Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

2

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

3

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

4

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

5

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

6

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

7

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

8

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

9

3D Chemical Imaging at the Nanoscale  

Science Conference Proceedings (OSTI)

... will provide a quantitative understanding of the distribution of chemical ... Tomography for Projections with an Arbitrary Transmission Function with an ...

2010-12-13T23:59:59.000Z

10

NREL: Energy Sciences - Chemical and Nanoscale Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Science Nanoscale Science Learn about our research staff including staff profiles, publications, and contact information. The primary goal of the Chemical and Nanoscale Science Group, within NREL's Chemical and Materials Science Center, is to understand photoconversion processes in nanoscale, excitonic photoconversion systems, such as semiconductor quantum dots, molecular dyes, conjugated molecules and polymers, nanostructured oxides, and carbon nanotubes. Closely associated with this goal are efforts to gain an understanding of how to use chemistry and physical tools to control and maximize the photoconversion process. The innovative chemistry and physics that evolve from these fundamental studies are used on a number of applied projects, maximizing the benefits from these discoveries.

11

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series X-ray Imaging at the Nanoscale Presented by Ian Mc and exquisite sensitivity to elemental, chemical and magnetic states in buried structures. The advent

12

Argonne Chemical Sciences & Engineering - National Security - Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Engineering Nanoscale Engineering * Members * Contact * Publications * Overview * Nanospheres * Gel for Radioactive Decontamination * Advanced Radionuclide Sensor * Removal/Decontamination of Metal Substrates * Advanced Water Purification National Security Home National Security - Nanoscale Engineering Nanoscale Engineering Physical chemist Carol Mertz mixes a polyethylene glycol (PEG) coating for synthesized polymer nanospheres as polymer chemist Martha Finck examines a different PEG formulation. The coated nanospheres can be injected into humans following exposure to chemical, biological, or radiological toxins. The nanospheres selectively pick up these toxins and then are drawn out through a magnetic filtration system outside the body. Researchers in Nanoscale Engineering seek to bridge the gap between

13

Nanoscale chemical and mechanical characterization of thin films: sum frequency generation (SFG) vibrational spectroscopy at buried interfaces  

E-Print Network (OSTI)

free interfaces due to chemical and environmental effects.Nanoscale chemical and mechanical characterization of thin2006 Nanoscale chemical and mechanical characterization of

Kweskin, S.J.

2006-01-01T23:59:59.000Z

14

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network (OSTI)

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor thermal imaging, chemical delivery and other new horizons. Finally, as part of this lecture, Lewis

15

PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS  

DOE Green Energy (OSTI)

The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

Thomas E. Mallouk

2007-05-27T23:59:59.000Z

16

Name: Judi Yaeger Title: Chemical Manager, Center for Nanoscale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Nanoscale Materials Education: BS Chemistry, University of Missouri-Kansas City, Missouri, 1985 Job Elements: At the CNM, you should contact me if you need or are...

17

Argonne Chemical Sciences & Engineering - National Security - Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanospheres for Human Detoxification Nanospheres for Human Detoxification Argonne scientists are developing technology that uses magnetic nanospheres for human detoxification of blood-borne toxins (radiological, biological, and chemical). Originally developed for in-field use by military personnel, the work also will have application in the early diagnosis and treatment of certain medical conditions. For more details, view the fact sheet. Nanospheres for Human Detoxification Intravenously injected into victims of radiological, chemical or biological attack, biodegradable nanospheres circulate through the bloodstream, where surface proteins bind to the targeted toxins. They are removed from the bloodstream by a small dual-channel shunt, inserted into an arm or leg artery, that circulates the blood through an external magnetic separator. Strong magnets in the shunt immobilize the iron-based particles, and clean blood flows back into the bloodstream. (Image courtesy of the Armed Forces Radiobiology Research Institute)

18

Nanoscale X-Ray Imaging - Programmaster.org  

Science Conference Proceedings (OSTI)

Study of Charge-Ordering in Manganites via Serial Femtosecond Crystallography · XFEL Materials Imaging at the LCLS CXI Endstation ...

19

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

20

Northwest National Laboratory's Chemical Imaging Initiative is...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated. CHEMICAL IMAgINg Main particle Pt (110) Pt (111) Pt (pores) g-Al 2 O 3 pores gamma-alumina particles contain pores and have a corrugated surface according to a chemical...

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series Advancing Methods for Labeling, Staining, Imaging is to understand how the interplay of structural, chemical and electrical signals in and between cells of nervous

22

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network (OSTI)

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

23

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

SciTech Connect

Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

Fischer, P.; Im, M.-Y.

2010-01-18T23:59:59.000Z

24

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Imaging Seminar Series Presented by Kannan M. Krishnan, Ph.D. Departments. Central to this work are innovations in chemical synthesis of nanoparticles, their size-dependent magnetic and technological interest, that may provide opportunities for future collaborative research in chemical imaging

25

Direct Imaging of Nanoscale Dissolution of Dicalcium Phosphate Dihydrate by an Organic Ligand: Concentration Matters  

SciTech Connect

Unraveling the kinetics and mechanisms of sparingly soluble calcium orthophosphate (Ca!P) dissolution in the presence of organic acids at microscopic levels is important for an improved understanding in determining the effectiveness of organic acids present in most rhizosphere environments. Herein, we use in situ atomic force microscopy (AFM) coupled with a fluid reaction cell to image dissolution on the (010) face of brushite, CaHPO4 2H2O, in citrate- bearing solutions over a broad concentration range. We directly measure the dependence of molecular step retreat rate on citrate concentration at various pH values and ionic strengths, relevant to soil solution conditions. We find that low concentrations of citrate(10!100 M)inducedareductioninstepretreatratesalongboththe[10 0]Ccand[101] Ccdirections.However,at higher concentrations (exceeding 0.1 mM), this inhibitory effect was reversed with step retreat speeds increasing rapidly. These results demonstrate that the concentration-dependent modulation of nanoscale Ca!P phase dissolution by citrate may be applied to analyze the controversial role of organic acids in enhancing Ca!P mineral dissolution in a more complex rhizosphere environment. These in situ observations may contribute to resolving the previously unrecognized interactions of root exudates (low molecular weight organic acids) and sparingly soluble Ca!P minerals.

Qin, Lihong [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Zhang, Wenjun [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Lu, Jianwei [Huazhong Agricultural University, China] [Huazhong Agricultural University, China; Stack, Andrew G [ORNL] [ORNL; Wang, Lijun [Huazhong Agricultural University, China] [Huazhong Agricultural University, China

2013-01-01T23:59:59.000Z

26

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have...

27

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing...

28

Standoff imaging of chemicals using IR spectroscopy  

SciTech Connect

Here we report on a standoff spectroscopic technique for identifying chemical residues on surfaces. A hand-held infrared camera was used in conjunction with a wavelength tunable mid-IR quantum cascade laser (QCL) to create hyperspectral image arrays of a target with an explosive residue on its surface. Spectral signatures of the explosive residue (RDX) were extracted from the hyperspectral image arrays and compared with a reference spectrum. Identification of RDX was achieved for residue concentrations of 20 g per cm2 at a distance of 1.5 m, and for 5 g per cm2 at a distance of 15 cm.

Senesac, Larry R [ORNL; Thundat, Thomas George [ORNL; Morales Rodriguez, Marissa E [ORNL

2011-01-01T23:59:59.000Z

29

Chemical Methods for Imaging Glycans during Development  

E-Print Network (OSTI)

Bertozzi, C. R. (2004) Chemical remodelling of cell surfacesand Bertozzi, C. R. (2006) Chemical technologies for probingcycloaddition reactions in chemical biology, Chem. Soc. Rev.

Dehnert, Karen Worthington

2011-01-01T23:59:59.000Z

30

Imaging and Spectroscopy of Chemical and Structural Defects in ...  

Science Conference Proceedings (OSTI)

We present annular dark-field images and electron energy-loss spectra from graphene, and carbon nanotubes with and without structural and chemical defects.

31

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

32

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

33

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

34

Chemical Imaging Analysis of Flame Synthesized Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; 2 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 3...

35

Atomic-Scale Chemical Imaging via Combination of Scanning Tunneling and Electron Energy Loss Spectroscopies  

E-Print Network (OSTI)

Atomic-Scale Chemical Imaging via Combination of Scanning Tunneling and Electron Energy Loss visualization of chemical reaction pathways to provide mechanistic understanding for catalytically important systems at atomic level Develop atomically resolved chemical imaging platform via combination of low

36

Argonne Chemical Sciences & Engineering - Fundamental Interactions Images  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Images Fundamental Interactions Images These images may be used freely as long as they are accompanied by a statement that they were used "Courtesy of Argonne National Laboratory" (see disclaimer). To download a larger or high-resolution version of each picture, right-click on the "Download high-resolution image" text beneath the picture and select "Save Link/Image As..." from the resulting pop-up menu. Shock Tube with Joe Michael and Raghu Sivaramakrishnan Joe Michael (left) and Raghu Sivaramakrishnan stand in front of a shock tube developed for the study of the kinetics of chemical reactions at the high temperatures relevant for combusion. Download high resolution image. Thermochemical subnetwork diagram Shown is a thermochemical subnetwork relevant to the determination of the heat of formation of the OH radical. Vertices of the graph indicate thermochemical quantities, such as the heats of formation, while the lines of the graph represent the measurements connecting these quantities for different species. The Active Tables approach developed by Branko Ruscic at Argonne simultaneously optimizes the thermochemical quantities for all species in the graph, taking into account all of the existing experimental and theoretical results, and weighting them by their uncertainties. Download high resolution image.

37

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

38

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

39

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

40

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

42

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

43

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

44

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

45

Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces  

SciTech Connect

Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non-equilibrium states contribute to practical applications of acrylates, blends and hydrogels. Lastly, nanoparticle surfaces and the catalytic activity and selectivity of platinum cube nanoparticles are correlated to the surface intermediates in a high pressure flow reactor.

Kweskin, S.J.

2006-05-19T23:59:59.000Z

46

Chemical Imaging of Catalytic Solids with Synchrotron Radiation  

Science Conference Proceedings (OSTI)

Heterogeneous catalysis is a term normally used to describe a group of catalytic processes, yet it could equally be employed to describe the catalytic solid itself. A better understanding of the chemical and structural variation within such materials is thus a pre-requisite for the rationalising of structure-function relationships and ultimately to the design of new, more sustainable catalytic processes. The past 20 years has witnessed marked improvements in technologies required for analytical measurements at synchrotron sources, including higher photon brightness, nano-focusing, rapid, high resolution data acquisition and in the handling of large volumes of data. It is now possible to image materials using the entire synchrotron radiative profile, thus heralding a new era of in situ/operando measurements of catalytic solids. In this tutorial review we discuss the recent work in this exciting new research area and finally conclude with a future outlook on what will be possible/challenging to measure in the not-too-distant future.

A Beale; S Jacques; B Weckhuysen

2011-12-31T23:59:59.000Z

47

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging  

E-Print Network (OSTI)

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging in order to determine the presence of any chemical and kinetic inhomogeneity. Unfortunately, to date, NIR to determine the chemical and kinetic inho- mogeneity of sol-gel. Preliminary results on the kinetics of sol

Reid, Scott A.

48

Chemical Imaging Infrastructure Research Team: Carina Lansing, Zoe Guillen, Kerstin Kleese-van Dam, Shaun O'Leary  

E-Print Network (OSTI)

Chemical Imaging Infrastructure Research Team: Carina Lansing, Zoe Guillen, Kerstin Kleese-van Dam, Shaun O'Leary Purpose Support real-time analysis of single and multi-modal chemical imaging experiments

49

Vortex Dynamics in NanoScale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Into the Vortex: Dynamics in Nanoscale Materials Into the Vortex: Dynamics in Nanoscale Materials Micron and nanosized magnets are of great interest for their potential applications in new electronic devices, such as magnetic random access memories. As the size of magnets is reduced to a 1-micron scale and below, the boundaries (surfaces, perimeters, etc) of the objects begin to profoundly influence both the static and dynamic behavior of the materials. Researchers from Argonne's Materials Science Division (MSD), Center for Nanoscale Materials (CNM), and Advanced Photon Source (APS) have recently examined the dynamics of 3- to 7-micron-diameter NiFe alloy disks with a combination of theoretical calculations and a new time-resolved magnetic imaging technique using synchrotron-based x-ray photoemission electron

50

Development of New Soft Ionization Mass Spectrometry Approaches for Spatial Imaging of Complex Chemical and Biological Systems  

E-Print Network (OSTI)

Chemical and Biological Systems Research Team: Julia Laskin, Ljiljana Pasa-Toli, Brandi Heath, Ingela Laskin (PNNL) Purpose Multimodal chemical characterization of microbial biofilms focused bacterial colonies Develop novel mass spectrometry-based chemical imaging capabilities broadly applicable

51

In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)  

Science Conference Proceedings (OSTI)

This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

2009-06-01T23:59:59.000Z

52

Using Dynamic Quantum Clustering to Analyze Hierarchically Heterogeneous Samples on the Nanoscale  

SciTech Connect

Dynamic Quantum Clustering (DQC) is an unsupervised, high visual data mining technique. DQC was tested as an analysis method for X-ray Absorption Near Edge Structure (XANES) data from the Transmission X-ray Microscopy (TXM) group. The TXM group images hierarchically heterogeneous materials with nanoscale resolution and large field of view. XANES data consists of energy spectra for each pixel of an image. It was determined that DQC successfully identifies structure in data of this type without prior knowledge of the components in the sample. Clusters and sub-clusters clearly reflected features of the spectra that identified chemical component, chemical environment, and density in the image. DQC can also be used in conjunction with the established data analysis technique, which does require knowledge of components present.

Hume, Allison; /Princeton U. /SLAC

2012-09-07T23:59:59.000Z

53

Nanoelectronics and Nanoscale Electronics Portal  

Science Conference Proceedings (OSTI)

... illustration showing how researhcers watched nanosize batteries with TEM Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithium Batteries. ...

2012-12-31T23:59:59.000Z

54

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

55

Atomistic modeling of nanoscale patterning of L1{sub 2} order induced by ion irradiation  

Science Conference Proceedings (OSTI)

Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni{sub 3}Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiation flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications.

Ye Jia [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lawrence Berkeley Laboratory, Berkeley, California 94720-8250 (United States); Li Youhong [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Engineered Material Arresting Systems, Zodiac Aerospace, Logan Township, New Jersey 08085 (United States); Averback, Robert; Zuo Jianmin [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Bellon, Pascal [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2010-09-15T23:59:59.000Z

56

The NIST Center for Nanoscale Science and Technology ...  

Science Conference Proceedings (OSTI)

Page 1. CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 Page 2. ...

2012-09-15T23:59:59.000Z

57

Nanoscale heat conduction across tunnel junctions  

E-Print Network (OSTI)

?2005? Nanoscale heat conduction across tunnel junctions Y.May 2005? Nanoscale heat conduction across tunnel junctionsprevailing theory of heat conduction in highly disordered

Ju, Y. Sungtaek; Hung, M T; Carey, M J; Cyrille, M C; Childress, J R

2005-01-01T23:59:59.000Z

58

Nanoscale relaxation oscillator  

DOE Patents (OSTI)

A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

2009-04-07T23:59:59.000Z

59

Simulating nanoscale semiconductor devices.  

SciTech Connect

The next generation of electronic devices will be developed at the nanoscale and molecular level, where quantum mechanical effects are observed. These effects must be accounted for in the design process for such small devices. One prototypical nanoscale semiconductor device under investigation is a resonant tunneling diode (RTD). Scientists are hopeful the quantum tunneling effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations. To simulate the electron transport within the RTD, the Wigner-Poisson equations are used. These equations describe the time evolution of the electrons distribution within the device. In this paper, this model and a parameter study using this model will be presented. The parameter study involves calculating the steady-state current output from the RTD as a function of an applied voltage drop across the RTD and also calculating the stability of that solution. To implement the parameter study, the computational model was connected to LOCA (Library of Continuation Algorithms), a part of Sandia National Laboratories parallel solver project, Trilinos. Numerical results will be presented.

Salinger, Andrew Gerhard; Zhao, P. (North Carolina State University, Raleigh, NC); Woolard, D. L. (U. S. Army Research Laboratory, NC); Kelley, C. Tim (North Carolina State University, Raleigh, NC); Lasater, Matthew S. (North Carolina State University, Raleigh, NC)

2005-03-01T23:59:59.000Z

60

3D Chemical Image using TOFSIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

D D Chemical Imaging DOI: 10.1002/anie.201205243 3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass** Seokwon Jung, Marcus Foston, Udaya C. Kalluri, Gerald A. Tuskan, and Arthur J. Ragauskas* Many researchers consider biofuels, including bioethanol and biodiesel, as a resource to supplement or replace large portions of future transportation fuel requirements. This shift in research focus is due in part to limitations in fossil resources and recent concerns about the environment. [1] Lignocellulosic biomass (for example, agricultural resides, forestry wastes, and energy crops) has been highlighted as a potential resource for biofuel production. [2] Lignocellulosic biomass is mainly composed of polysaccharides (that is, cellulose and hemicelluloses) and lignin (polyphenolic macro- molecules). [3] Cellulose,

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NIST Nanoscale Science and Technology Center Now ...  

Science Conference Proceedings (OSTI)

NIST Nanoscale Science and Technology Center Now Accepting Proposals. For Immediate Release: May 1, 2007. ...

2013-07-19T23:59:59.000Z

62

NIST Highlight about investigating nanoscale pattern shape ...  

Science Conference Proceedings (OSTI)

NIST researchers validate new method for investigating nanoscale pattern shape evolution. NIST researchers successfully ...

2010-10-05T23:59:59.000Z

63

Nanoscale heat transfer - from computation to experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

Luo, Tengfei

2013-04-09T23:59:59.000Z

64

Nanoscale Surface Modifications I  

Science Conference Proceedings (OSTI)

... with a microwave plasma chemical vapor deposition technique utilizing methane/hydrogen/nitrogen chemistry. The surface modifications are characterized by ...

65

Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology  

E-Print Network (OSTI)

This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

Huang, Hao, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

66

Available Technologies: Nanoscale Parametric Amplifier  

A research team led by Berkeley Lab’s Alex Zettl has developed a nanoscale electro-mechanical amplifier that can be used for enhanced radio wave detection and ...

