204

Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales  

Science Conference Proceedings (OSTI)

Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

2010-09-15T23:59:59.000Z

205

Recovery Act Provides Big Boost with a Nanoscale Focus | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provides Big Boost with a Nanoscale Focus Provides Big Boost with a Nanoscale Focus Recovery Act Provides Big Boost with a Nanoscale Focus October 14, 2010 - 9:46am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The Center for Functional Nanomaterials is getting a new electron microscope that will be valuable for solar cell research -- one of 7 ARRA-funded additions at the Brookhaven National Laboratory facility. Editor's note: cross posted from the Brookhaven National Laboratory The Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory is receiving more than $5 million in new equipment and upgrades funded by the American Recovery and Reinvestment Act (ARRA). The new acquisitions will fill gaps in the current facility to meet the needs of

206

Seminar Announcement Nanoscale High Field Chemistry with the Atomic Force Microscope and Patterning January 15, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINAR SEMINAR ANNOUNCMENT Thursday, January 15, 2009 11:00am - 12:00 noon EMSL Boardroom Nanoscale High Field Chemistry With the Atomic Force Microscope and Patterning Marco Rolandi Assistant Professor Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 Facile and affordable processes for the fabrication of nanostructures are fundamental to future endeavors in nanoscale science and engineering. The atomic force microscope was designed primarily for imaging, and has evolved into a versatile tool for nanoscale surface modification. We have developed an AFM based scheme capable of direct writing of glassy carbon nanowires as fast as 1 cm/s. In brief, when a bias is applied across the tip-sample gap a molecular precursor undergoes high field reactions that result in the deposition of a cross- linked product on the surface. In order to gain a

207

CONDUCTING A RECORDS INVENTORY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCEDURE FOR CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY Revision 1 10/31/07 Approved by: DOE Records Management Division, IM-23 PROCEDURE FOR CONDUCTING A RECORDS INVENTORY 1. GENERAL. A records inventory is compiling a descriptive list of each record series or system, including the location of the records and any other pertinent data. A records inventory is not a list of each document or each folder. 2. DEFINE THE RECORDS INVENTORY GOAL(S). The goals of a records inventory should be to: a. Gather information for scheduling purposes; b. Prepare for conversion to other media or to identify the volume of classified and/or permanent records in your organization's custody; and c. Identify any existing shortcomings, deficiencies, or problems with

208

Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems  

E-Print Network (OSTI)

1 Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems Patrick James McCluskey, and Joost J. Vlassak Division of Engineering is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano

209

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network (OSTI)

Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions.

Romero Lugo, Jose 1985-

2012-12-01T23:59:59.000Z

210

Designer proton-channel transgenic algae for photobiological hydrogen production  

DOE Patents (OSTI)

A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

Lee, James Weifu (Knoxville, TN)

2011-04-26T23:59:59.000Z

211

Channeling through Bent Crystals  

Science Conference Proceedings (OSTI)

Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to create an angular profile plot which was compared to what was produced by Yazynin's code for a beam with no multiple scattering. The results were comparable, with volume reflection and channeling effects observed and the range of crystal orientations at which volume reflection is seen was about 1 mrad in both simulations.

Mack, Stephanie; /Ottawa U. /SLAC

2012-09-07T23:59:59.000Z

212

The Properties of Confined Water and Fluid Flow at the Nanoscale  

DOE Green Energy (OSTI)

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

213

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

214

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

215

Convective Cooling of Lightning Channels  

Science Conference Proceedings (OSTI)

We report experimental data which trace the time development of electric discharge channels in air and which demonstrate the turbulent cooling of such channels. These data provide qualitative confirmation of the model proposed and used by Hill, ...

J. M. Picone; J. P. Boris; J. R. Greig; M. Raleigh; R. F. Fernsler

1981-09-01T23:59:59.000Z

216

Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities  

SciTech Connect

This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

2001-10-19T23:59:59.000Z

217

Low Temperature Proton Conductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

and and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based on DSC * Freezing water more mobile, allegedly important for high conductivity Analysis common for porous systems Does the presence of these states matter? Why? 4 'State of Water' in PEMs At T < 0 o C *'Liquid-like' water freezes *'Non-freezing' fraction: water of solvation at pore

218

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

219

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

220

Covert channels in IPv6  

Science Conference Proceedings (OSTI)

A covert channel is a communication path that allows transferring information in a way that violates a system security policy. Because of their concealed nature, detecting and preventing covert channels are obligatory security practices. In this paper, ... Keywords: IPsec, IPv6, active warden, covert channel, stateful, stateless

Norka B. Lucena; Grzegorz Lewandowski; Steve J. Chapin

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterization of atomic layer deposited nanoscale structure on dense dielectric substrates by X-ray reflectivity  

Science Conference Proceedings (OSTI)

Interfaces play a crucial role in determining the ultimate properties of nanoscale structures. However, the characterization of such structures is difficult, as the interface can no longer be defined as the separation between two materials. The high ... Keywords: ALD, Density, Dielectrics, XRR

Y. Travaly; J. Schuhmacher; A. Martin Hoyas; T. Abell; V. Sutcliffe; A. M. Jonas; M. Van Hove; K. Maex

2005-12-01T23:59:59.000Z

222

Nano-magnetic non-volatile CMOS circuits for nano-scale FPGAs (abstract only)  

Science Conference Proceedings (OSTI)

Nanotechnology promises to open up new ways of scaling CMOS circuits by introducing new materials. For example, a hybrid circuit of CMOS gates and carbon nano-tubes (CNT), NEMS relay logic and emerging memory devices have been proposed for future nano-scale ... Keywords: fpga, spin-torque devices, spintronics

Larkhoon Leem; James A. Weaver; Metha Jeeradit; James S. Harris

2010-02-01T23:59:59.000Z

223

Analyzing Combined Impacts of Parameter Variations and BTI in Nano-scale Logical Gates  

E-Print Network (OSTI)

Analyzing Combined Impacts of Parameter Variations and BTI in Nano-scale Logical Gates Seyab Khan conclusions. 2 Background and Analysis Framework Fig. 1(a) shows the threshold voltage increment (Vth) due variation, delay model, and presents the analysis framework. First MEDIAN Workshop 2012 7 #12;2 Seyab Khan

Hamdioui, Said

224

Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

Byer, Robert L.

225

NANO-SCALE VISUALIZATION OF LIQUID INTERFACES DURING COALESCENCE AND RAPTURE  

E-Print Network (OSTI)

NANO-SCALE VISUALIZATION OF LIQUID INTERFACES DURING COALESCENCE AND RAPTURE Experiments by Jacob viscosity and interfacial tension) and experimental conditions (shear rate or approach velocity), and nano such as fingering and cavitation, both occurring at the nano- or submicron-scales. The two figures below ­ the first

Akhmedov, Azer

226

Capacitance: A property of nanoscale materials based on spatial symmetry of discrete electrons  

Science Conference Proceedings (OSTI)

Capacitance is a measure of the ability to store electrons and is conventionally considered to be a constant dependent upon the shape of metal contacts and the dimensions of the system. In general, however, equipotentials of dielectric systems without ... Keywords: Capacitance, Discrete charges, Nanoscale materials, Periodic table

Tim LaFave, Jr.; Raphael Tsu

2008-03-01T23:59:59.000Z

227

Argonne Chemical Sciences & Engineering - National Security - Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanospheres for Human Detoxification Nanospheres for Human Detoxification Argonne scientists are developing technology that uses magnetic nanospheres for human detoxification of blood-borne toxins (radiological, biological, and chemical). Originally developed for in-field use by military personnel, the work also will have application in the early diagnosis and treatment of certain medical conditions. For more details, view the fact sheet. Nanospheres for Human Detoxification Intravenously injected into victims of radiological, chemical or biological attack, biodegradable nanospheres circulate through the bloodstream, where surface proteins bind to the targeted toxins. They are removed from the bloodstream by a small dual-channel shunt, inserted into an arm or leg artery, that circulates the blood through an external magnetic separator. Strong magnets in the shunt immobilize the iron-based particles, and clean blood flows back into the bloodstream. (Image courtesy of the Armed Forces Radiobiology Research Institute)

228

Joint Source-Channel Coding over a Fading Multiple Access Channel with Partial Channel State Information  

E-Print Network (OSTI)

In this paper we address the problem of transmission of correlated sources over a fast fading multiple access channel (MAC) with partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). We provide the optimal power allocation strategy and compare the strategy with various levels of channel state information. Keywords: Fading MAC, Power allocation, Partial channel state information, Correlated sources.

Rajesh, R

2009-01-01T23:59:59.000Z

229

Normal Conducting CLIC Technology  

Science Conference Proceedings (OSTI)

The CLIC (Compact Linear Collider) multi?lateral study group based at CERN is studying the technology for an electron?positron linear collider with a centre?of?mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super?conducting cavities with accelerating gradients in the range of 3040 MV/m to obtain centre?of?mass collision energies of 0.51 TeV

Erk Jensen; CLIC Study Team

2006-01-01T23:59:59.000Z

230

Static virtual channel allocation in oblivious routing  

E-Print Network (OSTI)

Most virtual channel routers have multiple virtual channels to mitigate the effects of head-of-line blocking. When there are more flows than virtual channels at a link, packets or flows must compete for channels, either ...

Shim, Keun Sup

231

Ca 2? permeation in cyclic nucleotide-gated channels  

E-Print Network (OSTI)

Cyclic nucleotide-gated (CNG) channels conduct Na ?, K ? and Ca2 ? currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2 ? concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2 ? signaling depends on its specific Ca2 ? conductance, it is necessary to analyze Ca2 ? permeation for each individual channel type. We have analyzed Ca2 ? permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2 ? current over the physiological range of Ca2 ? concentrations and found that Ca2 ? permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2 ? permeation is controlled by the Ca2?-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2 ? signals.

Claudia Dzeja; Volker Hagen; Stephan Frings

1999-01-01T23:59:59.000Z

232

Atomistic Study of Transport Properties at the Nanoscale  

E-Print Network (OSTI)

A first approach to engineering problems in nanosized systems requires a thorough understanding of how physical properties change as size decreases from the macroscale. One important class of properties that can be severely affected by such a downward size shift are transport properties - classical mass, momentum and energy transport. Using atomistic simulation techniques, primarily molecular dynamics, and statistical expressions for diffusion, viscosity, and thermal conductivity formulated in terms of atomistic properties, three case studies of transport in important, nanosized systems are investigated, including confined water systems, silicon-germanium nanos- tructures, and carbon nanostructures. In the first study of confined water systems, diffusion and viscosity are of primary interest, as recent experimental studies have shown notably increased rates of diffusion through nano-confined carbon nanotube structures. In this work, a full treatment of the transport properties is provided in both water clusters and water thin films, both having characteristic size scales under 11 nm. The diffusion, viscosity, and thermal conductivity in the nanosized systems are all shown to be significantly different from bulk water systems, with diffusion and thermal transport increasing and viscosity decreasing. For silicon-germanium nanostructures, the thermal transport properties are exclusively considered, with the problem of interest concerning the control of thermal transport through a strict control on the nanostructure. Quantum dot superlattices are shown to be effective structures for controlling the thermal transport properties, the available range of thermal conductivity using these structures being 0.1-160 W/mK. The final study concerns graphene nanostructures, which in terms of thermal transport have some of the highest thermal conductivities of any available materials. Control of thermal transport properties is again of primary importance, with various physical aspects - defects, shape, and size - being probed in graphene, graphene nano ribbons, carbon nanotubes, and fullerenes to determine their influence on transport; overall, these structures yield a large range of thermal transport, 10-2500 W/mK.

Haskins, Justin

2013-05-01T23:59:59.000Z

233

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

234

Flow-induced channelization in a porous medium  

E-Print Network (OSTI)

We propose a theory for erosional channelization induced by fluid flow in a saturated granular porous medium. When the local fluid flow-induced stress is larger than a critical threshold, grains are dislodged and carried away so that the porosity of the medium is altered by erosion. This in turn affects the local hydraulic conductivity and pressure in the medium and results in the growth and development of channels that preferentially conduct the flow. Our multiphase model involves a dynamical porosity field that evolves along with the volume fraction of the mobile and immobile grains in response to fluid flow that couples the spatiotemporal dynamics of the three phases. Numerical solutions of the resulting initial boundary value problem show how channels form in porous media and highlights how heterogeneity in the erosion threshold dictates the form of the patterns and thus the ability to control them.

Mahadevan, Amala

2010-01-01T23:59:59.000Z

235

Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams  

E-Print Network (OSTI)

mean free path, the thermal energy phonon carriers traveli.e. non-diffusive) thermal energy distribution [13, 14] (to the transport of thermal energy from a nanoscale heat

Siemens, M.

2009-01-01T23:59:59.000Z

236

Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling  

E-Print Network (OSTI)

Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with ...

Fu, Yongqi

237

Learning at the nanoscale: research questions that the rapidly evolving interdisciplinarity of science poses for the learning sciences  

Science Conference Proceedings (OSTI)

Recent interdisciplinary discoveries in the sciences and engineering at the nanoscale, specifically in our ability to manipulate, molecules at atomic scales, suggests a need for the education community to reconsider the ways in which disciplinary-based ...

Sherry Hsi; Nora Sabelli; Joseph Krajcik; Robert Tinker; Kirsten Ellenbogen

2006-06-01T23:59:59.000Z

238

Engineered nano-scale ceramic supports for PEM fuel cells  

DOE Green Energy (OSTI)

Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the major aim of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. This latter aspect is key to attaining the 2015 DOE technical targets for platinum group metal (PGM) loadings (0.20 mg/cm{sup 2}). The benefits of the use of carbon-supported catalysts to drastically reduce Pt loadings from the early, conventional Pt-black technology are well known. The supported platinum catalyzed membrane approach widely used today for fabrication of membrane electrode assemblies (MEAs) was developed shortly thereafter these early reports. Of direct relevance to this present work, are the investigations into Pt particle growth in PEM fuel cells, and subsequent follow-on work showing evidence of Pt particles suspended free of the support within the catalyst layer. Further, durability work has demonstrated the detrimental effects of potential cycling on carbon corrosion and the link between electrochemical surface area and particle growth. To avoid the issues with carbon degradation altogether, it has been proposed by numerous fuel cell research groups to replace carbon supports with conductive materials that are ceramic in nature. Intrinsically, these many conductive oxides, carbides, and nitrides possess the prerequisite electronic conductivity required, and offer corrosion resistance in PEMFC environments; however, most reports indicate that obtaining sufficient surface area remains a significant barrier to obtaining desirable fuel ceU performance. Ceramic materials that exhibit high electrical conductivity and necessary stability under fuel cell conditions must also exhibit high surface area as a necessary adjunct to obtaining high Pt dispersions and Pt utilization targets. Our goal in this work is to identify new synthesis approaches together with materials that will lead to ceramic supports with high surface areas and high Pt dispersions. Several strong candidates for use as PEMFC catalyst supports include: transition metal nitrides and substoichiometric titanium oxides, which hither to now have been prepared by other researcher groups with relatively low surface areas (ca. 1-50 m{sup 2}/g typical). To achieve our goals of engineering high surface area, conductive ceramic support for utilization in PEMFCs, a multi-institutional and multi-disciplinary team with experience synthesizing and investigating these materials has been assembled. This team is headed by Los Alamos National Laboratory and includes Oak Ridge National Laboratory and the University of New Mexico. This report describes our fiscal year 2010 technical progress related to applying advanced synthetiC methods towards the development of new ceramic supports for Pt catalysts for PEM fuel cells.

