Sample records for nanoscale chemical imaging

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUGWedgedNanoscale Chemical

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplicationsNanoscale Chemical

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUGWedgedNanoscaleNanoscale

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplicationsNanoscaleNanoscale

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUGWedgedNanoscale

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplications -BatteryNanoscale

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplicationsNanoscale

  8. Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging

    E-Print Network [OSTI]

    Wechsler, Risa H.

    as the technology of choice in soon-to-be marketed models, further improvements in their energy density, cost, cycle energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion the promise of adding a new dimension, 3D nanoscale chemical and architectural visualization

  9. Frequency Resolved Nanoscale Chemical Imaging of 4,4'-Dimercaptostilbene on Silver

    SciTech Connect (OSTI)

    El-Khoury, Patrick Z.; Ueltschi, Tyler W.; Mifflin, Amanda L.; Hu, Dehong; Hess, Wayne P.

    2014-11-26T23:59:59.000Z

    Non-resonant tip-enhanced Raman images of 4,4'-dimercaptostilbene on silver reveal that different vibrational resonances of the reporter are selectively enhanced at different sites on the metal substrate. Sequentially recorded images track molecular diffusion within the diffraction-limited laser spot which illuminates the substrate. In effect, the recorded time resolved (?t = 10 s) pixelated images (25 nm x 8 cm-1) broadcast molecule-local field interactions which take place on much finer scales.

  10. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    SciTech Connect (OSTI)

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21T23:59:59.000Z

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  11. Nano-scale Sensor Networks for Chemical Eisa Zarepour1

    E-Print Network [OSTI]

    New South Wales, University of

    Nano-scale Sensor Networks for Chemical Catalysis Eisa Zarepour1 Mahbub Hassan1 Chun Tung Chou1- searchers are now investigating the viability of nano-scale sensor networks (NSNs), which are formed natural gas to liquid fuel. Given that reliable wireless communi- cation at nano-scale is at very early

  12. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the...

  13. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale Particles. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale Particles. Abstract: We present a...

  14. Nano-scale scratching in chemical-mechanical polishing

    E-Print Network [OSTI]

    Eusner, Thor

    2008-01-01T23:59:59.000Z

    During the chemical-mechanical polishing (CMP) process, a critical step in the manufacture of ultra-large-scale integrated (ULSI) semiconductor devices, undesirable nano-scale scratches are formed on the surfaces being ...

  15. Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues

    SciTech Connect (OSTI)

    Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-02-04T23:59:59.000Z

    Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

  16. Nanoscale fluorescence lifetime imaging with a single diamond NV center

    E-Print Network [OSTI]

    Ryan Beams; Dallas Smith; Timothy W. Johnson; Sang-Hyun Oh; Lukas Novotny; Nick Vamivakas

    2013-03-05T23:59:59.000Z

    Solid-state quantum emitters, such as artificially engineered quantum dots or naturally occurring defects in solids, are being investigated for applications ranging from quantum information science and optoelectronics to biomedical imaging. Recently, these same systems have also been studied from the perspective of nanoscale metrology. In this letter we study the near-field optical properties of a diamond nanocrystal hosting a single nitrogen vacancy center. We find that the nitrogen vacancy center is a sensitive probe of the surrounding electromagnetic mode structure. We exploit this sensitivity to demonstrate nanoscale fluorescence lifetime imaging microscopy (FLIM) with a single nitrogen vacancy center by imaging the local density of states of an optical antenna.

  17. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect (OSTI)

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01T23:59:59.000Z

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  18. Nanoscale NMR Spectroscopy and Imaging of Multiple Nuclear Species

    E-Print Network [OSTI]

    Stephen J. DeVience; Linh M. Pham; Igor Lovchinsky; Alexander O. Sushkov; Nir Bar-Gill; Chinmay Belthangady; Francesco Casola; Madeleine Corbett; Huiliang Zhang; Mikhail Lukin; Hongkun Park; Amir Yacoby; Ronald L. Walsworth