67

Argonne CNM Highlight: Graphene Research at the Center for Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene Research at the Center for Nanoscale Materials Graphene Research at the Center for Nanoscale Materials graphene research The 2010 Nobel Prize in Physics was recently awarded to Andre Geim and Konstantin Novoselov from the University of Manchester "for groundbreaking experiments regarding the two-dimensional material graphene." Graphene is an extraordinary material made up of hexagonally packed carbon atoms that are sp2 bonded. A sheet of graphene is only one atom thick making it nature's version of an ideal two-dimensional material. At the Center for Nanoscale Materials we are exploring state-of-the-art synthesis, characterization, processing, and novel applications of graphene. With the highest resolution microscopes we are able to characterize the structural, electronic, and chemical properties of

68

Nanoscale Heat Conduction across Metal-Dielectric Interfaces  

E-Print Network (OSTI)

006 " Nanoscale Heat Conduction across Metal-Dielectricdirectly. Nanoscale Heat Conduction across Metal-Dielectricstudy of nanoscale heat conduction across nanolaminates

Ju, Y. Sungtaek

2005-01-01T23:59:59.000Z

69

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

70

Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging  

SciTech Connect

This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

2013-01-01T23:59:59.000Z

71

Nanoscale characterization of engineered cementitious composites (ECC)  

Science Conference Proceedings (OSTI)

Engineered cementitious composites (ECC) are ultra-ductile fiber-reinforced cementitious composites. The nanoscale chemical and mechanical properties of three ECC formulae (one standard formula, and two containing nanomaterial additives) were studied using nanoindentation, electron microscopy, and energy dispersive spectroscopy. Nanoindentation results highlight the difference in modulus between bulk matrix ({approx} 30 GPa) and matrix/fiber interfacial transition zones as well as between matrix and unreacted fly ash ({approx} 20 GPa). The addition of carbon black or carbon nanotubes produced little variation in moduli when compared to standard M45-ECC. The indents were observed by electron microscopy; no trace of the carbon black particles could be found, but nanotubes, including nanotubes bridging cracks, were easily located in ultrafine cracks near PVA fibers. Elemental analysis failed to show a correlation between modulus and chemical composition, implying that factors such as porosity have more of an effect on mechanical properties than elemental composition.

Sakulich, Aaron Richard, E-mail: asakulic@umich.edu; Li, Victor C.

2011-02-15T23:59:59.000Z

72

Imaging Chemical Aggregation of Ni/NiO Particles from Reduced NiO-YSZ  

SciTech Connect

Energy dispersive X-ray spectroscopy (EDS) mapping of nickel oxide yttria-stabilized zirconia (NiO-YSZ) was carried out after various hydrogen reducing and methane steam reforming conditions. Nickel aggregation was visualized after methane steam reforming by correlating Ni K{sub {alpha}} map with scanning transmission electron microscopy (STEM) images. From the reduced O K{sub {alpha}} intensities in the Ni K{sub {alpha}} dominated regions after methane steam reforming, NiO reduction in to Ni can be interpreted. From correlation between Zr K{sub {alpha}} and O K{sub {alpha}} maps, high stability of YSZ was also realized. Examples of NiO-YSZ overlapped particles are considered to discuss chemical imaging of a single particle.

Saraf, Laxmikant V.

2011-07-20T23:59:59.000Z

73

CNST Researchers Observe Nanoscale Charge Transport in ...  

Science Conference Proceedings (OSTI)

... The efficiency is strongly dependent on the material morphology, making ... of nanoscale charge transport in bulk heterojunction solar cells, BH ...

2011-08-10T23:59:59.000Z

74

Nanoscale Electromechanical Properties of Novel Materials for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanoscale Electromechanical Properties of Novel Materials for Actuator and Energy Harvesting Applications. Author(s), Andrei Kholkin.

75

Magnetoresistance of Nanoscale Molecular Devices  

E-Print Network (OSTI)

are of fundamental nature, leading to the understanding of current-voltage relations. Due to their small flux is how to set up a nanoscale device so that the magnetic field can control the current flowing through it, Jerusalem 91904, Israel Received April 5, 2005 ABSTRACT Affecting the current through a molecular

Rabani, Eran

76

Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers  

E-Print Network (OSTI)

We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.

Morishita, T; Chen, Z; Lin, C D

2007-01-01T23:59:59.000Z

77

Chemical functionalization of AFM cantilevers  

E-Print Network (OSTI)

Atomic force microscopy (AFM) has been a powerful instrument that provides nanoscale imaging of surface features, mainly of rigid metal or ceramic surfaces that can be insulators as well as conductors. Since it has been ...

Lee, Sunyoung, S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

78

FM DANTE fast imaging and variations: emerging rf-based ultrafast imaging techniques  

Science Conference Proceedings (OSTI)

Keywords: DANTE fast imaging, NMR, burst imaging, fast chemical shift imaging, fast imaging, fast spectroscopic imaging, fast susceptibility imaging

Z. H. Cho; Y. M. Ro; I. K. Hong

1998-01-01T23:59:59.000Z

79

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

80

Available Technologies: Improving the Efficiency of Nanoscale ...  

Alex Zettl, Jeffrey Grossman, and colleagues at Berkeley Lab have developed several approaches for improving the conversion efficiency of nanoscale photovoltaic devices.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nanoscale Characterization of Polymer Precursor Derived Silicon ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale mechanical properties of silicon carbide derived ... Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix Composites.

82

Nanoscale Heat Transfer: from Computation to Experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both computational and experimental studies, and discussion on current understanding of these novel phenomena. Our perspectives on challenges and opportunities on computational and experimental methods are also presented.

Luo, Tengfei

2013-01-01T23:59:59.000Z

83

PNNL Nanoscale Research Safety Program Brown Bag  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL's Nanoscale Research Safety Program Brown Bag Carbon nanotube research is a critical research capability at Pacifi c North- west National Laboratory (Digisource) Do you work...

84

Catalysis on the Nanoscale: Preparation, Characterization and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis on the Nanoscale: Preparation, Characterization and Reactivity of Metal-Based Nanostructures The purpose of this program is to explore and manipulate the size, morphology...

85

Material's Properties Control by Nano-Scale Surface Functionalization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Material's Properties Control by Nano-Scale Surface Functionalization Material's Properties Control by Nano-Scale Surface Functionalization Theme We aim at developing an original...

86

Scientists use world's fastest computer to simulate nanoscale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under...

87

Probabilistic neural computing with advanced nanoscale MOSFETs  

Science Conference Proceedings (OSTI)

The use of intrinsic nanoscale MOSFET noise for probabilistic computation is explored, using the continuous restricted Boltzmann machine (CRBM), a probabilistic neural model, as the exemplar architecture. The CRBM is modified by localising noise in its ... Keywords: Nanoscale MOSFET noise, Neuromorphic VLSI systems, Probabilistic computing

Nor Hisham Hamid; Tong Boon Tang; Alan F. Murray

2011-02-01T23:59:59.000Z

88

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

89

Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings  

Science Conference Proceedings (OSTI)

The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

Rajendra Bordia

2009-07-31T23:59:59.000Z

90

Argonne National Laboratory Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

91

Nanoscale Structure and Modification of Biomaterials  

Science Conference Proceedings (OSTI)

... et al, Adv Mater 20, 1488 (2008)[6]C Brown et al, Nanoscale 3, 3805 (2011)[7] C Brown et al, ACS Nano 6, 1961 (2012)[8]O Seddiki et al, in preparation.

92

Harvesting nanoscale thermal radiation using pyroelectric materials  

E-Print Network (OSTI)

exceeding Planck’s blackbody radiation law”. Applied PhysicsA] I b ? spectral blackbody radiation intensity [W/m 2 ] kNanoscale radiation blackbody radiation limit. In addition,

Fang, Jin; Frederich, Hugo; Pilon, Laurent

2010-01-01T23:59:59.000Z

93

Seminar Announcement Nanoscale High Field Chemistry with the Atomic Force Microscope and Patterning January 15, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINAR SEMINAR ANNOUNCMENT Thursday, January 15, 2009 11:00am - 12:00 noon EMSL Boardroom Nanoscale High Field Chemistry With the Atomic Force Microscope and Patterning Marco Rolandi Assistant Professor Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 Facile and affordable processes for the fabrication of nanostructures are fundamental to future endeavors in nanoscale science and engineering. The atomic force microscope was designed primarily for imaging, and has evolved into a versatile tool for nanoscale surface modification. We have developed an AFM based scheme capable of direct writing of glassy carbon nanowires as fast as 1 cm/s. In brief, when a bias is applied across the tip-sample gap a molecular precursor undergoes high field reactions that result in the deposition of a cross- linked product on the surface. In order to gain a

94

Electrical and Optical Characterization of Nanoscale Materials for Electronics  

E-Print Network (OSTI)

Due to a lack of fundamental knowledge about the role of molecular structures in molecular electronic devices, this research is focused on the development of instruments to understand the relation between device design and the electronic properties of electroactive components. The overall goal is to apply this insight to obtain a more efficient and reliable scheme and greater functional control over each component. This work developed a fabrication method for porphyrinoids on graphene-based field effect transistors (FETs), and a chemical sensing platform under an ambient environment by integrating a tip-enhanced Raman spectroscope (TERS), atomic force microscope (AFM), and electronic testing circuit. The study is divided into three aspects. The first is aimed at demonstrating fabrication processes of nanoscale FETs of graphene and porphyrinoid composites based entirely on scanning probe lithography (SPL). A nanoshaving mechanism was used to define patterns on octadecanethiol self-assembled monolayers on gold film evaporated on graphene flakes, followed by metal wet etching and/or oxygen plasma etching to develop patterns on Au films and graphene, respectively. The integrity and optoelectronic properties were examined to validate the processes. The second area of study focused on the development of the chemical sensing platform, enabling chemical changes to be monitored during charge transports under an ambient environment. The localized Raman enhancement was induced by exciting surface plasmon resonance in nanoscale silver enhancing probes made by thermal silver evaporation on sharp AFM tips. As the system was designed along an off-axis illumination/collection scheme, it was demonstrated that it was capable of observing molecular decomposition on opaque and conductive substrates induced by an electric bias. The third line of work proposed a novel TERS system and a probe preparation method. Silver nanowires mounted on AFM tips were used to locally enhance the Raman scattering. The observed Raman enhancement allows quick chemical analysis from a nanoscale region, and thus enables chemical mapping beyond the diffraction limit. Compared with other TERS geometries, the new optical design not only allows analysis on large or opaque samples, but also simplifies the design of the optical components and the alignment processes of the setup.

Chang, Chi-Yuan 1980-

2012-12-01T23:59:59.000Z

95

Nanoscale Ferroelectricity in Crystalline -Glycine  

SciTech Connect

Ferroelectrics are multifunctional materials that reversibly change their polarization under an electric field. Recently, the search for new ferroelectrics has focused on organic and bio-organic materials, where polarization switching is used to record/retrieve information in the form of ferroelectric domains. This progress has opened a new avenue for data storage, molecular recognition, and new self-assembly routes. Crystalline glycine is the simplest amino acid and is widely used by living organisms to build proteins. Here, it is reported for the first time that {gamma}-glycine, which has been known to be piezoelectric since 1954, is also a ferroelectric, as evidenced by local electromechanical measurements and by the existence of as-grown and switchable ferroelectric domains in microcrystals grown from the solution. The experimental results are rationalized by molecular simulations that establish that the polarization vector in {gamma}-glycine can be switched on the nanoscale level, opening a pathway to novel classes of bioelectronic logic and memory devices.

Meunier, Vincent [ORNL; Agarwal, Pratul K [ORNL; Sumpter, Bobby G [ORNL

2012-01-01T23:59:59.000Z

96

NERSC Visualization and Analysis for Nanoscale Control of Geologic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanocontrol of CO2 Nanocontrol of CO2 Visualization and Analysis for Nanoscale Control of Geologic Carbon Dioxide Goals * Collect experimental 2D-3D imaging data in order to investigate fluid-fluid and fluid-rock interactions; * Provide algorithms for better understanding of processes governing fluid-fluid and fluid-rock systems, related to geologic sequestration of CO2; * Develop image processing methods for analyzing experimental data and comparing it to simulations; * Detect/reconstruct material interfaces, quantify contact angles, derive contact angle distribution, etc. Impact * Unveil knowledge required for developing technology to store CO2 safely in deep surface rock formations, thus reducing amount of CO2 in atmosphere; More Personnel * CRD: Wes Bethel, Dani Ushizima, Gunther Weber (SciDAC-e award)

97

Thermal Profiling of Nanoscale Circuitry  

Real-time atomic-resolution imaging of the nano-objects shows how they evolve at temperatures of up to 4,000K, how the atoms of the material shift, ...

98

Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy  

SciTech Connect

The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

Koc,H.; Wetzel, D.

2008-01-01T23:59:59.000Z

99

Carbon nanotube-based nanoscale ad hoc networks  

Science Conference Proceedings (OSTI)

Recent developments in nanoscale electronics allow current wireless technologies to function in nanoscale environments. Especially due to their incredible electrical and electromagnetic properties, carbon nanotubes are promising physical phenomenon that ...

Baris Atakan; Ozgur B. Akan

2010-06-01T23:59:59.000Z

100

Nanoscale Ordered MAterials Diffractometer Workshop (NOMAD 2011)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Ordered MAterials Diffractometer Workshop Nanoscale Ordered MAterials Diffractometer Workshop NOMAD 2011 September 12 - 13, 2011 High-Flux Isotope Reactor * Spallation Neutron Source * Oak Ridge National Laboratory About the Workshop Contact Information Important Dates Application Form Sample Description NOMAD at SNS filler About the Workshop The acronym NOMAD stands for Nanoscale Ordered MAterials Diffractometer. It is a diffractometer located at the Spallation Neutron Source and is designed for the determination of pair distribution functions from a wide range of materials spanning from dense gases to long range ordered crystalline materials. It combines a large accessible Q range, large detector coverage with high intensity while maintaining good resolution. For a typical sample of the order of ~0.5cm3 good statistical accuracy can be achieved in minutes or even seconds of data acquisition time.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nanoscale Center Dedication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanoscale Center Dedication Nanoscale Center Dedication Nanoscale Center Dedication May 6, 2005 - 12:44pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, Bob [Rosner] for that introduction. And let me also thank you, along with [University of Chicago] President Randel, for the leadership you are showing here. Argonne has long been a world class institution. It will soar to new heights under your joint direction. I also want to acknowledge Illinois Governor Rod Blagojevich. Thank you for being here. More than that, thank you for your strong backing of Argonne and its employees. Congresswoman Judy Biggert, who chairs the Science Subcommittee on Energy, is also a good friend to this lab, and we value her support as well. I took over as Secretary of Energy three months ago, and I have to say this

102

Nanoscale Materials Safety at the Department's Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and development program in 200 1. As a part of the Initiative, the Department of Energy (Energy) is in the process of constructing Nanoscale Science Research Centers at six national laboratories. In addition to funding the construction and operation of these

103

Nanoscale Center Dedication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanoscale Center Dedication Nanoscale Center Dedication Nanoscale Center Dedication May 6, 2005 - 12:44pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, Bob [Rosner] for that introduction. And let me also thank you, along with [University of Chicago] President Randel, for the leadership you are showing here. Argonne has long been a world class institution. It will soar to new heights under your joint direction. I also want to acknowledge Illinois Governor Rod Blagojevich. Thank you for being here. More than that, thank you for your strong backing of Argonne and its employees. Congresswoman Judy Biggert, who chairs the Science Subcommittee on Energy, is also a good friend to this lab, and we value her support as well. I took over as Secretary of Energy three months ago, and I have to say this

104

Nano-Scale Materials Design of Pyrochlore for Enhanced Radiation ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale design strategy is important for developing advanced materials with enhanced performance for nuclear engineering applications.

105

The NIST Center for Nanoscale Science and Technology  

Science Conference Proceedings (OSTI)

... NANO LAB ... to be determined with unprecedented spatial and energy resolution. ... Center for Nanoscale Science and Technology National Institute of ...

2013-07-14T23:59:59.000Z

106

CNST Co-sponsors Global Workshop on Nanoscale ...  

Science Conference Proceedings (OSTI)

... The other sponsors include the ASME, the National Renewable Energy Laboratory, and the College of Nanoscale Science and Engineering (CNSE ...

2013-11-10T23:59:59.000Z

107

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

under NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;2 NSEC Annual Report 2007 ­ 2008 and Continuation Request for FY2008 Center for Nanoscale Systems in Information and Patents #12;1. PROJECT SUMMARY The Center for Nanoscale Systems (CNS) has assembled interdisciplinary

Gaeta, Alexander L.

108

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;Annual Report: 2005 - 2006 Center for Nanoscale Systems in Information Technologies Table of Contents 1. Project Annual Report 2005 ­ 2006 3 1. PROJECT SUMMARY The Center for Nanoscale Systems (CNS) has assembled

Gaeta, Alexander L.

109

Following Ostwald ripening in nanoalloys by high-resolution imaging with single-atom chemical sensitivity  

Science Conference Proceedings (OSTI)

Several studies have shown that substantial compositional changes can occur during the coarsening of bimetallic nanoparticles (CoPt, AuPd). To explain this phenomenon that could dramatically impacts all the technologically relevant properties of nanoalloys, we have exploited the sensitivity of the latest generation of electron microscope to prove that during the beam-induced coarsening of CoPt nanoparticles, the dynamic of atom exchanges between the particles is different for Co and Pt. By distinguishing the chemical nature of individual atoms of Co and Pt, while they are diffusing on a carbon film, we have clearly shown that Co atoms have a higher mobility than Pt atoms because of their higher evaporation rate from the particles. These atomic-scale observations bring the experimental evidence on the origin of the compositional changes in nanoalloys induced by Ostwald ripening mechanisms.

Alloyeau, D.; Nelayah, J.; Wang, G.; Ricolleau, C. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris Diderot/CNRS, UMR 7162, Batiment Condorcet, 4 rue Elsa Morante, 75205 Paris Cedex 13 (France); Oikawa, T. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris Diderot/CNRS, UMR 7162, Batiment Condorcet, 4 rue Elsa Morante, 75205 Paris Cedex 13 (France); JEOL Ltd, 1-2 Musashino 3-Chome, Akishima, Tokyo 196-8558 (Japan)

2012-09-17T23:59:59.000Z

110

Traceable nanoscale measurement at NML-SIRIM  

Science Conference Proceedings (OSTI)

The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

2012-06-29T23:59:59.000Z

111

Programmed assembly of nanoscale structures using peptoids.  