Brosha, Eric L [Los Alamos National Laboratory; Blackmore, Karen J [Los Alamos National Laboratory; Burrell, Anthony K [Los Alamos National Laboratory; Henson, Neil J [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

239

Argonne CNM News: Shedding Light on Nature's Nanoscale Control of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Shedding Light on Nature's Nanoscale Control of Solar Energy Shedding Light on Nature's Nanoscale Control of Solar Energy Scanning tunneling microscopy tips A schematic of the Rhodobacter sphaerodes hexameric core, featuring the "special pair" (P) of degenerate bacteriochlorophyll (BChl) molecules, and the active (a) and inactive (b) arms of BChl and bacteriopheophytin (BPh) molecules. The transient absorption (ΔA) spectra acquired following selective excitation of P are shown. Nature's process for storing solar energy occurs in light-absorbing protein complexes called photosynthetic reaction centers (RCs). Across billions of years of evolution, Nature has retained a common light-absorbing hexameric cofactor core for carrying out the very first chemical reaction of photosynthesis, the light-induced electron transfer across approximately 3

240

Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications  

Science Conference Proceedings (OSTI)

A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Second harmonic nano-particles for femtosecond coherent control on the nanoscale  

E-Print Network (OSTI)

We provide a complete toolkit for coherent control experiments on the nano-scale. By exploiting the second harmonic emission from single (150 nm) nonlinear nano-particles, we show that ultrafast femtosecond laser pulses can be compressed and controlled in time with unprecedented spatial accuracy. The method is tested on various nano-particles of different sizes, shapes and materials, both dielectric BaTiO3, Fe(IO3)3) and metallic (Au) thus demonstrating its robustness and versatility.

Accanto, Nicol; Piatkowski, Lukasz; Castro-Lopez, Marta; Pastorelli, Francesco; Brinks, Daan; van Hulst, Niek F

2013-01-01T23:59:59.000Z

242

Programmable Immobilized PCR in Nanoscale: Bridging Nanoelectrodes with Single dsDNA Molecules  

E-Print Network (OSTI)

We present a method for controlled connection of gold electrodes with single dsDNA molecules (locally on a chip) by utilizing PCR. Single-stranded thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a PCR procedure finally forming a complete dsDNA bridging the gap between the electrodes. The technique opens up opportunities for detection and sensing applications, and for molecular electronics.

Linko, Veikko; Shen, Boxuan; Niskanen, Einari; Hytnen, Vesa P; Toppari, J Jussi

2011-01-01T23:59:59.000Z

243

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

244

Conductive lithium storage electrode  

Science Conference Proceedings (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

245

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

246

Dynamical coupled-channels study of meson production reactions from EBACatJLab  

Science Conference Proceedings (OSTI)

We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

Kamano, Hiroyuki [Excited Baryon Analysis Center (EBAC), Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

2011-10-24T23:59:59.000Z

247

Nanoscale fabrication and modification of selected battery materials  

SciTech Connect

Carbon is an integral part of many battery electrodes. We explored the use of semiconductor-processing techniques that involve photolithography to pattern photoresists and subsequent pyrolysis to form carbon microstructures that function as microelectrodes. In this study, we describe the status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist. Electrochemical nanometer-scale patterning of the surface of a conducting lithium manganese oxide (LiMn{sub 2}O{sub 4}) by scanning probe microscopy (SPM) was studied. We show that a localized surface chemical change can be confined to a depth which depends on the oxide-tip voltage difference and ambient humidity The ability to produce nanometer-size patterns of chemically modified oxide or nanometer-sized alterations of the oxide morphology is demonstrated and discussed with reference to possible mechanisms.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim; McLarnon, Frank

2001-06-22T23:59:59.000Z

248

Atomistic modeling of nanoscale patterning of L1{sub 2} order induced by ion irradiation  

Science Conference Proceedings (OSTI)

Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni{sub 3}Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiation flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications.

Ye Jia [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lawrence Berkeley Laboratory, Berkeley, California 94720-8250 (United States); Li Youhong [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Engineered Material Arresting Systems, Zodiac Aerospace, Logan Township, New Jersey 08085 (United States); Averback, Robert; Zuo Jianmin [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Bellon, Pascal [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2010-09-15T23:59:59.000Z

249

SAFL Channel | Open Energy Information  

Open Energy Info (EERE)

SAFL Channel SAFL Channel Jump to: navigation, search Basic Specifications Facility Name SAFL Channel Overseeing Organization University of Minnesota Hydrodynamics Hydrodynamic Testing Facility Type Channel Length(m) 84.0 Beam(m) 2.8 Depth(m) 1.8 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 6.1 Length of Effective Tow(m) 76.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Length(m) 6.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking No Wavemaking Description Programmable control of wave making is currently in development and will be available in fall of 2009. Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Channel is sufficiently adaptable to allow simulation of beach

250

Requirements for signaling channel authentication  

SciTech Connect

This contribution addresses requirements for ATM signaling channel authentication. Signaling channel authentication is an ATM security service that binds an ATM signaling message to its source. By creating this binding, the message recipient, and even a third party, can confidently verify that the message originated from its claimed source. This provides a useful mechanism to mitigate a number of threats. For example, a denial of service attack which attempts to tear-down an active connection by surreptitiously injecting RELEASE or DROP PARTY messages could be easily thwarted when authenticity assurances are in place for the signaling channel. Signaling channel authentication could also be used to provide the required auditing information for accurate billing which is impervious to repudiation. Finally, depending on the signaling channel authentication mechanism, end-to-end integrity of the message (or at least part of it) can be provided. None of these capabilities exist in the current specifications.

Tarman, T.D.

1995-12-11T23:59:59.000Z

251

Intra-membrane molecular interactions of K%2B channel proteins : application to problems in biodefense and bioenergy.  

SciTech Connect

Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

Moczydlowski, Edward G.

2013-07-01T23:59:59.000Z

252

Design of Sparse Filters for Channel Shortening  

Science Conference Proceedings (OSTI)

Channel shortening equalizers are used in acoustics to reduce reverberation, in error control decoding to reduce complexity, and in communication receivers to reduce inter-symbol interference. The cascade of a channel and channel shortening equalizer ... Keywords: Channel shortening, Discrete multi-tone modulation, Reverberant channels, Sparse filters, Time-domain equalizers

Aditya Chopra; Brian Lawrence Evans

2012-03-01T23:59:59.000Z

253

Electrodeposition of conducting polymer fibers  

E-Print Network (OSTI)

Conducting polymers are materials that possess the electrical conductivity of metals while still retaining the mechanical properties such as flexibility of traditional polymers. Polypyrrole (PPy) is one of the more commonly ...

Chen, Angela Y. (Angela Ying-Ju), 1982-

2004-01-01T23:59:59.000Z

254

Transparent Conductive Nano-Composites  

Indium Tin Oxide, the most widely used commercial transparent conducting coating, has severe limitations such inflexibility, high processing ...

255

Ferritic-martensitic steel subjected to equal channel angular extrusion  

E-Print Network (OSTI)

Modified 9Cr-1Mo ferritic-martensitic steel (T91) has been extensively investigated as a structural material for GenIV nuclear reactors and Accelerator Driven Transmutation systems. One attractive characteristic of this steel in these applications is its superior radiation damage tolerance in comparison to typical austenitic stainless steels such as 316L. In some GenIV applications, it also has a significantly higher corrosion resistance. Further improvement of both is necessary if GenIV designs are to become commercially viable. Other work has shown an improvement in radiation damage tolerance via cold rolling or sputtering nanoscale multilayered films. Additionally, corrosion resistance can be improved by homogenizing the microstructure. Further, these changes can improve the strength of the material. However, there has been no fabrication of bulk ultra fine grain ferritic-martensitic steel candidates that might offer these avenues of improvement. This work demonstrates the refinement and homogenization of T91 by Equal Channel Angular Extrusion (ECAE) and heat treatment. Processing temperature and strain level were varied to produce multiple levels of refinement. Materials were characterized by microhardness, tensile testing, x-ray diffraction and transmission electron microscopy. An ultra-fine, highly misoriented and homogeneous microstructure was achieved in the material. Refinement was demonstrated both in ferritic and ferritic-martensitic compositions of the steel. Microhardness increased by as much as 70% and ultimate tensile strength by 80%. More significantly, tensile strength was improved by 40% without decreasing ductility.

Foley, David Christopher

2007-12-01T23:59:59.000Z

256

Information geometry of Gaussian channels  

Science Conference Proceedings (OSTI)

We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

Monras, Alex [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); CNR-INFM Coherentia, Napoli (Italy); CNISM Unita di Salerno (Italy) and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy); Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); CNR-INFM Coherentia, Napoli (Italy) and CNISM Unita di Salerno; and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy); ISI Foundation for Scientific Interchange, Villa Gualino, Viale Settimio Severo 65, I-10133 Torino (Italy)

2010-06-15T23:59:59.000Z

257

Information geometry of Gaussian channels  

E-Print Network (OSTI)

We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a byproduct, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications: It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulae for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states, and provide the optimal observables for the estimation of the channel parameters (e.g. bath couplings, squeezing, and temperature).

Alex Monras; Fabrizio Illuminati

2009-11-08T23:59:59.000Z

258

Banking channel management : global trends and strategies  

E-Print Network (OSTI)

Banking channel management has become a crucial component in the drive for improved efficiency. Since the channel is the interlocutor between customers and products, banks are leveraging their knowledge of channels to ...

Catalan, Renato Teixeira

2004-01-01T23:59:59.000Z

259

Performance analysis of relay channel estimation  

Science Conference Proceedings (OSTI)

Amplify-and-Forward (AF) relays can be used to enhance the channel in Multiple-Input-Multiple-Output (MIMO) wireless communication systems. However, optimizing the channel requires Channel State Information (CSI). This paper is concerned with the performance ...

Panagiota Lioliou; Mats Viberg; Mikael Coldrey

2009-11-01T23:59:59.000Z

260

Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning  

E-Print Network (OSTI)

In this paper, cognitive transmission under quality of service (QoS) constraints is studied. In the cognitive radio channel model, it is assumed that the secondary transmitter sends the data at two different average power levels, depending on the activity of the primary users, which is determined by channel sensing performed by the secondary users. A state-transition model is constructed for this cognitive transmission channel. Statistical limitations on the buffer lengths are imposed to take into account the QoS constraints. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. This analysis is conducted for fixed-power/fixed-rate, fixed-power/variable-rate, and variable-power/variable-rate transmission schemes under different assumptions on the availability of channel side information (CSI) at the transmitter. The impact upon the effective capacity of several system parameters, including channel sensing duration, detect...

Akin, Sami

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal conductivity of aqueous foam  

Science Conference Proceedings (OSTI)

Thermal conductivity plays an important part in the response of aqueous foams used as geothermal drilling fluids. The thermal conductivity of these foams was measured at ambient conditions using the thermal conductivity probe technique. Foam densities studied were from 0.03 to 0.2 g/cm/sup 3/, corresponding to liquid volume fractions of the same magnitude. Microscopy of the foams indicated bubble sizes in the range 50 to 300 ..mu..m for nitrogen foams, and 30 to 150 ..mu..m for helium foams. Bubble shapes were observed to be polyhedral at low foam densities and spherical at the higher densities. The measured conductivity values ranged from 0.05 to 0.12 W/m-K for the foams studied. The predicted behavior in foam conductivity caused by a change in the conductivity of the discontinuous gas phase was observed using nitrogen or helium gas in the foams. Analysis of the probe response data required an interpretation using the full intergral solution to the heat conduction equation, since the thermal capacity of the foam was small relative to the thermal mass of the probe. The measurements of the thermal conductivity of the foams were influenced by experimental effects such as the probe input power, foam drainage, and the orientation of the probe and test cell. For nitrogen foams, the thermal conductivity vs liquid volume fraction was observed to fall between predictions based on the parallel ordering and Russell models for thermal conduction in heterogeneous materials.

Drotning, W.D.; Ortega, A.; Havey, P.E.

1982-05-01T23:59:59.000Z

262

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

263

Heat conductivity in the beta-FPU lattice. Solitons and breathers as energy carriers  

E-Print Network (OSTI)

This paper consists of two parts. The first part proposes a new methodological framework within which the heat conductivity in 1D lattices can be studied. The total process of heat conductivity is decomposed into two contributions where the first one is the equilibrium process at equal temperatures T of both lattice ends and the second -- non-equilibrium process with the temperature \\Delta T of one end and zero temperature of the other. The heat conductivity in the limit \\Delta T \\to 0 is reduced to the heat conductivity of harmonic lattice. A threshold temperature T_{thr} scales T_{thr}(N) \\sim N^{-3} with the lattice size N. Some unusual properties of heat conductivity can be exhibited on nanoscales at low temperatures. The thermodynamics of the \\beta-FPU lattice can be adequately approximated by the harmonic lattice. The second part testifies in the favor of the soliton and breather contribution to the heat conductivity in contrast to [N. Li, B. Li, S. Flach, PRL 105 (2010) 054102]. In the continuum limit the \\beta-FPU lattice is reduced to the modified Korteweg - de Vries equation with soliton and breather solutions. Numerical simulations demonstrate their high stability. New method for the visualization of moving solitons and breathers is suggested. An accurate expression for the dependence of the sound velocity on temperature is also obtained. Our results support the conjecture on the solitons and breathers contribution to the heat conductivity.

T. Yu. Astakhova; V. N. Likhachev; G. A. Vinogradov

2011-03-18T23:59:59.000Z

264

Publications from Research Conducted at GP-SANS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications from Research Conducted at GP-SANS Publications from Research Conducted at GP-SANS 2013 Publications Anovitz L. M., Cole D. R., Rother G., Allard L. F., Jackson A. J., Littrell K. C., "Diagenetic changes in macro- to nano-scale porosity in the St. Peter sandstone: an (ultra) small angle neutron scattering and backscattered electron imaging analysis", Geochimica et Cosmochimica Acta 102, 280-305 (2013). Black S. B., Chang Y., Bae C., Hickner M. A., "FTIR characterization of water-polymer interactions in superacid polymers", Journal of Physical Chemistry B 117, 16266-16274 (2013). Boukhalfa S., He L., Melnichenko Y. B., Yushin G., "Small-angle neutron scattering for in situ probing of ion adsorption inside micropores", Angewandte Chemie International Edition 52, 4618-4622 (2013).

