National Library of Energy BETA

Sample records for nanoscale chemical imaging

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even...

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heater spirals. Right: Measurements are performed in the circular areas where the windows are etched down to a thickness of 10 nm. Acquiring images at different x-ray...

  17. Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical...

    Office of Scientific and Technical Information (OSTI)

    and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Citation Details In-Document Search Title: Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity ...

  18. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC ... must understand the evolution of chemical composition and morphology of battery ...

  19. Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical

    Office of Scientific and Technical Information (OSTI)

    Heterogeneity in Cycled LiCoO2 (Journal Article) | SciTech Connect Journal Article: Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Citation Details In-Document Search Title: Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Authors: Diercks, D. R. ; Musselman, M. ; Morgenstern, A. ; Wilson, T. ; Kumar, M. ; Smith, K. ; Kawase, M. ; Gorman, B. P. ; Eberhart, M. ; Packard, C. E. Publication

  20. Nanoscale Morphological and Chemical Changes of High Voltage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Manganese Rich NMC Composite Cathodes with Cycling | Stanford Synchrotron Radiation Lightsource Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the future of humankind. One bottleneck is energy storage because the harvest and consumption of energy are typically separated in time and/or location. Hence, efficient, low-cost, safe and durable batteries are

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process, synthesis gas, a mixture of CO and H2, is converted through a surface polymerization reaction into liquid hydrocarbons of various forms that can then be used in the...

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in point. The complex chemistry associated with the iron-based catalyst has made even the identity of the active catalyst at work an unsolved mystery. At the ALS, de Smit et al....

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a spatial resolution of 40 nm: first, in initial characterization at room temperature in helium; then, after two hours at 350 C in reducing hydrogen gas; and lastly,...

  4. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina Balke; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  5. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of

    Office of Scientific and Technical Information (OSTI)

    Battery Electrode and Electrolyte (Journal Article) | SciTech Connect Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Citation Details In-Document Search Title: Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Authors: Holtz, Megan E. ; Yu, Yingchao ; Gunceler, Deniz ; Gao, Jie ; Sundararaman, Ravishankar ; Schwarz, Kathleen A. ; Arias, T. A. ; Abruña, Héctor D. ; Muller,

  6. Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Nanoscale Imaging of Strain using X-Ray Bragg Projection Ptychography October 1, 2012 Tweet EmailPrint Users of the Center for Nanoscale Materials (CNM) from IBM exploited nanofocused X-ray Bragg projection ptychography to determine the lattice strain profile in an epitaxial SiGe stressor layer of a silicon prototype device. The theoretical and experimental framework of this new coherent diffraction strain imaging approach was developed by Argonne's Materials

  7. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect (OSTI)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  8. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  9. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical...

  10. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  11. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina Balke; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  12. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect (OSTI)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  13. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; et al

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  14. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  15. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have ...

  16. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Citation Details In-Document Search Title: Chemical Imaging and Dynamical Studies of ...

  17. Elemental and Chemically Specific X-ray Fluorescence Imaging...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems Title: Elemental and Chemically Specific X-ray Fluorescence Imaging of ...

  18. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have ... The ability to image the chemical reactions in living cells in real time, especially in ...

  19. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J.; Kertesz, Vilmos

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  20. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial ...

  1. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave

  2. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells

    SciTech Connect (OSTI)

    Leite, Marina S.; Abashin, Maxim; Lezec, Henri J.; Gianfrancesco, Anthony; Talin, A. Alec; Zhitenev, Nikolai B.

    2014-10-15

    The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs). The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.

  3. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leite, Marina S.; National Inst. of Standards and Technology; Abashin, Maxim; National Inst. of Standards and Technology; Lezec, Henri J.; Gianfrancesco, Anthony; Talin, A. Alec; Sandia National Lab.; Zhitenev, Nikolai B.

    2014-10-15

    The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs).more » The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.« less

  4. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively,

  5. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior

    Office of Scientific and Technical Information (OSTI)

    in Complex Interfacial Systems. Final Technical Report (Technical Report) | SciTech Connect Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report Citation Details In-Document Search Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report This research program explored the efficacy of using molecular-level manipulation, imaging and

  6. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  8. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  9. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  10. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  11. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  12. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  13. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  14. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  15. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  16. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  17. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  18. Influence of the chemical surface structure on the nanoscale friction in plasma nitrided and post-oxidized ferrous alloy

    SciTech Connect (OSTI)

    Freislebem, Mrcia; Menezes, Caren M.; Cemin, Felipe; Costi, Fernanda B.; Ferreira, Patrcia A.; Aguzzoli, Csar; Baumvol, Israel J. R.; Alvarez, Fernando; Figueroa, Carlos A.

    2014-09-15

    Friction is a ubiquitous phenomenon in everyday activities spanning from vehicles where efficient brakes are mandatory up to mechanical devices where its minimum effects are pursued for energy efficiency issues. Recently, theoretical models succeed correlating the friction behavior with energy transference via phonons between sliding surfaces. Therefore, considering that the energy losses by friction are prompted through phonons, the chemical surface structure between sliding surfaces is very important to determine the friction phenomenon. In this work, we address the issue of friction between a conical diamond tip sliding on different functionalized flat steel surfaces by focusing the influence of the chemical bonds in the outermost layers on the sliding resistance. This geometry allows probing the coupling of the sharp tip with terminator species on the top and underneath material surface at in-depth friction measurements from 20 to 200?nm. Experimentally, the friction coefficient decreases when nitrogen atoms are substituted for oxygen in the iron network. This effect is interpreted as due to energy losses through phonons whilst lower vibrational frequency excitation modes imply lower friction coefficients and a more accurate adjustment is obtained when a theoretical model with longitudinal adsorbate vibration is used.

  19. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    SciTech Connect (OSTI)

    Kweskin, S.J.

    2006-05-19

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non-equilibrium states contribute to practical applications of acrylates, blends and hydrogels. Lastly, nanoparticle surfaces and the catalytic activity and selectivity of platinum cube nanoparticles are correlated to the surface intermediates in a high pressure flow reactor.

  20. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    SciTech Connect (OSTI)

    Schwarz, Udo

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  1. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  2. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; et al

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  3. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program

  4. Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological

    Office of Scientific and Technical Information (OSTI)

    Systems (Journal Article) | DOE PAGES DOE PAGES Search Results Published Article: Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems Title: Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems Authors: Pushie, M. Jake ; Pickering, Ingrid J. ; Korbas, Malgorzata ; Hackett, Mark J. ; George, Graham N. Publication Date: 2014-09-10 OSTI Identifier: 1179591 Type: Published Article Journal Name: Chemical Reviews Additional Journal

  5. In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)

    SciTech Connect (OSTI)

    Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

    2009-06-01

    This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

  6. Chemical imaging of biological materials by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Smith, J B; Hutcheon, I D; Shmakov, A; Rybitskaya, I; Curran, H

    2004-08-23

    The NanoSIMS 50 represents the state -of-the-art for in situ microanalysis for secondary ion mass spectrometry (SIMS), combining unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (MDL of 200 atoms). The NanoSIMS incorporates an array of detectors, enabling simultaneous collection of 5 elements or isotopes originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution is unique to the NanoSIMS and provides a novel new approach to the study of the distribution of elements in biological materials. We have applied this technique extensively to mammalian cells and bacterial spores. Results from these studies and critical analytical issues such as sample preparation, instrument tuning, and data processing will be discussed.

  7. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  8. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect (OSTI)

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  9. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  10. Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; Tselev, Alexander; Ievlev, Anton V.

    2016-02-11

    Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less

  11. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  12. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  13. Nanoscale relaxation oscillator

    DOE Patents [OSTI]

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  14. Piezoelectrically enhanced ferroelectric polymers via nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control nanoscale material properties and molecular orientation using intensive local stress. Significance and Impact Nanoscale mechanical annealing process can be used to improve...

  15. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE ...

  16. Nanophotonic Architectures for Nanoscale Light Control (invited...

    Office of Scientific and Technical Information (OSTI)

    Nanophotonic Architectures for Nanoscale Light Control (invited). Citation Details In-Document Search Title: Nanophotonic Architectures for Nanoscale Light Control (invited). ...

  17. Mapping photovoltaic performance with nanoscale resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  18. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect (OSTI)

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  19. Nanoscale Materials in Medicine

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by Auburn University Department of Chemical Engineering held on June 26, 2012

  20. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect (OSTI)

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  1. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOE Patents [OSTI]

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  2. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composition maps (5 m x 5 m) of F8BT:TFB blend films (left and center). Comparative atomic-force microscopy (AFM) surface images (right) reveal micrometer-sized domains in...

  3. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  4. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.; Kingdon, Clayton C.; Townsend, Philip A.

    2015-12-01

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series ofmore » 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (Marea), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R2 > 0.65 and carbon and cellulose with R2 > 0.45. Although R2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ15N was the lowest (R2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.« less

  5. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

    SciTech Connect (OSTI)

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.; Kingdon, Clayton C.; Townsend, Philip A.

    2015-12-01

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series of 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (Marea), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R2 > 0.65 and carbon and cellulose with R2 > 0.45. Although R2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ15N was the lowest (R2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.

  6. Dynamics of Excitons and Phonons in Disordered Nanoscale Materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Excitons and Phonons in Disordered Nanoscale Materials December 15, 2009 at 3pm/36-428 Sergei Tretiak Los Alamos National Laboratory trekiak.003 abstract: Prediction of the optical response and photoinduced processes of molecular and nanomaterials is fundamental to a myriad of technological applications, ranging from sensing, imaging, solar energy harvesting, to future optoelectronic devices. In this talk I will overview several applications of emerging

  7. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  8. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  9. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  10. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  11. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  12. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  13. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides links to each partner's participating organizations. Argonne National Laboratory Chemical Sciences and Engineering Division Center for Nanoscale Materials Energy Systems...

  14. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect (OSTI)

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  15. Quantification of Electrochemical Nanoscale Processes in Lithium...

    Office of Scientific and Technical Information (OSTI)

    in Lithium Batteries By OperandoEC-(S)TEM Citation Details In-Document Search Title: Quantification of Electrochemical Nanoscale Processes in Lithium Batteries By ...