Science Conference Proceedings (OSTI)

Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

Ren, Jianhua (University of the Pacific, Stockton, CA); Russell, Scott (California State University, Stanislaus, Turlock, CA); Morishetti, Kiran (University of the Pacific, Stockton, CA); Robinson, David B.; Zuckermann, Ronald N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Buffleben, George M.; Hjelm, Rex P. (Los Alamos National Laboratory, Los Alamos, NM); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM)

2011-02-01T23:59:59.000Z

112

Phase transitions in nanoscale ferroelectric structures.  

Science Conference Proceedings (OSTI)

Over decades of effort, investigations of the intrinsic phase transition behavior of nanoscale ferroelectric structures have been greatly complicated by materials processing variations and by the common and uncontrolled occurrence of spacecharge, which interacts directly with the polarization and can obscure fundamental behavior. These challenges have largely been overcome, and great progress in understanding the details of this class of phase transitions has been made, largely based on advances in the growth of high-quality, epitaxial ferroelectric films and in the theory and simulation of ferroelectricity. Here we will discuss recent progress in understanding the ferroelectric phase transition in a particular class of model systems: nanoscale perovskite thin-film heterostructures. The outlook for ferroelectric technology based on these results is promising, and extensions to laterally confined nanostructures will be described.

Streiffer, S. K.; Fong, D. D. (Center for Nanoscale Materials); ( MSD)

2009-01-01T23:59:59.000Z

113

Nanoscale Science, Engineering and Technology Research Directions  

Science Conference Proceedings (OSTI)

This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

1999-01-01T23:59:59.000Z

114

Argonne CNM News: Shedding Light on Nature's Nanoscale Control of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Shedding Light on Nature's Nanoscale Control of Solar Energy Shedding Light on Nature's Nanoscale Control of Solar Energy Scanning tunneling microscopy tips A schematic of the Rhodobacter sphaerodes hexameric core, featuring the "special pair" (P) of degenerate bacteriochlorophyll (BChl) molecules, and the active (a) and inactive (b) arms of BChl and bacteriopheophytin (BPh) molecules. The transient absorption (ΔA) spectra acquired following selective excitation of P are shown. Nature's process for storing solar energy occurs in light-absorbing protein complexes called photosynthetic reaction centers (RCs). Across billions of years of evolution, Nature has retained a common light-absorbing hexameric cofactor core for carrying out the very first chemical reaction of photosynthesis, the light-induced electron transfer across approximately 3

115

TMS 2010 Tutorial on "Nanoscale Computational Materials Science"  

Science Conference Proceedings (OSTI)

TMS 2010: Tutorial on “Nanoscale Computational Materials Science” February 14-18, 2010 • Washington State Convention Center • Seattle, WA. This tutorial ...

116

Electric potential distribution in nanoscale electroosmosis: from molecules to continuum  

E-Print Network (OSTI)

correlations in the electric double layer. 1. Counterionsand correlations in the electric double layer. 2 . SymmetricElectric potential distribution in nanoscale electroosmosis:

Wang, M.; Liu, J.; Chen, S.

2007-01-01T23:59:59.000Z

117

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward...

118

Argonne CNM: Materials Design and Discovery at the Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Design and Discovery at the Nanoscale This pillar aligns well with Argonne's overall strategic interest in materials design and discovery. Geometrical confinement and...

119

Whirlpools on the Nanoscale Could Multiply Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either...

120

Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics  

E-Print Network (OSTI)

Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for Mass Production of Nanoscale Carbon Tips with Cylinder ...  

A method for fabricating nanoscale carbon tips with improved shape is described. The tips have excellent mechanical ... field emission at low applied electric fields.

122

Utilizing Nanoscale Interfacial Films to Tailor Battery and Other Ionic ...  

Science Conference Proceedings (OSTI)

Such nanoscale intergranular and surficial films can be utilized to engineer lithium-ion battery cathode and anode materials, as well as solid-state ionic ...

123

Nanoscale Interfacial Films in Battery and Ionic Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Nanoscale Interfacial Films in Battery and Ionic Materials. Author(s), Jian Luo, Jiajia Huang, Mojtaba Samiee. On-Site Speaker (Planned) ...

124

Mapping Nanoscale Variations in the Photoresponse of an ...  

Science Conference Proceedings (OSTI)

... for high-performance, next-generation solar cells. *The Origin of Nanoscale Variations in Photoresponse of an Organic Solar Cell, BH Hamadani, S ...

2012-01-13T23:59:59.000Z

125

Nanoscale Measurements With TSOM* Optical Method  

Science Conference Proceedings (OSTI)

... Computer algorithms process the acquired digital images and produce the TSOM images ... library of simulations ... SPIE 7272, In Press, (2009). ...

2011-10-03T23:59:59.000Z

126

Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys  

E-Print Network (OSTI)

x ULTRAFINE GRAINED MATERIALS Nano-scale strengthening fromSpringerlink.com Abstract Nano-scale strengthening has beenless than 20 h), develop nano-scale subgrains [15]. These

Lesuer, D. R.; Syn, C. K.; Sherby, O. D.

2010-01-01T23:59:59.000Z

127

Nano-scale magnetic film formation by decompression of supercritical CO?/ferric acetylacetonate solutions  

E-Print Network (OSTI)

GROWTH OF NANO-SCALE MAGNETIC FILMS USING CO 2 RESS EX-113 GROWTH OF NANO-SCALE MAGNETIC FILMS USING A SUPERCRIT-of EDX analysis on nano-scale ?lms. . . . . . . . . . . 109

De Dea, Silvia

2008-01-01T23:59:59.000Z

128

Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles  

E-Print Network (OSTI)

Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

2004-01-01T23:59:59.000Z

129

NSF Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

on the development of light emitters and potential solar cells as well as on a new type of optical fiber which under NYSTAR Contract # C020071 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;NSEC Annual Report 2008 ­ 2009 and Continuation Request for FY2009 Center for Nanoscale Systems in Information

Gaeta, Alexander L.

130

NSF -Nanoscale Science and Engineering Center Annual Report  

E-Print Network (OSTI)

on the development of light emitters and potential solar cells as well as on a new type of optical fiber which under NYSTAR Contracts # C020071, C070106 CENTER FOR NANOSCALE SYSTEMS IN INFORMATION TECHNOLOGIES #12;NSEC Annual Report 2009 ­ 2010 and Continuation Request for FY2010 Center for Nanoscale Systems

Gaeta, Alexander L.

131

Method to determine thermal profiles of nanoscale circuitry  

DOE Patents (OSTI)

A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

Zettl, Alexander K; Begtrup, Gavi E

2013-04-30T23:59:59.000Z

132

A mesoscopic description of radiative heat transfer at the nanoscale  

E-Print Network (OSTI)

We present a formulation of the nanoscale radiative heat transfer (RHT) using concepts of mesoscopic physics. We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The formalism provides a convenient framework to analyse the physics of RHT at the nanoscale. Finally, we propose a RHT experiment in the regime of quantized conductance.

Svend-Age Biehs; Emmanuel Rousseau; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

133

Energy Bounds for Fault-Tolerant Nanoscale Designs  

Science Conference Proceedings (OSTI)

The problem of determining lower bounds for the energy cost of a given nanoscale design is addressed via a complexity theory-based approach. This paper provides a theoretical framework that is able to assess the trade-offs existing in nanoscale designs ...

Diana Marculescu

2005-03-01T23:59:59.000Z

134

Argonne CNM: Manipulation of Nanoscale Materials for Energy & Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulation of Nanoscale Materials for Energy & Information Transduction Manipulation of Nanoscale Materials for Energy & Information Transduction Nanoscale materials absorb, dissipate, and propagate energy very differently from bulk materials. These properties offer unusual opportunities to induce, optimize, and control the conversion and transfer of energy and information at the nanoscale. The CNM applies recent advances in materials, theory, and characterization to create novel nanoscale materials for the control and transfer of energy, charge, and/or spin between homogeneous and heterogeneous materials. Propagation, Localization, and Interaction of Spin, Charge, Photons, and Phonons Realizing the promise of nanoscience hinges on the ability to understand and ultimately control the propagation of, localization of, and interaction between the basic quanta of energy and information - spin, charge, photons, and phonons - at the nanoscale. Key factors include continued advances in generating homogeneous nanoscale building blocks, finding means to hierarchically assemble the building blocks, and advanced scanning probe or other techniques for precisely initiating and monitoring propagation of these quanta at the nanoscale.

135

Final Report: Imaging of Buried Nanoscale Optically Active Materials  

Science Conference Proceedings (OSTI)

This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

Appelbaum, Ian

2011-07-05T23:59:59.000Z

136

Atomic Scale Imaging of Nanoscale Structures with Elemental ...  

Science Conference Proceedings (OSTI)

... for these materials, careful measurement of the position and identity of the various constituent atoms becomes essential. ... mml. Facilities/Tools Used: ...

2012-10-02T23:59:59.000Z

137

Coherent Diffraction Imaging of Strain on the Nanoscale  

Science Conference Proceedings (OSTI)

Using the Advanced Photon Source (APS) at Argonne National Laboratory we have developed measurement methods and computational algorithms to produce ...

138

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

139

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Nanoscale Blasting Adjusts Resistance in Magnetic Sensors. Description: Cartoon illustrates new NIST technique ...

140

Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells  

E-Print Network (OSTI)

Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optical bistability in artificial composite nanoscale molecules: Towards all optical processing at the nanoscale  

E-Print Network (OSTI)

Optical response of artificial composite nanoscale molecules comprising a closely spaced noble metal nanoparticle and a semiconductor quantum dot have been studied theoretically. We consider a system composed of an Au particle and CdSe or CdSe/ZnSe quantum dot and predict optical bistability and hysteresis in its response, which suggests various applications, in particular, all-optical processing and optical memory.

A. V. Malyshev; V. A. Malyshev

2010-12-28T23:59:59.000Z

142

Safety at the Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

case of emergency or if you need help or assistance case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Authorization(s) and/or work planning and control documents prior to beginning your work. For safety and security reasons, it is necessary to know of all facility users present in the CNM (Buildings 440 and 441). Users are required to sign in and out in the visitors logbook located in Room A119. Some detailed emergency information is provided on the Argonne National

143

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1995-09-05T23:59:59.000Z

144

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1995-09-05T23:59:59.000Z

145

Apparatus for producing nanoscale ceramic powders  

DOE Patents (OSTI)

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

1997-02-04T23:59:59.000Z

146

Apparatus for producing nanoscale ceramic powders  

SciTech Connect

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

Helble, J.J.; Moniz, G.A.; Morse, T.F.

1997-02-04T23:59:59.000Z

147

Nanoscale magnetic field mapping with a single spin scanning probe magnetometer  

SciTech Connect

We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

2012-04-09T23:59:59.000Z

148

Nanoscience Images from the Center for Nanophase Materials Sciences (CNMS)  

DOE Data Explorer (OSTI)

DOE's Nanoscale Science Research Centers to support the synthesis, processing, fabrication, and analysis of materials at the nanoscale are also National User Facilities. The Center for Nanophase Materials Science is currently one of five ceterns for interdisciplinary research at the nanoscale. These centers are laboratories for nanofabrication, may have one-of-a-kind signature instruments, including nanopatterning tools and research-grade probe microscopes. The images produced by nanoscience research and the technologies involved are beautiful and unique. This website makes available a very small collection but very high quality, public domain images

149

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

150

Whirlpools on the Nanoscale Could Multiply Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Whirlpools on the Nanoscale Could Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the scientist's point of view, magnetism is about controlling electron spin," says Peter Fischer of the Materials Sciences Division, who leads the work at beamline 6.1.2. Four orientations could provide multibits in a new kind of memory. The next step is to control the states independently and simultaneously.

151

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

152

Safe Handling of Engineering Nanoscale Materials: DOE Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. H. Carim A. H. Carim Basic Energy Sciences Basic Energy Sciences 5 DOE Policy 456.1: DOE Policy 456.1: Secretarial Policy Statement On Nanoscale Safety Secretarial...

153

Stable Storage of Helium in Nanoscale Platelets at Semicoherent Interfaces  

E-Print Network (OSTI)

He implanted into metals precipitates into nanoscale bubbles that may later grow into voids, degrading the properties of engineering alloys. Using multiscale modeling, we show that a different class of He precipitates may ...

Kashinath, Abishek

154

The Micro- and Nanoscale Tensile Testing of Materials  

Science Conference Proceedings (OSTI)

The pertinent questions at the micro- and nanoscale become: What ..... Understanding the fundamental response of the building blocks of complex ... Y. Gogotsi, editor, Nanomaterials Handbook (Oxford, U.K.: Taylor and Francis, Inc., 2006). 2.

155

A Probabilistic-Based Design Methodology for Nanoscale Computation  

Science Conference Proceedings (OSTI)

As current silicon-based techniques fast approach their practicallimits, the investigation of nanoscale electronics, devices andsystem architectures becomes a central research priority. It is expectedthat nanoarchitectures will confront devices and interconnectionswith ...

R. Iris Bahar; Joseph Mundy; Jie Chen

2003-11-01T23:59:59.000Z

156

Design and implementation of nanoscale fiber mechanical testing apparatus  

E-Print Network (OSTI)

The rapid growth in the synthetic manufacturing industry demands higher resolution mechanical testing devices, capable of working with nanoscale fibers. A new device has been developed to perform single-axis tensile tests ...

Brayanov, Jordan, 1981-

2004-01-01T23:59:59.000Z

157

Nanoscale structure and transport : from atoms to devices  

E-Print Network (OSTI)

Nanoscale structures present both unique physics and unique theoretical challenges. Atomic-scale simulations can find novel nanostructures with desirable properties, but the search can be difficult if the wide range of ...

Evans, Matthew Hiram

2005-01-01T23:59:59.000Z

158

Nanoscale strength distribution in amorphous versus crystalline metals  

E-Print Network (OSTI)

Low-load nanoindentation can be used to assess not only the plastic yield point, but the distribution of yield points in a material. This paper reviews measurements of the so-called nanoscale strength distribution (NSD) ...

Packard, C.E.

159

Synthesizing High-Quality Calcium Boride at Nanoscale  

N-type thermoelectric materials Synthesizing High-Quality Calcium Boride at Nanoscale (IN-10-044) CaB 6 particles coated for 20 cycles at 1600° C.

160

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the University of Washington has demonstrated a new way of creating one-dimensional nanoscale structures (nanowires) in the compound gallium selenide. In short, ordered lines of structural vacancies in the material stimulate the growth of "one-dimensional" structures less than 1 nanometer in width.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

Science Conference Proceedings (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

162

Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance  

Science Conference Proceedings (OSTI)

Co{sub 3}O{sub 4} hollow microspheres with micro- and nano-scale composite structure self-assembled by nanosheets were successfully fabricated by the template-free wet-chemical approach. This method is simple, facile and effective. The Co{sub 3}O{sub 4} hollow microspheres with good purity and homogeneous size were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectrometer (ICP). The formation mechanism was deeply studied. The micro- and nano-scale composite structure constructed by the porous nanosheets promotes to improve the electrochemical properties of Co{sub 3}O{sub 4} hollow microspheres. The high discharge capacity of 1048 mAh g{sup -1} indicates it to be the potential application in electrode materials of Li-ion battery. - Graphical Abstract: Co{sub 3}O{sub 4} hollow microspheres self-assembled by nanosheets are successfully fabricated by a template-free wet-chemical approach. The hollow microspheres are in good morphology purity and homogeneous size. Co{sub 3}O{sub 4} hollow microspheres constructed by porous nanosheets show the high discharge capacity of 1048 mAh g{sup -1}, indicating it to be the potential electrode material of Li-ion battery.

Tao Feifei [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000 (China); Gao Cuiling [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Wen Zhenhai; Wang Qiang; Li Jinghong [Department of Chemistry, Qinghua University, Beijing 100084 (China); Xu Zheng, E-mail: zhengxu@netra.nju.edu.c [State Key Laboratory of Coordination Chemistry, Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

2009-05-15T23:59:59.000Z

163

Non-Equilibrium Nanoscale Self-Organization  

SciTech Connect

Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

Aziz, Michael J

2006-03-09T23:59:59.000Z

164

Nanoscale Surface Topography to Guide Bone Growth  

Science Conference Proceedings (OSTI)

... As seen in the fluorescence microscopy images, cells align with the gradient at the high end of the taper (left), and orient randomly on the low end ...

2013-01-24T23:59:59.000Z

165

Strain Determination in Nanoscale Microelectronic Materials Using ...  

Science Conference Proceedings (OSTI)

Synchrotron-based x-ray microbeam diffraction provides us with the ... Advances in Orientation Imaging Microscopy in Transmission Electron Microscope.

166

COMPLETED - Dimensional Metrology for Nanoscale Patterns  

Science Conference Proceedings (OSTI)

... focused on top-down images of the lines. ... exists when comparing the CD-SEM line widths to ... SAXS: CD-SAXS is a transmission scattering technique ...

2012-10-02T23:59:59.000Z

167

Laser ablation of nanoscale particles with 193 nm light  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser ablation of nanoscale particles with 193 nm light Laser ablation of nanoscale particles with 193 nm light Title Laser ablation of nanoscale particles with 193 nm light Publication Type Journal Article Year of Publication 2007 Authors Choi, Jong Hyun, Donald Lucas, and Catherine P. Koshland Journal Journal of Physics: Conference Series Volume 59 Start Page 54 Issue 1 Pagination 54-59 Abstract Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics.

168

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

169

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: NIST Nanoscale Dimensioning Technique Wins R&D 100 Award. Description: Ravikiran Attota, a lead researcher ...

170

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: CNST Tour. Description: Dr. Robert Celotta, Director of the NIST Center for Nanoscale Science and Technology (far ...