    2014-06-12T23:59:59.000Z

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are well-established techniques that provide valuable information in a diverse set of disciplines but are currently limited to macroscopic sample volumes. Here we demonstrate nanoscale NMR spectroscopy and imaging under ambient conditions of samples containing multiple nuclear species, using nitrogen-vacancy (NV) colour centres in diamond as sensors. With single, shallow NV centres in a diamond chip and samples placed on the diamond surface, we perform NMR spectroscopy and one-dimensional MRI on few-nanometre-sized samples containing $^1$H and $^{19}$F nuclei. Alternatively, we employ a high-density NV layer near the surface of a diamond chip to demonstrate wide-field optical NMR spectroscopy of nanoscale samples containing $^1$H, $^{19}$F, and $^{31}$P nuclei, as well as multi-species two-dimensional optical MRI with sub-micron resolution. For all diamond samples exposed to air, we identify a ubiquitous $^1$H NMR signal, consistent with a $\\sim 1$ nm layer of adsorbed hydrocarbons or water on the diamond surface and below any sample placed on the diamond. This work lays the foundation for nanoscale NMR and MRI applications such as studies of single proteins and functional biological imaging with subcellular resolution, as well as characterization of thin films with sub-nanometre resolution.

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conducted by E. de Smit, I. Swart, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot (Utrecht University, The Netherlands); J.F. Creemer, G.H. Hoveling, P.J. Kooyman, and H.W....

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUGWedged

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplications -Battery

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticleApplications

  3. Self-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors

    E-Print Network [OSTI]

    New South Wales, University of

    a reactor for a bottom-up control of the chemical synthesis with the ultimate goal of improvingSelf-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors Eisa Zarepour1 Mahbub networks (NSNs) can be applied in many chemical applications to monitor and control the chemical process

  4. Nanometric Optical Imaging Frontiers in Chemical Imaging

    E-Print Network [OSTI]

    Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor growing field which has provided for nanometric optical imaging in the near-field. Even though a variety of techniques are being developed with nanometric optical imaging potential, near-field optics remains the most

  5. Site-Specific Raman Spectroscopy and Chemical Dynamics of Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)SharingTiO2(110). | EMSL Imaging of Elemental

  6. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres P and A. Yacoby1 * The nitrogen-vacancy defect centre in diamond1­4 has potential applications processing9 and bioimaging10 . These applications rely on the ability to pos- ition a single nitrogen-vacancy

  7. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    E-Print Network [OSTI]

    Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruńa, Héctor D; Muller, David A

    2013-01-01T23:59:59.000Z

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

  8. Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis

    SciTech Connect (OSTI)

    Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

    2010-02-02T23:59:59.000Z

    Extending spatial resolution in laser-based chemical analysis to the nanoscale becomes increasingly important as nanoscience and nanotechnology develop. Implementation of femtosecond laser pulses arises as a basic strategy for increasing resolution since it is associated with spatially localized material damage. In this work we study femtosecond laser far- and near-field processing of silicon (Si) at two distinct wavelengths (400 and 800 nm), for nanoscale chemical analysis. By tightly focusing femtosecond laser beams in the far-field we were able to produce sub-micrometer craters. In order to further reduce the crater size, similar experiments were performed in the near-field through sub-wavelength apertures, resulting to the formation of sub-30 nm craters. Laser Induced Breakdown Spectroscopy (LIBS) was used for chemical analysis with a goal to identify the minimum crater size from which spectral emission could be measured. Emission from sub-micrometer craters (full-with-at-half-maximum) was possible, which are among the smallest ever reported for femtosecond LIBS.

  9. Anasys licenses ORNL nanoscale mass spectrometry imaging technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in imaging resolution as small as 250 nanometers, or 1400th the thickness of a human hair. "This capability could have a tremendous impact on a broad field of applications in...

  10. Chemical Imaging Initiative Delivering New Capabilities for

    E-Print Network [OSTI]

    Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

  11. Microsoft Word - Dynamic Chemical Imaging at Nanoscale bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 - Outline andPROPOSAL68R18Requiringof4 2.1Draft)

  12. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    Frontiers in Chemical Imaging Seminar Series On the trail of the Chimera The Atom the Chimera is still elusive. 1. Thomas F. Kelly and David J. Larson. Ann Rev. Materials Res 42 (2012) 1. 2

  13. Three-dimensional Chemical Imaging of Embedded Nanoparticles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography. Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography....