265

The quantum capacity with symmetric side channels  

E-Print Network (OSTI)

We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).

Graeme Smith; John A. Smolin; Andreas Winter

2006-07-05T23:59:59.000Z

266

CONDUCTIVITY  

E-Print Network (OSTI)

ACGIH: 0.1 ppm 0.1 ppm; STEL 0.3 ppm 0.1 ppm; STEL 0.3 ppm (1 ppm = 6.53 mg/m 3) PROPERTIES: liquid; d 3.119 g/mL @ 20 C;

Prefilter Filter

1994-01-01T23:59:59.000Z

267

Channel complex architecture of fine-grained submarine fans at the base-of-slope  

Science Conference Proceedings (OSTI)

The fan-valley or upper fan channel connects the submarine canyon on the outer shelf-upper slope to the basin proper. It is an erosionally-formed channel that is a conduit for sediment transported to the basin. The valley may widen where it enters the base-of-slope area. Most of the density flows are much smaller than the initial flow and therefore will not occupy the entire width of the upper fan channel. Smaller individual channels will be constructed resulting in a massive fill comprised of amalgamated sandstones. Sand-rich levees and overbank deposits flank each channel. Channel switching may take place toward locations with a slightly steeper gradient. These switches most likely result from irregular flow successions and different flow sizes. Erosion between successive channels is common, removing part of the channel fill and levee-overbank deposits. This results in a disorderly distribution of low-permeability barriers creating local obstruction to connectivity. A study of the sedimentological architecture of the updip mid-fan channel complex was conducted on cliff sections of the Permian Tanqua Karoo subbasin in South Africa, and in Big Rock Quarry in North Little Rock, Arkansas. Seismic records of the base-of-slope of the Mississippi Fan show a widening pattern, and of the Bryant Canyon Fan Complex south of the Sigsbee Escarpment the channel complexity. Integration of seismic data in outcrop observations improves our understanding of the complexity of many good reservoir sands, typically overlain by slope shales.

Bouma, A.H. [Louisiana State Univ., Baton Rouge, LA (United States); Gwang, H. [Kunsan National Univ. (Korea, Democratic People`s Republic of); Van Antwerepen, O. [Univ. of Port Elizabeth (South Africa)] [and others

1995-10-01T23:59:59.000Z

268

Flexible, Transparent, Conducting Nanotubes Advance ...  

conducting material, indium tin oxide (ITO). All of the indium component of ITO is exported from abroad. The continuously increasing cost of indium and its limited

269

Nanoscale magnetic field mapping with a single spin scanning probe magnetometer  

SciTech Connect

We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

2012-04-09T23:59:59.000Z

270

Quasipassive positioning platform for nanoscale management of in-plane motion  

Science Conference Proceedings (OSTI)

As leading edge technology pursues a common trend of working on smaller and smaller scales, there is increasing demand on the motion management at the nanometer range. In this letter, we report a two-axis quasipassive positioning device capable of four degrees of freedom in-plane motion. The concept comprises of a platform suspended by tensile stressed flexure elements on either side. By selectively trimming the stress elements, the equilibrium position can be biased to one side or another, enabling nanoscale movement between the suspended platform and the base. Focused ion beam experiment demonstrates that such platform enables positioning accuracy on the order of tens of nanometers.

Li Biao; Zhu Yu; Sharon, Andre [Fraunhofer Center for Manufacturing Innovation, 15 St. Mary's Street, Brookline, Massachusetts 02446 (United States); College of Nanoscale Science and Engineering, University at Albany-SUNY, 255 Fuller Road, Albany, New York 12203 (United States); Fraunhofer Center for Manufacturing Innovation, 15 St. Mary's Street, Brookline, Massachusetts 02446 (United States)

2006-07-24T23:59:59.000Z

271

Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)  

Science Conference Proceedings (OSTI)

The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

2009-01-06T23:59:59.000Z

272

Nanoscale devices for solid state refrigeration and power generation, Twentieth Annual  

E-Print Network (OSTI)

A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solidstate and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.

Ali Shakouri

2004-01-01T23:59:59.000Z

273

Thermal conductivity Measurements of Kaolite  

Science Conference Proceedings (OSTI)

Testing was performed to determine the thermal conductivity of Kaolite 1600, which primarily consists of Portland cement and vermiculite. The material was made by Thermal Ceramics for refractory applications. Its combination of light weight, low density, low cost, and noncombustibility made it an attractive alternative to the materials currently used in ES-2 container for radioactive materials. Mechanical properties and energy absorption tests of the Kaolite have been conducted at the Y-12 complex. Heat transfer is also an important factor for the application of the material. The Kaolite samples are porous and trap moisture after extended storage. Thermal conductivity changes as a function of moisture content below 100 C. Thermal conductivity of the Kaolite at high temperatures (up to 700 C) are not available in the literature. There are no standard thermal conductivity values for Kaolite because each sample is somewhat different. Therefore, it is necessary to measure thermal conductivity of each type of Kaolite. Thermal conductivity measurements will help the modeling and calculation of temperatures of the ES-2 containers. This report focuses on the thermal conductivity testing effort at ORNL.

Wang, H

2003-02-21T23:59:59.000Z

274

Introduction to the Responsible Conduct  

E-Print Network (OSTI)

, that the standards for responsible conduct can vary from field to field, and that in many situations two or more limitations. First, rules generally set minimum standards for behavior rather than strive for the ideal, but there may be situations in which you should strive for a higher standard of conduct. Responsible research

Valero-Cuevas, Francisco

275

Introduction to the Responsible Conduct  

E-Print Network (OSTI)

be and is learned in different ways, that the standards for responsible conduct can vary from field to field of research, they have two important limitations. First, rules generally set minimum standards for behavior for a higher standard of conduct. Responsible research requires more than simply following rules. Second, rules

Quirk, Gregory J.

276

Conduction cooling: multicrate fastbus hardware  

SciTech Connect

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

277

Entanglement Cost of Quantum Channels  

E-Print Network (OSTI)

The entanglement cost of a quantum channel is the minimal rate at which entanglement (between sender and receiver) is needed in order to simulate many copies of a quantum channel in the presence of free classical communication. In this paper we show how to express this quantity as a regularized optimization of the entanglement formation over states that can be generated between sender and receiver. Our formula is the channel analog of a well-known formula for the entanglement cost of quantum states in terms of the entanglement of formation; and shares a similar relation to the recently shattered hope for additivity. The entanglement cost of a quantum channel can be seen as the analog of the quantum reverse Shannon theorem in the case where free classical communication is allowed. The techniques used in the proof of our result are then also inspired by a recent proof of the quantum reverse Shannon theorem and feature the one-shot formalism for quantum information theory, the post-selection technique for quantum channels as well as von Neumann's minimax theorem. We discuss two applications of our result. First, we are able to link the security in the noisy-storage model to a problem of sending quantum rather than classical information through the adversary's storage device. This not only improves the range of parameters where security can be shown, but also allows us to prove security for storage devices for which no results were known before. Second, our result has consequences for the study of the strong converse quantum capacity. Here, we show that any coding scheme that sends quantum information through a quantum channel at a rate larger than the entanglement cost of the channel has an exponentially small fidelity.

Mario Berta; Fernando Brandao; Matthias Christandl; Stephanie Wehner

2011-08-26T23:59:59.000Z

278

Conductive polymer-based material  

DOE Patents (OSTI)

Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

2007-04-17T23:59:59.000Z

279

Early Channel Evolution in the Middle Permian Brushy Canyon Formation, West Texas, USA  

E-Print Network (OSTI)

Submarine channels are important conduits for sediment in deep marine environments, and understanding their formation is critical to modeling basin fill processes. Most models describing channel evolution focus on turbidity currents as the erosive and constructive force in channel initiation. However, slope failure and slumping can be significant drivers of channelization, particularly in upper slope and ramp environments. Determining the relative roles of slumping and erosion by turbidity currents can provide important insight into the timing of channelization and the geometries of subsequent deposits. Samples were collected from Guadalupe Mountains National Park from two primary localities at Salt Flat Bench (Figure 2). Three vertical sections were measured at both locations. A total of 16 samples were collected for petrographic analysis and X-ray fluorescence (XRF) imaging. Spectacular outcrop quality makes the Middle Permian Brushy Canyon Formation in Guadalupe Mountains National Park an ideal location for the study of early channel evolution. A detailed facies analysis of fine-grained channel deposits was conducted in the Upper Brushy Canyon Formation in the Salt Flat Bench outcrops. After channelization, an interval of relative condensation dominated by hemipelagic settling of organic matter and silt was followed by an interval of incomplete sediment bypass by turbidity currents. This sequence of events suggests that sea level was at a relative highstand at the time of channel inception, whereas channel inception by turbidity currents is expected during a lowstand. Slumping rather than erosion by turbidity currents is the most likely mechanism to have initiated a channel at the study area. There is no evidence for the existence for high energy currents until after the interval of condensation. However, the action of weak contour currents during early channel evolution is observed in outcrop and microtextural features. Early carbonate cementation of channel-lining silts may have stabilized the slump surface with respect to erosion by later turbidity currents.

Gunderson, Spencer

2011-08-01T23:59:59.000Z

280

On Quantum Capacity of Compound Channels  

E-Print Network (OSTI)

In this paper we address the issue of universal or robust communication over quantum channels. Specifically, we consider memoryless communication scenario with channel uncertainty which is an analog of compound channel in classical information theory. We determine the quantum capacity of finite compound channels and arbitrary compound channels with informed decoder. Our approach in the finite case is based on the observation that perfect channel knowledge at the decoder does not increase the capacity of finite quantum compound channels. As a consequence we obtain coding theorem for finite quantum averaged channels, the simplest class of channels with long-term memory. The extension of these results to quantum compound channels with uninformed encoder and decoder, and infinitely many constituents remains an open problem.

I. Bjelakovic; H. Boche; J. Noetzel

2008-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrical Conduction, Heat Conduction, Shear Viscosity and Entropy  

E-Print Network (OSTI)

We present here how to study steady linear transport phenomena by using entropy. We study the system and the environment together and identify their entropies. Concerning their interaction, quantum mechanics is considered. A time parameter $\\tau$ is therefore introduced to characterize the discrete nature of the quantum interactions. By combining $\\tau$ and the entropy, an approach is constructed successfully to study electrical conduction, heat conduction and shear viscosity

Zhang, Yong-Jun

2010-01-01T23:59:59.000Z

282

Poolside Measurement of AREVA BWR Fuel Channels  

Science Conference Proceedings (OSTI)

As part of the EPRI Fuel Reliability Program, a fuel channel focus group formed in 2002 to initiate measurements on irradiated boiling water reactor (BWR) fuel channels. Fuel channels designed and supplied by Framatome ANP, Inc., an AREVA and Siemens Company (AREVA), were of particular interest, since no measurement information existed from U.S. BWRs with modern AREVA channels. The efforts of the focus group culminated in development of a new channel measurement machine by AREVA and the measurement of AR...

2004-12-13T23:59:59.000Z

283

Development of nano-scale and biomimetic surfaces for biomedical applications  

E-Print Network (OSTI)

The work described in this dissertation details the development of a biomimetic materials for use in sensors and therapeutics, based on new advances in material science. The sensors developed herein target neurodegenerative diseases. Two of the diseases, the transmissible spongiform encephalopathies (TSEs) and Alzheimerâ??s disease (AD), are diseases associated with the abnormal folding of a protein, thus detecting the disease is dependent upon developing structure specific sensor technologies. Both sensors developed in this work take advantage of the unique optical properties associated with nanoscale metal particles, however they use different types of spectroscopies for optical detection of the presence of the disease associated abnormal protein, and different types of recognition elements that bring the disease associated proteins close to the nanoscale metal particles. In the case of TSEs, the recognition element was a commercially available antibody. In the case of AD, the recognition element was a molecular scale self-assembled surface. A therapeutic for AD was developed based on the molecular scale materials developed for the AD biosensor. Mathematical models were developed that facilitated the rational design of the biosensors described in this work that could also be used in future biosensor development.

Henry, James Edward

2005-08-01T23:59:59.000Z

284

Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance  

Science Conference Proceedings (OSTI)

Co{sub 3}O{sub 4} hollow microspheres with micro- and nano-scale composite structure self-assembled by nanosheets were successfully fabricated by the template-free wet-chemical approach. This method is simple, facile and effective. The Co{sub 3}O{sub 4} hollow microspheres with good purity and homogeneous size were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectrometer (ICP). The formation mechanism was deeply studied. The micro- and nano-scale composite structure constructed by the porous nanosheets promotes to improve the electrochemical properties of Co{sub 3}O{sub 4} hollow microspheres. The high discharge capacity of 1048 mAh g{sup -1} indicates it to be the potential application in electrode materials of Li-ion battery. - Graphical Abstract: Co{sub 3}O{sub 4} hollow microspheres self-assembled by nanosheets are successfully fabricated by a template-free wet-chemical approach. The hollow microspheres are in good morphology purity and homogeneous size. Co{sub 3}O{sub 4} hollow microspheres constructed by porous nanosheets show the high discharge capacity of 1048 mAh g{sup -1}, indicating it to be the potential electrode material of Li-ion battery.

Tao Feifei [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000 (China); Gao Cuiling [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Wen Zhenhai; Wang Qiang; Li Jinghong [Department of Chemistry, Qinghua University, Beijing 100084 (China); Xu Zheng, E-mail: zhengxu@netra.nju.edu.c [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

2009-05-15T23:59:59.000Z

285

Ceramic membranes having macroscopic channels  

DOE Patents (OSTI)

Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.

Anderson, Marc A. (Madison, WI); Peterson, Reid A. (Madison, WI)

1996-01-01T23:59:59.000Z

286

Ceramic membranes having macroscopic channels  

DOE Patents (OSTI)

Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.

Anderson, M.A.; Peterson, R.A.

1996-09-03T23:59:59.000Z

287

Continuous production of conducting polymer  

E-Print Network (OSTI)

A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

Gaige, Terry A. (Terry Alden), 1981-

2004-01-01T23:59:59.000Z

288

Electron thermal conduction in LASNEX  

SciTech Connect

This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations.

Munro, D.; Weber, S.

1994-12-16T23:59:59.000Z

289

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Hassanain, Babiker

2011-01-01T23:59:59.000Z

290

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

291

Eleven-channel second-order silicon microring-resonator filterbank with tunable channel spacing  

E-Print Network (OSTI)

A wide-band, eleven-channel second-order filterbank fabricated on an SOI platform is demonstrated with tunable channel spacing and a 20 GHz single-channel bandwidth. The tuning efficiency is ~28 ?W/GHz/ring.