  16. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  17. Other: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Machines: These Squeaky Wheels Will Get No Grease Citation Details Title: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

  18. Controlling Motion at the Nanoscale: Rise of the Molecular Machines...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Controlling Motion at the Nanoscale: Rise of the Molecular Machines Title: Controlling Motion at the Nanoscale: Rise of the Molecular Machines Authors: ...

  19. Nanoscale friction properties of graphene and graphene oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication...

  20. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User ... X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers ...

  1. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced...

  2. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  3. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  4. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect (OSTI)

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  5. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  6. Nanophotonic Architectures for Nanoscale Light Control (invited).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Nanophotonic Architectures for Nanoscale Light Control (invited). Citation Details In-Document Search Title: Nanophotonic Architectures for Nanoscale Light Control (invited). Abstract not provided. Authors: Subramania, Ganapathi Subramanian ; Fischer, Arthur Joseph ; Koleske, Daniel ; Xiao, Xiaoyin ; Wang, George T. ; Brener, Igal ; Wright, Jeremy Benjamin ; Liu, Sheng ; Wierer, Jonathan , ; Luk, Ting S. ; Tsao, Jeffrey Yeenien Publication Date: 2014-10-01 OSTI

  7. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    SciTech Connect (OSTI)

    Dumpala, Santoshrupa; Broderick, Scott R.; Rajan, Krishna; Khalilov, Umedjon; Neyts, Erik C.; Duin, Adri C. T. van; Provine, J; Howe, Roger T.

    2015-01-05

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO{sub 2} and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.

  8. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect (OSTI)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  9. Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for...

    Office of Science (SC) Website

    A Nanoscale "Tune-Up" for Fuel Cells Energy Frontier Research Centers (EFRCs) EFRCs Home ... Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells Print Text Size: A ...

  10. NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology | Argonne National Laboratory NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and Nanotechnology August 1, 2014 Tweet EmailPrint Organized by Center for Nanoscale Materials and Advanced Photon Source The International Workshop on Nanoscale Spectroscopy and Nanotechnology 8 (NSS-8), organized by the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), was held under sunny, summer skies from July 28-31, 2014, in the world-class Gleacher

  11. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  12. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    SciTech Connect (OSTI)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; Abreu, Elsa; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang -Xin; Lu, Jiwei; Bechtel, Hans A.; Martin, Michael C.; Raschke, Markus B.; Averitt, Richard D.; Wolf, Stuart A.; Kim, Hyun -Tak; Canfield, Paul C.; Basov, D. N.

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.

  13. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect (OSTI)

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  14. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  15. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  16. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More accurate predictions for harvesting hydrogen with iridium oxide nanoparticles More Large Rectification in Molecular Heterojunctions More The Friendly Faces of CNM More A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices Nanophotonics & Biofunctional

  17. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the

  18. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  19. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  20. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  1. DOE A9024 Final Report Functional and Nanoscale Materials Systems...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory Citation...

  2. Image

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  3. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  4. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  5. Long Range Interactions in Nanoscale Science

    SciTech Connect (OSTI)

    French, Roger H; Parsegian, V Adrian; Podgonik, Rudolph; Rajter, Rick; Jagota, Anand; Luo, Jian; Asthagiri, Dilip; Chaudhury, Manoj; Chiang, Yet-Ming; Granick, Steve; Kalinin, Sergei V; Kardar, Mehran; Kjellander, Roland; Langreth, David C.; Lewis, Jennifer; Lustig, Steve; Wesolowski, David J; Wettlaufer, John; Ching, Wai-Yim; Finnis, Mike; Houlihan, Frank; Von Lilienfeld, O. Anatole; Van Oss, Carel; Zemb, Thomas

    2010-01-01

    Our understanding of the long range electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces perspective, a large number of systems are described from which one can learn about these organizing forces and how to modulate them. The many practical systems that harness these nanoscale forces are then surveyed. The survey reveals not only the promise of new devices and materials, but also the possibility of designing them more effectively.

  6. Imaging exotic properties of nanoscale magnetic lattices | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Office of Basic Energy Sciences, we have shown the signature of magnetic induction associated with a "magnetic monopole" defect for the first time. Some of the most...

  7. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order...

    Office of Scientific and Technical Information (OSTI)

    de ; Delaunay, Renaud ; Fognini, Andreas ; Kukreja, Roopali ; Lee, Sooheyong ; Lopez-Flores, Victor ; Mohanty, Jyoti ; Pfau, Bastian more ; Popescu, 5 Horia less Publication...

  8. Nanoscale Imaging of Lithium Ion Distribution During In Situ...

    Office of Scientific and Technical Information (OSTI)

    Subject: catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, ...

  9. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  10. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  11. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  12. Synthesizing High-Quality Calcium Boride at Nanoscale | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-Quality Calcium Boride at Nanoscale Technology available for licensing: An innovative method for synthesizing compositionally pure calcium boride at the nanoscale by using two different precursors. Process increases stability, hardness and conductivity of high-melting-point calcium boride Makes calcium boride readily available for manufacturing processes in many industries PDF icon calcium_chloride

  13. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  14. Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

    Broader source: Energy.gov (indexed) [DOE]

    Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel ...

  15. Spins and Heat in Nanoscale Electronic Systems (SHINES) | U.S...

    Office of Science (SC) Website

    Spins and Heat in Nanoscale Electronic Systems (SHINES) Energy Frontier Research Centers ... History Contact BES Home Centers Spins and Heat in Nanoscale Electronic Systems (SHINES) ...

  16. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  17. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  18. Nanoscale temperature mapping in operating microelectronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  19. Control of friction at the nanoscale

    DOE Patents [OSTI]

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  20. Nanoscale Strain Maps Inside a Metal

    SciTech Connect (OSTI)

    Fensin, Saryu Jindal; Sandberg, Richard L.

    2015-11-03

    This report offers a description about the 3D strain mapping of small crystals using nanometer scale images.

  1. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect (OSTI)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  2. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spray forming is also an environmentally friendly process. During ... dropwise condensers for the chemical, petrochemical, and power generation industries. (a) Superhydrophobic ...

  3. Nanoscale selective area growth of thick, dense, uniform, In...

    Office of Scientific and Technical Information (OSTI)

    Title: Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaNsapphire template Authors: Sundaram, S. 1 ; Puybaret, R. 2 ; El ...

  4. Synthesizing High-Quality Calcium Boride at Nanoscale - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boride at Nanoscale Argonne National Laboratory Contact ANL About This Technology CaB6 particles coated for 20 cycles at 1600 C. CaB6 particles...

  5. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  6. Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale

    Office of Scientific and Technical Information (OSTI)

    Problems. (Conference) | SciTech Connect Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Abstract not provided. Authors: Marinella, Matthew Publication Date: 2014-03-01 OSTI Identifier: 1140869 Report Number(s): SAND2014-2102C 505337 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Nano and Giga

  7. Nanoscale characterization of the biomechanical properties of collagen

    Office of Scientific and Technical Information (OSTI)

    fibrils in the sclera (Journal Article) | SciTech Connect Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera Citation Details In-Document Search Title: Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We

  8. Nanoscale thermal transport II (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Nanoscale thermal transport II Citation Details In-Document Search Title: Nanoscale thermal transport II Authors: Cahill, David G. ; Braun, Paul V. ; Chen, Gang ; Clarke, David R. ; Fan, Shanhui ; Goodson, Kenneth E. ; Keblinski, Pawel ; King, William P. ; Mahan, Gerald D. ; Majumdar, Arun ; Maris, Humphrey J. ; Phillpot, Simon R. ; Pop, Eric ; Shi, Li OSTI Identifier: 1161586 DOE Contract Number: AC07-05ID14517 Resource Type: Journal Article Resource Relation: Journal Name: Applied Physics

  9. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Citation Details In-Document Search Title: Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR

  10. Quantification of Electrochemical Nanoscale Processes in Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    By OperandoEC-(S)TEM (Conference) | SciTech Connect Conference: Quantification of Electrochemical Nanoscale Processes in Lithium Batteries By OperandoEC-(S)TEM Citation Details In-Document Search Title: Quantification of Electrochemical Nanoscale Processes in Lithium Batteries By OperandoEC-(S)TEM Lithium (Li)-ion batteries are currently used for a wide variety of portable electronic devices, electric vehicles and renewable energy applications. In addition, extensive worldwide research

  11. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microscale Features | Department of Energy Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon superhydrophobic_surfaces.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 Low-Cost Self-Cleaning Coatings for CSP Collectors Advanced Heat/Mass

  12. Programming Matter on Nanoscale | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Matter on Nanoscale November 21, 2013 at 3pm/36-428 Oleg Gang Center for Functional Nanomaterials, Brookhaven National Laboratory Gang_Oleg_01_000 Abstract: In the last decade nanoscale objects emerged as a novel type of matter with unique functional properties and a plethora of prospective applications. Although a broad range of nano-synthesis methods has been developed, our abilities to organize these components in arbitrarily designed architectures in space and time are still

  13. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  14. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  15. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  16. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  17. Scientists use world's fastest computer to simulate nanoscale material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    failure Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under stress. October 29, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  18. Thermal Transport at the Nanoscale. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Thermal Transport at the Nanoscale. Citation Details In-Document Search Title: Thermal Transport at the Nanoscale. Abstract not provided. Authors: Harris, Charles Thomas Publication Date: 2012-09-01 OSTI Identifier: 1116414 Report Number(s): SAND2012-8231C 480452 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: CINT User Workshop held September 19, 2012 in Albuquerque, NM.; Related Information: Proposed for presentation at the CINT User Workshop held

  19. Non-Equilibrium Nanoscale Self-Organization

    SciTech Connect (OSTI)

    Aziz, Michael J

    2006-03-09

    Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

  20. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    SciTech Connect (OSTI)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone of only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.