  14. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    the positions of Professor in the Dept. of Materials Science and Engineering, University of TennesseeFrontiers in Chemical Imaging Seminar Series Presented by Dr. Stephen J Pennycook, Ph.D. Materials properties. Finally, the direct imaging and identification of point defect configurations in monolayer BN

  15. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect (OSTI)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15T23:59:59.000Z

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  16. Chemical vapor detection with a multispectral thermal imager

    E-Print Network [OSTI]

    Chang, Chein-I

    Chemical vapor detection with a multispectral thermal imager Mark 1. G. Aithouse, MEMBER SPIE U.S. Army Chemical Research Development and Engineering Center SMCCR-DDT Aberdeen Proving Ground, Maryland algorithm 7. Conclusions 8. Acknowledgments 9. References 1. INTRODUCTION Detection of chemical vapor clouds

  17. Northwest National Laboratory's Chemical Imaging Initiative is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of chemicals and radionuclides underground or precipitation reactions that influence the sequestration of carbon. To study biofilms, researchers must first obtain detailed...

  18. THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS

    SciTech Connect (OSTI)

    Jianwei Miao

    2011-04-18T23:59:59.000Z

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Ă? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

  19. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk

    SciTech Connect (OSTI)

    Tomutsa, Liviu; Silin, Dmitriy

    2004-08-19T23:59:59.000Z

    For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

  20. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  1. Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale Sn0.99Co0.01O. Abstract: In a recent work, we have shown that chemically synthesized...

  2. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    SciTech Connect (OSTI)

    Schwarz, Udo [Yale University

    2014-12-10T23:59:59.000Z

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  3. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare |Real-Time Chemical Imaging of

  4. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxide FuelReal-Time Chemical Imaging of

  5. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxide FuelReal-Time Chemical Imaging

  6. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect (OSTI)

    Gopalsami, N.

    1999-03-30T23:59:59.000Z

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  7. 3/04/2008 Center for Nanoscale Systems, FAS, Harvard University

    E-Print Network [OSTI]

    for Nanoscale Systems, FAS, Harvard University 5 Filling Out Hazardous Waste Tags 1 of 2 ·Fill In Full Chemical This Blank #12;3/04/2008 Center for Nanoscale Systems, FAS, Harvard University 6 Filling Out Hazardous Waste3/04/2008 Center for Nanoscale Systems, FAS, Harvard University 1 Protocol For User Supplied

  8. In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)

    SciTech Connect (OSTI)

    Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

    2009-06-01T23:59:59.000Z

    This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

  9. Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories

    E-Print Network [OSTI]

    Andronesi, Ovidiu C.

    In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional Correlation Spectroscopy (COSY) and Total Correlation ...

  10. Design of angle-tolerant multivariate optical elements for chemical imaging

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Design of angle-tolerant multivariate optical elements for chemical imaging Olusola O. Soyemi in imaging applications. We report a method for the design of angle-insensitive MOEs based on modification of Bismarck Brown and Crystal Violet, was designed and its performance simulated. For angles of incidence

  11. Simultaneous multislice spiral and EPI chemical shift imaging

    E-Print Network [OSTI]

    Abuhashem, Obaidah Anees

    2013-01-01T23:59:59.000Z

    The current prominent excitation methods of 3D slabs used for MR Spectroscopy Imaging (MRSI) include long dead times in each TR. This dead time is necessary for magnetization moments' longitudinal relaxation, and so a good ...

  12. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare | NationalReal-Time Chemical

  13. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In & RegistrationChemicalDroplets

  14. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxide FuelReal-Time Chemical

  15. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxide FuelReal-Time ChemicalReal-Time

  16. Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach

    E-Print Network [OSTI]

    Boyer, Edmond

    infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

  17. Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging

    E-Print Network [OSTI]

    Reid, Scott A.

    Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging, Milwaukee, Wisconsin 53201 Kinetics of sol-gel formation were studied using the recently developed near-infrared been studied extensively by many different spectroscopic techniques.4-15 Among them, the near-infrared

  18. Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater Remediation

    E-Print Network [OSTI]

    Barthelat, Francois

    Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater chemicals (Zhang, 2003). Nano-scale zero valent iron (NZVI) can be injected into the soil to degrade centrifugation. UV spectrophotometer: The polymers could be quantified when dissolved in pure water or in mineral

  19. Supersymmetry Across Nanoscale Heterojunction

    E-Print Network [OSTI]

    B. Bagchi; A. Ganguly; A. Sinha

    2010-02-13T23:59:59.000Z

    We argue that supersymmetric transformation could be applied across the heterojunction formed by joining of two mixed semiconductors. A general framework is described by specifying the structure of ladder operators at the junction for making quantitative estimation of physical quantities. For a particular heterojunction device, we show that an exponential grading inside a nanoscale doped layer is amenable to exact analytical treatment for a class of potentials distorted by the junctions through the solutions of transformed Morse-Type potentials.