Dahlem, Marcus Vinicius Sobral

292

Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates  

E-Print Network (OSTI)

.1 GPa, the system crystallizes into a bilayer ice. A P-d phase diagram showing the vapor, liquid, and bilayer ice phases is proposed. When water is confined by hydrophilic hydroxylated silica platesEffect of pressure on the phase behavior and structure of water confined between nanoscale

293

Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer  

E-Print Network (OSTI)

ABSTRACT The kinetics of the opening and closing of individual ion-conducting channels in lipid bilayers doped with small amounts of excitability-inducing material (EIM) are determined from discrete fluctuations in ionic current. The kinetics for the approach to steady-state conductance during voltage clamp are determined for lipid bilayers containing many EIM channels. The two sets of measurements are found to be consistent, verifying that the voltage-dependent conductance of the many-channel EIM system arises from the opening and closing of individual EIM channels. The opening and closing of the channels are Poisson processes. Transition rates for these processes vary exponentially with applied potential, implying that the energy difference between the open and closed states of an EIM channel is linearly proportional to the transmembrane electric field. A model incorporating the above properties of the EIM channels predicts the observed voltage dependence of ionic conductance and conductance relaxation time, which are also characteristic of natural electrically excitable membranes.

Gerald Ehrenstein; Robert Blumenthal; Ramon Latorre; Harold Lecar

1974-01-01T23:59:59.000Z

294

FPGA side-channel receivers  

Science Conference Proceedings (OSTI)

The popularity of FPGAs is rapidly growing due to the unique advantages that they offer. However, their distinctive features also raise new questions concerning the security and communication capabilities of an FPGA-based hardware platform. In this paper, ... Keywords: ddr2, fpga, i2c, phase shift, side-channel receiver, thermal

Ji Sun; Ray Bittner; Ken Eguro

2011-02-01T23:59:59.000Z

295

Shallow Water Flows in Channels  

Science Conference Proceedings (OSTI)

We consider the shallow water equations for flows through channels with arbitrary cross section. The system forms a hyperbolic set of balance laws. Exact steady-state solutions are available and are controlled by the relation between the bottom topography ... Keywords: Balance laws, Hyperbolic conservation laws, Steady-state solutions, Upwind schemes

Gerardo Hernndez-Dueas; Smadar Karni

2011-07-01T23:59:59.000Z

296

Mechanism of inhibition of cyclic nucleotide-gated ion channels by diacylglycerol  

E-Print Network (OSTI)

abstract Cyclic nucleotidegated (CNG) channels are critical components in the visual and olfactory signal transduction pathways, and they primarily gate in response to changes in the cytoplasmic concentration of cyclic nucleotides. We previously found that the ability of the native rod CNG channel to be opened by cGMP was markedly inhibited by analogues of diacylglycerol (DAG) without a phosphorylation reaction (Gordon, S.E., J. Downing-Park, B. Tam, and A.L. Zimmerman. 1995. Biophys. J. 69:409417). Here, we have studied cloned bovine rod and rat olfactory CNG channels expressed in Xenopus oocytes, and have determined that they are differentially inhibited by DAG. At saturating [cGMP], DAG inhibition of homomultimeric ( ? subunit only) rod channels was similar to that of the native rod CNG channel, but DAG was much less effective at inhibiting the homomultimeric olfactory channel, producing only partial inhibition even at high [DAG]. However, at low open probability (P o), both channels were more sensitive to DAG, suggesting that DAG is a closed state inhibitor. The Hill coefficients for DAG inhibition were often greater than one, suggesting that more than one DAG molecule is required for effective inhibition of a channel. In single-channel recordings, DAG decreased the P o but not the single-channel conductance. Results with chimeras of rod and olfactory channels suggest that the differences in DAG inhibition correlate more with differences in the transmembrane segments and their attached loops than with differences in the amino and carboxyl termini. Our results are consistent with a model in which multiple DAG molecules stabilize the closed state(s) of a CNG channel by binding directly to the channel and/or by altering bilayerchannel interactions. We speculate that if DAG interacts directly with the channel, it may insert into a putative hydrophobic crevice among the transmembrane domains of each subunit or at the hydrophobic interface between the channel and the bilayer. key words: rod olfactory receptor channel modulation lipid bilayer tetracaine

Jennifer I. Crary; Dylan M. Dean; Wang Nguitragool; Peri T. Kurshan; Anita L. Zimmerman

2000-01-01T23:59:59.000Z

297

Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water  

SciTech Connect

Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near Tg, on a typical laboratory time scale (e.g. {approx}1000 s), a water molecule moves less than a molecular distance. For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquid at these low temperatures. ASW films can be used for investigating the non-thermal reactions relevant to radiolysis. In this account we will present a survey of our research on the thermal and non thermal properties of ASW using this approach.

Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

2012-01-17T23:59:59.000Z

298

Quantum Capacities of Channels with small Environment  

E-Print Network (OSTI)

We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

Michael M. Wolf; David Perez-Garcia

2006-07-11T23:59:59.000Z

299

Ion transport through cell membrane channels  

E-Print Network (OSTI)

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

300

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

E. , and Ju, Y. S. , Heat conduction in novel electronicBalandin, A. A. , Heat conduction in graphene: experimentalD. , Simulation of heat conduction in suspended graphene

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

Chen, Coherent Phonon Heat Conduction in Superlattices,1 Chapter 1: Heat Conduction in Nanostructured Materialsfindings. Chapter 1: Heat Conduction in Nanostructured

Yuen, Taylor S.

302

Lithium ion conducting ionic electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

303

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

SciTech Connect

Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

Fischer, P.; Im, M.-Y.

2010-01-18T23:59:59.000Z

304

Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films  

SciTech Connect

We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Mazumdar, Dipanjan [University of Alabama, Tuscaloosa; Shelke, Vilas [University of Alabama, Tuscaloosa; Iliev, Milko [University of Houston, Houston; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Kalinin, Sergei V [ORNL; Kalinin, Sergei V [ORNL; Gupta, Dr. Arunava [University of Alabama, Tuscaloosa

2010-01-01T23:59:59.000Z

305

Unlocking the Nanoscale Secrets of Bird-Feather Colors | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

An Unlikely Route to Ferroelectricity An Unlikely Route to Ferroelectricity How to Make a Splash Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet Reappearing Superconductivity Surprises Scientists Manipulating Genes with Hidden TALENs Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Unlocking the Nanoscale Secrets of Bird-Feather Colors MAY 18, 2012 Bookmark and Share This collage shows the ring-shaped, isotropic x-ray diffraction pattern and electron microscope cross-section of the three-dimensional amorphous or quasi-ordered biophotonic nanostructure in spongy medullary feather barbs responsible for the vivid turquoise plumage of the Plum-throated Cotinga

306

Using Dynamic Quantum Clustering to Analyze Hierarchically Heterogeneous Samples on the Nanoscale  

SciTech Connect

Dynamic Quantum Clustering (DQC) is an unsupervised, high visual data mining technique. DQC was tested as an analysis method for X-ray Absorption Near Edge Structure (XANES) data from the Transmission X-ray Microscopy (TXM) group. The TXM group images hierarchically heterogeneous materials with nanoscale resolution and large field of view. XANES data consists of energy spectra for each pixel of an image. It was determined that DQC successfully identifies structure in data of this type without prior knowledge of the components in the sample. Clusters and sub-clusters clearly reflected features of the spectra that identified chemical component, chemical environment, and density in the image. DQC can also be used in conjunction with the established data analysis technique, which does require knowledge of components present.

Hume, Allison; /Princeton U. /SLAC

2012-09-07T23:59:59.000Z

307

Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids  

E-Print Network (OSTI)

A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes' mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the in-herency maximum order-potential structure in random systems.

Jia-lin Wu

2011-05-25T23:59:59.000Z

308

Controlling magnetoelectric coupling by nanoscale phase transformation instrain engineered bismuth ferrite  

Science Conference Proceedings (OSTI)

The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.

Liu, Y. Y. [University of Washington, Seattle; Vasudevan, Rama K [ORNL; Pan, K. [Xiangtan University, Xiangtan Hunan, China; Xie, S. H. [University of Washington, Seattle; Liang, W. -I. [National Chiao Tung University, Hsinchu, Taiwan; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Chen, Y. -C. [National Cheng Kung University, Tainan, Taiwan; Chu, Y.-H. [National Chiao Tung University, Hsinchu, Taiwan; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL; Li, J. Y. [University of Washington, Seattle

2012-01-01T23:59:59.000Z

309

Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals  

SciTech Connect

In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

2006-09-09T23:59:59.000Z

310

Nano-scale optical and electrical probes of materials and processes.  

DOE Green Energy (OSTI)

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

Bogart, Katherine Huderle Andersen

2007-03-01T23:59:59.000Z

311

Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering  

Science Conference Proceedings (OSTI)

To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

2009-09-09T23:59:59.000Z

312

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

313

Electrically conductive rigid polyurethane foam  

DOE Patents (OSTI)

A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

Neet, Thomas E. (Grandview, MO); Spieker, David A. (Olathe, KS)

1985-03-19T23:59:59.000Z

314

September 1999 conduct.doc  

E-Print Network (OSTI)

STANDARDS OF CONDUCT Sec. 556.004. PROHIBITED ACTS OF AGENCIES AND INDIVIDUALS. (a) A state agency may's official duties in favor of another. Sec. 2113.012. USE OF ALCOHOLIC BEVERAGES. A state agency may not use agency may not use a state-owned or state-leased motor vehicle except on official state business. (b

315

A Model of Heat Conduction  

E-Print Network (OSTI)

We define a deterministic ``scattering'' model for heat conduction which is continuous in space, and which has a Boltzmann type flavor, obtained by a closure based on memory loss between collisions. We prove that this model has, for stochastic driving forces at the boundary, close to Maxwellians, a unique non-equilibrium steady state.

Collet, Pierre

2008-01-01T23:59:59.000Z

316

Electrically conductive rigid polyurethane foam  

DOE Patents (OSTI)

A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

Neet, T.E.; Spieker, D.A.

1983-12-08T23:59:59.000Z

317

Thin film ion conducting coating  

DOE Patents (OSTI)

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

318

Theory of the ion-channel laser  

Science Conference Proceedings (OSTI)

A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency {omega}{approximately}2 {gamma}{sup 2} {omega}{beta}, where {gamma} is the Lorentz factor and {omega}{beta} is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed.

Whittum, D.H.

1990-09-01T23:59:59.000Z

319

Conjectured explanation for room-temperature superconductivity in narrow channels in oxidized polypropylene  

SciTech Connect

Two groups of scientists have observed conductivity at least five orders of magnitude higher than that of copper at room temperature in narrow channels perpendicular to surfaces of films in oxidized polypropylene. For pulsed currents, this conductivity starts at a minimum value of applied current, and is destroyed at a current of about 30-60 times this value. Because of the existence of an upper critical current and of the observation that electronic thermal conductivity is negligible in the channels, it is thought that the channels are superconducting. A study is made of the hypothesis that these results are due to enhanced pairing, as first suggested by Parameter, when the drift velocity of current carriers becomes close to the velocity of sound or, in work by Hone and by the present author, to an appropriate phase velocity of optical phonons. Such enhancements can be expected to be larger in quasi-one-dimensional systems. 10 refs.

Eagles, D.M. (NASA Marshall Space Flight Center, Huntsville, AL (United States))

1994-06-01T23:59:59.000Z

320

NIST Launches YouTube Channel  

Science Conference Proceedings (OSTI)

... The Department of Commerce negotiated a contract with Google that allows its agencies to establish YouTube channels. ...

2011-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal superdense coding over memory channels  

SciTech Connect

We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.

Shadman, Z.; Kampermann, H.; Bruss, D.; Macchiavello, C. [Institute fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf, DE-40225 Duesseldorf (Germany); Dipartimento di Fisica ''A. Volta'' and INFM-Unita di Pavia, Via Bassi 6, IT-27100 Pavia (Italy)

2011-10-15T23:59:59.000Z

322

Shannon capacity of nonlinear regenerative channels  

E-Print Network (OSTI)

We compute Shannon capacity of nonlinear channels with regenerative elements. Conditions are found under which capacity of such nonlinear channels is higher than the Shannon capacity of the classical linear additive white Gaussian noise channel. We develop a general scheme for designing the proposed channels and apply it to the particular nonlinear sine-mapping. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived.

Sorokina, M A

2013-01-01T23:59:59.000Z

323

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

324

Toward a Framework for Assessing Internet Channels  

Science Conference Proceedings (OSTI)

The emergence of the Internet has forced a large number of firms to introduce Internet-based channels of distribution into existing distribution systems to market their products. In multiple channels context, there has been a call for better performance ... Keywords: Internet channels, strategic profit model (SPM), analytic network process (ANP), performance evaluation

Hung-Jen Tu; Chia-Yang Wong

2010-05-01T23:59:59.000Z

325

Information transmission through lossy bosonic memory channels  

E-Print Network (OSTI)

We study the information transmission through a quantum channel, defined over a continuous alphabet and losing its energy en route, in presence of correlated noise among different channel uses. We then show that entangled inputs improve the rate of transmission of such a channel.

Giovanna Ruggeri; Giulio Soliani; Vittorio Giovannetti; Stefano Mancini

2005-02-15T23:59:59.000Z

326

A Dynamic Model of the Indoor Channel  

Science Conference Proceedings (OSTI)

This paper proposes a new approach to modeling the radio channel experienced by transceivers moving in an indoor environment. For modeling the time-varying impulse response (IR) a randomly time-varying power-delay profile (PDP) is used, which ... Keywords: channel measurements, indoor channel modeling, ray clustering, time-varying PDP, wide band model

Jesper dum Nielsen; Valentine Afanassiev; Jrgen Bach Andersen

2001-11-01T23:59:59.000Z

327

Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel  

Science Conference Proceedings (OSTI)

Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

1999-11-01T23:59:59.000Z

328

Multiple channel data acquisition system  

DOE Patents (OSTI)

A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

Crawley, H. Bert (Ames, IA); Rosenberg, Eli I. (Ames, IA); Meyer, W. Thomas (Ames, IA); Gorbics, Mark S. (Ames, IA); Thomas, William D. (Boone, IA); McKay, Roy L. (Ames, IA); Homer, Jr., John F. (Ames, IA)

1990-05-22T23:59:59.000Z

329

Multiple channel data acquisition system  

DOE Patents (OSTI)

A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

1990-05-22T23:59:59.000Z

330

A COMPARISON OF LIDAR GENERATED CHANNEL FEATURES WITH GROUND-SURVEYED CHANNEL FEATURES IN THE LITTLE CREEK WATERSHED.  