  1. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less

  2. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu National Institute of Standards and Technology; Crozier, Peter Arizona State University; Adams, James Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  3. Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; Ji, Zhiyuan; Zi, Jiachen; Reichert, Malinda D.; MacIntosh, Gustavo C.; Yang, Bing; Peters, Reuben J.; Vela, Javier; et al

    2015-04-27

    Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less

  4. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  5. Investigation of the chemical interface in the soybeanaphid and ricebacteria interactions using MALDI-mass spectrometry imaging

    SciTech Connect (OSTI)

    Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; Ji, Zhiyuan; Zi, Jiachen; Reichert, Malinda D.; MacIntosh, Gustavo C.; Yang, Bing; Peters, Reuben J.; Vela, Javier; Lee, Young Jin

    2015-04-27

    Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plantpest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between ricebacterium and soybeanaphid were investigated as two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plantpest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybeanaphid system and antibiotic diterpenoids in ricebacterium interactions.

  6. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  7. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect (OSTI)

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity of gold superlattices obtained by digestive ripening for oxidation of CO to CO2 at room temperature. (7) Determine the photocatalytic activity of metal nanoparticles like Au, Ag,Cu, and Pd supported on TiO2 toward photocatalytic hydrogen production.

  8. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  9. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  10. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  11. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  12. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  13. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  14. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    SciTech Connect (OSTI)

    Mangalampalli S. R. N., Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-01-01

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.

  15. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  16. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mangalampalli S. R. N., Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-01-01

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that themore » dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.« less

  17. Photoelectron imaging and theoretical study on the structure and chemical binding of the mixed-ligand M(I) complexes, [HMSH]{sup ?} (M = Cu, Ag, and Au)

    SciTech Connect (OSTI)

    Qin, Zhengbo; Liu, Zhiling; Cong, Ran; Xie, Hua; Tang, Zichao, E-mail: zctang@dicp.ac.cn, E-mail: fanhj@dicp.ac.cn; Fan, Hongjun, E-mail: zctang@dicp.ac.cn, E-mail: fanhj@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-03-21

    We have reported a combined photoelectron imaging and theoretical study on gaseous mixed-ligand M(I) complexes of [HMSH]{sup ?} (M = Cu, Ag, and Au). With the aid of Franck-Condon simulations, vibrationally resolved photoelectron spectra yield accurate electron affinities of 3.269(6), 3.669(10), and 3.591(6) eV for [HCuSH], [HAgSH], and [HAuSH], respectively. And low-frequency modes are observed: 368(12) cm{sup ?1} for [HCuSH], 286(12) cm{sup ?1} for [HAgSH], and 327(12) cm{sup ?1} for [HAuSH], respectively. Extensive theoretical calculations are performed to aid in the spectral assignments and the calculated values agree well with the experimental observations. Although the S and H atoms have little discrepancy in electronegativity (2.20 for H and 2.54 for S), distinct bonding properties are demonstrated between HM and MS bond. It is revealed that there exists significant ionic bonding between MS in [HMSH]{sup ?} (M = Cu, Ag, and Au), while a gradual transition from ionic behavior between HCu in [HCuSH]{sup ?} to quite strong covalent bonding between HAu in [HAuSH]{sup ?}, supported by a variety of chemical bonding analyses.

  18. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    SciTech Connect (OSTI)

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earths surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual systems data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this research determined that spectral resolution of 10um was adequate, but a signal to noise above 300:1 was desirable for hyperspectral sensors with this spectral resolution. Finally, we acquired a hyperspectral thermal dataset (SEBASS) at 3m spatial resolution over our study area in Beatty, Nevada that can be co-registered with the hyperspectral reflectance, LIDAR and digital Orthophoto data sets. This data set will enable us to quantify how measurements in the reflected infrared can be used to make inferences about the response of materials in the thermal infrared, the topic of our follow-on NA-22 investigation ending in 2008. These data provide the basis for our investigations proposed for the NA-22 2008 Broad Area Announcement. Beginning in June 2008, SpecTIR Corporation and Aerospace Corporation plan to fly the SpecTIR Dual and SEBASS in a stabilized mount in a twin Otter aircraft. This research provides the foundation for using reflected and emitted hyperspectral measurements together for mapping geologic and soil materials in arid to semi-arid regions.

  19. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  20. In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry

    SciTech Connect (OSTI)

    Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

    2011-10-31

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic liquid. To this end, we have developed a novel in situ instrumental system combining analytical electron microscopy with advanced spectroscopy to probe the dynamic phenomena in an all solid-state nano-battery. In situ electron microscopy is a versatile technique that yields insights into challenging questions that could not be obtained using other techniques. However, in order to fully exploit the capabilities, a very carefully thought-out plan of action is essential. It is important to recognize that this is not just a simple characterization tool, but a collection of tools that make up a complete experimental set-up: the choice of FIB operation conditions, specimen holder for biasing, grid materials and design as well as microscope environment must be thoroughly considered before performing an experiment.

  1. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    SciTech Connect (OSTI)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Zhang, Weijing

    2013-11-01

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (1616) force curves in local areas (500500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. The nanoscale distribution of CD20 on cancer cells was characterized. The distribution of CD20 was non-uniform on the surface of cancer cells.

  2. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  3. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  4. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  5. Fidelity imaging for atomic force microscopy

    SciTech Connect (OSTI)

    Ghosal, Sayan Salapaka, Murti

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  6. 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can

  7. Predictive modeling of synergistic effects in nanoscale ion track formation

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electronlattice coupling.

  8. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. October 25, 2013 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos

  9. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  10. Techniques of Nanoscale Silicon Texturing of Solar Cells - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Photovoltaic Solar Photovoltaic Find More Like This Return to Search Techniques of Nanoscale Silicon Texturing of Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (766 KB) Technology Marketing SummarySandia National Laboratories has created a technology that produces an antireflective (matte) surface on a silicon photovoltaic solar cell. The process uses a randomly deposited metal catalyst

  11. Electronic Structure and Excited State Dynamics in Biological and Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems | MIT-Harvard Center for Excitonics Electronic Structure and Excited State Dynamics in Biological and Nanoscale Systems February 25, 2009 at 3pm/36-428 Gregory D. Scholes Department of Chemistry, University of Toronto scholes2 abstract: After photoexcitation, energy absorbed by a molecule can be transferred efficiently over a distance of up to several tens of Ångstrom to another molecule by the process of resonance energy transfer, RET (also commonly known as electronic energy

  12. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  13. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  14. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  15. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  16. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  17. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  18. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  19. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  20. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect (OSTI)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  1. Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting

    SciTech Connect (OSTI)

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-08-28

    SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 5 nm STO, and 6.5 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 ?mol H2 g1 h1 (bulk STO), to 19.4 ?mol H2 g1 h1 (30 nm STO), and 3.0 ?mol H2 g1 h1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  2. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  3. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M; Dudney, Nancy J; More, Karren Leslie

    2012-01-01

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  4. CHEMICAL MANAGEMENT PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In the absence of an accepted quantitative method, the qualitative, risk-based exposure ... report. 4.3 INTEGRATION OF NEW RESEARCH FINDINGS PERTAINING TO NANOSCALE ...

  5. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  6. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    Office of Scientific and Technical Information (OSTI)

    Exploring nanoscale magnetism in advanced materials with polarized X-rays Peter Fischer Center for X-ray Optics Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley, CA 94270 U.S.A e-mail address: PJFischer@lbl.gov ABSTRACT Nanoscale magnetism is of paramount scientific interest and high technological relevance. To control magnetization on a nanoscale, both external magnetic fields and spin polarized currents, which generate a spin torque onto the local spin configuration, are being

  7. Nanoscale thermal transport. II. 2003-2012 (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Nanoscale thermal transport. II. 2003-2012 Citation Details In-Document Search Title: Nanoscale thermal transport. II. 2003-2012 A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the

  8. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... Twitter Google + Vimeo GovDelivery SlideShare Chemical Dynamics HomeTransportation ...

  9. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  10. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science science-innovationassetsimagesicon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos ...

  11. Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410

    SciTech Connect (OSTI)

    Ding, S. Y.

    2013-06-01

    The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

  12. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    SciTech Connect (OSTI)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  13. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect (OSTI)

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-06-09

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  14. 3D Tracking at the Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Tracking at the Nanoscale A new theory shows that reactivity at catalytic sites inside narrow pores is controlled by how molecules move at the pore openings. Like cars approaching a single lane tunnel from which other cars are emerging, the movement of molecules depends on their distance into the pore; near the ends of the pores, exchange is rapid compared to further into the pores. Dynamics at the openings of these pores controls the penetration of reactants and thus overall conversion to

  15. Watch copper deposited in a chemical reaction at the nanoscale | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wastewater heat recovery method and apparatus Title: Wastewater heat recovery method and apparatus This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater

  16. Real time nanoscale structural evaluation of gold structures on Si (100) surface using in-situ transmission electron microscopy

    SciTech Connect (OSTI)

    Rath, A. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com; Juluri, R. R.; Satyam, P. V. E-mail: ashutosh.phy@gmail.com E-mail: pvsatyam22@gmail.com

    2014-05-14

    Transport behavior of gold nanostructures on Si(100) substrate during annealing under high vacuum has been investigated using in-situ real time transmission electron microscopy (TEM). A comparative study has been done on the morphological changes due to annealing under different vacuum environments. Au thin films of thickness ∼2.0 nm were deposited on native oxide covered silicon substrate by using thermal evaporation system. In-situ real time TEM measurements at 850 °C showed the isotropic growth of rectangular/square shaped gold-silicon alloy structures. During the growth, it is observed that the alloying occurs in liquid phase followed by transformation into the rectangular shapes. For similar system, ex-situ annealing in low vacuum (10{sup −2} millibars) at 850 °C showed the spherical gold nanostructures with no Au-Si alloy formation. Under low vacuum annealing conditions, the rate of formation of the oxide layer dominates the oxide desorption rate, resulting in the creation of a barrier layer between Au and Si, which restricts the inter diffusion of Au in to Si. This work demonstrates the important role of interfacial oxide layer on the growth of nanoscale Au-Si alloy structures during the initial growth. The time dependent TEM images are presented to offer a direct insight into the fundamental dynamics of the sintering process at the nanoscale.