  20. Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of

    E-Print Network [OSTI]

    Cohen, Ronald C.

    - field scanning optical microscope (NSOM) is demon- strated for the first time. A femtosecond, tunable near- infrared laser was used to generate both nonresonant and resonantly enhanced third harmonic radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probe

  1. High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography

    SciTech Connect (OSTI)

    Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

    2013-05-20T23:59:59.000Z

    We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

  2. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Broader source: Energy.gov (indexed) [DOE]

    2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes...

  3. Nanotribology and Nanoscale Friction

    SciTech Connect (OSTI)

    Guo, Yi [Stevens Institute of Technology, Hoboken, New Jersey; Qu, Zhihua [University of Central Florida, Orlando; Braiman, Yehuda [ORNL; Zhang, Zhenyu [ORNL; Barhen, Jacob [ORNL

    2008-01-01T23:59:59.000Z

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  4. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale Landscape Print For the first time, researchers

  5. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale Landscape Print For the first time,

  6. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale Landscape Print For the first time,Mapping the

  7. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale Landscape Print For the first time,Mapping

  8. Microfluidics and Nanoscale Research Profile

    E-Print Network [OSTI]

    Microfluidics and Nanoscale Science Research Profile Our research group is engaged in a broad range of activities in the general area of microfluidics and nanoscale science. At a primary level, our interest that when compared to macroscale tech- nology, microfluidic systems engender a number of distinct advantages

  9. Mediated Enzyme Electrodes with Combined Micro-and Nanoscale Supports

    E-Print Network [OSTI]

    Hone, James

    Mediated Enzyme Electrodes with Combined Micro- and Nanoscale Supports Scott Calabrese Barton which is grown multiwall nanotubes by chemical vapor deposition combined with ohmic heating. Power systems based on ambient fuels will be feasible if the power device itself is capable

  10. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  11. Nanoscale relaxation oscillator

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

    2009-04-07T23:59:59.000Z

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  12. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  13. Colloidal semiconductor nanocrystals as nanoscale emissive probes in light emitting diodes and cell biology

    E-Print Network [OSTI]

    Huang, Hao, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This thesis employs colloidal semiconductor nanocrystals (NCs) as nanoscale emissive probes to investigate the physics of light emitting diodes (LEDs), as well as to unveil properties of cells that conventional imaging ...

  14. Nanoscale Materials in Medicine

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by Auburn University Department of Chemical Engineering held on June 26, 2012

  15. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    SciTech Connect (OSTI)

    Kundhikanjana, W.

    2010-06-02T23:59:59.000Z

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces.

  16. NANOSCALE STRUCTURALAND MAGNETIC CHARACTERIZATION USING

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    by magnetic materials as their dimensions are reduced towards the nanoscale. Important examples include coupling between magnetic thin films, which depends on the thickness of the non-magnetic spacer layer [2

  17. Quantification of nanoscale density fluctuations using electron microscopy: Light-localization properties of biological cells

    SciTech Connect (OSTI)

    Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Joshi, Hrushikesh M.; Dravid, Vinayak P. [Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Roy, Hemant K. [Department of Internal Medicine, NorthShore University HealthSystem, Evanston, Illinois 60201 (United States); Taflove, Allen [Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2010-12-13T23:59:59.000Z

    We report a study of the nanoscale mass-density fluctuations of heterogeneous optical dielectric media, including nanomaterials and biological cells, by quantifying their nanoscale light-localization properties. Transmission electron microscope images of the media are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by the statistical analysis of the inverse participation ratio (IPR) of the localized eigenfunctions of these optical lattices at the nanoscale. We validated IPR analysis using nanomaterials as models of disordered systems fabricated from dielectric nanoparticles. As an example, we then applied such analysis to distinguish between cells with different degrees of aggressive malignancy.

  18. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect (OSTI)

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21T23:59:59.000Z

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  19. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  20. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    SciTech Connect (OSTI)

    Sibener, Steven J. [University of Chicago, IL (United States)] [University of Chicago, IL (United States)

    2014-03-11T23:59:59.000Z

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon management. These activities directly benefitted national science objectives in the areas of chemical energy production and advanced materials development.

  1. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

  2. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anodes Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for...

  3. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of Methanol and Ethanol. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of...