E-Print Network (OSTI)

??Detecting change in stream channel features over time is important in understanding channel morphology and the effects of both natural and anthropogenic influences. Channel features (more)

Hilburn, Ryan M

2010-01-01T23:59:59.000Z

331

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

332

Electrically conductive polymer concrete coatings  

DOE Patents (OSTI)

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, J.J.; Elling, D.; Reams, W.

1990-03-13T23:59:59.000Z

333

Electrically conductive polymer concrete coatings  

DOE Patents (OSTI)

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

1990-01-01T23:59:59.000Z

334

Electrically conductive polymer concrete coatings  

DOE Patents (OSTI)

A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

Fontana, J.J.; Elling, D.; Reams, W.

1988-05-26T23:59:59.000Z

335

On channels with finite Holevo capacity  

E-Print Network (OSTI)

We consider a nontrivial class of infinite dimensional quantum channels characterized by finiteness of the Holevo capacity. Some general properties of channels of this class are described. In particular, a special sufficient condition of existence of an optimal measure is obtained and examples of channels with no optimal measure are constructed. It is shown that each channel with finite Holevo capacity has a natural extension to the set of all positive normalized functionals on the algebra of all bounded operators. General properties of such an extension are described. The class of infinite dimensional channels, for which the Holevo capacity can be explicitly determined, is considered.

M. E. Shirokov

2006-02-07T23:59:59.000Z

336

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

337

Quantum polar codes for arbitrary channels  

E-Print Network (OSTI)

We construct a new entanglement-assisted quantum polar coding scheme which achieves the symmetric coherent information rate by synthesizing "amplitude" and "phase" channels from a given, arbitrary quantum channel. We first demonstrate the coding scheme for arbitrary quantum channels with qubit inputs, and we show that quantum data can be reliably decoded by O(N) rounds of coherent quantum successive cancellation, followed by N controlled-NOT gates (where N is the number of channel uses). We also find that the entanglement consumption rate of the code vanishes for degradable quantum channels. Finally, we extend the coding scheme to channels with multiple qubit inputs. This gives a near-explicit method for realizing one of the most striking phenomena in quantum information theory: the superactivation effect, whereby two quantum channels which individually have zero quantum capacity can have a non-zero quantum capacity when used together.

Wilde, Mark M

2012-01-01T23:59:59.000Z

338

Directional fidelity of nanoscale motors and particles is limited by the second law of thermodynamics via a universal equality  

E-Print Network (OSTI)

Directional motion of nanoscale motors and driven particles in an isothermal environment costs a finite amount of energy despite zero work as decreed by the 2nd law, but quantifying this general limit remains difficult. Here we derive a universal equality linking directional fidelity of an arbitrary nanoscale object to the least possible energy driving it. The fidelity-energy equality depends on the environmental temperature alone; any lower energy would violate the 2nd law in a thought experiment. Real experimental proof for the equality comes from force-induced motion of biological nanomotors by three independent groups for translational as well as rotational motion. Interestingly, the natural self-propelled motion of a biological nanomotor (F1-ATPase) known to have nearly 100% energy efficiency evidently pays the 2nd-law decreed least energy cost for direction production.

Wang, Zhisong; Efremov, Artem

2013-01-01T23:59:59.000Z

339

THERMAL CONDUCTIVITY ANALYSIS OF GASES  

DOE Patents (OSTI)

This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

Clark, W.J.

1949-06-01T23:59:59.000Z

340

Multiple channel programmable coincidence counter  

DOE Patents (OSTI)

A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the serializer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

Arnone, G.J.

1989-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Planning and Conducting Readiness Reviews  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3006-2010 3006-2010 ________________________ Superseding DOE-STD-3006-2000 June 2000 DOE STANDARD PLANNING AND CONDUCTING READINESS REVIEWS U.S. Department of Energy AREA OPER Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3006-YR i CONTENTS FOREWORD................................................................................................................................. 1

342

Conducting Your Own Energy Audit  

E-Print Network (OSTI)

Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a companys profit every minute of every day. Inefficient energy usage is like having money lost or stolen. Energy costs may account for up to 25% of a companys expenses and hundreds of thousands of dollars a year. To answer What will be discussed later in this paper. The answer to When is that the energy audit needs to be done now! Every day and month of delay is throwing money away that could be put back into the business or distributed as profit. To answer Who should do the study depends on the complexity and size of the utility bill. Large utility bills, $100,000 or more, or a large facility, 100,000 square feet or more, may indicate the skills of a professional energy engineer are required to analyze the facilitys energy consumption and recommend the proper energy conservation measures needed. Smaller facilities usually can be energy analyzed by company personnel who have some energy training. This paper is written to assist those personnel in conducting their own energy audits. Even larger facilities may decide to do an in-house energy audit before they hire outside assistance in order to get an idea of the amount and cost of energy being used and possible savings. This can be compared to the cost of the outside energy audit.

Phillips, J.

2008-01-01T23:59:59.000Z

343

Fabrication of Ordered Array of Tips-pentacene Micro- and Nano-scale Single Crystals  

E-Print Network (OSTI)

As an important type of organic semiconductors, organic small molecule crystals have great potential for low-cost applications such as plastic solar cells (PSC), organic light emitting diodes (OLED) and organic field-effect transistors (OFET). Among numerous molecular crystals, 6, 13-Bis(triisopropylsilylethynyl)pentacene (Tips-pentacene) has aroused much attention because it combines good solubility in common solvents and strong ?-? stacking from self-assembly. However, the inability to achieve ordered array of Tips-pentacene prevents the fabrication of high-performance organic integrated circuits. In this work, two new fabrication methods to pattern Tips-pentacene micro- and nano-scale single crystals are proposed. Both methods are facilitated by nanofabrication techniques such as nanoimprint and photolithography. In the first method, the surface of a silicon substrate is treated by surfactant coating and Tips-pentacene single crystals are deposited in squared patterns. In the second method, we made an ordered array of Tips-pentacene single crystals confined in Teflon-AF patterns. In both techniques, the effects of solvent type, processing temperature and template pattern size on crystal morphology and size are systematically studied.

Xia, Ning

2013-05-01T23:59:59.000Z

344

Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect  

DOE Patents (OSTI)

A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

2010-02-23T23:59:59.000Z

345

Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds  

E-Print Network (OSTI)

The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.

D. Maclaurin; L. T. Hall; A. M. Martin; L. C. L. Hollenberg

2012-07-23T23:59:59.000Z

346

The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS  

Science Conference Proceedings (OSTI)

The Nanoscale Ordered Materials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair dist ribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a $\\delta Q/Q \\sim 0.8\\%$ FWHM (typical), and an achievable $\\delta Q/Q$ of 0.24\\% FWHM (best). The real space resolution is related to the maximum momentum transfer; A maximum momentum transfer of 50\\AA$^{-1}$ can be achieved routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 \\AA$^{-1}$. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

Feygenson, Mikhail [ORNL; Carruth, John William [ORNL; Hoffmann, Ron [ORNL; Chipley, Kenneth King [ORNL; Neuefeind, Joerg C [ORNL

2012-01-01T23:59:59.000Z

347

Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.  

Science Conference Proceedings (OSTI)

Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

2010-11-01T23:59:59.000Z

348

Direct Imaging of Nanoscale Dissolution of Dicalcium Phosphate Dihydrate by an Organic Ligand: Concentration Matters  

SciTech Connect

Unraveling the kinetics and mechanisms of sparingly soluble calcium orthophosphate (Ca!P) dissolution in the presence of organic acids at microscopic levels is important for an improved understanding in determining the effectiveness of organic acids present in most rhizosphere environments. Herein, we use in situ atomic force microscopy (AFM) coupled with a fluid reaction cell to image dissolution on the (010) face of brushite, CaHPO4 2H2O, in citrate- bearing solutions over a broad concentration range. We directly measure the dependence of molecular step retreat rate on citrate concentration at various pH values and ionic strengths, relevant to soil solution conditions. We find that low concentrations of citrate(10!100 M)inducedareductioninstepretreatratesalongboththe[10 0]Ccand[101] Ccdirections.However,at higher concentrations (exceeding 0.1 mM), this inhibitory effect was reversed with step retreat speeds increasing rapidly. These results demonstrate that the concentration-dependent modulation of nanoscale Ca!P phase dissolution by citrate may be applied to analyze the controversial role of organic acids in enhancing Ca!P mineral dissolution in a more complex rhizosphere environment. These in situ observations may contribute to resolving the previously unrecognized interactions of root exudates (low molecular weight organic acids) and sparingly soluble Ca!P minerals.

Qin, Lihong [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Zhang, Wenjun [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Lu, Jianwei [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Stack, Andrew G [ORNL] [ORNL; Wang, Lijun [Huazhong Agricultural University, China] [Huazhong Agricultural University, China

2013-01-01T23:59:59.000Z

349

Better Batteries with a Conducting Polymer Binder  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries with a Conducting Polymer Binder Conductive polymer binder for Lithium ion battery June 2013 Berkeley Lab scientists have invented a new material for use in...

350

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

351

Applying Alpha-Channeling to Mirror Machines  

SciTech Connect

The ?-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic ?- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of ?- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the ?-channeling mechanism. For practical implementation of the ? -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the ? -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the ?-channeling wave to the fuel ions.

A.I. Zhmoginov and N.J. Fisch

2012-03-16T23:59:59.000Z

352

MHL Free Surface Channel | Open Energy Information  

Open Energy Info (EERE)

MHL Free Surface Channel MHL Free Surface Channel Jump to: navigation, search Basic Specifications Facility Name MHL Free Surface Channel Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Channel Beam(m) 1.0 Depth(m) 0.6 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 2 Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Custom Data Acquisition System using National Instruments hardware; system compatible with Planing Hull and Floating Beam Dynamometers Custom Data Acquisition System using National Instruments hardware; system compatible with Planing Hull and Floating Beam Dynamometers

353

Entanglement Transmission Capacity of Compound Channels  

E-Print Network (OSTI)

We determine the optimal achievable rate at which entanglement can be reliably transmitted when the memoryless channel used during transmission is unknown both to sender and receiver. To be more precise, we assume that both of them only know that the channel belongs to a given set of channels. Thus, they have to use encoding and decoding schemes that work well for the whole set.

Igor Bjelakovic; Holger Boche; Janis Noetzel

2009-04-20T23:59:59.000Z

354

Propagation of premixed flames in confined channels.  

E-Print Network (OSTI)

??The propagation of premixed flames in confined channels is investigated. In the unconfined case, the structure of the flame and the flame speed for the (more)

Navaneetha, Arjun

2013-01-01T23:59:59.000Z

355

Analysis of Energy Efficiency in Fading Channels under QoS Constraints  

E-Print Network (OSTI)

Analysis of Energy Efficiency in Fading Channels under QoS Constraints Deli Qiao, Mustafa Cenk, and energy requirements under QoS constraints are identified. The analysis is conducted for the case in which vanishes. Through the wideband slope analysis, the increased energy requirements at low but nonzero power

Gursoy, Mustafa Cenk

356

MAGNETOHYDRODYNAMIC AND THERMAL ISSUES OF THE SiCf0SiC FLOW CHANNEL INSERT  

E-Print Network (OSTI)

MAGNETOHYDRODYNAMIC AND THERMAL ISSUES OF THE SiCf0SiC FLOW CHANNEL INSERT S. SMOLENTSEV,* N. B) made of a silicon carbide composite (SiCf /SiC), which serves as electric and thermal insulator conductivity of the SiCf /SiC as pa- rameters. Under the DEMO reactor conditions, param- eters of the FCI have

Abdou, Mohamed

357

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

358

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

359

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

360

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

362

The classical capacity of quantum channels with memory  

E-Print Network (OSTI)

We investigate the classical capacity of two quantum channels with memory: a periodic channel with depolarizing channel branches, and a convex combination of depolarizing channels. We prove that the capacity is additive in both cases. As a result, the channel capacity is achieved without the use of entangled input states. In the case of a convex combination of depolarizing channels the proof provided can be extended to other quantum channels whose classical capacity has been proved to be additive in the memoryless case.

Tony Dorlas; Ciara Morgan

2009-02-17T23:59:59.000Z

363

The classical capacity of quantum channels with memory  

E-Print Network (OSTI)

We investigate the classical capacity of two quantum channels with memory: a periodic channel with depolarizing channel branches, and a convex combination of depolarizing channels. We prove that the capacity is additive in both cases. As a result, the channel capacity is achieved without the use of entangled input states. In the case of a convex combination of depolarizing channels the proof provided can be extended to other quantum channels whose classical capacity has been proved to be additive in the memoryless case.

Dorlas, Tony

2009-01-01T23:59:59.000Z

364

Analysis of IFR driver fuel hot channel factors  

Science Conference Proceedings (OSTI)

Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype, Experimental Breeder Reactor II. The uncertainty factors were applied to the channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A ``semistatistical horizontal method`` was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived.

Ku, J.Y.; Chang, L.K.; Mohr, D.

1994-03-01T23:59:59.000Z

365

Conductance of finite systems and scaling in localization theory  

SciTech Connect

The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D({omega}, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Woelfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions {beta}(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Woelfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of {beta}(g) in 1/g coincides with results of the {sigma}-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + {epsilon} looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law {sigma}({omega}) {proportional_to} -i{omega} for conductivity are discussed.

Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)

2012-11-15T23:59:59.000Z

366

Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties  

Science Conference Proceedings (OSTI)

Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure of magnetite (Fe{sub 3}O{sub 4}) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe{sub 3}O{sub 4}) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging and result in low yields of nanomagnetite. Despite these limitations, magnetotactic bacteria have bee

Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

2009-03-24T23:59:59.000Z

367

Bunch Coalescing in a Helical Channel  

Science Conference Proceedings (OSTI)

A high-luminosity Muon Collider requires bunch recombination for optimal luminosity. In this paper, we take advantage of the large slip factor attainable in a helical transport channel (HTC) to coalesce bunches of muons into a single one over a shorter distance than can be achieved over a straight channel.