171

Nano-scale positioning, control and motion planning in hard disk drives  

E-Print Network (OSTI)

OF CALIFORNIA, SAN DIEGO Nano-scale Positioning, Control andABSTRACT OF THE DISSERTATION Nano-scale Positioning, Controlmm) height (mm) mini micro nano pico femto Figure 2.8:

Boettcher, Uwe

2011-01-01T23:59:59.000Z

172

Peering into the Interfaces of Nanoscale Polymeric Materials | Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Ironing Out the Details of the Earth's Core Ironing Out the Details of the Earth's Core Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Peering into the Interfaces of Nanoscale Polymeric Materials JANUARY 6, 2012 Bookmark and Share Schematic configuration of the marker XPCS experiments. The use of resonance enhanced X-ray scattering for XPCS enables one to intensify, by more than one order of magnitude, the probing electrical field in the regions of interest within single nanometer polymer films. The development of polymer nanostructures and nanoscale devices for a wide variety of applications could emerge from new information about the interplay between nanoscale interfaces in polymeric materials, thanks to

173

2-5 Interfacial & Nanoscale Science Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

INSF Overview INSF Overview Interfacial & Nanoscale Science Facility The Interfacial & Nanoscale Science (I&NS) Facility is a world-class resource for scientific expertise and instrumentation related to the study of interfacial phenomena and nanoscience and technology. This section summarizes the capabilities that exist in the I&NS Facility, along with research programs associated with facility users. Activities in the I&NS Facility address national needs in environmental restoration, waste management, pollution preven- tion, energy, and national security through research that specializes in preparation, charac- terization, interactions, and reactivity of interfaces and nanoscale materials. The range of scientific expertise and instrumentation within the I&NS Facility provides a unique envi-

174

Energy Bounds for Fault-Tolerant Nanoscale Designs  

E-Print Network (OSTI)

The problem of determining lower bounds for the energy cost of a given nanoscale design is addressed via a complexity theory-based approach. This paper provides a theoretical framework that is able to assess the trade-offs existing in nanoscale designs between the amount of redundancy needed for a given level of resilience to errors and the associated energy cost. Circuit size, logic depth and error resilience are analyzed and brought together in a theoretical framework that can be seamlessly integrated with automated synthesis tools and can guide the design process of nanoscale systems comprised of failure prone devices. The impact of redundancy addition on the switching energy and its relationship with leakage energy is modeled in detail. Results show that 99% error resilience is possible for fault-tolerant designs, but at the expense of at least 40% more energy if individual gates fail independently with probability of 1%.

Marculescu, Diana

2011-01-01T23:59:59.000Z

175

The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels  

Science Conference Proceedings (OSTI)

The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

2009-06-15T23:59:59.000Z

176

Device Physics of Nanoscale Interdigitated Solar Cells (Poster)  

Science Conference Proceedings (OSTI)

Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

Metzger, W.; Levi, D.

2008-05-01T23:59:59.000Z

177

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for...

178

Division of Chemical & Biological Sciences | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division of Chemical & Biological Sciences Division of Chemical & Biological Sciences Image Welcome Research teams in this Division conduct fundamental and applied studies of how...

179

Toward in vivo nanoscale communication networks: utilizing an active network architecture  

Science Conference Proceedings (OSTI)

A safe and reliable in vivo nanoscale communication network will be of great benefit for medical diagnosis and monitoring as well as medical implant communication. This review article provides a brief introduction to nanoscale and molecular ... Keywords: active network, in vivo network, molecular communication, molecular motor, nanoscale network, neural coding

Stephen F. Bush

2011-09-01T23:59:59.000Z

180

Introduction & History The Center for Nanoscale Science exploits  

E-Print Network (OSTI)

, and the control of light in nanostructures, Center activities involve forty eight students and post behavior of nanoscale systems with common themes of new materials synthesis and nano- fabrication, theory ferroelectric ferromagnetic, highly tunable dipole-spring ferroics, and other systems with new physical proper

Yener, Aylin

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network (OSTI)

Bioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - Mobilization

Cushing, Jim. M.

182

Monte Carlo study of self-heating in nanoscale devices  

Science Conference Proceedings (OSTI)

Progress in device miniaturization combined with the increase in integrated circuit packing density, as described by Moore's law, have been accompanied by an exponential increase in on-chip heat generation. In this context, there is an increasing demand ... Keywords: Electron transport, Electrothermal modeling, Monte Carlo, Nanoscale semiconductor devices, Nanowire MISFETs, Self-heating, Si/III-V heterostructure FETs, Thermal transport

Toufik Sadi; Robert W. Kelsall; Neil J. Pilgrim; Jean-Luc Thobel; François Dessenne

2012-03-01T23:59:59.000Z

183

Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope  

SciTech Connect

We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka [National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 (Japan); Shimojo, Masayuki [Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

2010-05-21T23:59:59.000Z

184

NREL: Energy Sciences - Chemical and Materials Science Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

185

Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.  

Science Conference Proceedings (OSTI)

This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth’s surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system’s data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this research determined that spectral resolution of 10um was adequate, but a signal to noise above 300:1 was desirable for hyperspectral sensors with this spectral resolution. Finally, we acquired a hyperspectral thermal dataset (SEBASS) at 3m spatial resolution over our study area in Beatty, Nevada that can be co-registered with the hyperspectral reflectance, LIDAR and digital Orthophoto data sets. This data set will enable us to quantify how measurements in the reflected infrared can be used to make inferences about the response of materials in the thermal infrared, the topic of our follow-on NA-22 investigation ending in 2008. These data provide the basis for our investigations proposed for the NA-22 2008 Broad Area Announcement. Beginning in June 2008, SpecTIR Corporation and Aerospace Corporation plan to fly the SpecTIR Dual and SEBASS in a stabilized mount in a twin Otter aircraft. This research provides the foundation for using reflected and emitted hyperspectral measurements together for mapping geologic and soil materials in arid to semi-arid regions.

James V. Taranik

2007-12-31T23:59:59.000Z

186

Argonne CNM Highlight: Quasi-Crystalline Order at Nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Quasi-Crystalline Order at Nanoscale Quasi-Crystalline Order at Nanoscale Polyimide Nanofilter TEM showing the two-dimensional dodecagonal quasi-crystalline structure self-assembled from 5-nm Au and 13.4-nm Fe3O4 nanoparticles. Nanoparticles have a strong tendency to form periodic structures. Mixing and matching of two different types of nanoparticles allows the formation of binary nanoparticle superlattices isostructural to ionic or intermetallic compounds. In addition to periodic superlattices, binary mixtures of nearly spherical nanoparticles could lead to the growth of quasi-crystals. CNM staff in the Nanobio Interfaces Group, together with colleagues from the University of Chicago and the University of Pennsylvania, have found that two-dimensional dodecagonal quasi-crystals can be formed in mixtures

187

ST ATEMENT OF CONSIDERATIONS Nanoscale Science Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ST ST ATEMENT OF CONSIDERATIONS Nanoscale Science Research Center Class Waiver, W(C)-200S-001 The 21st Century Nanotechnology Research and Development Act, 15 U.S.c. §7501 et seq., (the "Nanotechnology Act"), signed into lawon December 3,2003, codifies programs and activities supported by the National Nanotechnology Initiative (NNI) and provides for the establishment of a network of advanced technology user facilities and centers. An "advanced technology user facility" is defined as "a nanotechnology research development facility supported, in whole or in part, by Federal funds that is open to all United States researchers on a competitive, merit- reviewed basis." 15 U.S.c. § 7509(5). DOE has established five user facilities under the Nanotechnology Act, known as Nanoscale Science Research Centers (NSRCs), which are funded by the

188

New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Patterning High-density Arrays of Nanospheres with Self Assembly Patterning High-density Arrays of Nanospheres with Self Assembly Cells Forming Blood Vessels Send Their Copper to the Edge A Molecular Cause for One Form of Deafness Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles MARCH 7, 2007 Bookmark and Share Nenad Markovic and Vojislav Stamenkovic with the new three-chamber UHV system at Argonne. Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering - a

189

The Nanoscale-Ordered Materials Diffractometer at SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale-Ordered Materials Diffractometer Nanoscale-Ordered Materials Diffractometer Inside the NOMAD detector tank. Inside the NOMAD detector tank. NOMAD is a high-flux, medium-resolution diffractometer that uses a large bandwidth of neutron energies and extensive detector coverage to carry out structural determinations of local order in crystalline and amorphous materials. It enables studies of a large variety of samples ranging from liquids, solutions, glasses, polymers, and nanocrystalline materials to long-range-ordered crystals. The enhanced neutron flux at SNS, coupled with the advanced neutron optics and detector features of NOMAD, allows for unprecedented access to high-resolution pair distribution functions, small-contrast isotope substitution experiments, small sample sizes, and parametric studies.

190

Nanoscale design to enable the revolution in renewable energy  

E-Print Network (OSTI)

The creation of a sustainable energy generation, storage, and distribution infrastructure represents a global grand challenge that requires massive transnational investments in the research and development of energy technologies that will provide the amount of energy needed on a sufficient scale and timeframe with minimal impact on the environment and have limited economic and societal disruption during implementation. In this opinion paper, we focus on an important set of solar, thermal, and electrochemical energy conversion, storage, and conservation technologies specifically related to recent and prospective advances in nanoscale science and technology that offer high potential in addressing the energy challenge. We approach this task from a two-fold perspective: analyzing the fundamental physicochemical principles and engineering aspects of these energy technologies and identifying unique opportunities enabled by nanoscale design of materials, processes, and systems in order to improve performance and reduce costs. Our principal goal is to establish a roadmap for research and development activities in nanoscale science and technology that would significantly advance and accelerate the implementation of renewable energy technologies. In all cases we make specific recommendations for research needs in the near-term (2–5 years), mid-term (5–10 years) and long-term (>10 years), as well as projecting a timeline for maturation of each technological solution.

unknown authors

2008-01-01T23:59:59.000Z

191

Nanoscale Synthesis and Characterization Laboratory Annual Report 2007  

Science Conference Proceedings (OSTI)

The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

Hamza, A V

2008-04-07T23:59:59.000Z

192

Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting  

SciTech Connect

SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 ?mol H2 g–1 h–1 (bulk STO), to 19.4 ?mol H2 g–1 h–1 (30 nm STO), and 3.0 ?mol H2 g–1 h–1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

2012-08-28T23:59:59.000Z

193

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

194

Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering  

Science Conference Proceedings (OSTI)

To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

2009-09-09T23:59:59.000Z

195

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

196

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic ...  

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic and Martensitic Steels Produced by a Thermo-Mechanical Treatment Process Note: The technology ...

197

CHEMICAL MANAGEMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

exposure monitoring for nanoscale materials is not feasible because accepted methods (instrumentation, exposure limits, etc.) do not currently exist. IH personnel continue to...

198

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network (OSTI)

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam August 2011; accepted 29 August 2011; published online 22 September 2011) Formation of lithium dendrite to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our

Endres. William J.

199

Beyond biology: designing a new mechanism for self-replication and evolution at the nanoscale  

Science Conference Proceedings (OSTI)

As biology demonstrates, evolutionary algorithms are an extraordinarily powerful way to design complex nanoscale systems. While we can harness the biological apparatus for replicating and selecting DNA sequences to evolve enzymes and to some extent, ... Keywords: nanoscale systems, self-replication

Rebecca Schulman

2011-07-01T23:59:59.000Z

200

Nanoscale Science Research Centers | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nanoscale Science Research Centers Nanoscale Science Research Centers Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Nanoscale Science Research Centers Print Text Size: A A A RSS Feeds FeedbackShare Page The five NSRCs are DOE's premier user centers for interdisciplinary research at the nanoscale, serving as the basis for a national program that encompasses new science, new tools, and new computing capabilities. Each center has particular expertise and capabilities in selected theme areas, such as synthesis and characterization of nanomaterials; catalysis; theory,

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Inherent fluctuation-mediated equivalent force drives directional motions of nanoscale asymmetric particles -- Surf-riding of asymmetric molecules in thermal fluctuations  

E-Print Network (OSTI)

Using a simple theoretical model of a nanoscale asymmetric particle/molecule with asymmetric structure or/and asymmetric charge distribution, here using a charge dipole as an example, we show that there is unidirectional transportation mediated by non-white fluctuations if the asymmetric orientation of the particle/molecule is constrained. This indicates the existence of an inherent equivalent force, which drives the particle/molecule itself along the orientation of the asymmetric particle in the environment of fluctuations. In practical systems, equivalent force also exist in the asymmetric molecules, such as water and ethanol, at the ambient condition since thermal fluctuations are not white anymore at nanoscale [Wan, R., J. Hu, and H. Fang, Sci. China Phys. Mech. Astron. 2012, 55, 751]. Molecular dynamic simulations show that there is unidirectional transportation of an ultrathin water layer on solid surface at room temperature when the orientations of water molecules have a preference. The finding will play an essential role in the understanding of the world from a molecular view and the developing of novel technology for various nanoscale and bulk applications, such as chemical separation, water treatment, sensing and drug delivery.

Yusong Tu; Nan Sheng; Rongzheng Wan; Haiping Fang

2013-07-23T23:59:59.000Z

202

Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410  

SciTech Connect

The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

Ding, S. Y.

2013-06-01T23:59:59.000Z

203

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

204

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

205

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

206

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

207

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

208

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

New Route to Nanoscale Conducting Channels in Insulating Oxides Print New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

209

Annual Technical Report Nanoscale Science and Engineering Center (NSEC) for  

E-Print Network (OSTI)

fechtenkoetter of BASf Global Research centre in Singapore. In feb 2009, BASf, the world's leading chemical

Shull, Kenneth R.

210

Physical and Chemical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

211

Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect  

DOE Patents (OSTI)

A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

2010-02-23T23:59:59.000Z

212

Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds  

E-Print Network (OSTI)

The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.

D. Maclaurin; L. T. Hall; A. M. Martin; L. C. L. Hollenberg

2012-07-23T23:59:59.000Z

213

Engineered Nano-scale Ceramic Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward Los Alamos National Laboratory Timothy Ward, Plamen Atanassov University of New Mexico Karren More Oak Ridge National Laboratory Fuel Cell Technologies Program Kick-off Meeting September 30 - October 1, 2009 Washington DC Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives  Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode that exhibits an enhanced resistance to corrosion and Pt coalescence while preserving positive attributes of carbon such as

214

Los Alamos scientists detect and track single molecules with nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube "glowsticks" transform surface science tool kit Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

215

ADVANCED HEAT EXCHANGERS USING TUNABLE NANOSCALE-MOLECULAR ASSEMBLY  

Science Conference Proceedings (OSTI)

Steam condensation heat transfer on smooth horizontal tubes and enhanced tubes (TURBO-CDI and TURBO-CSL) along with nanoscale hydrophobic coated tubes was studied experimentally. Hydrophobic coatings have been created through self-assembled mono layers (SAMs) on copper alloy (99.9% Cu, 0.1% P) surfaces to enhance steam condensation through dropwise condensation. In general, a SAM system with a long-chain, hydrophobic group is nano-resistant, meaning that such a system forms a protective hydrophobic layer with negligible heat transfer resistance but a much stronger bond. When compared to complete filmwise condensation, the SAM coating on a plain tube increased the condensation heat transfer rate by a factor of 3 for copper alloy surfaces, under vacuum pressure (33.86 kPa) and by a factor of about 8 times when operated at atmospheric pressure (101 kPa). Lifetime of maintaining dropwise condensation is greatly dependent on the processing conditions.

Kwang J. Kim; Thomas W. Bell; Srinivas Vemuri; Sailaja Govindaraju

2004-01-01T23:59:59.000Z

216

Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS  

E-Print Network (OSTI)

We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

2013-04-04T23:59:59.000Z

217

Nanoscale Synthesis and Characterization Laboratory Annual Report 2005  

SciTech Connect

The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

Hamza, A V; Lesuer, D R

2006-01-03T23:59:59.000Z

218

Development of a chemical vision spectrometer to detect chemical agents.  

DOE Green Energy (OSTI)

This paper describes initial work in developing a no-moving-parts hyperspectral-imaging camera that provides both a thermal image and specific identification of chemical agents, even in the presence of nontoxic plumes. The camera uses enhanced stand-off chemical agent detector (ESCAD) technology based on a conventional thermal-imaging camera interfaced with an acousto-optical tunable filter (AOTF). The AOTF is programmed to allow selected spectral frequencies to reach the two dimensional array detector. These frequencies are combined to produce a spectrum that is used for identification. If a chemical agent is detected, pixels containing the agent-absorbing bands are given a colored hue to indicate the presence of the agent. In test runs, two thermal-imaging cameras were used with a specially designed vaporizer capable of controlled low-level (low ppm-m) dynamic chemical releases. The objective was to obtain baseline information about detection levels. Dynamic releases allowed for realistic detection scenarios such as low sky, grass, and wall structures, in addition to reproducible laboratory releases. Chemical releases consisted of dimethylmethylphosphonate (DMMP) and methanol. Initial results show that the combination of AOTF and thermal imaging will produce a chemical image of a plume that can be detected in the presence of interfering substances.

Demirgian, J.

1999-02-23T23:59:59.000Z

219

Schematic of a chemical AFM of lithographically  

E-Print Network (OSTI)

with semiconductor nanowires for nanoscale electronics. Redwing Group, Dickey Group Penn State World-Class Facilities

Lee, Dongwon

220

Fabrication of inverse micro/nano pyramid structures using soft UV-NIL and wet chemical methods for residual layer removal and Si-etching  

Science Conference Proceedings (OSTI)

In this study we present a novel and simple fabrication method for micro- and nano-scale inverse pyramidal structures by a combination of soft UV-NIL and wet chemical etchings. The unique feature of our method is the absence of a RIE process, which is ... Keywords: Micro/nano inverse pyramids, Nanoimprint, Residual layer etching with wet chemical

J. W. Kim, U. Plachetka, C. Moormann, H. Kurz

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ATTACHMENT CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE MATERIALS, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND,WASH[NGTON Proposed Adion: The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct indoor small-scale research and development projects and small-scale pilot projects using nanoscale materials. Nanoscale materials are engineered materials consisting of, or containing structures of between 1 and 100 nanometers (nm) that make use of properties unique to nanoscale forms of materials. Location of Action: The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) Site and in the vicinity ofPNNL facilities in the State of Washington. Description of the Proposed Action:

222

THERMAL HEAT TRANSPORT AT THE NANO-SCALE LEVEL AND ITS APPLICATION TO NANO-MACHINING.  

E-Print Network (OSTI)

??Nano-manufacturing is receiving significant attention in industry due to the ever-growing interest in nanotechnology in research institutions. It is hypothesized that single-step or direct-write nano-scale… (more)

Wong, Basil T.

2006-01-01T23:59:59.000Z

223

3D/4D/5D visualization of material at nano-scale using Transmission...  