  4. Symmetry-Driven Spontaneous Self-assembly of Nanoscale Ceria...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry-Driven Spontaneous Self-assembly of Nanoscale Ceria Building Blocks to Fractal Super-octahedra. Symmetry-Driven Spontaneous Self-assembly of Nanoscale Ceria Building...

  5. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructu...

    Broader source: Energy.gov (indexed) [DOE]

    Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for...

  6. Oxygen Detection via Nanoscale Optical Indicators

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Oxygen Detection via Nanoscale Optical Indicators Ruby N. Ghosh Dept. of Physics Michigan State University East Lansing, MI, USA weekschr@msu.edu Abstract--Oxygen plays a ubiquitous role in terrestrial developed an optical technique for monitoring oxygen in both gas and liquid phases utilizing nanoscale metal

  7. Quantum effects in nanoscale Josephson junction circuits

    E-Print Network [OSTI]

    Haviland, David

    Quantum effects in nanoscale Josephson junction circuits SILVIA CORLEVI Doctoral Thesis Stockholm Josephson junction arrays with SQUID geometry. TRITA FYS 2006:31 ISSN 0280-316X ISRN KTH/FYS/­06:31­SE ISBN study on single-charge effects in nanoscale Josephson junctions and Cooper pair transistors (CPTs

  8. DOI: 10.1002/adfm.200700139 StructurePropertyFunction Relationships in Nanoscale Oxide

    E-Print Network [OSTI]

    Nabben, Reinhard

    DOI: 10.1002/adfm.200700139 Structure­Property­Function Relationships in Nanoscale Oxide Sensors-emitting diodes, lasers, photovoltaic solar cells, UV-photodetectors, var- istors, and even heterogeneous for chemical sensing.[17] However, to date most of the attention in the field of metal-oxide sensors

  9. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31T23:59:59.000Z

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  10. Thermodynamics of Nanoscale Calcium and Strontium Titanate Perovskites

    E-Print Network [OSTI]

    Sahu, Sulata Kumari

    2013-01-01T23:59:59.000Z

    Energetics of Magnesium, Strontium, and Barium DopedNanoscale Calcium and Strontium Titanate Perovskites Sulata

  11. Quantification of Nanoscale Density Fluctuations in Biological Cells/Tissues: Inverse Participation Ratio (IPR) Analysis of

    E-Print Network [OSTI]

    Pradhan, Prabhakar

    Ratio (IPR) Analysis of Transmission Electron Microscopy Images and Implications for Early-Stage Cancer analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. First, the IPR analysis is validated in experiments with models of disordered systems fabricated

  12. NANOSCALE OPTICAL COMPUTING USING RESONANCE ENERGY

    E-Print Network [OSTI]

    Lebeck, Alvin R.

    OPTICAL COMPUTING USING RESONANCE ENERGY TRANSFER LOGIC A NEW NANOSCALE DEVICE BASED ON A SINGLE-MOLECULE OPTICAL PHENOMENON CALLED RESONANCE ENERGY TRANSFER. THIS DEVICE ENABLES A COMPLETE INTEGRATED TECHNOLOGY, PROVIDING A POTENTIAL PATH TO MOLECULAR-SCALE COMPUTING

  13. Sandia National Laboratories: Nanoscale Effects on Heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CoreShell Nanowires Nanoscale Effects on Heterojunction Electron Gases in GaNAlGaN CoreShell Nanowires Jeff Tsao participates in "Energy Efficiency and the Rebound Effect"...

  14. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    SciTech Connect (OSTI)

    Koc,H.; Wetzel, D.

    2008-01-01T23:59:59.000Z

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  15. Imaging Chemical Aggregation of Ni/NiO Particles from Reduced NiO-YSZ. |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type|Iltt:Imaging AntifungalEMSL

  16. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect (OSTI)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06T23:59:59.000Z

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  17. Annual Technical Report Nanoscale Science and Engineering Center (NSEC) for

    E-Print Network [OSTI]

    Shull, Kenneth R.