  17. Chemical Management

    Energy Savers [EERE]

    DOE-HDBK-11391-2006 May 2006 DOE HANDBOOK CHEMICAL MANAGEMENT (Volume 1 of 3) U.S. ... and contractor managers in assessing chemical hazard management and is approved for ...

  18. Plant Metabolic Imaging | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Metabolic Imaging The Ames Laboratory has developed state-of-the-art processes for imaging plant metabolites. Identifying and understanding plant chemicals will lead to the...

  19. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOE Patents [OSTI]

    Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

    2010-02-23

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  20. Nano-Scale Hydroxyapatite: Synthesis, Two-Dimensional Transport Experiments, and Application for Uranium Remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanel, S. R.; Clement, T. P.; Barnett, M. O.; Goltz, M. N.

    2011-01-01

    Synthetic nano-scale hydroxyapatite (NHA) was prepared and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. The XRD data confirmed that the crystalline structure and chemical composition of NHA correspond to Ca 5 OH(PO 4 ) 3 . The SEM data confirmed the size of NHA to be less than 50 nm. A two-dimensional physical model packed with saturated porous media was used to study the transport characteristics of NHA under constant flow conditions. The data show that the transport patterns of NHA were almost identical to tracer transport patterns. This result indicates that the NHA material canmore » move with water like a tracer, and its movement was neither retarded nor influenced by any physicochemical interactions and/or density effects. We have also tested the reactivity of NHA with 1 mg/L hexavalent uranium (U(VI)) and found that complete removal of U(VI) is possible using 0.5 g/L NHA at pH 5 to 6. Our results demonstrate that NHA has the potential to be injected as a dilute slurry for in situ treatment of U(VI)-contaminated groundwater systems.« less

  1. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  2. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    SciTech Connect (OSTI)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  3. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  4. Method and system for nanoscale plasma processing of objects

    DOE Patents [OSTI]

    Oehrlein, Gottlieb S.; Hua, Xuefeng; Stolz, Christian

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  5. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect (OSTI)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  6. Development of Nanoscale Ceramics for Advanced Power Applications

    SciTech Connect (OSTI)

    Miriam Leffler; Joseph Helble

    1999-09-30

    Bulk structures of unstabilized ZrO{sub 2-x}, with x in the range of 0 {<=} x {<=} 0.44, at ambient pressure have been found to exist in three different structures. (monoclinic, tetragonal and cubic.). At ambient temperature and elevated pressures above 3.5 GPa, unstabilized zirconia at these same compositions is found as a fourth phase, the orthorhombic phase. Work done in this project has demonstrated that nanoscale zirconia particles containing the orthorhombic phase in addition to amorphous material can be produced through solgel methods. Extensive characterization of this material including recent high temperature x-ray diffraction work has indicated that the structure of the synthesized zirconia appears to be linked to the oxygen vacancy population in the material, and that water appears to be a critical factor in determining the type of material formed during synthesis. These results suggest that surface energy alone is not the controlling factor in determining crystal phase.

  7. Methods and devices for fabricating three-dimensional nanoscale structures

    DOE Patents [OSTI]

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  8. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  9. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    DOE Patents [OSTI]

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  10. Chemical microsensors

    DOE Patents [OSTI]

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  11. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  12. Chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  13. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  14. Microsoft PowerPoint - Nanoscale_Gai_2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical and chemical properties of complex oxides. Most of the functionality in e.g. catalysis and electrochemistry depends in particular on control of the oxygen stoichiometry....

  15. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation requirements. Infrared spectroscopy uses low-energy light, is minimally invasive, and is applicable under ambient conditions, making it an excellent tool for chemical...

  16. Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions

    DOE Patents [OSTI]

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2003-09-02

    A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.

  17. Alignment nature of ZnO nanowires grown on polished and nanoscale...

    Office of Scientific and Technical Information (OSTI)

    Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate ... Citation Details In-Document Search Title: Alignment nature of ZnO nanowires grown on ...

  18. Soft x-ray ptychography studies of nanoscale magnetic and structural...

    Office of Scientific and Technical Information (OSTI)

    Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films Citation Details In-Document Search This content will become publicly ...

  19. Nanoscale dynamics and aging of fibrous peptide-based gels (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Nanoscale dynamics and aging of fibrous peptide-based gels Citation Details In-Document Search Title: Nanoscale dynamics and aging of fibrous peptide-based gels Authors: Dudukovic, Nikola A. ; Zukoski, Charles F. [1] ; UIUC) [2] + Show Author Affiliations (Buffalo) ( Publication Date: 2014-10-28 OSTI Identifier: 1163382 Resource Type: Journal Article Resource Relation: Journal Name: J. Chem. Phys.; Journal Volume: 141; Journal Issue: (16) ; 10, 2014 Research Org:

  20. Alignment nature of ZnO nanowires grown on polished and nanoscale etched

    Office of Scientific and Technical Information (OSTI)

    lithium niobate surface through self-seeding thermal evaporation method (Journal Article) | SciTech Connect Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method Citation Details In-Document Search Title: Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method Highlights: * ZnO nanowires were grown directly on

  1. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact

  2. Near Zero Friction from Nanoscale Lubricants | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Near Zero Friction from Nanoscale Lubricants Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.15 Near Zero Friction from Nanoscale

  3. Probing nanoscale behavior of magnetic materials with soft x-ray

    Office of Scientific and Technical Information (OSTI)

    spectromicroscopy (Journal Article) | SciTech Connect Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy Citation Details In-Document Search Title: Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy Authors: Fischer, Peter ; Fadley, Charles Publication Date: 2012-07-02 OSTI Identifier: 1172970 Report Number(s): LBNL-5867E DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name:

  4. Center for Nanoscale Controls on Geologic CO2 (NCGC) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Nanoscale Controls on Geologic CO2 (NCGC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Nanoscale Controls on Geologic CO2 (NCGC) Print Text Size: A A A FeedbackShare Page NCGC Header Director Donald DePaolo Lead Institution Lawrence Berkeley National Laboratory Year Established 2009 Mission To enhance the performance and

  5. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon brosha_lanl_kickoff.pdf More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  6. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  7. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopic images of these ultra-thin nanosheets for the first time. By combining atomic force microscopy with infrared synchrotron light, ALS researchers from Berkeley Lab...

  8. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    images of these ultra-thin nanosheets for the first time. By combining atomic force microscopy with infrared synchrotron light, ALS researchers from Berkeley Lab and the...

  9. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  10. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  11. Nanoscale imaging of photocurrent and efficiency in CdTe solar...

    Office of Scientific and Technical Information (OSTI)

    cells The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent...

  12. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    SciTech Connect (OSTI)

    Epstein, Arthur J.

    2013-09-10

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  13. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  14. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  15. CAMD Cleanroom Chemical List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Cleanroom Chemical List Chemicals on this list are routine use chemicals in the CAMD ... Data Sheets and or Website. All chemical MSDS sheets are the hyperlink "(MSDS)" ...

  16. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect (OSTI)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.

  17. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Exploring nanoscale magnetism in advanced materials with polarized X-rays Citation Details In-Document Search Title: Exploring nanoscale magnetism in advanced materials with polarized X-rays No abstract prepared. Authors: Fischer, Peter Publication Date: 2011-05-01 OSTI Identifier: 1051277 Report Number(s): LBNL-5104E Journal ID: ISSN 0927-796X; MIGIEA; TRN: US201218%%1364 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource

  18. Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN

    Office of Scientific and Technical Information (OSTI)

    nanostructure arrays on GaN/sapphire template (Journal Article) | SciTech Connect Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Citation Details In-Document Search Title: Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Authors: Sundaram, S. [1] ; Puybaret, R. [2] ; El Gmili, Y. [1] ; Li, X. [2] ; Bonanno, P. L. [1] ; Pantzas, K. [3] Search SciTech

  19. Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} Citation Details In-Document Search Title: Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} We investigated the size-dependent high-pressure phase transition behavior of nanocrystalline anatase TiO{sub 2} with synchrotron x-ray diffraction and Raman spectroscopy to 45 GPa at ambient temperature. Pressure-induced amorphization results in a high-density amorphous (HDA)

  20. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  1. Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) A Nanoscale "Tune-Up" for Fuel Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.11.12 Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells Print Text Size: A A A Subscribe FeedbackShare Page Using sophisticated techniques, EFRC researchers are observing, at the molecular

  2. Computational insights of water droplet transport on graphene sheet with chemical density

    SciTech Connect (OSTI)

    Zhang, Liuyang; Wang, Xianqiao, E-mail: xqwang@uga.edu [College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602 (United States)

    2014-05-21

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  3. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  4. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  5. Solar Energy Technologies Program Peer Review: Center for Nanoscale Energy

    SciTech Connect (OSTI)

    Philip Boudjouk; Larry Pederson; Doug Schulz

    2010-05-26

    The purpose of this project is to develop plant-derived polymers with high potential for replacing petroleum-derived polymers. Important considerations include reduced swelling, lower price, equal or greater strength, and improved processability. Polymer precursors and other high value chemicals are derived by selective oxidation of renewable resources including oil seeds and cellulosics. High throughput combinatorial methods were applied to optimize oxidative catalysis as well as to formulate polymer families. Long chain dicarboxylic acids have been derived in >80% yields from fatty acids found in oil seeds by selective oxidative cleavage using tungsten-based and other catalysts. Furan dicarboxylic acids have been synthesized in high yields by selective catalytic oxidation of cellulosic materials. This product is a precursor to a new class of polyamide polymers. A series terephthalamide/adipamide copolymers have been prepared from long-chain dicarboxylic acids derived from renewable feedstocks. Compositions have been identified that exhibit significant processing advantages over commercial nylons.

  6. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  7. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    SciTech Connect (OSTI)

    Ruberu, Thanthrige P.

    2013-05-15

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  8. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  9. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Hu, Michael Z.