NLE Websites -- All DOE Office Websites (Extended Search)

3D4D5D visualization of material at nano-scale using Transmission X-ray Microscopy Wednesday, May 22, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Yijin Liu, SSRL The...

224

Simulated nanoscale peeling process of monolayer graphene sheet: effect of edge structure and lifting position  

Science Conference Proceedings (OSTI)

The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps ...

Naruo Sasaki; Hideaki Okamoto; Shingen Masuda; Kouji Miura; Noriaki Itamura

2010-01-01T23:59:59.000Z

225

Nonlinear Klein-Gordon equation fot nanoscale heat and mass transport  

E-Print Network (OSTI)

In this paper nonlinear Klein-Gordon equation for heat and mass transport in nanoscale was proposed and solved. It was shown that for ultra-short laser pulses nonlinear Klein-Gordon equation is reduced to nonlinear d`Alembert equation. The implicit solution of the d`Alembert equation for ultrashort laser pulses was obtained Key words: nonlinear Klein-Gordon equation, d`Alembert equation, nanoscale transport

Janina Kozlowska; Miroslaw Kozlowski; Magdalena Pelc

2006-11-26T23:59:59.000Z

226

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

227

Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid Films  

E-Print Network (OSTI)

Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface. In order to properly simulate the flow and heat transfer in nano-scale channels, an interactive thermal wall model is developed. Using this model, the Fourier’s law of heat conduction is verified in a 3.24 nm height channel, where linear temperature profiles with constant thermal conductivity is obtained. The thermal conductivity is verified using the predictions of Green-Kubo theory. MD simulations at different wall wettability ( ??f /? ) and crystal bonding stiffness values (K) have shown temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance. Using systematic studies, the thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature and thermal gradient. An empirical model for the thermal resistance length, which could be used as the jump-coefficient of a Navier boundary condition, is developed. Temperature distributions in the nano-channels are predicted using analytical solution of the continuum heat conduction equation subjected to the new temperature jump condition, and validated using the MD results. Momentum and heat transfer in shear driven nanochannel flows are also investigated. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions. Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation rates are presented. The energy dissipation rate is almost a constant for ??f /? < 0.6, which results in parabolic temperature profiles in the domain with temperature jumps due to the Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in this study, the analytical solutions are obtained for the temperature profiles, which agree well with the MD results.

Kim, Bo Hung

2009-05-01T23:59:59.000Z

228

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Frequency Comb, Ultrafast Laser. ...

229

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Iron-Based Superconductors. Description ...

230

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Space Weather Forecasts. Description ...

231

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Organic Solar Power. Description ...

232

Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties  

Science Conference Proceedings (OSTI)

Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure of magnetite (Fe{sub 3}O{sub 4}) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe{sub 3}O{sub 4}) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging and result in low yields of nanomagnetite. Despite these limitations, magnetotactic bacteria have bee

Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

2009-03-24T23:59:59.000Z

233

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Nanotechnology; Biotechnology/Health; Nanocrystals; Hwang. ...

234

NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.  

SciTech Connect

The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

SUGAMA,T.

2003-06-26T23:59:59.000Z

235

Pressure Driven Flow of Polymer Solutions in Nanoscale Slit Pores  

E-Print Network (OSTI)

Polymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. We investigated the effect of molecular weight, polymer concentration and flow rate on the profiles across the channel of the fluid and polymer velocities, polymers density, and the three components of the polymers radius of gyration. We found that the mean streaming fluid velocity decreases as the polymer molecular weight or/and polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration. We also found that the distribution of polymers conformation is highly anisotropic and non-uniform across the channel. The polymer density profile is also found to be non-uniform, exhibiting a local minimum in the center-plane followed by two symmetric peaks. We found a migration of the polymer chains either from or towards the walls. For relatively long chains, as compared to the thickness of the slit, a migration towards the walls is observed. However, for relatively short chains, a migration away from the walls is observed.

J. A. Millan; W. Jiang; M. Laradji; Y. Wang

2006-10-16T23:59:59.000Z

236

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

237

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

238

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

E-Print Network (OSTI)

This work was supported by the Director, Office of Science,Office of Basic Energy Sciences, Materials Sciences and

Fischer, P.

2010-01-01T23:59:59.000Z

239

Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk  

E-Print Network (OSTI)

NTRODUCTION To model multiphase flow in porous media at porein porous media - pore-network models and multiphase flow”,porous microstructures. ” International Journal of Multiphase

Tomutsa, Liviu; Silin, Dmitriy

2004-01-01T23:59:59.000Z

240

Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces  

SciTech Connect

Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

Epstein, Arthur J. [Professor

2013-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

242

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

243

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

244

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

245

Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales  

Science Conference Proceedings (OSTI)

Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

2010-09-15T23:59:59.000Z

246

Recovery Act Provides Big Boost with a Nanoscale Focus | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provides Big Boost with a Nanoscale Focus Provides Big Boost with a Nanoscale Focus Recovery Act Provides Big Boost with a Nanoscale Focus October 14, 2010 - 9:46am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The Center for Functional Nanomaterials is getting a new electron microscope that will be valuable for solar cell research -- one of 7 ARRA-funded additions at the Brookhaven National Laboratory facility. Editor's note: cross posted from the Brookhaven National Laboratory The Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory is receiving more than $5 million in new equipment and upgrades funded by the American Recovery and Reinvestment Act (ARRA). The new acquisitions will fill gaps in the current facility to meet the needs of

247

Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems  

E-Print Network (OSTI)

1 Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems Patrick James McCluskey, and Joost J. Vlassak Division of Engineering is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano

248

The Properties of Confined Water and Fluid Flow at the Nanoscale  

DOE Green Energy (OSTI)

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

249

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Quantum Physics; Quantum Communications; Ultrafast Photon Detector; Nam. ...

250

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Scanning Electron Microscope with Spin Polarization Analysis. ...

251

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Metrology, Basic Units; Mass; Electronic Kilogram. Description ...

252

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Energy; Fossil Fuels;Distillation Curves for Complex Fuel Mixtures. ...

253

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... nist.gov. 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Public safety & Smart Grid. Description: Electrical engineer ...

254

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

255

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

256

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

257

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image No 150 DPI Version 300 DPI Image. Title: Ultrafast Laser Speeds Up Quest for Atomic Control. ...

258

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: New Imaging Tool is Boon to Fuel Cell Research. Description: NIST ...

259

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: House; Trees. Description: *BFRL. Subjects (names): ...

260

Nanoscale modulations in (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 Multiplication-Sign 9.4a{sub p} periodicity (a{sub p} Almost-Equal-To 4 A for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases. - Graphical abstract: Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction and high-resolution transmission electron microscopy show a two-dimensional, nanocheckerboard modulation. For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Highlights: Black-Right-Pointing-Pointer Two new A-site ordered perovskites were synthesized, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. Black-Right-Pointing-Pointer Unusual 1D and 2D nanoscale patterns were observed. Black-Right-Pointing-Pointer Tolerance factor shown to be not enough to predict the observed morphologies. Black-Right-Pointing-Pointer High temperature x-ray diffraction data suggests a loss of stoichiometry is related to the modulations. Black-Right-Pointing-Pointer Z-contrast imaging provides direct evidence for non-stoichiometry and a new model.

Licurse, Mark W., E-mail: mlicurse@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States); Borisevich, Albina Y., E-mail: albinab@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Davies, Peter K., E-mail: davies@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Characterization of atomic layer deposited nanoscale structure on dense dielectric substrates by X-ray reflectivity  

Science Conference Proceedings (OSTI)

Interfaces play a crucial role in determining the ultimate properties of nanoscale structures. However, the characterization of such structures is difficult, as the interface can no longer be defined as the separation between two materials. The high ... Keywords: ALD, Density, Dielectrics, XRR

Y. Travaly; J. Schuhmacher; A. Martin Hoyas; T. Abell; V. Sutcliffe; A. M. Jonas; M. Van Hove; K. Maex

2005-12-01T23:59:59.000Z

262

Nano-magnetic non-volatile CMOS circuits for nano-scale FPGAs (abstract only)  

Science Conference Proceedings (OSTI)

Nanotechnology promises to open up new ways of scaling CMOS circuits by introducing new materials. For example, a hybrid circuit of CMOS gates and carbon nano-tubes (CNT), NEMS relay logic and emerging memory devices have been proposed for future nano-scale ... Keywords: fpga, spin-torque devices, spintronics

Larkhoon Leem; James A. Weaver; Metha Jeeradit; James S. Harris

2010-02-01T23:59:59.000Z

263

NANO-SCALE VISUALIZATION OF LIQUID INTERFACES DURING COALESCENCE AND RAPTURE  

E-Print Network (OSTI)

NANO-SCALE VISUALIZATION OF LIQUID INTERFACES DURING COALESCENCE AND RAPTURE Experiments by Jacob viscosity and interfacial tension) and experimental conditions (shear rate or approach velocity), and nano such as fingering and cavitation, both occurring at the nano- or submicron-scales. The two figures below ­ the first

Akhmedov, Azer

264

Analyzing Combined Impacts of Parameter Variations and BTI in Nano-scale Logical Gates  

E-Print Network (OSTI)

Analyzing Combined Impacts of Parameter Variations and BTI in Nano-scale Logical Gates Seyab Khan conclusions. 2 Background and Analysis Framework Fig. 1(a) shows the threshold voltage increment (Vth) due variation, delay model, and presents the analysis framework. First MEDIAN Workshop 2012 7 #12;2 Seyab Khan

Hamdioui, Said

265

Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

Byer, Robert L.

266

Capacitance: A property of nanoscale materials based on spatial symmetry of discrete electrons  

Science Conference Proceedings (OSTI)

Capacitance is a measure of the ability to store electrons and is conventionally considered to be a constant dependent upon the shape of metal contacts and the dimensions of the system. In general, however, equipotentials of dielectric systems without ... Keywords: Capacitance, Discrete charges, Nanoscale materials, Periodic table

Tim LaFave, Jr.; Raphael Tsu

2008-03-01T23:59:59.000Z

267

Electrical Transport Through a Single Nanoscale SemiconductorBranch Point  

DOE Green Energy (OSTI)

Semiconductor tetrapods are three dimensional branched nanostructures, representing a new class of materials for electrical conduction. We employ the single electron transistor approach to investigate how charge carriers migrate through single nanoscale branch points of tetrapods. We find that carriers can delocalize across the branches or localize and hop between arms depending on their coupling strength. In addition, we demonstrate a new single-electron transistor operation scheme enabled by the multiple branched arms of a tetrapod: one arm can be used as a sensitive arm-gate to control the electrical transport through the whole system. Electrical transport through nanocrystals, molecules, nanowires and nanotubes display novel quantum phenomena. These can be studied using the single electron transistor approach to successively change the charge state by one, to reveal charging energies, electronic level spacings, and coupling between electronic, vibrational, and spin degrees of freedom. The advent of colloidal synthesis methods that produce branched nanostructures provides a new class of material which can act as conduits for electrical transport in hybrid organic-inorganic electrical devices such as light emitting diodes and solar cells. Already, the incorporation of branched nanostructures has yielded significant improvements in nanorod/polymer solar cells, where the specific pathways for charge migration can have a significant impact on device performance. Progress in this area requires an understanding of how electrons and holes migrate through individual branch points, for instance do charges delocalize across the branches or do they localize and hop between arms. Here we employ the single electron transistor approach to investigate the simplest three dimensional branched nanostructure, the semiconductor tetrapod, which consists of a pyramidal shaped zinc blende-structured ''core'' with four wurzite-structured arms projecting out at the tetrahedral angle. Monodisperse CdTe tetrapods with arms 8 nm in diameter and 150 nm in length were synthesized as previously reported. The tetrapods dispersed in toluene were deposited onto {approx}10 nm thick Si{sub 3}N{sub 4} dielectrics with alignment markers and a back gate (see Supporting Information). A tetrapod spontaneously orients with one arm pointing perpendicularly away from the substrate and three arms projecting down towards the surface. Individual 60 nm-thick Pd electrodes were placed by EBL onto each of the three arms downwards so that there are four terminals (three arms and a back gate) as shown schematically in Fig. 1 top inset. Figure 1 bottom inset shows a typical scanning electron micrograph (SEM) of the devices. The center brighter spot is due to the fourth arm pointing up away from the substrate although its controlled breaking is possible. The separation between the metal electrodes and the tetrapod branch point ranges from 30 to 80 nm in our devices. The devices were loaded into a He{sup 4}-flow cryostat for low-temperature ({approx}5K) electrical measurements.

Cui, Yi; Banin, Uri; Bjork, Mikael T.; Alivisatos, A. Paul

2005-06-09T23:59:59.000Z

268

Nanoscale fabrication and modification of selected battery materials  

SciTech Connect

Carbon is an integral part of many battery electrodes. We explored the use of semiconductor-processing techniques that involve photolithography to pattern photoresists and subsequent pyrolysis to form carbon microstructures that function as microelectrodes. In this study, we describe the status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist. Electrochemical nanometer-scale patterning of the surface of a conducting lithium manganese oxide (LiMn{sub 2}O{sub 4}) by scanning probe microscopy (SPM) was studied. We show that a localized surface chemical change can be confined to a depth which depends on the oxide-tip voltage difference and ambient humidity The ability to produce nanometer-size patterns of chemically modified oxide or nanometer-sized alterations of the oxide morphology is demonstrated and discussed with reference to possible mechanisms.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim; McLarnon, Frank

2001-06-22T23:59:59.000Z

269

Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the orientation of the nanostripes is different from the stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.

Licurse, Mark [University of Pennsylvania; Borisevich, Albina Y [ORNL; Davies, Peter [University of Pennsylvania

2012-01-01T23:59:59.000Z

270

NIST Image Gallery: Browse: Results  

Science Conference Proceedings (OSTI)

... 2007. Thumbnail, Nanoscale Blasting Adjusts Resistance in Magnetic Sensors, created 8/16/2007, entered 8/16/2007. Thumbnail, ...

271

Argonne Chemical Sciences & Engineering - Fundamental Interactions...  

NLE Websites -- All DOE Office Websites (Extended Search)

cf3 radical An image of the CF3 radicals produced by the photodissociation of CF3I. Chemical Dynamics The goal of this effort is to investigate the unimolecular and bimolecular...

272

Available Technologies: NIMS Skin Touch Chemical Imaging  

Biofuels; Biotechnology & Medicine. Diagnostics and Therapeutics; Medical Devices; ... Flexibility: Analyze all molecules, or target specific compounds ; ABSTRACT:

273

Frontiers in Chemical Imaging Seminar Series  

E-Print Network (OSTI)

of carbon aerogels able to wick cryogenic hydrogen needed for laser fusion targets and development of super strong carbon aerogels able to with stand volume changes associated charge- discharge in super capacitors

274

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

275

Argonne Chemical Sciences & Engineering - People - National Security -  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security National Security Nuclear Forensics and Nanoscale Engineering Chemical Analysis and Research Analytical Chemistry Laboratory Management and Support David B. Chamberlain, Chemical Engineer and Department Manager phone: 630/252-7699, fax: 630/972-4409, e-mail: david.chamberlain@anl.gov M.S., Chemical Engineering, University of Idaho Spent fuel reprocessing Radiological forensics Sealed radioactive source characterization Radioactive materials and national security Mary Anne Yates, Senior Technical Advisor/Senior Chemist phone: 630/252-7699, fax: 630/972-4409, e-mail: mayates@anl.gov Ph.D., Nuclear Chemistry, Carnegie Mellon University Homeland Security Counterterrorism Publications in nuclear, atomic, and particle physics Jodi L. Canaday, Administrative Secretary

276

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

277

Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams  

E-Print Network (OSTI)

mean free path, the thermal energy phonon carriers traveli.e. non-diffusive) thermal energy distribution [13, 14] (to the transport of thermal energy from a nanoscale heat

Siemens, M.

2009-01-01T23:59:59.000Z

278

Learning at the nanoscale: research questions that the rapidly evolving interdisciplinarity of science poses for the learning sciences  

Science Conference Proceedings (OSTI)

Recent interdisciplinary discoveries in the sciences and engineering at the nanoscale, specifically in our ability to manipulate, molecules at atomic scales, suggests a need for the education community to reconsider the ways in which disciplinary-based ...

Sherry Hsi; Nora Sabelli; Joseph Krajcik; Robert Tinker; Kirsten Ellenbogen

2006-06-01T23:59:59.000Z

279

Investigation of aspect ratio of hole drilling from micro to nanoscale via focused ion beam fine milling  

E-Print Network (OSTI)

Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with ...

Fu, Yongqi

280

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Homeland Security; Chem., Bio, and Other Threats; Standards for Radiation Detection. ...

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Iron-based and Copper-Oxide High-Temperature Superconductors. ...

282

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. No 72 DPI Version No 150 DPI Version 300 DPI Image. Title: Gold Nano Anchors Put Nanowires in Their Place. ...

283

Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications  

Science Conference Proceedings (OSTI)

A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

2010-06-01T23:59:59.000Z

284

Polarization transfer NMR imaging  

DOE Patents (OSTI)

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

285

Second harmonic nano-particles for femtosecond coherent control on the nanoscale  

E-Print Network (OSTI)

We provide a complete toolkit for coherent control experiments on the nano-scale. By exploiting the second harmonic emission from single (150 nm) nonlinear nano-particles, we show that ultrafast femtosecond laser pulses can be compressed and controlled in time with unprecedented spatial accuracy. The method is tested on various nano-particles of different sizes, shapes and materials, both dielectric BaTiO3, Fe(IO3)3) and metallic (Au) thus demonstrating its robustness and versatility.

Accanto, Nicolò; Piatkowski, Lukasz; Castro-Lopez, Marta; Pastorelli, Francesco; Brinks, Daan; van Hulst, Niek F

2013-01-01T23:59:59.000Z

286

Programmable Immobilized PCR in Nanoscale: Bridging Nanoelectrodes with Single dsDNA Molecules  

E-Print Network (OSTI)

We present a method for controlled connection of gold electrodes with single dsDNA molecules (locally on a chip) by utilizing PCR. Single-stranded thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a PCR procedure finally forming a complete dsDNA bridging the gap between the electrodes. The technique opens up opportunities for detection and sensing applications, and for molecular electronics.