Neuffer, D.V.; Yonehara, K.; /Fermilab; Ankenbrandt, C.M.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

368

Probabilistic secret sharing through noisy quantum channel  

Science Conference Proceedings (OSTI)

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed ... Keywords: GHZ states, POVM, phase damping channel, secret sharing

Satyabrata Adhikari; Indranil Chakrabarty; Pankaj Agrawal

2012-03-01T23:59:59.000Z

369

UWB channel measurements for accurate indoor localization  

Science Conference Proceedings (OSTI)

Recently, indoor localization has attracted considerable attention. More importantly, indoor channel measurements and models are very essential to accurate characterization of the ranging error for military applications. This paper provides the results ... Keywords: channel measurement, geolocation, path loss, ranging, ultra-wideband

Bardia Alavi; Nayef Alsindi; Kaveh Pahlavan

2006-10-01T23:59:59.000Z

370

Value-passing CCS with noisy channels  

Science Conference Proceedings (OSTI)

Value-passing CCS, a full version of Milner's CCS, is a process algebra in which actions consist of sending and receiving values through noiseless communication channels. The full calculus is a succinct yet expressive language for the specification and ... Keywords: Barbed congruence, Bisimilarity, Noisy channel, Probabilistic modal logic, Value-passing CCS

Shuqin Huang; Yongzhi Cao; Hanpin Wang; Wanling Qu

2012-05-01T23:59:59.000Z

371

Carderock Circulating Water Channel | Open Energy Information  

Open Energy Info (EERE)

Circulating Water Channel Circulating Water Channel Jump to: navigation, search Basic Specifications Facility Name Carderock Circulating Water Channel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Channel Length(m) 18.3 Beam(m) 6.7 Depth(m) 2.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed, rectangular cross-sectional shape facility. There are 10 large viewing windows on either side of the test section at different elevations and 9 in the bottom; movable bridge spans the test section for ease and versatility in mounting models, rigging bridge is capable of taking towing loads at any one of numerous points up to 35,584 N

372

Generalized microscopic theory of ion selectivity in voltage-gated ion channels  

E-Print Network (OSTI)

Ion channels are specific proteins present in the membranes of living cells. They control the flow of specific ions through a cell, initiated by an ion channel's electrochemical gradient. In doing so, they control important physiological processes such as muscle contraction and neuronal connectivity, which cannot be properly activated if these channels go haywire, leading to life-threatening diseases and psychological disorders. Here, we will develop a generalized microscopic theory of ion selectivity applicable to KcsA, Na$_{\\rm v}$Rh and Ca$_{\\rm v}$ (L-type) ion channels. We unambiguously expose why and how a given ion-channel can be highly selective, and yet has a conductance of the order of one million ions per second, or higher. We will identify and prove the correct physico-biochemical mechanisms that are responsible for the high selectivity of a particular ion in a given ion channel. The above mechanisms consist of five conditions, which can be directly associated to these parameters - (i) dehydration energy, (ii) concentration of the "correct" ions (iii) Coulomb-van-der-Waals attraction, (iv) pore and ionic sizes, and indirectly to (v) the thermodynamic stability and (vi) the "knock-on" assisted permeation.

Andrew Das Arulsamy

2012-09-12T23:59:59.000Z

373

Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope  

SciTech Connect

We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka [National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 (Japan); Shimojo, Masayuki [Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

2010-05-21T23:59:59.000Z

374

Quark matter conductivity in strong magnetic background  

SciTech Connect

Applying the ideas and methods of condensed matter physics we calculate the quantum conductivity of quark matter in magnetic field. In strong field quantum conductivity is proportional to the square root of the field.

Kerbikov, B. O., E-mail: borisk@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-06-15T23:59:59.000Z

375

NETL: Conducting R&D with NETL  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting R&D with NETL Onsite Research Conducting R&D with NETL NETL actively seeks to develop R&D partnerships with the private sector and universities on areas of mutual...

376

Consumer behaviour at multi-channel retailers  

E-Print Network (OSTI)

Consumer behaviour at pure Internet players has been analysed thoroughly in earlier work. When it comes to retailers with multiple distribution channels, however, new behaviour patterns can be observed. Given the fact that multi-channel retailing is much more common than Internet-only, the analysis of consumer behaviour in a multi-channel context constitutes a challenge for the deeper understanding of e-business. The contribution of this research is threefold: first, this study provides an overview of how the 50 largest e-retailers presently coordinate the interaction between sales on their web sites and in physical stores. Second, we present findings from a consumer survey suggesting what consumers like about multi-channel services on retail sites. Finally, user behaviour is empirically evaluated based on transaction and web log data from a large multi-channel retailer. The results indicate a strong demand for multi-channel services and suggest that retailers should expand their multi-channel service spectrum.

Maximilian Teltzrow; Bettina Berendt; Oliver Gnther

2003-01-01T23:59:59.000Z

377

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

378

Evaluation of dredged material proposed for ocean disposal from Buttermilk Channel, New York  

Science Conference Proceedings (OSTI)

Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriate were analyzed for metals, pesticides, and PCBs.

Gardiner, W.W.; Barrows, E.S.; Antrim, L.D; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1996-08-01T23:59:59.000Z

379

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

380

Quantum Conductance Project/Graphene-Based Quantum ...  

Science Conference Proceedings (OSTI)

Quantum Conductance Project/Graphene-Based Quantum Metrology. Summary: ... Graphene Hall bar developed at NIST by undergraduate students. ...

2011-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The hydraulic conductivity of chopped sorghum  

Science Conference Proceedings (OSTI)

Hydraulic conductivity of water through chopped sweet sorghum at various packing densities and soaking times was measured using permeameters. Hydraulic conductivity decreased by two orders of magnitude as packing density increased from 400 to 897 kg/m/sup 3/. Soaking time had less effect on hydraulic conductivity, and the effect depended on packing density.

Custer, M.H.; Reddell, D.L.; Sweeten, J.M.

1987-01-01T23:59:59.000Z

382

Organic conductive films for semiconductor electrodes  

DOE Patents (OSTI)

According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

Frank, Arthur J. (Lakewood, CO)

1984-01-01T23:59:59.000Z

383

TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR  

SciTech Connect

Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

Jay L. Hirshfield

2012-05-30T23:59:59.000Z

384

Complete Muon Cooling Channel Design and Simulations  

Science Conference Proceedings (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

385

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

386

Quantum Communication With Zero-Capacity Channels  

E-Print Network (OSTI)

Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channel's ability for transmitting quantum information.

Graeme Smith; Jon Yard

2008-07-30T23:59:59.000Z

387

Atomistic Simulations of Bonding, Thermodynamics, and Surface Passivation in Nanoscale Solid Propellant Materials  

E-Print Network (OSTI)

Engineering new solid propellant materials requires optimization of several factors, to include energy density, burn rate, sensitivity, and environmental impact. Equally important is the need for materials that will maintain their mechanical properties and thermal stability during long periods of storage. The nanoscale materials considered in this dissertation are proposed metal additives that may enhance energy density and improve combustion in a composite rocket motor. Density Functional Theory methods are used to determine cluster geometries, bond strengths, and energy densities. The ground-state geometries and electron affinities (EAs) for MnxO?: x = 3, 4, y = 1, 2 clusters were calculated with GGA, and estimates for the vertical detachment energies compare well with experimental results. It was found that the presence of oxygen influences the overall cluster moment and spin configuration, stabilizing ferrimagnetic and antiferromagnetic isomers. The calculated EAs range from 1.29-1.84 eV, which is considerably lower than the 3.0-5.0 eV EAs characteristic of current propellant oxidizers. Their use as solid propellant additives is limited. The structures and bonding of a range of Al-cyclopentadienyl cluster compounds were studied with multilayer quantum mechanics/molecular mechanics (QM:MM) methods. The organometallic Al-ligand bonds are generally 55-85 kcal/mol and are much stronger than Al-Al interactions. This suggests that thermal decomposition in these clusters will proceed via the loss of surface metal-ligand units. The energy density of the large clusters is calculated to be nearly 60% that of pure aluminum. These organometallic cluster systems may provide a route to extremely rapid Al combustion in solid rocket motors. Lastly, the properties of COOH-terminated passivating agents were modeled with the GPW method. It is confirmed that fluorinated polymers bind to both Al(111) and Al(100) at two Al surface sites. The oligomers HCOOH, CH3CH2COOH, and CF3CF2COOH chemisorb onto Al(111) with adsorption energies of 10-45 kcal/mol. The preferred contact angle for the organic chains is 65-85 degrees, and adsorption energy weakens slightly with increasing chain length. Despite their relatively weak adsorption energies, fluorinated polymers have elevated melting temperatures, making them good passivation materials for micron-scale Al fuel particles.

Williams, Kristen

2012-08-01T23:59:59.000Z

388

Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of self-sustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew Aaron

2008-12-01T23:59:59.000Z

389

TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of selfsustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew

2009-05-01T23:59:59.000Z

390

Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides  

DOE Green Energy (OSTI)

The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in the public domain. However, for those findings and knowledge that have not been published yet, more detailed information will be provided. The report will be divided into 4 major sections based on the material systems investigated.

Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

2012-04-26T23:59:59.000Z

391

On the specifics of the electrical conductivity anomalies in PVC nanocomposites  

E-Print Network (OSTI)

A qualitative model describing the "anomalous" features of the conductivity of polymer nanocomposites, in particular, switching to the conducting state in relatively thick (tens of microns or more) of flexible PVC films is considered. In previously published experimental results, change of conductivity by 10 or more orders of magnitude occurred both in the absence of external influences (spontaneously), and under the influence of an applied electric field, as well as other initiating factors (such as uniaxial pressure) . In a model of hopping conduction mechanism it is shown, that switching in the conduction states under the action of external field significantly (by orders of magnitude) below threshold can be associated with a high-resistance state instability that results from the sequence of "shorting" (reversible soft breakdown) of narrow insulating gaps between regions with relatively high conductivity. Increasing the field strength in the remaining insulating gaps ultimately leads to the formation of a conducting channel between the external electrodes and switching conductivity of the composite film sample in a state of high conductivity. This cascade model is essentially based on the transition from the usual description of the charge tunneling through single independent insulating gap to take into account correlations between adjacent gaps. In the frame of developed model other "anomalies" such as exponential dependence of the resistance on the sample thickness, pressure, and other influences can be qualitative explained. An analogy of the model with a cascading breakdown of avalanche transistors is also considered.

D. V. Vlasov; L. A. Apresyan

2013-02-25T23:59:59.000Z

392

Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling  

DOE Green Energy (OSTI)

This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

2011-06-13T23:59:59.000Z

393

Image Source Separation Using Color Channel Dependencies  

Science Conference Proceedings (OSTI)

We investigate the problem of source separation in images in the Bayesian framework using the color channel dependencies. As a case in point we consider the source separation of color images which have dependence between its components. A Markov Random ...

Koray Kayabol; Ercan E. Kuruoglu; Bulent Sankur

2009-03-01T23:59:59.000Z

394

Scripps Channel 1 | Open Energy Information  

Open Energy Info (EERE)

Scripps Channel 1 Scripps Channel 1 Jump to: navigation, search Basic Specifications Facility Name Scripps Channel 1 Overseeing Organization University of California, San Diego (Scripps) Hydrodynamic Testing Facility Type Channel Length(m) 44.5 Beam(m) 2.4 Depth(m) 2.4 Cost(per day) Contact POC Special Physical Features Strategically placed windows, longest being 5.5m, allow optical access from side Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2 Length of Effective Tow(m) 7.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Function Generator or user provided Wave Direction Uni-Directional

395

Scripps Channel 2 | Open Energy Information  

Open Energy Info (EERE)

Channel 2 Channel 2 Jump to: navigation, search Basic Specifications Facility Name Scripps Channel 2 Overseeing Organization University of California, San Diego (Scripps) Hydrodynamic Testing Facility Type Channel Length(m) 33.0 Beam(m) 0.5 Depth(m) 0.5 Cost(per day) Contact POC Special Physical Features All side walls and 11m of the tank bottom are glass to provide optical access. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.7 Length of Effective Tow(m) 20.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Function Generator or user provided Wave Direction Uni-Directional

396

Vicarious Calibration of the Meteosat Visible Channel  

Science Conference Proceedings (OSTI)

Postlaunch calibration of the Meteosat visible (VIS) channel has been performed with Meteosat-1, Meteosat-2, and Meteosat-4. The radiance at the satellite radiometer aperture has been determined by independent means and has been related to the ...

Karl-Theodor Kriebel; Volker Amann

1993-04-01T23:59:59.000Z

397

On concepts of performance parameters for channels  

Science Conference Proceedings (OSTI)

Among the mostly investigated parameters for noisy channels are code size, error probability in decoding, block length; rate, capacity, reliability function; delay, complexity of coding. There are several statements about connections between these quantities. ...

R. Ahlswede

2006-01-01T23:59:59.000Z

398

Fair resource allocation in multiple access channels  

E-Print Network (OSTI)

We consider the problem of resource allocation in a multiple access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates over ...

ParandehGheibi, Ali

2008-01-01T23:59:59.000Z

399

Channel capacities via $p$-summing norms  

E-Print Network (OSTI)

In this paper we show how \\emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \\emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \\emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Marius Junge; Carlos palazuelos

2013-05-05T23:59:59.000Z

400

Turbulent Channel Flows on a Rotating Earth  

Science Conference Proceedings (OSTI)

This paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes ...

Robert A. Handler; Richard P. Mied; Gloria J. Lindemann; Thomas E. Evans

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Multi-channel neutral analyzer-system  

DOE Green Energy (OSTI)

Design and calibration of a 15 channel multi-channel analyzer for analysis of energetic neutral particles escaping a hot plasma are discussed. Features of the analyzer include a frequency response from DC to 50 kHz, spatial resolution, mass resolution, and data acquisition and processing for 15 points on the energy distribution that are simultaneously recorded. Another feature of the system is the ability to radially scan the plasma. An rf ion source is used to provide ions and neutrals used for calibration of a reference single channel analyzer. This analyzer is, in turn, used to calibrate the multi-channel analyzer over the energy range 500 eV to 40 keV. A brief description of the data processing system is included. (RME)

Nexsen, Jr., W. E.; Turner, W. C.; Cummins, W. F.

1977-09-14T23:59:59.000Z

402

Message passing with queues and channels  

Science Conference Proceedings (OSTI)

In an embodiment, a send thread receives an identifier that identifies a destination node and a pointer to data. The send thread creates a first send request in response to the receipt of the identifier and the data pointer. The send thread selects a selected channel from among a plurality of channels. The selected channel comprises a selected hand-off queue and an identification of a selected message unit. Each of the channels identifies a different message unit. The selected hand-off queue is randomly accessible. If the selected hand-off queue contains an available entry, the send thread adds the first send request to the selected hand-off queue. If the selected hand-off queue does not contain an available entry, the send thread removes a second send request from the selected hand-off queue and sends the second send request to the selected message unit.

Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer; Ratterman, Joseph D; Steinmacher-Burow, Burkhard; Wisniewski, Robert W

2013-09-24T23:59:59.000Z

403

On the capacity of bosonic channels  

E-Print Network (OSTI)

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable ...

Blake, Christopher Graham

2011-01-01T23:59:59.000Z

404

Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding  

E-Print Network (OSTI)

We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.

I. Bjelakovic; H. Boche; J. Noetzel

2008-11-27T23:59:59.000Z

405

On Entropy Transmission for Quantum Channels  

E-Print Network (OSTI)

In this paper a notion of entropy transmission of quantum channels is introduced as a natural extension of Ohya's entropy. Here by quantum channel is meant unital completely positive mappings (ucp) of $B(H)$ into itself, where $H$ is an infinite dimensional Hilbert space. Using a representation theorem of ucp mapping we associate to every ucp map a uniquely determined state, and prove that entropy of ucp map is less then Ohya's entropy of the associated state.