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  10. Near Zero Friction from Nanoscale Lubricants | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Near Zero Friction from Nanoscale Lubricants Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information »

  11. The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale Friday, August 9, 2013 - 10:30am SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen vacancy centers represent a unique class of fluorophores due to their long-lived electron spin properties, all-carbon matrix, and long-term photostability. While this class

  12. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  13. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  14. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  15. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  16. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  17. Chemical Management System

    Energy Science and Technology Software Center (OSTI)

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  18. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  19. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed ...

  20. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  1. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense ... River Operations Office is the sponsor for the Chemical Processing Qualification Standard. ...

  2. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, ... for nuclear safeguard monitoring The Chemical Diagnostics and Engineering (C-CDE) ...

  3. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  4. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of ...

  5. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry ITP Chemicals: Chemical Industry of the Future: New ...

  6. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  7. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    SciTech Connect (OSTI)

    Buratto, Steven K.

    2013-09-03

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  8. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery News & Publications ESnet News Publications and Presentations Galleries Image Gallery Video Gallery ESnet Awards and Honors Contact Us Media Jon Bashor, ...

  9. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect (OSTI)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  10. Nanoscale interplay of strain and doping in a high-temperature superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeljkovic, Ilija; Gu, Genda; Nieminen, Jouko; Huang, Dennis; Chang, Tay-Rong; He, Yang; Jeng, Horng-Tay; Xu, Zhijun; Wen, Jinsheng; Lin, Hsin; et al

    2014-11-07

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi₂Sr₂CaCu₂O₈₊x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  11. Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  12. Nanoscale interplay of strain and doping in a high-temperature superconductor

    SciTech Connect (OSTI)

    Zeljkovic, Ilija; Gu, Genda; Nieminen, Jouko; Huang, Dennis; Chang, Tay-Rong; He, Yang; Jeng, Horng-Tay; Xu, Zhijun; Wen, Jinsheng; Lin, Hsin; Markiewicz, Robert S.; Bansil, Arun; Hoffman, Jennifer E.

    2014-11-07

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi?Sr?CaCu?O??x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  13. Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling; Seker, Erkin; Matthews, Manyalibo J.

    2016-03-02

    Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.

  14. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Zhu, Zihua; Sun, Xin; De Moor, Emmanuel; Taylor, Mark D.; Speer, John; Matlock, David K.

    2015-04-20

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ~100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe-0.29C-2.95Mn-1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite.

  15. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  16. Multimedia regulated chemicals

    SciTech Connect (OSTI)

    Lee, C.C.; Huffman, G.L.; Mao, Y.L.

    1999-10-01

    This article examines those chemicals that are listed in either environmental laws or regulations. Its objective is to help readers determine which laws regulate what types of chemicals and which types of chemicals are regulated by what laws. It is multimedia in scope, describing the various chemicals that are regulated in the different media (i.e., air, water, or land).

  17. Chemical Safety Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy's (DOE's) Chemical Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This content is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified.

  18. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  19. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  20. Chemicals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Chemicals The U.S. chemicals industry is maturing and optimizing its business portfolio for more competitive global markets. Over the past decade, the industry has reduced its energy use, shifting its status from the largest to the second-largest energy user among U.S. industries. The chemicals industry has worked in partnership with AMO to develop a range of resources for improving energy efficiency. Some current R&D projects and Energy Management resources will benefit chemicals

  1. Chemical Biological Emergency Management Information System

    Energy Science and Technology Software Center (OSTI)

    2004-06-15

    CB-EMIS is designed to provide information and analysis to transit system operators and emergency responders in the event of a chemical attack on a subway system. The software inforporates detector data, video images, train data, meteorological data, and above- and below-ground plume dispersion models, hight of the liquid level.

  2. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  3. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  4. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  5. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect (OSTI)

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near Tg, on a typical laboratory time scale (e.g. {approx}1000 s), a water molecule moves less than a molecular distance. For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquid at these low temperatures. ASW films can be used for investigating the non-thermal reactions relevant to radiolysis. In this account we will present a survey of our research on the thermal and non thermal properties of ASW using this approach.

  6. Harnessing Molecule-solid Duality of Nanoclusters/nanoparticles for Nanoscale Control of Size Shape and Alloying

    SciTech Connect (OSTI)

    J Yin; P Hu; B Wanjala; O Malis; C Zhong

    2011-12-31

    This report demonstrates a molecule-solid duality concept for nanoscale control of size, shape and alloying by showing novel evolution of binary copper and gold nanoclusters or nanoparticles towards alloy nanocubes, as evidenced by in situ real time synchrotron X-ray diffraction characterization.

  7. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  8. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

    SciTech Connect (OSTI)

    Morris, James R; Averill, Frank; Cooper, Valentino R

    2014-01-01

    Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

  9. Nanoscale Silicon as Anode for Li-ion Batteries: The Fundamentals, Promise, and Challenges

    SciTech Connect (OSTI)

    Gu, Meng; He, Yang; Zheng, Jianming; Wang, Chong M.

    2015-09-24

    Silicon (Si), associated with its natural abundance, low discharge voltage vs. Li/Li+, and extremely high theoretical discharge capacity (~ 4200 mAh g-1,), has been extensively explored as anode for lithium ion battery. One of the key challenges for using Si as anode is the large volume change upon lithiation and delithiation, which causes a fast capacity fading. Over the last few years, dramatic progress has been made for addressing this issue. In this paper, we summarize the progress towards tailoring of Si as anode for lithium ion battery. The paper is organized such that it covers the fundamentals, the promise offered based on nanoscale designing, and the remaining challenges that need to be attacked to allow using of Si based materials as anode for battery.

  10. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect (OSTI)

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  11. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  12. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Broader source: Energy.gov (indexed) [DOE]

    chemicalbandwidthreport.pdf More Documents & Publications ITP Chemicals: Final Report: ... Acid, December 2007 Bandwidth Study U.S. Chemical Manufacturing ITP Chemicals: Energy and ...

  13. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect (OSTI)

    Zhang, Zhen; Lee, James D.; Wang, Xianqiao

    2014-03-21

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  14. New tool helps reduce use of hazardous chemicals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Helps Reduce Use Of Hazardous Chemicals Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit New tool helps reduce use of hazardous chemicals The "Green Chemical Alternatives Purchasing Wizard," will begin to help employees choose the most benign substances possible for their work. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs

  15. Molecular Control of the Nanoscale: Effect of PhosphineChalcogenide Reactivity on CdSCdSe Nanocrystal Composition and Morphology

    SciTech Connect (OSTI)

    Ruberu, T. Purnima A.; Albright, Haley R.; Callis, Brandon; Ward, Brittney; Cisneros, Joana; Fan, Hua-Jun; Vela, Javier

    2012-04-22

    We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdSCdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphinechalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR (31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphinechalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE < HPTE (E = S, Se). For a given phosphine, the selenide is always more reactive than the sulfide. CdS1xSex quantum dots were synthesized via single injection of a R3PSR3PSe mixture to cadmium oleate at 250 C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R3PS and R3PSe reactivity dictates CdS1xSex dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS1xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PSR3PSe mixture to cadmiumphosphonate at 320 or 250 C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. Purposely matching or mismatching R3PSR3PSe precursor reactivity leads to CdS1xSex nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable bottom-up programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.

  16. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C.; Herring, J. Stephen; Grandy, Jon D.

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  17. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  18. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. ......... 5 5 2.1 Chemical Industry Focus ......

  19. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  20. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying amore » connection between the structural phase separation and the shape of the superconducting dome.« less

  1. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for a Sustainable 21st Century Chemical Industry | Department of Energy Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry PDF icon biocatalysis_roadmap.pdf More Documents & Publications TECHNOLOGY VISION 2020: The U.S. Chemical Industry Gasoline Biodesulfurization Fact Sheet Breaking the

  2. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    SciTech Connect (OSTI)

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; Maloy, S. A.; Hackenberg, R. E.; Clarke, A. J.; Clarke, K. D.

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modified alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.

  3. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; et al

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

  4. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach

    SciTech Connect (OSTI)

    Lu, Jun; Zhan, Chun; Wu, Tianpin; Wen, Jianguo; Lei, Yu; Kropf, A. Jeremy; Wu, Huiming; Miller, Dean J.; Elam, Jeffrey W.; Sun, Yang-Kook; Qiu, Xinping; Amine, Khalil

    2014-12-16

    The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn(III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries.

  5. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    SciTech Connect (OSTI)

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A.

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  6. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect (OSTI)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  7. Nanoscale transport of phonons: Dimensionality, subdiffusion, molecular damping, and interference effects

    SciTech Connect (OSTI)

    Walczak, Kamil; Yerkes, Kirk L.

    2014-05-07

    We examine heat transport carried by acoustic phonons in the systems composed of nanoscale chains of masses coupled to two thermal baths of different temperatures. Thermal conductance is obtained by using linearized Landauer-type formula for heat flux with phonon transmission probability calculated within atomistic Green's functions (AGF) method. AGF formalism is extended onto dissipative chains of masses with harmonic coupling beyond nearest-neighbor approximation, while atomistic description of heat reservoirs is also included into computational scheme. In particular, the phonon lifetimes and the phonon frequency shifts are discussed for harmonic lattices of different dimensions. Further, resonant structure of phonon transmission spectrum is analyzed with respect to reservoir-induced effects, molecular damping, and mass-to-mass harmonic coupling. Analysis of transmission zeros (antiresonances) and their accompanied Fano-shape resonances are discussed as a result of interference effects between different vibrational modes. Finally, we also predict subdiffusive transport regime for low-frequency ballistic phonons propagated along a linear chain of harmonically coupled masses.

  8. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    SciTech Connect (OSTI)

    Rajauria, Sukumar Canchi, Sripathi V. Schreck, Erhard; Marchon, Bruno

    2015-02-23

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10?nm apart and move at sliding speeds of 510?m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  9. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  10. Selecting chemical treatment programs

    SciTech Connect (OSTI)

    Miller, J.E. )

    1988-09-01

    Many process equipment performance and reliability problems can be solved economically by the proper selection and application of chemical treatment programs. It is important to choose an experienced chemical vendor and to work closely with the vendor to develop a good chemical treatment program. This requires devoting sufficient manpower to ensure that the treatment program development is thorough and timely. After the treatment program is installed, the system operation and performance should be routinely monitored to ensure that expected benefits are achieved and unexpected problems do not develop.