Linko, Veikko; Shen, Boxuan; Niskanen, Einari; Hytönen, Vesa P; Toppari, J Jussi

2011-01-01T23:59:59.000Z

287

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

NLE Websites -- All DOE Office Websites (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

288

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

289

Quantitative luminescence imaging system  

DOE Patents (OSTI)

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

Erwin, David N. (San Antonio, TX); Kiel, Johnathan L. (San Antonio, TX); Batishko, Charles R. (West Richland, WA); Stahl, Kurt A. (Richland, WA)

1990-01-01T23:59:59.000Z

290

Quantitative luminescence imaging system  

DOE Patents (OSTI)

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

1990-08-14T23:59:59.000Z

291

Excursions in Chemical Dynamics  

E-Print Network (OSTI)

2009). [118] F. A. Cotton, Chemical Applications of GroupExcursions in Chemical Dynamics by Shervin Fatehi AFall 2010 Excursions in Chemical Dynamics Copyright 2010 by

Fatehi, Shervin

2010-01-01T23:59:59.000Z

292

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

293

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

294

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

295

Molecular Control of the Nanoscale: Effect of Phosphine–Chalcogenide Reactivity on CdS–CdSe Nanocrystal Composition and Morphology  

Science Conference Proceedings (OSTI)

We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS–CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine–chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR (31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine–chalcogenide precursor reactivity increases in the order: TPPE CdSe, and CdS1–xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS–R3PSe mixture to cadmium–phosphonate at 320 or 250 °C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. Purposely matching or mismatching R3PS–R3PSe precursor reactivity leads to CdS1–xSex nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable “bottom-up” programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.

Ruberu, T. Purnima A.; Albright, Haley R.; Callis, Brandon; Ward, Brittney; Cisneros, Joana; Fan, Hua-Jun; Vela, Javier

2012-04-22T23:59:59.000Z

296

Heat-activated Plasmonic Chemical Sensors for Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

cnse.albany.edu cnse.albany.edu Heat-activated Plasmonic Chemical Sensors for Harsh Environments Dr. Michael A. Carpenter College of NanoScale Science and Engineering Energy & Environmental Technology Applications Center University at Albany - SUNY Dr. Sang-Hyun Oh Department of Electrical and Computer Engineering University of Minnesota-Twin Cities 6/11/13 ! Oh group, University of Minnesota Carpenter Group, CNSE cnse.albany.edu Harsh Environment Chemical Sensors Nanocomposite Materials * Optical analysis of Au SPR bands * YSZ, TiO 2 , CeO 2 matrix materials * 500-800°C operating environment * SOFC, Jet engines, turbines * CO, H 2 , NO x , R x S Goals of Research are Two-Fold 1. Develop prototype nanorod materials for use in next generation sensing devices

297

Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites  

Science Conference Proceedings (OSTI)

The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

2011-12-31T23:59:59.000Z

298

Argonne Chemical Sciences & Engineering - National Security ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Home National Security - Nanoscale Engineering Super-absorbent gel Using this spray-on, super-absorbent gel and engineered nanoparticles, Argonne researchers are...

299

Quasipassive positioning platform for nanoscale management of in-plane motion  

Science Conference Proceedings (OSTI)

As leading edge technology pursues a common trend of working on smaller and smaller scales, there is increasing demand on the motion management at the nanometer range. In this letter, we report a two-axis quasipassive positioning device capable of four degrees of freedom in-plane motion. The concept comprises of a platform suspended by tensile stressed flexure elements on either side. By selectively trimming the stress elements, the equilibrium position can be biased to one side or another, enabling nanoscale movement between the suspended platform and the base. Focused ion beam experiment demonstrates that such platform enables positioning accuracy on the order of tens of nanometers.

Li Biao; Zhu Yu; Sharon, Andre [Fraunhofer Center for Manufacturing Innovation, 15 St. Mary's Street, Brookline, Massachusetts 02446 (United States); College of Nanoscale Science and Engineering, University at Albany-SUNY, 255 Fuller Road, Albany, New York 12203 (United States); Fraunhofer Center for Manufacturing Innovation, 15 St. Mary's Street, Brookline, Massachusetts 02446 (United States)

2006-07-24T23:59:59.000Z

300

Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)  

Science Conference Proceedings (OSTI)

The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

2009-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nanoscale devices for solid state refrigeration and power generation,” Twentieth Annual  

E-Print Network (OSTI)

A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solidstate and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.

Ali Shakouri

2004-01-01T23:59:59.000Z

302

Free Energy Barrier for Electric Field Driven Polymer Entry into Nanoscale Channels  

E-Print Network (OSTI)

Free energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.

Narges Nikoofard; Hossein Fazli

2011-04-27T23:59:59.000Z

303

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image No 300 DPI Version. Title: NIST Finds that Ethanol-Loving Bacteria Accelerate Cracking of Pipeline Steels. ...

304

Development of nano-scale and biomimetic surfaces for biomedical applications  

E-Print Network (OSTI)

The work described in this dissertation details the development of a biomimetic materials for use in sensors and therapeutics, based on new advances in material science. The sensors developed herein target neurodegenerative diseases. Two of the diseases, the transmissible spongiform encephalopathies (TSEs) and Alzheimer�s disease (AD), are diseases associated with the abnormal folding of a protein, thus detecting the disease is dependent upon developing structure specific sensor technologies. Both sensors developed in this work take advantage of the unique optical properties associated with nanoscale metal particles, however they use different types of spectroscopies for optical detection of the presence of the disease associated abnormal protein, and different types of recognition elements that bring the disease associated proteins close to the nanoscale metal particles. In the case of TSEs, the recognition element was a commercially available antibody. In the case of AD, the recognition element was a molecular scale self-assembled surface. A therapeutic for AD was developed based on the molecular scale materials developed for the AD biosensor. Mathematical models were developed that facilitated the rational design of the biosensors described in this work that could also be used in future biosensor development.

Henry, James Edward

2005-08-01T23:59:59.000Z

305

Understanding Li-ion battery processes at the atomic to nano-scale.  

Science Conference Proceedings (OSTI)

Reducing battery materials to nano-scale dimensions may improve battery performance while maintaining the use of low-cost materials. However, we need better characterization tools with atomic to nano-scale resolution in order to understand degradation mechanisms and the structural and mechanical changes that occur in these new materials during battery cycling. To meet this need, we have developed a micro-electromechanical systems (MEMS)-based platform for performing electrochemical measurements using volatile electrolytes inside a transmission electron microscope (TEM). This platform uses flip-chip assembly with special alignment features and multiple buried electrode configurations. In addition to this platform, we have developed an unsealed platform that permits in situ TEM electrochemistry using ionic liquid electrolytes. As a test of these platform concepts, we have assembled MnO{sub 2} nanowires on to the platform using dielectrophoresis and have examined their electrical and structural changes as a function of lithiation. These results reveal a large irreversible drop in electronic conductance and the creation of a high degree of lattice disorder following lithiation of the nanowires. From these initial results, we conclude that the future full development of in situ TEM characterization tools will enable important mechanistic understanding of Li-ion battery materials.

Zhan, Yongjie (Rice University, Houston, TX); Subramanian, Arunkumar; Hudak, Nicholas; Sullivan, John Patrick; Shaw, Michael J.; Huang, Jian Yu

2010-05-01T23:59:59.000Z

306

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Scanning tunneling microscope; Semiconductor; Spintronics. Description: [Left] A high resolution STM image of a manganese ...

307

SPIE Medical Imaging Medical Imaging  

E-Print Network (OSTI)

1 SPIE Medical Imaging 2006 1 Medical Imaging Fundamentals Kenneth H. Wong, Ph.D. Division of Computer Assisted Interventions and Medical Robotics (CAIMR) Imaging Science and Information Systems (ISIS) Center Department of Radiology Georgetown University SPIE Medical Imaging 2006 2 Main Themes · Describe

Miga, Michael I.

308

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Nanotechnology--Nanomanufacturing; Optical Nano Vision. Description: A new optical imaging technology under ...

309

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network (OSTI)

by one of us for devices that produce beams of chemically interesting species at relative kinetic energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical. It is obvious that while some methods of theoretical chemical kinetics (for instance, "absolute" rate theory

Zare, Richard N.

310

Argonne CNM Highlight: Award for Ultrafast Imaging of Solar Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM's Nanophotonics Group and Argonne Chemical Sciences and Engineering's (CSE's) Photosynthesis Group, presented her poster, "Ultrafast Imaging of Solar Energy Flow in...

311

Spectroscopic imaging in electron microscopy  

Science Conference Proceedings (OSTI)

In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

2012-01-01T23:59:59.000Z

312

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

313

Microfluidic chemical reaction circuits  

DOE Patents (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

314

Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry  

SciTech Connect

We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

Buratto, Steven K. [UC Santa Barbara

2013-09-03T23:59:59.000Z

315

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

316

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

317

Implications and mitigation of model mismatch and covariance contamination for hyperspectral chemical agent detection  

E-Print Network (OSTI)

Most chemical gas detection algorithms for long-wave infrared hyperspectral images assume a gas with a perfectly known spectral signature. In practice, the chemical signature is either imperfectly measured and/or exhibits ...

Niu, Sidi

318

Analyzing the distribution of threshold voltage degradation in nanoscale transistors by using reaction-diffusion and percolation theory  

Science Conference Proceedings (OSTI)

Continued scaling of transistors into the nanoscale regime has led to large device-to-device variation in transistor characteristics. These variations reflect differences in substrate doping, channel length, interface and/or oxide defects, etc. among ... Keywords: Exponential distribution, Interface defect statistics, Markov Chain Monte-Carlo, Reaction-diffusion model, Skew-normal distribution, Threshold voltage degradation

Ahmad Ehteshamul Islam; Muhammad Ashraful Alam

2011-12-01T23:59:59.000Z

319

Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates  

E-Print Network (OSTI)

.1 GPa, the system crystallizes into a bilayer ice. A P-d phase diagram showing the vapor, liquid, and bilayer ice phases is proposed. When water is confined by hydrophilic hydroxylated silica platesEffect of pressure on the phase behavior and structure of water confined between nanoscale

320

Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water  

SciTech Connect

Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near Tg, on a typical laboratory time scale (e.g. {approx}1000 s), a water molecule moves less than a molecular distance. For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquid at these low temperatures. ASW films can be used for investigating the non-thermal reactions relevant to radiolysis. In this account we will present a survey of our research on the thermal and non thermal properties of ASW using this approach.

Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

2012-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chapter 13. Chemical Kinetics  

E-Print Network (OSTI)

of chemical reactions. · Only gases, for which the kinetic theory of Chapter 4 is applicable, are consideredChapter 13. Chemical Kinetics #12;· Why do some chemical reactions proceed with lighting speed when the way in which molecules combine to form products? · All of these questions involve chemical kinetics

Ihee, Hyotcherl

322

and Chemical Engineering  

E-Print Network (OSTI)

Biological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta is constructing a new building that will house the Department of Chemical Engineering and the Department and Chemical Engineering Building will provide critically needed space for innovators in multiple disciplines

Prinz, Friedrich B.

323

Chemical Sciences Division Homepage  

Science Conference Proceedings (OSTI)

... Development of Measurements and Standards for Biofuels; Chemical Metrology in Support of the US Hydrogen Infrastructure; ...

2013-06-07T23:59:59.000Z

324

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

325

Unlocking the Nanoscale Secrets of Bird-Feather Colors | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

An Unlikely Route to Ferroelectricity An Unlikely Route to Ferroelectricity How to Make a Splash Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet Reappearing Superconductivity Surprises Scientists Manipulating Genes with Hidden TALENs Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Unlocking the Nanoscale Secrets of Bird-Feather Colors MAY 18, 2012 Bookmark and Share This collage shows the ring-shaped, isotropic x-ray diffraction pattern and electron microscope cross-section of the three-dimensional amorphous or quasi-ordered biophotonic nanostructure in spongy medullary feather barbs responsible for the vivid turquoise plumage of the Plum-throated Cotinga

326

Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films  

SciTech Connect

We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Mazumdar, Dipanjan [University of Alabama, Tuscaloosa; Shelke, Vilas [University of Alabama, Tuscaloosa; Iliev, Milko [University of Houston, Houston; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Kalinin, Sergei V [ORNL; Kalinin, Sergei V [ORNL; Gupta, Dr. Arunava [University of Alabama, Tuscaloosa

2010-01-01T23:59:59.000Z

327

Controlling magnetoelectric coupling by nanoscale phase transformation instrain engineered bismuth ferrite  

Science Conference Proceedings (OSTI)

The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.

Liu, Y. Y. [University of Washington, Seattle; Vasudevan, Rama K [ORNL; Pan, K. [Xiangtan University, Xiangtan Hunan, China; Xie, S. H. [University of Washington, Seattle; Liang, W. -I. [National Chiao Tung University, Hsinchu, Taiwan; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Chen, Y. -C. [National Cheng Kung University, Tainan, Taiwan; Chu, Y.-H. [National Chiao Tung University, Hsinchu, Taiwan; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL; Li, J. Y. [University of Washington, Seattle

2012-01-01T23:59:59.000Z

328

Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids  

E-Print Network (OSTI)

A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes' mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the in-herency maximum order-potential structure in random systems.

Jia-lin Wu

2011-05-25T23:59:59.000Z

329

Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals  

SciTech Connect

In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

2006-09-09T23:59:59.000Z

330

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Carbon Nanotube Measurements. Description: Scanning electron microscope image of 'cleaned' carbon nanotubes at NIST (color added for ...

331

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Description: Engineering design image shows a cross-section of part of the planned ITER fusion reaction vessel. Diverter ...

332

Argonne Chemical Sciences & Engineering - Publications - National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security National Security Nuclear Forensics and Nanoscale Engineering 2008 Chen, H., M. D. Kaminski, P. Pytel, L. Macdonald, and A. J. Rosengart, Capture of magnetic carriers within large arteries using external magnetic fields, Journal of Drug Targeting, 16(4), 2008. Derzon, M. S., M. M. Hopkins, P. C. Galambos, K. E. Achyuthan, C. J. Bourdon, I. Brener, J. Cullor, C. D. James, M. Kaminski, J. L. McClain, V. M. Peck, D. W. Peterson, K. Rahimian, E. F. Spink, J. A. Timlin, C. S. Yun, G. V. Ludwig, Timely multi-threat biological, chemical, and nuclide detection: a platform, a metric, key results, International Journal of Technology Transfer and Commercialization, 7(4), 413-435, 2008. Kaminski, Michael D., Yumei Xie , Carol J. Mertz, Martha R. Finck, Haitao Chen, and Axel J. Rosengart, Encapsulation and Release of Plasminogen Activator From Biodegradable Magnetic Microcarriers, Eur. Journal of Pharm, July 2008.

333

Nano-scale optical and electrical probes of materials and processes.  

DOE Green Energy (OSTI)

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

Bogart, Katherine Huderle Andersen

2007-03-01T23:59:59.000Z

334

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. Chemicals--Safety measures. 3. Hazardous wastes. I. National Research Council (U.S.). Committee on Prudent) produced two major reports on laboratory safety and laboratory waste disposal: Prudent Practices Nanomaterials, 77 4.G Biohazards, 79 4.H Hazards from Radioactivity, 79 5 Management of Chemicals 83 5.A

Tai, Yu-Chong

335

Chemical Reference Data Group Homepage  

Science Conference Proceedings (OSTI)

Chemical Reference Data Group. Welcome. The Chemical Reference Data Group compiles, evaluates, correlates and measures ...

2013-07-10T23:59:59.000Z

336

Image Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

337

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

338

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network (OSTI)

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of ChemicalD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description of chemical engineering: "chemical engineers seek to understand, manipulate, and control the molecular basis

Collins, Gary S.

339

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

340

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

342

Chemical biology drug discovery  

E-Print Network (OSTI)

Keywords Chemical biology drug discovery high-throughput screening protein ligands proteases novel chemical and biochemical methods for the identification and optimization of protein ligands us of pro- tein ligands. Results of this research are translated into protein-specific, chemical probes

Schüler, Axel

343

Chemical engineering Research !!  

E-Print Network (OSTI)

Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation University/Faculty of Engineering-LTH/Department of Chemical Engineering Membrane Group Ann-Sofi Jönsson More research projects. #12;Lund University/Faculty of Engineering-LTH/Department of Chemical Engineering

344

Chemical Zeolites Combinatorial . . .  

E-Print Network (OSTI)

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

Servatius, Brigitte

345

CHEMICAL AND PAPER ENGINEERING  

E-Print Network (OSTI)

SAFETY HANDBOOK For CHEMICAL AND PAPER ENGINEERING 2010-2011 #12;Page 1 Safety Guidelines Department of Chemical and Paper Engineering Miami University - Oxford, Ohio 45056 The following safety and Laboratory Coordinator Responsibilities III. Emergency Procedures IV. Chemical Storage V. Routine

Dollar, Anna

346

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... on the availability of this image. Title: Tiny Tubes May Aid Pharmacuetical R&D. Description: NIST scientists used pairs of ...

347

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Magneto-optical image of magnetic fields within a YBCO superconductor showing electrically ... PHY, High-Temp Superconductors See also http ...

348

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: New Imaging Tool is Boon to Fuel Cell Research. ... water being produced and removed inside the maze-like solid housing of fuel cells under a ...

349

Directional fidelity of nanoscale motors and particles is limited by the second law of thermodynamics via a universal equality  

E-Print Network (OSTI)

Directional motion of nanoscale motors and driven particles in an isothermal environment costs a finite amount of energy despite zero work as decreed by the 2nd law, but quantifying this general limit remains difficult. Here we derive a universal equality linking directional fidelity of an arbitrary nanoscale object to the least possible energy driving it. The fidelity-energy equality depends on the environmental temperature alone; any lower energy would violate the 2nd law in a thought experiment. Real experimental proof for the equality comes from force-induced motion of biological nanomotors by three independent groups for translational as well as rotational motion. Interestingly, the natural self-propelled motion of a biological nanomotor (F1-ATPase) known to have nearly 100% energy efficiency evidently pays the 2nd-law decreed least energy cost for direction production.

Wang, Zhisong; Efremov, Artem

2013-01-01T23:59:59.000Z

350

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 11 VIII. Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . 12 IX. Hazardous Waste: Hazardous Chemicals Data . . . . . . . . . . . . . . . . . . 51 Appendix B: Means of Lab Waste Disposal . . . . . . . . . . . . . . . . . 53 Appendix C: Where to put specific wastes . . . . . . . . . . . . . . . . . . 54 Appendix D

Elowitz, Michael

351

Siphons in Chemical Reaction Networks  

E-Print Network (OSTI)

credited. Siphons in Chemical Reaction Networks Referencesfor a class of nonlinear chemical equations. SIAM J. Appl.to persistence analysis in chemical reaction networks. In:

Shiu, Anne; Sturmfels, Bernd

2010-01-01T23:59:59.000Z

352

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.£d. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

353

Chemical exchange program analysis.  