Nasir Ganikhodjaev; Farrukh Mukhamedov

2007-03-26T23:59:59.000Z

406

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

407

Aspect ratio effect on heat transfer in rotating two-pass rectangular channels with smooth walls and ribbed walls  

E-Print Network (OSTI)

This study experimentally investigates the effects of rotation, the buoyancy force, and the channel aspect ratio on heat transfer in two-pass rotating rectangular channels. The experiments are conducted with two surface conditions: smooth walls and 45?? angled ribbed walls. The channel aspect ratios include 4:1, 2:1, 1:1, 1:2 and 1:4. Four Reynolds numbers are studied: 5000, 10000, 25000 and 40000. The rotation speed is fixed at 550 rpm for all tests, and for each channel, two channel orientations are studied: 90?? and 45?? or 135??, with respect to the plane of rotation. Rib turbulators are placed on the leading and trailing walls of the channels at an angle of 45?? to the flow direction. The ribs have a 1.59 by 1.59 mm square cross section, and the rib pitch-to-height ratio (P/e) is 10 for all tests. The effects of the local buoyancy parameter and channel aspect ratio on the regional Nusselt number ratio are presented. Pressure drop data are also measured for both smooth and ribbed channels in rotating and non-rotating conditions. The results show that increasing the local buoyancy parameter increases the Nusselt number ratio on the trailing surface and decreases the Nusselt number ratio on the leading surface in the first pass for all channels. However, the trend of the Nusselt number ratio in the second pass is more complicated due to the strong effect of the 180?? turn. Results are also presented for this critical turn region of the two-pass channels. In addition to these regions, the channel averaged heat transfer, friction factor, and thermal performance are determined for each channel. With the channels having comparable Nusselt number ratios, the 1:4 channel has the superior thermal performance because it incurs the least pressure penalty. In this study, the author is able to systematically analyze, correlate, and conclude the thermal performance comparison with the combination of rotation effects on five different aspect ratio channels with both smooth walls and rib turbulated walls.

Fu, Wen-Lung

2005-05-01T23:59:59.000Z

408

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Google Chrome Flash Plug-in Lets Remote Users Conduct 4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 - 12:56am Addthis PROBLEM: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome. REFERENCE LINKS: Stable Channel Update SecurityTracker Alert ID: 1028694 CVE-2013-2866 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can create specially crafted Flash content that, when loaded by the target user, will display the Flash settings in a transparent manner, which may allow the remote user to cause the target user to modify their Flash settings. This may allow the remote user to obtain potentially

409

Analysis of Energy Efficiency in Fading Channels under QoS Constraints  

E-Print Network (OSTI)

Energy efficiency in fading channels in the presence of Quality of Service (QoS) constraints is studied. Effective capacity, which provides the maximum arrival rate that a wireless channel can sustain while satisfying statistical QoS constraints, is considered. Spectral efficiency--bit energy tradeoff is analyzed in the low-power and wideband regimes by employing the effective capacity formulation, rather than the Shannon capacity. Through this analysis, energy requirements under QoS constraints are identified. The analysis is conducted under two assumptions: perfect channel side information (CSI) available only at the receiver and perfect CSI available at both the receiver and transmitter. In particular, it is shown in the low-power regime that the minimum bit energy required under QoS constraints is the same as that attained when there are no such limitations. However, this performance is achieved as the transmitted power vanishes. Through the wideband slope analysis, the increased energy requirements at lo...

Gursoy, Mustafa Cenk; Velipasalar, Senem

2008-01-01T23:59:59.000Z

410

Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity  

Science Conference Proceedings (OSTI)

Pt-Ru is the favored anode catalyst for the oxidation of methanol in direct methanol fuel cells (DMFCs). The nanoscale Pt-Ru blacks are accepted to be bimetallic alloys as based on their X-ray diffraction patterns. These bulk and surface analyses show that although practical Pt-Ru blacks have diffraction patterns consistent with an alloy assignment, they are primarily a mix of Pt metal and Ru oxides plus some Pt oxides and only small amounts of Ru metal. Thermogravimetric analysis and X-ray photoelectron spectroscopy of as-received Pt-Ru electrocatalysts indicate that DMFC materials contain substantial amounts of hydrous ruthenium oxide (RuO{sub x}H{sub y}). A potential misidentification of nanoscale Pt-Ru blacks arises because RuO{sub x}H{sub y} is amorphous and cannot be discerned by X-ray diffraction. Hydrous ruthenium oxide is a mixed proton and electron conductor and innately expresses Ru-OH speciation. These properties are of key importance in the mechanism of methanol oxidation, in particular, Ru-OH is a critical component of the bifunctional mechanism proposed for direct methanol oxidation in that it is the oxygen-transfer species that oxidatively dissociates {single_bond}C{triple_bond}O fragments from the Pt surface. The catalysts and membrane-electrode assemblies of DMFCs should not be processed at or exposed to temperatures >150 C, as such conditions deleteriously lower the proton conductivity of hydrous ruthenium oxide and thus affect the ability of the Ru component of the electrocatalyst to dissociate water. With this analytical understanding of the true nature of practical nanoscale Pt-Ru electrocatalysts, the authors can now recommend that hydrous ruthenium oxide, rather than Ru metal or anhydrous RuO{sub 2}, is the preferred Ru speciation in these catalysts.

Rolison, D.R.; Hagans, P.L.; Swider, K.E.; Long, J.W. [Naval Research Lab., Washington, DC (United States). Surface Chemistry Branch

1999-02-02T23:59:59.000Z

411

Method of Synthesis of Proton Conducting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Method of Synthesis of Proton Conducting Materials Method of Synthesis of Proton Conducting Materials Method of Synthesis of Proton Conducting Materials A method of producing a proton conducting material. Available for thumbnail of Feynman Center (505) 665-9090 Email Method of Synthesis of Proton Conducting Materials A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about

412

Definition: Hydraulic Conductivity | Open Energy Information  

Open Energy Info (EERE)

Conductivity Conductivity Jump to: navigation, search Dictionary.png Hydraulic Conductivity Hydraulic conductivity is a physical property which measures the ability of the material to transmit fluid through pore spaces and fractures in the presence of an applied hydraulic gradient. Darcy's Law defines the hydraulic conductivity as the ratio of the average velocity of a fluid through a cross-sectional area (Darcy's velocity) to the applied hydraulic gradient.[1] View on Wikipedia Wikipedia Definition Hydraulic conductivity, symbolically represented as, is a property of vascular plants, soil or rock, that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of

413

Cascade solar cell having conductive interconnects  

SciTech Connect

Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

Borden, Peter G. (Menlo Park, CA); Saxena, Ram R. (Saratoga, CA)

1982-10-26T23:59:59.000Z

414

Conductive layer for biaxially oriented semiconductor film ...  

... a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer.

415

Electrically Conductive Polymers for Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

light emitting diodes (PLED). In all cases, the key issue is to improve charged specie mobility within the conductive materials and at the interfaces. We approach this problem...

416

Lessons learned conducting a clinical study.  

E-Print Network (OSTI)

??Background. The aim of the Masters of Science in Clinical and Biomedical Investigations is for the candidate to develop the ability to conduct a real-world (more)

Beale, Elizabeth Ogden

2009-01-01T23:59:59.000Z

417

Insitu Oxygen Conduction Into Internal Combustion Chamber  

Insitu Oxygen Conduction Into Internal Combustion Chamber Note: The technology described above is an early stage opportunity. Licensing rights to this ...

418

Electromagnetic Alteration of Hydraulic Conductivity of Soils.  

E-Print Network (OSTI)

??Hydraulic conductivity is a measure of the rate at which water flows through porous media. Because of the dipole properties of water molecules, any electric (more)

Azad, Sahba

2013-01-01T23:59:59.000Z

419

Environmental Assessment for Conducting Astrophysics and Other...  

NLE Websites -- All DOE Office Websites (Extended Search)

340 Department of Energy Carlsbad Field Office Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site Final January 2001 U.S....

420

Morphology in electrochemically grown conducting polymer films  

DOE Patents (OSTI)

A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

1992-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MECHANICALLY ROBUST, ELECTRICALLY CONDUCTIVE ULTRALOW-DENSITY ...  

A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an ...

422

Correlation Between Thermal Conductivity and Microstructural ...  

Science Conference Proceedings (OSTI)

Characterization of MOX fuel pellets by Photothermal microscopy Correlation Between Thermal Conductivity and Microstructural Evolutions in CeO2 Upon...

423

Relationship between Morphology and Conductivity of Block ...  

Page 1 of 36 Accepted Manuscript 1 Relationship between Morphology and Conductivity of Block-Copolymer Based Battery Separators David T. Wonga,b,, ...

424

Low temperature proton conducting oxide devices  

DOE Patents (OSTI)

A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

2008-08-19T23:59:59.000Z

425

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

426

PROCEDURE FOR CONDUCTING A RECORDS INVENTORY | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY More Documents...

427

Conductive porous scaffolds as potential neural interface materials.  

SciTech Connect

Our overall intent is to develop improved prosthetic devices with the use of nerve interfaces through which transected nerves may grow, such that small groups of nerve fibers come into close contact with electrode sites, each of which is connected to electronics external to the interface. These interfaces must be physically structured to allow nerve fibers to grow through them, either by being porous or by including specific channels for the axons. They must be mechanically compatible with nerves such that they promote growth and do not harm the nervous system, and biocompatible to promote nerve fiber growth and to allow close integration with biological tissue. They must exhibit selective and structured conductivity to allow the connection of electrode sites with external circuitry, and electrical properties must be tuned to enable the transmission of neural signals. Finally, the interfaces must be capable of being physically connected to external circuitry, e.g. through attached wires. We have utilized electrospinning as a tool to create conductive, porous networks of non-woven biocompatible fibers in order to meet the materials requirements for the neural interface. The biocompatible fibers were based on the known biocompatible material poly(dimethyl siloxane) (PDMS) as well as a newer biomaterial developed in our laboratories, poly(butylene fumarate) (PBF). Both of the polymers cannot be electrospun using conventional electrospinning techniques due to their low glass transition temperatures, so in situ crosslinking methodologies were developed to facilitate micro- and nano-fiber formation during electrospinning. The conductivity of the electrospun fiber mats was controlled by controlling the loading with multi-walled carbon nanotubes (MWNTs). Fabrication, electrical and materials characterization will be discussed along with initial in vivo experimental results.

Hedberg-Dirk, Elizabeth L.; Cicotte, Kirsten N.; Buerger, Stephen P.; Reece, Gregory; Dirk, Shawn M.; Lin, Patrick P.

2011-11-01T23:59:59.000Z

428

Ushering Buyers into Electronic Channels: An Empirical Analysis  

Science Conference Proceedings (OSTI)

Despite many success stories, B2B e-commerce penetration remains low. Many firms introduce electronic channels in addition to their traditional sales channels but find that buyer usage of the e-channel over time does not keep up with initial expectations. ... Keywords: buyer heterogeneity, channel choice, electronic markets

Nishtha Langer; Chris Forman; Sunder Kekre; Baohong Sun

2012-12-01T23:59:59.000Z

429

Density-functional theory study of gramicidin A ion channel geometry and electronic properties  

E-Print Network (OSTI)

Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A, whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground-state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gramicidin A in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10,000 to 100,000 atoms an...

Todorovi?, Milica; Gillan, M J; Miyazaki, Tsuyoshi

2013-01-01T23:59:59.000Z

430

HYDRAULIC CONDUCTIVITY OF ESSENTIALLY SATURATED PEAT  

SciTech Connect

The Savannah River National Laboratory measured the hydraulic conductivity of peat samples using method ASTM D4511-00. Four samples of peat were packed into 73mm diameter plastic tubes and saturated from the bottom up with water. The columns were packed with Premier ProMoss III TBK peat to a dry density of approximately 0.16 gm/cc (10 lb/ft3). One column was packed using oven dried peat and the other 3 were packed using as delivered peat. The oven dried sample was the most difficult to saturate. All of the peat samples expanded during saturation resulting in a sample length (L) that was longer than when the sample was initially packed. Table 1 contains information related to the column packing. After saturation the hydraulic conductivity test was conducted using the apparatus shown in Figure 1. Three of the samples were tested at 2 different flow conductions, 1 high and 1 low. Table 2 and Figure 2 contain the results of the hydraulic conductivity testing. Each test was run for a minimum of 40 minutes to allow the test conditions to stabilize. The hydraulic conductivity at the end of each test is reported as the hydraulic conductivity for that test. The hydraulic conductivity of the 4 peat samples is 0.0052 {+-} 0.0009 cm/sec. This result compares well with the hydraulic conductivity measured in the pilot scale peat bed after approximately 2 months of operation. The similarity in results between the dry pack sample and moist pack samples shows the moisture content at the time of packing had a minimal effect on the hydraulic conductivity. Additionally, similarity between the results shows the test is reproducible. The hydraulic conductivity results are similar to those reported by other tests of peat samples reported in the literature.

Nichols, R

2008-02-27T23:59:59.000Z

431

Evaluation of dredged material proposed for ocean disposal from South Brother Island Channel, New York  

Science Conference Proceedings (OSTI)

South Brother Island Channel was one of seven waterways that the US Army Crops of Engineers-New York District requested the Battelle/Marine Sciences Laboratory to sample and evaluate for dredging and disposal. Tests and analyses were conducted on South Brother Island Channel sediment core samples and evaluations were performed. The evaluation of proposed dredged material from South Brother Island Channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Souther Brother Island Channel were analyzed for grain size, moisture content, and total organic carbon. a composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Site water and elutriate water, prepared from the suspended-particle phase of South Brother Island Channel sediment, were analyzed for metals, pesticides, and PCBs.

Barrows, E.S.; Gardiner, W.W.; Antrim, L.D.; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S. [Battelle Marine Sciences Laboratory, Sequim, Washington (United States)

1996-09-01T23:59:59.000Z

432

Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm  

SciTech Connect

There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y. [Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Physics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia)

2012-05-22T23:59:59.000Z

433

Channel Selection in Multi-channel Opportunistic Spectrum Access Networks with  

E-Print Network (OSTI)

Channel Selection in Multi-channel Opportunistic Spectrum Access Networks with Perfect Sensing Xin and utilized by primary users (PU). In dynamic spectrum access networks, the protection of PU's is vital, since no PU would accommo- date SU access to its own detriment. Therefore the objective of the problem we

Liu, Xin

434

Coupled-channel continuum eigenchannel basis  

E-Print Network (OSTI)

The goal of this paper is to calculate bound, resonant and scattering states in the coupled-channel formalism without relying on the boundary conditions at large distances. The coupled-channel solution is expanded in eigenchannel bases i.e. in eigenfunctions of diagonal Hamiltonians. Each eigenchannel basis may includes discrete and discretized continuum (real or complex energy) single particle states. The coupled-channel solutions are computed through diagonalization in these bases. The method is applied to a few two-channel problems. The exact bound spectrum of the Poeschl-Teller potential is well described by a basis of real energy continuum states. For the deuteron with the Reid potential the experimental energy and the $S$ and $D$ wave functions content are reproduced in the asymptotic limit of the energy cutoff. For the Noro-Taylor potential, beside the exact bound state energies the resonant state energy is also well reproduced by using the complex energy Berggren basis. It is found that the expansion of the coupled-channel wave functions in these eigenchannel bases require less computational effort than the use of any other basis. The solutions are stable and converge as the energy cutoff increases.