  11. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect (OSTI)

    Li, Mi; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: Nanoscale cellular ultra-structures of macrophages were observed. The binding affinities of Fc?Rs were measured directly on macrophages. The nanoscale distributions of Fc?Rs were mapped on macrophages. -- Abstract: Fc gamma receptors (Fc?R), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of Fc?Rs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of Fc?Rs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of Fc?Rs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the Fc?Rs, revealing the nanoscale distribution of Fc?Rs on local areas of macrophages. The experimental results can improve our understanding of Fc?Rs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  12. Enhanced Chemical Cleaning

    SciTech Connect (OSTI)

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  13. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  14. American Chemical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as American Chemical Society Fellows August 7, 2014 Chamberlin and Porterfield named ACS Fellows LOS ALAMOS, N.M., Aug. 7, 2014-Rebecca Chamberlin and Donivan Porterfield, both of Los Alamos National Laboratory's Actinide Analytical Chemistry group, have been selected as a 2014 Fellows of the American Chemical Society (ACS). Rebecca Chamberlin An inorganic chemist and radiochemist, Chamberlin is currently the co-principal investigator for development of novel microreactor-based systems

  15. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 | Department of Energy Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical

  16. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  17. History Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Images Los Alamos History in Images Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Back in the day Back in the day LA bridge in Los

  18. Mechanical-chemical coupling and self-organization in mudstones.

    SciTech Connect (OSTI)

    Heath, Jason E.; Dewers, Thomas A.

    2010-06-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

  19. Foam-assisted delivery of nanoscale zero valent iron in porous media

    SciTech Connect (OSTI)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  20. Chemical Routes to Colloidal Chalcogenide Nanosheets

    SciTech Connect (OSTI)

    Schaak, Raymond

    2015-02-19

    This project sought to develop new low-temperature synthetic pathways to intermetallic and chalcogenide nanostructures and powders, with an emphasis on systems that are relevant to advancing the synthesis, processing, and discovery of superconducting materials. The primary synthetic routes involved solution chemistry methods, and several fundamental synthetic challenges that underpinned the formation of these materials were identified and investigated. Methods for incorporating early transition metals and post transition metals into nanoscale and bulk crystals using low-temperature solution chemistry methods were developed and studied, leading to colloidal nanocrystals of elemental indium, manganese, and germanium, as well as nanocrystalline and bulk intermetallic compounds containing germanium, gallium, tin, indium, zinc, bismuth, and lithium. New chemical tools were developed to help target desired phases in complex binary intermetallic and metal chalcogenide systems that contain multiple stable phases, including direct synthesis methods and chemical routes that permit post-synthetic modification. Several phases that are metastable in bulk systems were targeted, synthesized, and characterized as nanocrystalline solids and bulk powders, including the L12-type intermetallic compounds Au3Fe, Au3Ni, and Au3Co, as well as wurtzite-type MnSe. Methods for accessing crystalline metal borides and carbides using direct solution chemistry methods were also developed, with an emphasis on Ni3B and Ni3C, which revealed useful correlations of composition and magnetic properties. Methods for scale-up and nanoparticle purification were explored, providing access to centimeter-scale pressed pellets of polyol-synthesized nanopowders and a bacteriophage-mediated method for separating impure nanoparticle mixtures into their components. Several advances were made in the synthesis of iron selenide and related superconducting materials, including the production of colloidal FeSe nanosheets and a post-synthetic method for selectively leaching excess selenium from chalcogen-rich Fe-Se samples to precisely target the desired superconducting FeSe polymorph. The insights into FeSe nanosheet formation were applied to other metal chalcogenide systems, including SnSe, SnS, GeSe, and GeS, which led to advances in the synthesis and characterization of 0D, 1D, 2D, and 3D metal chalcogenide nanostructures, including morphology-dependent crystal structures in the SnS system.

  1. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL ...

  2. Chemical Kinetics of Combustion Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion (work-in-progress) * Chemical kinetic submodel of iso-butanol ... oxidation of isobutane and isobutene. * Chemical kinetic submodel of iso-butanol ...

  3. Chemical Supply Chain Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability ...

  4. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Scientific Personnel: Da-Jiang Liu, Michael Schmidt. The theoretical Chemical Physics ... of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences ...

  5. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  6. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  7. Sandia National Laboratories: Careers: Chemistry & Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for combustion applications. Chemists at Sandia conduct research and development at the interface between biology, synthetic chemistry, and surface science to deliver prototype solutions in diverse applications. They provide knowledge about materials structure, properties, and performance and about the processes to produce,

  8. New screening process for potentially cancer causing chemicals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New screening process for potentially cancer causing chemicals Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) A better way to screen chemicals that may cause cancer is under development. This image shows in two dimensions what Berkeley lab scientists are working to achieve in three dimensions: cultures containing diverse cell types (seen here using

  9. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  10. Automating Shallow Seismic Imaging

    SciTech Connect (OSTI)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our work is a significant departure from conventional seismic-survey field procedures.

  11. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /about/history-innovation/trinity-to-trinity/_assets/images/trinity-banner10.jpg Image Gallery The Trinity Test of 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer our goal is to do this virtually, in 3D. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Groves and Oppenheimer, 9-11-45 (799398) Groves and Oppenheimer, 9-11-45 (799398) Trinity (C761,

  12. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microwell edge. To evaluate this technique's potential, researchers studied why the antimicrobial agent mitomycin-C (MMC) does not kill some E. coli in biofilms, focusing on the...

  13. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers studied why the antimicrobial agent mitomycin-C (MMC) does not kill some E. coli in biofilms, focusing on the entrance of MMC into bacterial cells and the subsequent...

  14. Elemental and Chemically Specific X-ray Fluorescence Imaging...

    Office of Scientific and Technical Information (OSTI)

    MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA Format ...

  15. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  16. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to...

  17. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides enough water to sustain the living cells without producing interference on mid-IR spectroscopy. The mid-IR light (2.5-15.5 mm wavelength, or 4000-650 cm-1 wavenumber)...

  18. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-cm-diameter silicon chip (light green) that has been subjected to deep reactive ion etching to form a hydrophilic microchannel or microwell (measuring 1 mm 20-40 m 10-15...

  19. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  20. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    SciTech Connect (OSTI)

    Wirth, Brian

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to particular, the interfacial structure of embedded nanoscale precipitates will be evaluated by electronic- and atomic-scale modeling methods, and the efficiency of the validated interfaces for trapping point defects will next be evaluated by atomic-scale modeling (e.g., determining the sink strength of the precipitates), addressing key questions related to the optimal interface characteristics to attract point defects and enhance their recombination. Kinetic models will also be developed to simulate microstructural evolution of the nanoscale features and irradiation produced defect clusters, and compared with observed microstructural changes.

  1. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect (OSTI)

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  2. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  3. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  4. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    SciTech Connect (OSTI)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.

  5. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensionsmore » is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.« less

  6. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to ... Economic The United States is the top chemical producer in the world, accounting for ...

  7. Category:Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    Chemical Logging Jump to: navigation, search Geothermalpower.jpg Looking for the Chemical Logging page? For detailed information on Chemical Logging, click here. Category:Chemical...

  8. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect (OSTI)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  9. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  10. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A. (Los Alamos, NM)

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  12. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  13. Manhattan Project: Places Images

    Office of Scientific and Technical Information (OSTI)

    PLACES IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Remains of a Shinto Shrine, Nagasaki, October 1945 (courtesy the ...

  14. Nuclear Imaging | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Jefferson Lab's Radiation Detector and Imaging Group Members of Jefferson Lab's Radiation Detector & Medical Imaging Group design and build unique imaging devices based on...

  15. Chemical Management Volume 3 of 3 - Consolidated Chemical User...

    Energy Savers [EERE]

    DOE-HDBK-11393-2008 July 2008 DOE HANDBOOK CHEMICAL MANAGEMENT (Volume 3 of 3) Consolidated Chemical User Safety and Health Requirements U.S. Department of Energy AREA SAFT ...

  16. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  17. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  18. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We ... Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical ...

  19. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  20. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  1. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  2. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  3. Lensless imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Lensless Imaging of Magnetic Nanostructures by X-ray Spectro-Holography J. Lüning, W. F. Schlotter and J. Stöhr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely new classes of experiments. The ultra-short time structure of the ultra-bright x-ray pulses will revolutionize the field of femtosecond x-ray science, since it will become possible to obtain sufficient information about a system from probing it

  4. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  5. ImageJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ImageJ ImageJ Description and Overview ImageJ is a public domain Java image processing program inspired by NIH Image. Fiji means Fiji is Just ImageJ, and stands for a customization of ImageJ with tools to handle microscope data. ImageJ/Fiji can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and "raw". It supports "stacks", a series of images that share a single window.

  6. Modular strategies for PET imaging agents

    SciTech Connect (OSTI)

    Hooker, , J.M.

    2010-03-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  10. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  11. Non-Equilibrium Pathways during Electrochemical Phase Transformations in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution | Stanford Synchrotron Radiation Lightsource Non-Equilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution Friday, February 27, 2015 The energy density of current batteries is limited by the practical capacity of the positive electrode, which is the determined by the properties of the active material and its concentration in the

  12. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    SciTech Connect (OSTI)

    Zhang, X.; Misra, A.; Wang, H.; Swadener, J.G.; Lima, A.L.; Hundley, M.F.; Hoagland, R.G.

    2005-12-05

    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 deg. C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films.

  13. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOE Patents [OSTI]

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  14. Identification of the stimulated-emission threshold in high-{beta} nanoscale lasers through phase-space reconstruction

    SciTech Connect (OSTI)

    Hachair, X.; Elvira, D.; Le Gratiet, L.; Lemaitre, A.; Abram, I.; Sagnes, I.; Robert-Philip, I.; Beveratos, A.; Braive, R.; Lippi, G. L.