SciTech Connect

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

354

Images, Video, & More  

NLE Websites -- All DOE Office Websites (Extended Search)

Images, Video, & More Images BABAR Design drawings SLAC Image Gallery: BABAR SLAC Image Gallery: Aerial photos Videos Public lecture on "ANTIMATTER: What is it and where did it...

355

Fabrication of Ordered Array of Tips-pentacene Micro- and Nano-scale Single Crystals  

E-Print Network (OSTI)

As an important type of organic semiconductors, organic small molecule crystals have great potential for low-cost applications such as plastic solar cells (PSC), organic light emitting diodes (OLED) and organic field-effect transistors (OFET). Among numerous molecular crystals, 6, 13-Bis(triisopropylsilylethynyl)pentacene (Tips-pentacene) has aroused much attention because it combines good solubility in common solvents and strong ?-? stacking from self-assembly. However, the inability to achieve ordered array of Tips-pentacene prevents the fabrication of high-performance organic integrated circuits. In this work, two new fabrication methods to pattern Tips-pentacene micro- and nano-scale single crystals are proposed. Both methods are facilitated by nanofabrication techniques such as nanoimprint and photolithography. In the first method, the surface of a silicon substrate is treated by surfactant coating and Tips-pentacene single crystals are deposited in squared patterns. In the second method, we made an ordered array of Tips-pentacene single crystals confined in Teflon-AF patterns. In both techniques, the effects of solvent type, processing temperature and template pattern size on crystal morphology and size are systematically studied.

Xia, Ning

2013-05-01T23:59:59.000Z

356

Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.  

Science Conference Proceedings (OSTI)

Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

2010-11-01T23:59:59.000Z

357

The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS  

Science Conference Proceedings (OSTI)

The Nanoscale Ordered Materials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair dist ribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a $\\delta Q/Q \\sim 0.8\\%$ FWHM (typical), and an achievable $\\delta Q/Q$ of 0.24\\% FWHM (best). The real space resolution is related to the maximum momentum transfer; A maximum momentum transfer of 50\\AA$^{-1}$ can be achieved routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 \\AA$^{-1}$. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

Feygenson, Mikhail [ORNL; Carruth, John William [ORNL; Hoffmann, Ron [ORNL; Chipley, Kenneth King [ORNL; Neuefeind, Joerg C [ORNL

2012-01-01T23:59:59.000Z

358

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

DOE Green Energy (OSTI)

components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

359

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network (OSTI)

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

360

Argonne Chemical Sciences & Engineering - News & Highlights - Photo  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities People Publications Awards News & Highlights Events Site Index Facilities People Publications Awards News & Highlights Events Site Index Search Argonne ... Search Argonne Home >Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Computational Postdoctoral Fellowships Contact Us CSE Intranet Chemical Sciences & Engineering Photo Archives We offer a variety of high resolution images in a number of categories covering research done in the Chemical Sciences & Engineering Division. Simply choose a category below and you'll be taken to a page from which you can download photographs.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Multiple Reference Fourier Transform Holography: Five Images for the Price  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiple Reference Fourier Transform Multiple Reference Fourier Transform Holography: Five Images for the Price of One Improving the quality of a high magnification image on an optical microscope is simply a matter of cranking up the intensity of the illumination lamp. The same is true for x-ray microscopes, but complications arise when there just aren't enough x-rays or even worse when the sample is susceptible to damage caused by the intense x-ray beam. To address these challenges we have demonstrated a novel technique for improving the quality of a microscopic image without increasing the x-ray exposure to the specimen. This affords new opportunities to explore materials prone to soft x-ray damage, like polymer or biological samples. Our technique uses coherent x-ray scattering to simultaneously acquire multiple images of a specimen, which can easily be combined later to enhance the image quality. Applying our technique in the weak illumination limit we imaged a nanoscale test object by detecting only 2500 photons.

362

Chemical Structure and Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

363

ENHANCED CHEMICAL CLEANING CORROSION TESTING  

Enhanced Chemical Cleaning Corrosion Testing 3 Background: Enhanced Chemical Cleaning Process Treatment Tank Deposition Tank 3000 gpm Mixers Oxalic ...

364

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

365

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

366

Brookhaven Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Physics While the field of physics generally strives to find compact and universal explanations for how the components of our universe interact, chemistry is traditionally...

367

Chemical Name Search  

Science Conference Proceedings (OSTI)

... Enter a chemical species name or pattern: (eg, methane, *2-hexene); Select the desired units for thermodynamic data: SI calorie-based; ...

2013-07-15T23:59:59.000Z

368

Apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

369

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

370

Chemical Testing of Textiles  

Science Conference Proceedings (OSTI)

Chemical Testing of Textiles is edited by Qinguo Fan and covers more subjects than the title implies. These subjects include fiber and yarn identification, ...

371

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

372

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... from the bright glare in the distance transmit images of a cat-like face at ... Though false color has been added to the cats faces, they are otherwise ...

373

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... a href http://www.nist.gov/public_affairs/images/Nanopore 20device.avi See video /a PHY, DARPA, spectroscopy See also http://www.nist.gov/pml ...

374

History Images  

NLE Websites -- All DOE Office Websites (Extended Search)

History Images History Images Los Alamos History in Images Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Back in the day Back in the day LA bridge in Los Alamos LA bridge in Los Alamos 1945 Army-Navy "E" Award 1945 Army-Navy "E" Award Louis Rosen Louis Rosen Bob Van Ness Robert Kuckuck and Michael Anastasio Bob Van Ness Robert Kuckuck and Michael Anastasio TA-18 TA-18 Elmer Island TU-4 assembly area Elmer Island TU-4 assembly area

375

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

376

Mechanical-chemical coupling and self-organization in mudstones.  

SciTech Connect

Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

Heath, Jason E.; Dewers, Thomas A.

2010-06-01T23:59:59.000Z

377

Enhanced Chemical Cleaning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap Sludge Washing Evap Feed/Drop Tank 8 Wt% Oxalic Acid Neutralization Tank Solids Liquid High oxalate concentration Negligible oxalate concentration * Oxalates from chemical cleaning impact salt processing * A process change was needed Evaporator Saltstone Vaults DWPF Filled Canisters 5 Vision * Eliminate the impacts to the Tank Farm

378

Modelling the chemical evolution  

E-Print Network (OSTI)

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.

Hensler, Gerhard

2010-01-01T23:59:59.000Z

379

Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy  

Science Conference Proceedings (OSTI)

Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

Mccall, Monnikue M; Fischer, Peter

2008-05-01T23:59:59.000Z

380

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

382

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

383

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

384

Surface Chemical Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

385

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

386

Atomistic Simulations of Bonding, Thermodynamics, and Surface Passivation in Nanoscale Solid Propellant Materials  

E-Print Network (OSTI)

Engineering new solid propellant materials requires optimization of several factors, to include energy density, burn rate, sensitivity, and environmental impact. Equally important is the need for materials that will maintain their mechanical properties and thermal stability during long periods of storage. The nanoscale materials considered in this dissertation are proposed metal additives that may enhance energy density and improve combustion in a composite rocket motor. Density Functional Theory methods are used to determine cluster geometries, bond strengths, and energy densities. The ground-state geometries and electron affinities (EAs) for MnxO?: x = 3, 4, y = 1, 2 clusters were calculated with GGA, and estimates for the vertical detachment energies compare well with experimental results. It was found that the presence of oxygen influences the overall cluster moment and spin configuration, stabilizing ferrimagnetic and antiferromagnetic isomers. The calculated EAs range from 1.29-1.84 eV, which is considerably lower than the 3.0-5.0 eV EAs characteristic of current propellant oxidizers. Their use as solid propellant additives is limited. The structures and bonding of a range of Al-cyclopentadienyl cluster compounds were studied with multilayer quantum mechanics/molecular mechanics (QM:MM) methods. The organometallic Al-ligand bonds are generally 55-85 kcal/mol and are much stronger than Al-Al interactions. This suggests that thermal decomposition in these clusters will proceed via the loss of surface metal-ligand units. The energy density of the large clusters is calculated to be nearly 60% that of pure aluminum. These organometallic cluster systems may provide a route to extremely rapid Al combustion in solid rocket motors. Lastly, the properties of COOH-terminated passivating agents were modeled with the GPW method. It is confirmed that fluorinated polymers bind to both Al(111) and Al(100) at two Al surface sites. The oligomers HCOOH, CH3CH2COOH, and CF3CF2COOH chemisorb onto Al(111) with adsorption energies of 10-45 kcal/mol. The preferred contact angle for the organic chains is 65-85 degrees, and adsorption energy weakens slightly with increasing chain length. Despite their relatively weak adsorption energies, fluorinated polymers have elevated melting temperatures, making them good passivation materials for micron-scale Al fuel particles.

Williams, Kristen

2012-08-01T23:59:59.000Z

387

Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of self-sustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants’ burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew Aaron

2008-12-01T23:59:59.000Z

388

TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES  

E-Print Network (OSTI)

Composite propellants are composed of a solid oxidizer that is mixed into a hydrocarbon binder that when polymerized results in a solid mass capable of selfsustained combustion after ignition. Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rate and pressure when plotted on a log-log scale, and because of this deviation their burning behavior is classified as anomalous burning. It is not unusual for solid-particle additives to be added to propellants in order to enhance burning rate or other properties. However, the effect of nano-size solid additives in these propellants is not fully understood or agreed upon within the research community. The current project set out to explore what possible variables were creating this result and to explore new additives. This thesis contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additives in AP-HTPB composite propellants was performed. The baseline propellant consisted of either 70% or 80% monomodal AP (223 ?m) and 30% or 20% binder composed of IPDI-cured HTPB with Tepanol. Propellants’ burning rates were tested using a strand bomb between 500 and 2500 psi (34.0-170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant.

Stephens, Matthew

2009-05-01T23:59:59.000Z

389

Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides  

DOE Green Energy (OSTI)

The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in the public domain. However, for those findings and knowledge that have not been published yet, more detailed information will be provided. The report will be divided into 4 major sections based on the material systems investigated.

Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

2012-04-26T23:59:59.000Z

390

Imaging bolometer  

DOE Patents (OSTI)

Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

Wurden, Glen A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

391

Imaging bolometer  

DOE Patents (OSTI)

Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

Wurden, G.A.

1999-01-19T23:59:59.000Z

392

Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling  

DOE Green Energy (OSTI)

This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

2011-06-13T23:59:59.000Z

393

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

towards shop operations. H-1 Chemic_l Hygiene and Safety ,of this section, any chemic:ads per kflop'am of body welshtUNSUPPORTED CHEMIC. -M. VITON NITrlI.E NATI'R.4I. BUTYL

Ricks Editor, R.

2009-01-01T23:59:59.000Z

394

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

395

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron  

SciTech Connect

Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

2010-03-14T23:59:59.000Z

396

Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation  

Science Conference Proceedings (OSTI)

This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

Harwood, B.J.

1993-01-01T23:59:59.000Z

397

Selective Chemical Vapor Deposition of Heavily Boron Doped Silicon-Germanium Films from Disilane, Germane and Chlorine for Source/ Drain Junctions of Nanoscale CMOS.  

E-Print Network (OSTI)

??As metal-oxide semiconductor field effect transistors (MOSFETs) are scaled for higher speed and reduced power, new challenges are imposed on the source/drain junctions and their… (more)

Pesovic, Nemanja

2002-01-01T23:59:59.000Z

398

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

399

Chemical Cleaning Program Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Program Review Neil Davis Deputy Program Manager Waste Removal & Tank Closure July 29, 2009 SRR-STI-2009-00464 2 Contents Regulatory drivers Process overview Preliminary results Lessons learned Path forward 3 Regulatory Drivers The Federal Facilities Agreement establishes milestones for the removal of bulk waste and closure of each non-compliant tank Per the Dispute Resolution: - "DOE shall complete operational closure of Tanks 19 and 18 by 12/31/2012" - "DOE shall complete operational closure of 4 tanks by 9/30/2015" SRR intention to close 4 tanks by 9/30/2010, or as soon as possible Tanks 5 & 6 will be 2 of the 4 tanks 4 Tank Closure Process Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus

400

Chemical Label Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Label Information Chemical Label Information Chemical Name CAS No. NFPA 704 Label Data Hazard Information Health Fire Reactivity Other acetone 67641 1 3 0 Eye, skin and mucous membrane irritatiion. Central nervous system depression. chloroform 67663 2 0 0 CAR [1] and TERAT [2] Liver and kidney disorders. Eye and skin irritation. Central nervous system depression. Cardiac arrythmia. ethanol 64175 0 3 0 Skin and eye irritation. ethyl alcohol 64175 0 3 0 Skin and eye irritation. hydrofluoric acid 7664393 4 0 0 Acute [3] - Skin contact can lead to bone damage. Skin, eye and mucous membrane irritation. hydrogen peroxide (35 to 52%) 7722841 2 0 1 OX Very irritating to the skin, eye and respiratory tract. hydrogen peroxide (> 52%) 7722841 2 0 3 OX Extremely irritating to the skin, eye and respiratory tract.

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

402

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

403

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

404

Nanoscale Confinement Effects between Thin Metallic Surfaces: Fundamentals and Potential Applications  

E-Print Network (OSTI)

Density functional theory is used to study the physico-chemical effects of two metallic thin films separated by distances in a range of 4-10 amperes. In this condition, the electrons from the metallic thin film surfaces tunnel through the energy barrier existing between the separated thin films, creating an electronic distribution in the gap between films. The characteristics and features of this electronic distribution, such as energy, momentum, and number of electrons, can be traced by quantum mechanical analyses. These same features can be tuned by varying metallic thin film properties like thickness, separation between films, and film chemical nature. The possibility to tune the physical properties of the electrons located in the gap between thin films makes the studied systems promising for applications that range from catalysis to nano-electronics. Molecular oxygen, water, and ethylene were located in the gap between thin films in order to study the physical and chemical effects of having those molecules in the gap between thin films. It was observed that the electron structure in the gap modifies the geometric and electronic structure of those molecules placed in the gap. In the case of molecular oxygen, it was found that the dissociation energy can be tuned by changing the separation between thin films and changing the chemical nature of the surface and overlayer of the thin film. For water, it was found that by tuning the chemical nature of the surface and sub-surface of both metallic thin films, molecular water dissociation can occur. When ethylene was located in the gap between Ti/Pt thin films, the molecule converts in an anion radical adopting the geometry and structure of the activated monomer necessary to initiate chain polymerization. Regarding magnetism, it was found that by the surface interaction between Ti/Pt and Pt thin films, the magnetic moment of the system decreases as the separation between thin films decreases. The phenomenon was explained by changes observed in the number of electronic states at the Fermi level and in the exchange splitting as a function of separation between films. Finally, a system that resembles a p-n junction was proposed and analyzed. The system is a junction of two metallic thin films with different electronic density in the gap between surfaces. These junctions can be the building blocks for many electronic devices.

Ramirez Caballero, Gustavo

2011-12-01T23:59:59.000Z

405

Center for Nanoscale Materials Director Petford-Long chats with 'Science in  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Petford-Long (background, arms folded) looks on as a group of eighth-grade girls makes a trial run of their toy car - a car for which they built and installed a pulley transmission - during Argonne's 2012 "Introduce a Girl to Engineering Day." To view a larger version of the image, click on it. Petford-Long (background, arms folded) looks on as a group of eighth-grade girls makes a trial run of their toy car - a car for which they built and installed a pulley transmission - during Argonne's 2012 "Introduce a Girl to Engineering Day." To view a larger version of the image, click on it.

406

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

407

Nano-scale brushes: How to build a smart surface coating  

E-Print Network (OSTI)

Via computer simulations, we demonstrate how a densely grafted layer of polymers, a {\\it brush}, could be turned into an efficient switch through chemical modification of some of its end-monomers. In this way, a surface coating with reversibly switchable properties can be constructed. We analyze the fundamental physical principle behind its function, a recently discovered surface instability, and demonstrate that the combination of a high grafting density, an inflated end-group size and a high degree of monodispersity are conditions for an optimal functionality of the switch.

Holger Merlitz; Gui-Li He; Chen-Xu Wu; Jens-Uwe Sommer

2008-12-01T23:59:59.000Z

408

Methods for spectral image analysis by exploiting spatial simplicity  

Science Conference Proceedings (OSTI)

Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

Keenan, Michael R. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

409

CSD: Research Programs: Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

410

Work Practices for Chemical Fumehoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Practices for Chemical Fumehoods Practices for Chemical Fumehoods (Reviewed May 16, 2011) Always use a chemical fumehood when working with toxic and/or volatile chemicals, not on an open bench. Chemical fumehoods are designed to provide protection for the user from chemical and radiological contaminants. However, they do not absolutely eliminate exposure, even under ideal conditions. Careless work practices can result in considerable exposure to users who may believe they are protected. To optimize the performance of the chemical hood, adhere to the following work practices: 1. Ensure that your chemical hood has a current inspection sticker (dated within the last year). The face velocity should be between 80 and 120 linear feet per minute (lfpm). 2. Verify that the chemical hood is drawing air.

411

TABLE OF CONTENTS I. PHYSICAL & CHEMICAL ...  

Science Conference Proceedings (OSTI)

Page 1. Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division ...

2001-06-12T23:59:59.000Z

412

Chemical Engineering & Processing Humidity Information at ...  

Science Conference Proceedings (OSTI)

NIST Home > Chemical Engineering & Processing Humidity Information at NIST. Chemical Engineering & Processing Humidity Information at NIST. ...