R. M. Id Betan

2013-11-18T23:59:59.000Z

435

On the heat channel and its capacity  

E-Print Network (OSTI)

The heat channel is defined by an analog filter and a subsequent inaccurate measurement of the filter output signal. The filter is related to the solution of the heat equation and to the heat kernel of the quantum mechanical harmonic oscillator, so the name of the channel. The channel is modeled as an infinite-dimensional vector Gaussian channel and the capacity in terms of average energy of the input signal is derived. The relation to rate distortion theory is investigated by calculating the rate distortion function of a closely connected Gaussian process. An application to optical fiber communication is given. Characterizations of the capacity/rate distortion function by water-filling/reverse water-filling in the time-frequency plane are stated and proved. Finally, a second formula for the capacity of the heat channel based on average energy of the measured filter output signal is derived. The result is interpreted in context of estimation theory and a parallel to a famous formula connecting mutual informat...

Hammerich, Edwin

2011-01-01T23:59:59.000Z

436

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

437

Thermal conductivity modeling of building faade materials  

Science Conference Proceedings (OSTI)

An experimental research has been conducted to assess the thermo-physical properties of three building materials in both dry and moist state: beech wood, autoclaved aerated concrete and brick. The objectives of the paper envisage the measurement of the ... Keywords: building materials, contact temperature, determining method, finite element, numerical modeling, thermal conductivity

Monica Chereches; Nelu-Cristian Chereches; Catalin Popovici

2010-04-01T23:59:59.000Z

438

Poly(ethylene glycol)-based open-channel blockers for the acetylcholine receptor : mechanistic and structure-function studies at the single-channel level  

E-Print Network (OSTI)

Ion channels are essential mediators in nervous signaling pathways. Because hyperactivation of ion channels can lead to pathological disorders such as congenital myasthenic syndromes and neurodegeneration, channel inhibitors ...

Lin, Wan-Chen, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

439

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network (OSTI)

. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additivesThe Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Kofinas, Peter

440

Proton conducting ceramic membranes for hydrogen separation  

Science Conference Proceedings (OSTI)

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010  

Science Conference Proceedings (OSTI)

The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

2011-05-10T23:59:59.000Z

442

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

443

Peter Agre and Aquaporin Water Channels  

Office of Scientific and Technical Information (OSTI)

Peter Agre and Aquaporin Water Channels Peter Agre and Aquaporin Water Channels Resources with Additional Information Peter Agre Courtesy of Johns Hopkins University 'Peter Agre, MD received the Nobel Prize in Chemistry in 2003 for his work with aquaporins, a family of water channel proteins found throughout nature and responsible for numerous physiological processes in humans.'1 'Dr. Agre received his BA in chemistry from Augsburg College in 1970, and his MD from Johns Hopkins in 1974. Following an Internal Medicine Residency at Case Western Reserve University Hospitals of Cleveland and a Hematology-Oncology Fellowship at the University of North Carolina at Chapel Hill, Dr. Agre returned to Johns Hopkins as a postdoctoral fellow in cell biology. Dr. Agre joined the faculty in 1984 and has spent most of his professional life at Hopkins' School of Medicine, leaving in 2005 to go to become Vice Chancellor for Science and Technology at Duke University Medical Center.'2

444

Plasma channel optical pumping device and method  

SciTech Connect

A device and method for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device.

Judd, O' Dean P. (Los Alamos, NM)

1983-06-28T23:59:59.000Z

445

Truncated channel representations for coupled harmonic oscillators  

E-Print Network (OSTI)

Coupled quantum harmonic oscillators, studied by many authors using many different techniques over the decades, are frequently used toy-models to study open quantum systems. In this manuscript, we explicitly study the simplest oscillator model -- a pair of initially decoupled quantum harmonic oscillators interacting with a spring-like coupling, where the bath oscillator is initially in a thermal-like state. In particular, we treat the completely positive and trace preserving map on the system as a quantum channel, and study the truncation of the channel by truncating its Kraus set and its output dimension. We thereby derive the truncated transition amplitudes of the corresponding truncated channel. Finally, we give a computable approximation for these truncated transition amplitudes with explicit error bounds, and perform a case study of the oscillators in the off-resonant and weakly-coupled regime numerically. We demonstrate explicitly that the substantial leakage error can be mitigated via quantum error correction.

Yingkai Ouyang; Wee Hao Ng

2013-01-19T23:59:59.000Z

446

Notes on entropic characteristics of quantum channels  

E-Print Network (OSTI)

One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the $q$-average output entropy of degree $q\\geq1$ is bounded from above by the $q$-entropy of the input density matrix. Concavity properties of the $(q,s)$-entropy exchange are considered. Fano type quantum bounds on the $(q,s)$-entropy exchange are derived. We also give upper bounds on the map $(q,s)$-entropies in terms of the output entropy, corresponding to the completely mixed input.

Alexey E. Rastegin

2012-06-14T23:59:59.000Z

447

Channel simulation with quantum side information  

E-Print Network (OSTI)

We study and solve the problem of classical channel simulation with quantum side information at the receiver. This is a generalization of both the classical reverse Shannon theorem, and the classical-quantum Slepian-Wolf problem. The optimal noiseless communication rate is found to be reduced from the mutual information between the channel input and output by the Holevo information between the channel output and the quantum side information. Our main theorem has two important corollaries. The first is a quantum generalization of the Wyner-Ziv problem: rate-distortion theory with quantum side information. The second is an alternative proof of the trade-off between classical communication and common randomness distilled from a quantum state. The fully quantum generalization of the problem considered is quantum state redistribution. Here the sender and receiver share a mixed quantum state and the sender wants to transfer part of her state to the receiver using entanglement and quantum communication. We present o...

Luo, Z; Devetak, Igor; Luo, Zhicheng

2006-01-01T23:59:59.000Z

448

Minimum error discrimination of Pauli channels  

E-Print Network (OSTI)

We solve the problem of discriminating with minimum error probability two given Pauli channels. We show that, differently from the case of discrimination between unitary transformations, the use of entanglement with an ancillary system can strictly improve the discrimination, and any maximally entangled state allows to achieve the optimal discrimination. We also provide a simple necessary and sufficient condition in terms of the structure of the channels for which the ultimate minimum error probability can be achieved without entanglement assistance. When such a condition is satisfied, the optimal input state is simply an eigenstate of one of the Pauli matrices.

Massimiliano F. Sacchi

2005-06-09T23:59:59.000Z

449

Increased thermal conductivity monolithic zeolite structures  

SciTech Connect

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25T23:59:59.000Z

450

Interfacial electron and phonon scattering processes in high-powered nanoscale applications.  

SciTech Connect

The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

Hopkins, Patrick E.

2011-10-01T23:59:59.000Z

451

Hypothesis for a serine proteinase-like domain at the COOH terminus of Slowpoke calcium-activated potassium channels  

E-Print Network (OSTI)

A B S T RA C T Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein with three disulfide bonds that belongs to the Kunitz family of serine proteinase inhibitors. BPTI is an extremely potent inhibitor of trypsin, but it also specifically binds to various active and inactive serine proteinase homologs with KD values that range over eight orders of magnitude. We previously described an interaction of BPTI at an intracellular site that results in the production of discrete subconductance events in large conductance Ca 2+ activated K + channels (Moss, G.W.J., and E. Moczydlowski. 1996. J. Gen. Physiol. 107:47-68). In this paper, we summarize a variety of accumulated evidence which suggests that BPTI binds to a site on the Kca channel protein that structurally resembles a serine proteinase. One line of evidence includes the finding that the complex of BPTI and trypsin, in which the inhibitory loop of BPTI is masked by interaction with trypsin, is completely ineffective in the production of substate events in the gca channel. To further investigate this notion, we performed a sequence analysis of the ~x-subunit of cloned slowpoke I~: a channels from Drosophila and mammals. This analysis suggests that a region of ~250 residues near the COOH terminus of the Kca channel is homologous to members of the serine proteinase family, but is catalytically inactive because of various substitutions of key catalytic residues. The sequence analysis also predicts the location of a Ca2+-binding loop that is found in many serine proteinase enzymes. We hypothesize that this COOH-terminal domain of the slowpoke Kca channel adopts the characteristic double-barrel fold of serine proteinases, is involved in Ca2+-activation of the channel, and may also bind other intracellular components that regulate Kca channel activity. KEY WORD S " bovine pancreatic trypsin inhibitor * planar bilayer sequence alignment sequence homology single channel recording

Guy W. J. Moss; John Marshall; Edward Moczydlowski

1996-01-01T23:59:59.000Z

452

Available Technologies: Stable and Highly Conductive ...  

The fluorine insertion led to at least a 40X increase in the conductivity of stoichiometric TiO2 and a 3X increase in the rectification factor of TiO2 on p-type ...

453

A Simple System for Mapping Conductivity Microstructure  

Science Conference Proceedings (OSTI)

A system for spatial mapping of the temperature variance dissipation rate ? based on conductivity micro-structure measurements from a towyo platform is described. The spatial response of the microconductivity probe is approximately that of a one-...

Libe Washburn; Thomas K. Deaton

1986-09-01T23:59:59.000Z

454

High Thermal Conductivity AlN Materials  

Science Conference Proceedings (OSTI)

AlN has replaced BeO as the high thermal conductivity ceramic of choice due to the adverse health effects associated with BeO. The development of high...

455

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

456

Comparison of Towed Conductivity Sensor Performance  

Science Conference Proceedings (OSTI)

Electrical conductivity sensors are often used to obtain measurements of small-scale fluctuations, or microstructure, in the ocean. In applications on towed instrument packages, they provide the only way to estimate temperature fluctuations on ...

J. P. Dugan; B. W. Stalcup

1988-02-01T23:59:59.000Z

457

Information filtering via biased heat conduction  

E-Print Network (OSTI)

Heat conduction process has recently found its application in personalized recommendation [T. Zhou \\emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

Liu, Jian-Guo; Guo, Qiang

2011-01-01T23:59:59.000Z

458

The Underway ConductivityTemperatureDepth Instrument  

Science Conference Proceedings (OSTI)

The development of the Underway ConductivityTemperatureDepth (UCTD) instrument is motivated by the desire for inexpensive profiles of temperature and salinity from underway vessels, including volunteer observing ships (VOSs) and research ...

Daniel L. Rudnick; Jochen Klinke

2007-11-01T23:59:59.000Z

459

NNSA conducts radiological response training in Kazakhstan |...  

National Nuclear Security Administration (NNSA)

the United States Senate Committee on Armed Services Sep 17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts...

460

On the Transient Behavior of Conductivity Sensors  

Science Conference Proceedings (OSTI)

The response characteristics of a family of conductivity cells typical of those employed in profiling instruments has been examined from a theoretical standpoint, and the conditions established under which such a cell exhibits a linear transfer ...

D. R. Topham; R. G. Perkin

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale conducting channels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Finite Heat conduction in 2D Lattices  

E-Print Network (OSTI)

This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

Lei Yang; Yang Kongqing

2001-07-30T23:59:59.000Z

462

High quality transparent conducting oxide thin films  

Science Conference Proceedings (OSTI)

A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

2012-08-28T23:59:59.000Z

463

Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes  

DOE Green Energy (OSTI)

Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

Han, W.

2011-05-18T23:59:59.000Z

464

Transformer Recharging with Alpha Channeling in Tokamaks  

SciTech Connect

Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

N.J. Fisch

2009-12-21T23:59:59.000Z

465

Fermi Liquid Instabilities in the Spin Channel  

SciTech Connect

We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.

Wu, Congjun; /Santa Barbara, KITP; Sun, Kai; Fradkin, Eduardo; /Illinois U., Urbana; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

2010-03-16T23:59:59.000Z

466

Energy growth in the compliant channel  

E-Print Network (OSTI)

Energy growth in the compliant channel Jérôme Hoepffner Julien Favier, Alessandro Bottaro #12 stiffness K Forcing by the pressure #12;Energy Flow energy+wall kinetic and potential energy: Energy: 2) Optimality: #12;"=0, stable #12;Optimization results Growth enveloppe Energy evolution

Hoepffner, Jérôme

467

Turbulence Characteristics in a Tidal Channel  

Science Conference Proceedings (OSTI)

A broadband ADCP and a moored microstructure instrument (TAMI) were deployed in a tidal channel of 30-m depth and with peak speeds of 1 m s?1. The measurements enable us to derive profiles of stress, turbulent kinetic energy (TKE), the rate of ...

Youyu Lu; Rolf G. Lueck; Daiyan Huang

2000-05-01T23:59:59.000Z

468

Sabine-Neches Waterway Channel Improvement Project  

E-Print Network (OSTI)

vessels, the amount of vessel traffic on the SNWW has also increased. Both the SNWW and U.S. crude oil of navigation on the waterway. The current channel was completed in 1960. At that time, crude oil tankers are now used routinely for crude oil imports to both Beaumont and Port Arthur. In addition to larger

US Army Corps of Engineers

469

Superconducting solenoids for the MICE channel  

DOE Green Energy (OSTI)

This report describes the channel of superconductingsolenoids for the proposed international Muon Ionization CoolingExperiment (MICE). MICE consists of two cells of a SFOFO cooling channelthat is similar to that studied in the level 2 study of a neutrinofactory[1]. MICE also consists of two detector solenoids at either end ofthe cooling channel section. The superconducting solenoids for MICEperform three functions. The coupling solenoids, which are largesolenoids around 201.25 MHz RF cavities, couple the muon beam between thefocusing sections as it passes along the cooling channel. The focusingsolenoids are around the liquid hydrogen absorber that reduces themomentum of the muons in all directions. These solenoids generate agradient field along the axis as they reduce the beta of the muon beambefore it enters the absorber. Each detector solenoid system consists offive coils that match the muon beam coming to or from an absorber to a4.0 T uniform solenoidal field section that that contains the particledetectors at the ends of the experiment. There are detector solenoids atthe beginning and at the end of the experiment. This report describes theparameters of the eighteen superconducting coils that make up the MICEmagnetic channel.

Green