    ................................................................................................................................ 151 #12; 1 1. PROJECT SUMMARY The Nanoscale Science & Engineering CenAnnual Technical Report Nanoscale Science and Engineering Center (NSEC) for Integrated University of Illinois at UrbanaChampaign University of Chicago Museum of Science and Industry, Chicago

  18. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization Abstract theoretical model of polyamide membrane formation via interfacial polymerization. #12;

  19. Nanoscale Morphological and Chemical Changes of High Voltage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering Of Radiation Tolerant Silicon

  20. LAMELLAR MAGNETISM ASSOCIATED WITH NANOSCALE EXSOLUTION

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    LAMELLAR MAGNETISM ASSOCIATED WITH NANOSCALE EXSOLUTION IN THE ILMENITE-HEMATITE SOLID SOLUTION-hematite (FeTiO3-Fe2O3) solid solution is one of the most important magnetic phases in nature. Unusual magnetic, magnetic ordering, and exsolution. This presentation describes how this interaction leads to the phenomenon

  1. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect (OSTI)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07T23:59:59.000Z

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  2. Nanoscale Calorimetry of Isolated Polyethylene Single Crystals

    E-Print Network [OSTI]

    Allen, Leslie H.

    Nanoscale Calorimetry of Isolated Polyethylene Single Crystals A. T. KWAN, M. YU. EFREMOV, E. A-film differential scanning calorimetry to investigate the melt- ing of isolated polyethylene single crystals of lamellar single crystals of polyethylene (PE). We obtain thickness, diffraction, and calorimetry data

  3. Center for Nanoscale Materials Strategic Plan

    E-Print Network [OSTI]

    Kemner, Ken

    nanomaterials to yield desired, targeted functionalities is at the core of DOE's scientific mission to discover Nanotechnology Initiative and, as a DOE Nanoscale Science Research Center (NSRC), supports its scientific user transduction, while furthering the DOE missions of energy generation, storage and efficiency. Specifically, we

  4. Nanoscale Thermal Transport andMicrorefrigeratorsonaChip

    E-Print Network [OSTI]

    are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal; superlattices; thermal boundary resistance; thermionics; thermotunneling; thermoelectrics I. INTRODUCTIONINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

  5. Trapping atoms using nanoscale quantum vacuum forces

    E-Print Network [OSTI]

    D. E. Chang; K. Sinha; J. M. Taylor; H. J. Kimble

    2013-10-22T23:59:59.000Z

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here, we show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. The trapping scheme takes advantage of the attractive ground state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyze realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  6. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01T23:59:59.000Z

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  7. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect (OSTI)

    Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

    2014-03-15T23:59:59.000Z

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  8. Nanoscale contact engineering for Si/Silicide nanowire devices

    E-Print Network [OSTI]

    Lin, Yung-Chen

    2012-01-01T23:59:59.000Z

    applications of metal silicides …………………………………..……1-3 1.4.Professor Yu Huang, Chair Metal silicides have been used inSummary Nanoscale metal silicides have garnered significant

  9. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    E-Print Network [OSTI]

    He, Q.

    2011-01-01T23:59:59.000Z

    Controllable Spontaneous Magnetism in Nanoscale Mixed Phase2001). Chakhalian, J. et al. Magnetism at the interfacelocal nature of this magnetism. We find that the spontaneous

  10. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User...

  11. Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics

    E-Print Network [OSTI]

    Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

  12. Electric potential distribution in nanoscale electroosmosis: from molecules to continuum

    E-Print Network [OSTI]

    Wang, M.; Liu, J.; Chen, S.

    2007-01-01T23:59:59.000Z

    correlations in the electric double layer. 1. Counterionsand correlations in the electric double layer. 2 . SymmetricElectric potential distribution in nanoscale electroosmosis:

  13. Nanoscale Phase Transitions under Extreme Conditions within an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under extreme conditions. Citation: Zhang J, M Lang, RC Ewing, R Devanathan, WJ Weber, and M Toulemonde.2010."Nanoscale Phase Transitions under Extreme Conditions within an...

  14. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  15. Uncertainty Quantification for Nano-Scale Integrated Circuits...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty Quantification for Nano-Scale Integrated Circuits and MEMS Design Event Sponsor: Mathematics and Computing Science Seminar Start Date: Jan 20 2015 - 10:30am Building...

  16. Nanoscale Alloying, Phase-Segregation, and Core-Shell Evolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alloying, Phase-Segregation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect Nanoscale Alloying, Phase-Segregation, and Core-Shell...

  17. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22T23:59:59.000Z

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  18. Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys

    E-Print Network [OSTI]

    Lesuer, D. R.; Syn, C. K.; Sherby, O. D.