2010-09-24T23:59:59.000Z

413

Split image optical display  

DOE Patents (OSTI)

A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

Veligdan, James T. (Manorville, NY)

2007-05-29T23:59:59.000Z

414

Chemical Sciences Division: Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

INTRODUCTION INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD Directory A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Rebecca Abergel CSD Project Scientist; The Glenn T. Seaborg Center. Musahid Ahmed CSD Staff Scientist, Chemical Physics Program/Chemical Dynamics Beamline Publications Richard A. Andersen Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, The Glenn T. Seaborg Center Publications John Arnold Professor of Chemistry, UC Berkeley; CSD Faculty Scientist, Catalytic Science Program Publications B Ali Belkacem CSD Deputy and Senior Staff Scientist; Atomic, Molecular and Optical Sciences Program Leader

415

Resistance to Chemicals  

Science Conference Proceedings (OSTI)

Table 14   Corrosion of lead in chemical process fluids...� � 76.2 3 Tallow � � 304.8 12 Olive � � 76.2 3 Cod liver � � 152.4 6 Neatsfoot � � 279.4 11 Fish � � 279.4 11 Vegetable � � 584.2 23 Peanut � � 457.2 18 Sulfonation with

416

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

417

Chemical composition of melanin  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical composition of melanin Chemical composition of melanin Name: Peggy M Siemers Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: What is the chemical composition of Melanin by specific amino acids, or the DNA code for melanin? Replies: This is a good question! The answer is somewhat complex and I'm sure I don't have all the details but here goes... First, there is not a specific DNA code for melanin because like many biomolecules, it is not the result of a single gene product. People that are deficient in melanin are oculo/dermal albinos and I believe there have been seven different types of mutations. These different mutations reflect the multiple steps required to produce melanin. The original building block for melanin is tyrosine, one of the amino acids. This amino acid is modified by enzymes to produce the building block (monomer) for melanin synthesis by a process called polymerization that is also controlled by an enzyme. The polymers ,I believe, can attain diff3erent lengths and they can also form aggregates of different sizes alone and in combination with other molecules such as proteins. This is in part responsible for differences in coloration seen within and between individuals. NEWTON RULES

418

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit opera- tions, thermodynamics, kinetics variables and random functions. Application to chemical engineering problems, including process design concepts of chemical kinetics and chemi- cal reactor design. Prerequisite: MATH 245. coUrSeS of in

Wang, Hai

419

Information extraction from chemical patents  

E-Print Network (OSTI)

........................................................................................................................................ vii Glossary .................................................................................................................................................. ix 1. Introduction... .................................................................... 211 Figure 6-2: Diagrammatic illustration of PatentEye Repository RDF .................................................. 212 ix Glossary API Application Programming Interface CAS Chemical Abstracts Service ChEBI Chemical Entities...

Jessop, David M

2011-03-15T23:59:59.000Z

420

Devices for collecting chemical compounds  

SciTech Connect

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coherent hard x-ray diffractive imaging of nonisolated objects confined by an aperture  

Science Conference Proceedings (OSTI)

Coherent hard x-ray imaging of nonisolated weak phase objects is demonstrated by confining x-ray beam in a region of a few micrometers in cross section using a micrometer-sized aperture. Two major obstacles in the hard x-ray coherent diffraction imaging, isolating samples and obtaining central speckles, are addressed by using the aperture. The usefulness of the proposed method is illustrated by reconstructing the exit wave field of a nanoscale trench structure fabricated on silicon which serves as a weak phase object. The quantitative phase information of the exit wave field was used to reconstruct the depth profile of the trench structure. The scanning capability of this method was also briefly discussed.

Kim, Sunam; Kim, Chan; Lee, Suyong; Marathe, Shashidhara; Noh, D. Y.; Kang, H. C.; Kim, S. S.; Sandy, A.; Narayanan, S. [Department of Materials Science and Engineering and Nanobio Materials and Electronics, Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Advanced Materials Engineering and BK21 Education Center of Mould Technology for Advanced Materials and Parts, Chosun University, Gwangju 501-759 (Korea, Republic of); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2010-04-15T23:59:59.000Z

422

Chemical Sciences Division - Staff Directory  

Science Conference Proceedings (OSTI)

Chemical Sciences Division. Carlos A. Gonzalez (Division Chief) Carol A. Driver (Office Manager) Division Office Staff Directory. ...

2013-08-15T23:59:59.000Z

423

Argonne Chemical Sciences & Engineering - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

424

Chemical Informatics Research - Staff Directory  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Chemical Informatics Research Group. William E. Wallace III (Group Leader) Laurell R. Phillips (Office ...

2013-08-29T23:59:59.000Z

425

Chemical Transformations of Nanostructured Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Solution-based Processing for Ceramic Materials. Presentation Title, Chemical ...

426

LLNL Chemical Kinetics Modeling Group  

DOE Green Energy (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

427

Experimental Datasets from Chemical Thermodynamics  

E-Print Network (OSTI)

Mar 29, 2005 ... Optimization Online. Experimental Datasets from Chemical Thermodynamics. Evgenii Rudnyi (Evgenii ***at*** Rudnyi.Ru). Abstract: I have ...

428

Multicolor Underwater Imaging Techniques.  

E-Print Network (OSTI)

??Studies were conducted on multispectral polarimetric subtraction imaging techniques for underwater imaging that use a broadband light source. The main objective of this study was… (more)

Waggoner, Douglas Scott

2007-01-01T23:59:59.000Z

429

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

Malyshev, V A

2011-01-01T23:59:59.000Z

430

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

V. A. Malyshev

2011-12-08T23:59:59.000Z

431

AGRI-SCIENCE CHEMICAL BIOLOGY  

E-Print Network (OSTI)

AGRI-SCIENCE CHEMICAL BIOLOGY NETWORK Vehicle for translation: Pioneering a cross-academic, -industry and -government network Chemical Biology Community Agri- Sciences Community Industry Policy makers), with multidisciplinary approaches being the drivers enabling this. Chemical Biology through physical science innovation

432

Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks  

SciTech Connect

NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

Wang Ling; Hao Yanjing; Zhao Yan [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lai Qiongyu, E-mail: laiqy5@hotmail.co [College of Chemistry, Sichuan University, Chengdu 610064 (China); Xu Xiaoyun [College of Chemistry, Sichuan University, Chengdu 610064 (China)

2010-11-15T23:59:59.000Z

433

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

DOE Green Energy (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL)

2010-10-19T23:59:59.000Z

434

Chemical sensor system  

DOE Patents (OSTI)

An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

2002-01-01T23:59:59.000Z

435

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

436

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

437

Areawide chemical contamination  

SciTech Connect

Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

Miller, R.W.

1981-04-17T23:59:59.000Z

438

Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils  

E-Print Network (OSTI)

We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

D. A. Abdushukurov; D. V. Bondarenko; Kh. Kh. Muminov; D. Yu. Chistyakov

2008-02-04T23:59:59.000Z

439

Chemical Reactions in DSMC  

Science Conference Proceedings (OSTI)

DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

Bird, G. A. [GAB Consulting Pty Ltd, 144/110 Sussex Street, Sydney NSW 2000 (Australia)

2011-05-20T23:59:59.000Z

440

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

442

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

443

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

444

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

445

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

SciTech Connect

The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

446

Radiolabelling of chemicals. [Chemical additives used in geothermal operations  

DOE Green Energy (OSTI)

Labeling of chemical additives with radioactive isotopes can solve numerous problems in geothermal operations. The physical and chemical behavior of many chemicals slated for geothermal operations can be studied with the required detail at the extremely low concentration of the commercially available (non-labeled) compounds. The problems of labeling and the basics of these radioactively labeled chemicals are described in this report. Conclusions of this study are: (1) chemicals labeled with radioactive isotopes can be used to investigate the chemical and physical behavior of chemical additives used in geothermal operations. The high detection limits make this technology superior to conventional analytical and monitoring methods; (2) severe difficulties exist for utilizing of radioactively labeled chemicals in geothermal operations. The labeling itself can cause technical problems. Another host of problems is caused by the reluctance of chemical manufacturers to release the necessary proprietary information on their chemicals required for proper labeling; and (3) previous attempts to manufacture radioactively labeled flocculants and to utilize them in a geothermal operation were prematurely abandoned for a number of reasons.

Vetter, O.J.; Kandarpa, V.

1982-06-22T23:59:59.000Z

447

Interested Parties - Dow Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dow Chemical Interested Parties - Dow Chemical 06-10-10DowChemical.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - XtremePower Interested...

448

Chemical Sciences Division: Introduction: Director's Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Overview Under Construction Ali Belkacem Chemical Sciences Division Director Chemical Sciences Division Research Affiliations Our four core programs-Chemical Physics; The...

449

Interested Parties - Eastman Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eastman Chemical Interested Parties - Eastman Chemical 06-22-10EastmanChemical.pdf More Documents & Publications Interested Parties - Clean Skies Interested Parties - Myriant...

450

Mining partially annotated images  

Science Conference Proceedings (OSTI)

In this paper, we study the problem of mining partially annotated images. We first define what the problem of mining partially annotated images is, and argue that in many real-world applications annotated images are typically partially annotated and ... Keywords: image annotation completion and prediction, partially annotated training set, semi-supervised learning

Zhongang Qi; Ming Yang; Zhongfei (Mark) Zhang; Zhengyou Zhang

2011-08-01T23:59:59.000Z

451

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

452

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

453

Manhattan Project: Trinity Images  

Office of Scientific and Technical Information (OSTI)

IMAGES IMAGES Trinity Test Site (July 16, 1945) Resources > Photo Gallery The first 0.11 seconds of the Nuclear Age These seven photographs of the Trinity test were taken by time-lapse cameras. The last is 109 milliseconds, or 0.109 seconds, after detonation. Scroll down to view each individual image. The photographs are courtesy the Los Alamos National Laboratory, via the Federation of American Scientists web site. The animation is original to the Office of History and Heritage Resources. The dawn of the Nuclear Age (Trinity image #1) The dawn of the Nuclear Age Trinity image #2 Trinity image #3 Trinity image #4 Trinity image #5 Trinity, 0.09 seconds after detonation (Trinity image #6) Trinity, 0.09 seconds after detonation Trinity, 0.11 seconds after detonation (Trinity image #7)

454

Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains  

Science Conference Proceedings (OSTI)

Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, which looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.

Lee, James Weifu [ORNL; Meller, Amit [Harvard University

2007-01-01T23:59:59.000Z

455

Web accessible image similarity measurements  

Science Conference Proceedings (OSTI)

Web accessible image similarity measurements. Background: There ... messages). Web Access to Image Similarity Measurements. ...

2013-04-16T23:59:59.000Z

456

High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam  

DOE Patents (OSTI)

The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

2008-02-26T23:59:59.000Z

457

Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.  

DOE Green Energy (OSTI)

Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

Prezhdo, Oleg V.

2012-03-22T23:59:59.000Z

458

Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.  

Science Conference Proceedings (OSTI)

Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

Prezhdo, Oleg V.

2012-03-22T23:59:59.000Z

459

Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash  

Science Conference Proceedings (OSTI)

A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2008-11-15T23:59:59.000Z

460

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Image registration method for medical image sequences  

DOE Patents (OSTI)

Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

Gee, Timothy F.; Goddard, James S.

2013-03-26T23:59:59.000Z

462

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents  

Science Conference Proceedings (OSTI)

End-users utilize chemical search engines to search for chemical formulae and chemical names. Chemical search engines identify and index chemical formulae and chemical names appearing in text documents to support efficient search and retrieval in the ... Keywords: Chemical name, chemical formula, conditional random fields, entity extraction, hierarchical text segmentation, independent frequent subsequence, index pruning, query models, ranking, similarity search, support vector machines

Bingjun Sun; Prasenjit Mitra; C. Lee Giles; Karl T. Mueller

2011-04-01T23:59:59.000Z

463

Chemical and Paper Engineering Student Handbook  

E-Print Network (OSTI)

Chemical and Paper Engineering Student Handbook 2010-2011 #12;i Table of Contents 2010-2011 Letter-2011.......................................................................... 32 Chemical Engineering Major Curriculum .......................................... 2010.............................. Double Major: Chemical Engineering and Paper Science and Engineering......... 60 Chemical Engineering

Dollar, Anna

464

Mallinckrodt Chemical Co., Former Construction Worker Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Project Name: Building Trades...

465

Chemically-Functionalized Microcantilevers for Detection of ...  

Chemically-Functionalized Microcantilevers for Detection of Chemical, Biological, and Explosive Material Note: The technology described above is an ...

466

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Free ebook Handbook of Chemical and Biological Warfare Agent Decontamination pdf download.Handbook of Chemical and Biological Warfare Agent ...

467

Chemical Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable

468

Chemical Informatics Research Group Homepage  

Science Conference Proceedings (OSTI)

... variety of chemical and physical properties of gas, liquid, and ... Density Functional Tight Binding Methods—Density Functional Tight Binding (DFTB ...

2013-08-27T23:59:59.000Z

469

Chemical/Biochemical Microsensor Science  

Science Conference Proceedings (OSTI)

... (b) An example of the power of the Event ... stability, speed and reproducibility of sensing materials are critical to next-generation chemical sensing ...

2012-10-02T23:59:59.000Z

470

ITP Chemicals: Metal Dusting Phenomenon  

NLE Websites -- All DOE Office Websites (Extended Search)

IL DuPont Central Research Wilmington, DE Duraloy Technologies, Inc. Scottsdale, PA Exxon Chemical Company Baytown, TX Haynes International, Inc. Kokomo, IN Sandvik Steel...

471

FAQS Reference Guide- Chemical Processing  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

472

Portable Chemical Sensors for Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sensors for Environmental and State of Health Monitoring Emerging nano technologies are transforming microsensor research and development, a key enabler of Sandia's...

473

CHEMICAL ENGINEERING DIVISION SUMMARY REPORT  

DOE Green Energy (OSTI)

Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants.

Lawroski, S.; Vogel, R. C.; Levenson, Milton; Munnecke, V. H.

1963-07-01T23:59:59.000Z

474

Fast Camera Imaging of Hall Thruster Ignition  

SciTech Connect

Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 ?s. The cathode introduces azimuthal asymmetry, which persists for about 30 ?s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

C.L. Ellison, Y. Raitses and N.J. Fisch

2011-02-24T23:59:59.000Z

475

Chemical applications of synchrotron radiation: Workshop report  

SciTech Connect

The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

Not Available

1989-04-01T23:59:59.000Z

476

A new local concept of chemical potential and chemical hardness  

E-Print Network (OSTI)

The definition of local hardness by the derivative of the chemical potential with respect to the electron density has raised several questions, and its applicability as the local counterpart of chemical hardness has proved to be limited to (globally) hard molecules. Here, we propose that instead of defining a local hardness from the chemical potential in the above way, first a local chemical potential should be defined from the ground-state energy by its derivative with respect to the electron density, from which then the corresponding local hardness can be gained just as the hardness is obtained from the chemical potential - namely, by a simple differentiation with respect to the electron number. In this way, one does not neglect potentially important terms in the local hardness expression.

Gal, Tamas

2011-01-01T23:59:59.000Z

477

Enhancing chemical reactions  

SciTech Connect

Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

Morrey, John R. (Richland, WA)

1978-01-01T23:59:59.000Z

478

NETL: Gasification Systems Video, Images & Photos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video, Images, Photos Video, Images, Photos Gasification Systems Reference Shelf - Video, Images & Photos The following was established to show a variety of Gasification Technologies: Gasfication powerplant photo Gasification: A Cornerstone Technology (Mar 2008) Movie Icon Windows Media Video (WMV-26MB) [ view | download ] NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants. Proposed APS Advanced Hydrogasification Process Proposed APS Advanced Hydrogasification Process* TRDU and Hot-Gas Vessel in the EERC Gasification Tower Transport reactor development unit

479

XAS Catches the Chemical Form of Mercury in Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

view large image view large image contact info Friday, 29 August 2003 X-ray Absorption Spectroscopy Catches the Chemical Form of Mercury in Fish - SSRL Scientists Reveal New Findings in Science Article The presence of "methyl mercury" in fish is well-known, but until now the detailed chemical identity of the mercury has remained a mystery. In an x-ray absorption spectroscopy study published in the August 29 issue of Science (Science 301, 2003: 1203; Science now: Murky Picture on Fish Mercury), SSRL scientists report that the chemical form of mercury involves a sulfur atom (most likely in a so-called aliphatic form). The study presents significant new knowledge - because the toxic properties of mercury (or any element) are critically dependent upon its chemical form - and represents an important milestone in developing an understanding of how harmful mercury in fish might actually be. The study was carried out by SSRL staff scientists Ingrid Pickering and Graham George and postdoctoral fellow Hugh Harris using SSRL's structural molecular biology beam line 9-3. The very high flux, excellent beam stability and state-of-the-art detector technology allowed the team to measure samples of fish containing micromolar levels of mercury, much lower than had previously been possible.

480

Chemically capping copper with cobalt  

Science Conference Proceedings (OSTI)

Amorphous cobalt-phosphorus alloy is grown on SiO"2 and Cu by chemical vapor deposition from dicobaltoctacarbonyl and trimethylphosphine at 250^oC, 300^oC, and 350^oC. Film properties most relevant to adoption into back-end chip fabrication have been ... Keywords: Chemical vapor deposition, Cobalt alloys, Selective deposition

Lucas B. Henderson; John G. Ekerdt

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanoscale chemical imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Estimation theoretical image restoration  

E-Print Network (OSTI)

In this thesis, we have developed an extensive study to evaluate image restoration from a single image, colored or monochromatic. Using a mixture of Gaussian and Poisson noise process, we derived an objective function to ...

Dolne, Jean J

2008-01-01T23:59:59.000Z

482

Synthetic stereoscopic panoramic images  

Science Conference Proceedings (OSTI)

Presented here is a discussion of the techniques required to create stereoscopic panoramic images. Such images allow interactive exploration of 3D environments with stereoscopic depth cues. If projected in a surround display environment they can engage ...

Paul Bourke

2006-10-01T23:59:59.000Z

483

Nuclear Imaging instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Imaging instrumentation Advances in gamma-ray detection and imaging have increased the pace of discovery in a broad cross-section of the sciences ranging from nuclear...

484

Spectrographic imaging system  

DOE Patents (OSTI)

An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

Morris, Michael D. (Ann Arbor, MI); Treado, Patrick J. (Ann Arbor, MI)

1991-01-01T23:59:59.000Z

485

Discrete Thermodynamics of Chemical Equilibria  

E-Print Network (OSTI)

The paper sets forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTD), developed by the author during the last decade and spread over series of publications. Based on the linear equations of irreversible thermodynamics, De Donder's definition of the thermodynamic force, and the Le Chatelier principle, DTD brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces, acting against a chemical system. The basic expression of DTD is a logistic map that ties together energetic characteristics of the chemical transformation in the system, its deviation from true thermodynamic equ