    2011-05-15

    Nanoscale lasers sustain a few optical modes so that the fraction of spontaneous emission {beta} funnelled into the useful (lasing) mode is high (of the order of 10{sup -1}) and the threshold, which traditionally corresponds to an abrupt kink in the light-in-light-out curve, becomes ill defined. We propose an alternative definition of the threshold that is based on the dynamical response of the laser and is valid even for {beta}=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitations. Crossing the threshold, brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous determination of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic-crystal laser.

  15. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect (OSTI)

    Lee, M.H.; Kim, B.S.; Kim, D.H.; Ott, R.T.; Sansoz, F.; Eckert, J.

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  16. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-05-14

    Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

  17. Sandia National Laboratories: Z Pulsed Power Facility: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery .

  18. Volatile chemical reagent detector

    DOE Patents [OSTI]

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  19. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  20. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect (OSTI)

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  1. Shanghai TL Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Shanghai TL Chemical Company Place: Shanghai, China Zip: 200240 Product: Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical...

  2. Platts 2nd Annual Renewable Chemicals Conference

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Chemicals & Advanced Biofuels 3. Derivates as chemical building blocks - butanol an example 3 Sugar, Fuel & Chemical Agenda - Where are we? 4 Aggregate Biotechnology ...

  3. Corsicana Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Corsicana Chemical Company Jump to: navigation, search Name: Corsicana Chemical Company Place: Corsicana, Texas Zip: 75110 Product: Chemical company and biodiesel producer in...

  4. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  5. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect (OSTI)

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  6. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires

    SciTech Connect (OSTI)

    Venkatesan, Sriram; Scheu, Christina; Madsen, Morten H.; Krogstrup, Peter; Johnson, Erik; Schmid, Herbert

    2013-08-05

    Straight, axial InAs nanowire with multiple segments of Ga{sub x}In{sub 1−x}As was grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveals the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the Ga{sub x}In{sub 1−x}As/InAs interfaces and a higher Ga concentration for the early grown Ga{sub x}In{sub 1−x}As segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.

  7. Methods for spectral image analysis by exploiting spatial simplicity

    DOE Patents [OSTI]

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  8. Methods for spectral image analysis by exploiting spatial simplicity

    DOE Patents [OSTI]

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  9. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Chemical Industry Vision 2020. Annual Report 2004 Citation Details In-Document Search Title: Chemical Industry Vision 2020. Annual Report 2004 This publication is an annual report on the activities of the Chemical Industry Vision 2020 Technology Partnership. Authors: None, None Publication Date: 2005-06-01 OSTI Identifier: 1218618 Resource Type: Technical Report Research Org: EERE Publication and Product Library Sponsoring Org: USDOE Office of Energy Efficiency and Renewable

  10. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  11. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  12. Enhancing chemical reactions

    DOE Patents [OSTI]

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  13. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-11-15

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  14. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel...

  15. Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    concentrations.1 Use in Geothermal Exploration During a chemical logging study at the Raft River Geothermal Test Site, returned drilling fluid samples were collected every...

  16. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  17. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  18. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Environmental Management (EM)

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  19. Multidimensional simulation and chemical kinetics development...

    Office of Environmental Management (EM)

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high ...

  20. Final Report: "Collaborative Project. Understanding the Chemical...

    Office of Scientific and Technical Information (OSTI)

    Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth ... Title: Final Report: "Collaborative Project. Understanding the Chemical Processes That ...

  1. Quantification of Electrochemical Nanoscale Processes in Lithium Batteries By OperandoEC-(S)TEM

    SciTech Connect (OSTI)

    Mehdi, Beata L.; Qian, Jiangfeng; Nasybulin, Eduard; Welch, David A.; Park, Chiwoo; Faller, Roland; Mehta, Hardeep S.; Henderson, Wesley A.; Xu, Wu; Evans, James E.; Liu, Jun; Zhang, Jiguang; Mueller, Karl T.; Browning, Nigel D.

    2015-07-27

    Lithium (Li)-ion batteries are currently used for a wide variety of portable electronic devices, electric vehicles and renewable energy applications. In addition, extensive worldwide research efforts are now being devoted to more advanced “beyond Li-ion” battery chemistries - such as lithium-sulfur (Li-S) and lithium-air (Li-O2) - in which the carbon anode is replaced with Li metal. However, the practical application of Li metal anode systems has been highly problematic. The main challenges involve controlling the formation of a solid-electrolyte interphase (SEI) layer and the suppression of Li dendrite growth during the charge/discharge process (achieving “dendrite-free” cycling). The SEI layer formation continuously consumes the electrolyte components creating highly resistive layer, which leads to the rapid decrease of cycling performance and degradation of the Li anode. The growth of Li metal dendrites at the anode contributes to rapid capacity fading (the presence of “dead Li” created during the discharge leads to an increased overpotential) and, in the case of continuous growth, leads to internal short circuits and extreme safety issues. Here we demonstrate the application of an operando electrochemical scanning transmission electron microscopy (ec-(S)TEM) cell to study the SEI layer formation and the initial stages of Li dendrite growth - the goal is to develop a mechanism for mitigating the degradation processes and increasing safety. Bright field (BF) STEM images in Figure 1 A-C show Li metal deposition and dissolution processes at the interface between the Pt working electrode and the lithium hexafluorophosphate (LiPF6) in propylene carbonate (PC) electrolyte during three charge/discharge cycles. A contrast reversal caused by Li metal being lighter/less dense than surrounding electrolyte (Li appears brighter than the background in BF STEM images) allows Li to be uniquely identified from the other components in the system - the only solid material that is less dense than the electrolyte is Li metal. Using these images, we can precisely quantify the total volume of Li deposition, the thickness of the SEI layer (observed as a ring of positive contrast around the electrode) and alloy formation due to Li+ ion insertion during each cycle. Furthermore, at the end of each discharge cycle we can quantify the presence of “dead Li” detached from the Pt electrode, thereby demonstrating the degree of irreversibility (and degradation of Pt electrode) associated with insertion/removal of Li+during this process with direct correlation to electrochemical performance. Such analyses provide significant insights into Li metal dendrite growth, which is critical to understand the complex interfacial reactions needed to be controlled for future Li-based and next generation energy storage systems.

  2. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae

    SciTech Connect (OSTI)

    Shen, Yongfeng; liu, Yandong; Sun, Xin; Wang, Y. D.; Zuo, Liang; Misra, R. D. K.

    2013-07-02

    TRIP (transformation-induced-plasticity) steel with a chemical composition of 0.19C0.30Si1.76Mn1.52Al (weight percentage, wt.%) have been treated by intercritical annealing and austempering process. The microstructures of the obtained samples consist of the ferrite, the bainite and the retained austenite phase. The volume fractions of the bainite and the retained austenite gradually increase with increasing the temperature of the intercritical annealing. Consequently, significantly different mechanical properties have been observed. The sample annealed at 820C (for 120s) and partitioned at 400C (for 300s) has the best combination of ultimate tensile strength (UTS, ~682 MPa) and elongation to failure (~70%) with about 26% of bainitic ferrite plates and 17% retained austenite in its microstructure. The retained austenite has a lamella morphology with 100300 nm in thickness and 25 ?m in length. On the contrary, the sample annealed at the same temperature without the partitioning process yields much lower UTS and elongation to failure.

  3. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  4. Manhattan Project: Image Retouching`

    Office of Scientific and Technical Information (OSTI)

    Image Retouching Resources > Photo Gallery Smyth Report (original) Smyth Report (retouched) Images on this web site have sometimes been "retouched." In every case, however, the ...

  5. Spin and orbital moments of nanoscale Fe{sub 3}O{sub 4} epitaxial thin film on MgO/GaAs(100)

    SciTech Connect (OSTI)

    Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Wong, P. K. J.; Maltby, N. J.; Li, S. P.; Wang, X. F.; Zhang, R. E-mail: rzhang@nju.edu.cn; Du, J.; You, B.; Wu, J.; Bencok, P.

    2014-04-07

    Nanoscale Fe{sub 3}O{sub 4} epitaxial thin film has been synthesized on MgO/GaAs(100) spintronic heterostructure, and studied with X-ray magnetic circular dichroism. We have observed a total magnetic moment (m{sub l+s}) of (3.32 ± 0.1)μ{sub B}/f.u., retaining 83% of the bulk value. Unquenched orbital moment (m{sub l}) of (0.47 ± 0.05)μ{sub B}/f.u. has been confirmed by carefully applying the sum rule. The results offer direct experimental evidence of the bulk-like total magnetic moment and a large orbital moment in the nanoscale fully epitaxial Fe{sub 3}O{sub 4}/MgO/GaAs(100) heterostructure, which is significant for spintronics applications.

  6. Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3

    SciTech Connect (OSTI)

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H. C.; Beasley, M. R.; Geballe, T. H.; Kramer, M. J.; Fisher, I. R.

    2015-09-16

    The phase diagram of BaPb1-xBixO3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

  7. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOE Patents [OSTI]

    Brown, Jr., R. Malcolm; Barnes, Zack; Sawatari, Chie; Kondo, Tetsuo

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  8. Positron Emission Tomography (PET) for Imaging Body Chemistry

    SciTech Connect (OSTI)

    Krohn, Ken

    2001-04-25

    PET is a nuclear medicine technology for imaging chemical processes as they are occurring in the human body. This distinguishes it from conventional radiographic and NMR imaging, which depict anatomic changes that generally occur secondary to chemical changes. As our knowledge about human genomics and molecular biology increases and as we develop new approaches to therapy based on this biochemical information, it becomes increasingly important to be able to image important chemical processes occurring in vivo. Methods exist for imaging metabolic rates for energy utilization, cellular proliferation, and protein synthesis. The sending and receiving function of neurotransmitters can be imaged to test for mismatch in their communication function. Gene transfection can be imaged with PET reporters. All of these approaches allow the physician to better select the appropriate treatment for an individual patient, rather than basing treatment on historical experience for a population of similar patients. The technology for PET requires synthesis of positron emitting radioactive molecules, most commonly labeled with C-11 (20.4m) and F-18 (109.8 m) which are made on site with an accelerator. FNAL was involved in developing new RFQ technology for making PET isotopes. The technology also requires better imaging technology, including scintillators, and more robust algorithms for image reconstruction and data analysis.