    2010-01-01T23:59:59.000Z

    x ULTRAFINE GRAINED MATERIALS Nano-scale strengthening fromSpringerlink.com Abstract Nano-scale strengthening has beenless than 20 h), develop nano-scale subgrains [15]. These

  19. Nano-scale magnetic film formation by decompression of supercritical CO?/ferric acetylacetonate solutions

    E-Print Network [OSTI]

    De Dea, Silvia

    2008-01-01T23:59:59.000Z

    GROWTH OF NANO-SCALE MAGNETIC FILMS USING CO 2 RESS EX-113 GROWTH OF NANO-SCALE MAGNETIC FILMS USING A SUPERCRIT-of EDX analysis on nano-scale ?lms. . . . . . . . . . . 109

  20. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    Stoehr and H.C. Siegmann, „Magnetism”, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

  1. Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

  2. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About |Imaging Imaging Print

  3. Nanoscale atomic waveguides with suspended carbon nanotubes

    E-Print Network [OSTI]

    V. Peano; M. Thorwart; A. Kasper; R. Egger

    2005-11-23T23:59:59.000Z

    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.

  4. Nanoscale Center Dedication | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR Green Gets FirstNafeesa Hunt Owens AboutNanoscale

  5. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30T23:59:59.000Z

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  6. www.rsc.org/nanoscale ISSN 2040-3364

    E-Print Network [OSTI]

    Lin, Zhiqun

    morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor organization and nanoscale morphology for high performance low bandgap polymer solar cells Volume 6 Number 8 21 performance low bandgap polymer solar cells Ming He,a Mengye Wang,ab Changjian Linb and Zhiqun Lin*a Rational

  7. Novel Nanoscale Materials Reduce Electricity Needed for Sludge

    E-Print Network [OSTI]

    This project researches the use of nanoscale materials (a broadly defined set of substances that haveNovel Nanoscale Materials Reduce Electricity Needed for Sludge Dewatering Industrial process, requiring up to 6000 kilowatt hours/year per million gallons per day. Project Description

  8. Postdoctoral Research Associate Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    properties and electrochemical reactivities for a broad range of energy materials, e.g., supercapacitor, Li

  9. Anasys licenses ORNL nanoscale mass spectrometry imaging technology |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| DepartmentInformation Systems

  10. Nanoscale Charge Transport in Excitonic Solar Cells

    SciTech Connect (OSTI)

    Venkat Bommisetty, South Dakota State University

    2011-06-23T23:59:59.000Z

    Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  11. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging Print

  12. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging

  13. Super-Resolution Fingerprinting Detects Chemical Reactions and Idiosyncrasies of Single DNA Pegboards

    E-Print Network [OSTI]

    Johnson-Buck, Alexander

    We employ the single-particle fluorescence nanoscopy technique points accumulation for imaging in nanoscale topography (PAINT) using site-specific DNA probes to acquire two-dimensional density maps of specific features ...

  14. Jaszczak et al. 1 MICRO-AND NANO-SCALE GRAPHITE CONES AND TUBES FROM HACKMAN

    E-Print Network [OSTI]

    Jaszczak, John A.

    of micro- and nano-scale RGS. The largest of the RGS are hollow scrolls, with the c-axis predominantly at the micro- and nano-scales. The nano-scale cones tend not to be hollow and may have a cone-helix structureJaszczak et al. 1 MICRO- AND NANO-SCALE GRAPHITE CONES AND TUBES FROM HACKMAN VALLEY, KOLA

  15. Nanoscale Growth Twins in Sputtered Copper Films

    E-Print Network [OSTI]

    Anderoglu, Osman

    2011-08-08T23:59:59.000Z

    .............................................................. 7 I.1.3. Chemical vapor deposition (CVD) .................................... 8 I.2. Fabrication of copper thin films .................................................... 12... to the exposure of the film growth surface to the solution, impurities may be introduced. I.1.3. Chemical vapor deposition (CVD) CVD is a chemical process used to produce high-purity, high-performance thin films and often used in the semiconductor industry...

  16. Carbon-bearing fluids at nanoscale interfaces

    SciTech Connect (OSTI)

    Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL

    2013-01-01T23:59:59.000Z

    The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.

  17. Control of friction at the nanoscale

    DOE Patents [OSTI]

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06T23:59:59.000Z

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  18. Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC FLOW along the wire. Together, these experiments illustrate the versatility of microfluidics MICROFLUIDIC FLOW CONTROL By Chad Ropp Dissertation submitted to the Faculty of the Graduate School

  19. Electronic structure and transport in molecular and nanoscale electronics

    E-Print Network [OSTI]

    Qian, Xiaofeng

    2008-01-01T23:59:59.000Z

    Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical ...