  9. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect (OSTI)

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10m x 10m) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  10. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A.; K?os, J. W.; Krawczyk, M.

    2014-01-28

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain isofrequency contours of spin waves. Isofrequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  11. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    SciTech Connect (OSTI)

    Lin, Jau-Wen

    2014-08-07

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied.

  12. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    SciTech Connect (OSTI)

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate the effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.

  13. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  14. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOE Patents [OSTI]

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  15. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect (OSTI)

    Patel, Jayesh D.; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Mighri, Frej; Chemical Engineering Department, University of Laval, Quebec, QC, G1K 7P4 ; Ajji, Abdellah; Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville Montreal, QC, H3C 3A7

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  16. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  17. Non-planar chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  18. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  19. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  20. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  1. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Adkins, Douglas R.; Lewis, Patrick R.

    2007-01-30

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  2. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Bandwidth Study U.S. Chemical Manufacturing ITP Chemicals: ...

  3. Image registration method for medical image sequences

    DOE Patents [OSTI]

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  4. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  5. MECS 2006 - Chemicals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals MECS 2006 - Chemicals Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Chemicals More Documents & Publications Chemicals (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  6. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  7. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  8. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  9. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  10. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  11. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    SciTech Connect (OSTI)

    Carpenter, Michael; Oh, Sang-Hyun

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat#activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic#based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic#based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.

  12. Dainippon Ink Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Dainippon Ink & Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 103-8233 Product: Japanese diversified chemical company that primarily...

  13. Mitsui Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Mitsui Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 105-7117 Sector: Solar Product: Chemicals maker including plastics, industrial...

  14. Chemical incident economic impact analysis methodology. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Chemical incident economic impact analysis methodology. Citation Details In-Document Search Title: Chemical incident economic impact analysis methodology. You are accessing a ...

  15. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov | ...

  16. Coalescence and Chemical Equilibrium in Multifragmentation at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Society Meeting, Boston (August 2002). Production and Deexcitation of Isotopically Diverse Nuclear Systems near the Fermi Energy, S. J. Yennello, American Chemical ...

  17. Sandia Researchers Develop Promising Chemical Technology for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am ...

  18. Chemical incident economic impact analysis methodology. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Chemical incident economic impact analysis methodology. Citation Details In-Document Search Title: Chemical incident economic impact analysis methodology. ...

  19. Coalescence and Chemical Equilibrium in Multifragmentation at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Black Chemists and Chemical Engineers, NOBCChE, Atlanta, Georgia (March 2010). ... Talk, American Chemical Society National Meeting, San Francisco, California (March 2010). ...

  20. Coalescence and Chemical Equilibrium in Multifragmentation at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chemical Society National Meeting, New Orleans, Louisiana (April 2008). Nuclear Collisions and the Nuclear Equation of State, J.B. Natowitz, Invited Talk, American Chemical ...

  1. 2.3 Understanding Chemical Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    612011 2.3 Understanding Chemical Reactions The molecular features that influence the rate of chemical reactions were poorly understood until the mid- 1960s, when Dudley ...

  2. Calculation of chemical equilibrium between aqueous solution...

    Office of Scientific and Technical Information (OSTI)

    Calculation of chemical equilibrium between aqueous solution and minerals: the EQ36 ... Citation Details In-Document Search Title: Calculation of chemical equilibrium between ...

  3. CONTENTS Chemical Control of Fluid Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures ... Oil & Natural Gas Program Newsletter Fall 2015 1 Chemical Control of Fluid Flow and ...

  4. Manager, International Chemical Threat Reduction Department,...

    National Nuclear Security Administration (NNSA)

    Manager, International Chemical Threat Reduction Department, Sandia National Laboratories Nancy B. Jackson Nancy Jackson Nancy B. Jackson, manager of the International Chemical ...

  5. Nanomechanical Sensor Detects and Identifies Chemical Analytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomechanical Sensor Detects and Identifies Chemical Analytes Oak Ridge National ... It can also quickly identify a potentially harmful chemical. The invention's sensitivity ...

  6. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion chemical-looping-combustion.jpg An economical option for using our abundant, domestic coal resources while eliminating CO2 emissions may sound like ...

  7. Coalescence and Chemical Equilibrium in Multifragmentation at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... C.M. Folden III , 241 st American Chemical Society National Meeting, Anaheim, ... 241 st American Chemical Society National Meeting, Anaheim, California (March 2011). ...

  8. FAQS Qualification Card - Chemical Processing | Department of...

    Energy Savers [EERE]

    Chemical Processing FAQS Qualification Card - Chemical Processing A key element for the Department's Technical Qualification Programs is a set of common Functional Area ...

  9. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Broader source: Energy.gov (indexed) [DOE]

    conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. ... PDF icon Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify ...

  10. Predicting Pressure-Dependent Combustion Chemical Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Pressure-Dependent Combustion Chemical Reactions - Sandia Energy Energy Search ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  11. Chemical Analysis of Nanodomains | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We seek to understand the basic principles that underlie energy-relevant chemical ... Analysis activities of the Division of Chemical Science, Geoscience and Biosciences ...

  12. Keeping Tabs on the World's Dangerous Chemicals

    Broader source: Energy.gov [DOE]

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  13. Sandians Published in American Chemical Society's Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Published in American Chemical Society's Environmental Science & Technology - Sandia ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  14. Chemical Management, Volume 2 of 3

    Office of Environmental Management (EM)

    TS NOT MEASUREMENT SENSITIVE DOE-HDBK-11392-2002 July 2002 DOE HANDBOOK CHEMICAL ... and contractor managers in assessing chemical hazard management and is approved for ...

  15. Mr. Robert Muller, Manager General Chemical Corporation

    Office of Legacy Management (LM)

    S 1997 Mr. Robert Muller, Manager General Chemical Corporation 6300 Philadelphia Pike ... Mr. D. T. Murphy of Allied Chemical Corporation, Delaware Valley Works in Marcus Hook, was ...

  16. Chemical Characterization of Individual Particles and Residuals...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chemical Characterization of Individual Particles and Residuals of Cloud ... Citation Details In-Document Search Title: Chemical Characterization of Individual ...

  17. Chemical Kinetic Research on HCCI & Diesel Fuels

    Energy Savers [EERE]

    Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI), Charles ... and emission formation processes * Chemical kinetic models are critical for improved ...

  18. Plutonium-238 Production Chemical Processing Evaluations (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Plutonium-238 Production Chemical Processing Evaluations Citation Details In-Document Search Title: Plutonium-238 Production Chemical Processing Evaluations Authors: ...

  19. Hanwha Chemical Corp | Open Energy Information

    Open Energy Info (EERE)

    Chemical Corp Jump to: navigation, search Name: Hanwha Chemical Corp Place: Seoul, Seoul, Korea (Republic) Zip: 100-797 Product: Korea-based manufacturer of synthetic resins and...

  20. Silicon Chemical Corp SCC | Open Energy Information

    Open Energy Info (EERE)

    Corp SCC Jump to: navigation, search Name: Silicon Chemical Corp (SCC) Place: Vancouver, Washington State Zip: 98687 Product: US manufacturer of polysilicon and silicon chemical...

  1. Heilongjiang Fengrui Chemical Group | Open Energy Information

    Open Energy Info (EERE)

    Fengrui Chemical Group Jump to: navigation, search Name: Heilongjiang Fengrui Chemical Group Place: Shuangyashan, Heilongjiang Province, China Product: A Chinese bioethanol...

  2. Dow Chemical Co | Open Energy Information

    Open Energy Info (EERE)

    search Name: Dow Chemical Co Place: Midland, Michigan Zip: 48674 Sector: Hydro, Hydrogen Product: Michigan-based global chemical, plastic and agricultural products maker,...

  3. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  4. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  5. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  6. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such...

  7. Spectrographic imaging system

    DOE Patents [OSTI]

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  8. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  9. Video image position determination

    DOE Patents [OSTI]

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  10. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  11. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  12. Analytical Microscopy and Imaging Science | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytical Microscopy and Imaging Science An image of interconnecting yellow and red particles NREL uses transmission/scanning electron and scanning probe techniques to measure the chemical, structural, morphological, electrical, interfacial, and luminescent properties on the nano to Angstrom scale. We investigate such properties in a wide range of photovoltaic and semiconducting materials, with particular emphasis on extended defects and interfaces and how these affect device performance. A

  13. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  14. NETL's High-Speed Imaging System Successfully Applied in Medicine, Broad Spectrum of Industry

    Broader source: Energy.gov [DOE]

    A groundbreaking Department of Energy-developed imaging system originally designed to help create cleaner fossil energy processes is finding successful applications in a wide range of medical, chemical processing, energy, and other industries.

  15. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  16. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  17. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  18. Fourier plane imaging microscopy

    SciTech Connect (OSTI)

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  19. Method of producing a chemical hydride

    DOE Patents [OSTI]

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  20. Statistics for the Relative Detectability of Chemicals in Weak Gaseous Plumes in LWIR Hyperspectral Imagery

    SciTech Connect (OSTI)

    Metoyer, Candace N.; Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence

    2008-10-30

    The detection and identification of weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based model that describes the at-sensor observed radiance. The motivating question for the analyses performed in this paper is as follows. Given a set of backgrounds, is there a way to predict the background over which the probability of detecting a given chemical will be the highest? Two statistics were developed to address this question. These statistics incorporate data from the long-wave infrared band to predict the background over which chemical detectability will be the highest. These statistics can be computed prior to data collection. As a preliminary exploration into the predictive ability of these statistics, analyses were performed on synthetic hyperspectral images. Each image contained one chemical (either carbon tetrachloride or ammonia) spread across six distinct background types. The statistics were used to generate predictions for the background ranks. Then, the predicted ranks were compared to the empirical ranks obtained from the analyses of the synthetic images. For the simplified images under consideration, the predicted and empirical ranks showed a promising amount of agreement. One statistic accurately predicted the best and worst background for detection in all of the images. Future work may include explorations of more complicated plume ingredients, background types, and noise structures.