  20. Design and implementation of nanoscale fiber mechanical testing apparatus

    E-Print Network [OSTI]

    Brayanov, Jordan, 1981-

    2004-01-01T23:59:59.000Z

    The rapid growth in the synthetic manufacturing industry demands higher resolution mechanical testing devices, capable of working with nanoscale fibers. A new device has been developed to perform single-axis tensile tests ...

  1. Nanoscale structure and transport : from atoms to devices

    E-Print Network [OSTI]

    Evans, Matthew Hiram

    2005-01-01T23:59:59.000Z

    Nanoscale structures present both unique physics and unique theoretical challenges. Atomic-scale simulations can find novel nanostructures with desirable properties, but the search can be difficult if the wide range of ...

  2. Secretarial Policy Statement on Nanoscale Safety - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    56.1, Secretarial Policy Statement on Nanoscale Safety by Bill McArthur Functional areas: Nano Technology, Safety The safety of its employees, the public, and the environment is...

  3. Perspectives Nanotechnology and the public: Effectively communicating nanoscale science

    E-Print Network [OSTI]

    Crone, Wendy C.

    Perspectives Nanotechnology and the public: Effectively communicating nanoscale science August 2006 Key words: nanotechnology, communication, public knowledge, public understanding the public on concepts and applications associated with nanotechnology. The goal of our work

  4. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen...

  5. Thermophysical properties study of micro/nanoscale materials.

    E-Print Network [OSTI]

    Feng, Xuhui

    2012-01-01T23:59:59.000Z

    ??Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for… (more)

  6. Negative pressure characteristics of an evaporating meniscus at nanoscale

    E-Print Network [OSTI]

    Maroo, Shalabh C.

    2011-01-01T23:59:59.000Z

    This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two ...

  7. In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry

    SciTech Connect (OSTI)

    Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

    2011-10-31T23:59:59.000Z

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

  8. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21T23:59:59.000Z

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  9. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu [National Institute of Standards and Technology] National Institute of Standards and Technology; Crozier, Peter [Arizona State University] Arizona State University; Adams, James [Arizona State University] Arizona State University

    2013-09-19T23:59:59.000Z

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  10. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01T23:59:59.000Z

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  11. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12T23:59:59.000Z

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  12. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy.

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    ??The ability to make materials with nanoscale dimensions opens vast opportunities for creating custom materials with unique properties. The properties of materials on the nanoscale… (more)

  13. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15T23:59:59.000Z

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  14. Nano-scale positioning, control and motion planning in hard disk drives

    E-Print Network [OSTI]

    Boettcher, Uwe

    2011-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Nano-scale Positioning, Control andABSTRACT OF THE DISSERTATION Nano-scale Positioning, Controlmm) height (mm) mini micro nano pico femto Figure 2.8:

  15. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15T23:59:59.000Z

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  16. SURFACE ELASTICITY MODELS FOR STATIC AND DYNAMIC RESPONSE OF NANOSCALE BEAMS

    E-Print Network [OSTI]

    Phani, A. Srikantha

    SURFACE ELASTICITY MODELS FOR STATIC AND DYNAMIC RESPONSE OF NANOSCALE BEAMS by Chang Liu B) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) February 2010 © Chang Liu, 2010 #12;ii Abstract Nanoscale beam of nanoscale beams. The objective is to provide NEMS designers with an efficient set of tools that can predict

  17. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    SciTech Connect (OSTI)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-11-01T23:59:59.000Z

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: • Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. • The nanoscale distribution of CD20 on cancer cells was characterized. • The distribution of CD20 was non-uniform on the surface of cancer cells.

  18. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    SciTech Connect (OSTI)

    James V. Taranik

    2007-12-31T23:59:59.000Z

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth’s surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system’s data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this research determined that spectral resolution of 10um was adequate, but a signal to noise above 300:1 was desirable for hyperspectral sensors with this spectral resolution. Finally, we acquired a hyperspectral thermal dataset (SEBASS) at 3m spatial resolution over our study area in Beatty, Nevada that can be co-registered with the hyperspectral reflectance, LIDAR and digital Orthophoto data sets. This data set will enable us to quantify how measurements in the reflected infrared can be used to make inferences about the response of materials in the thermal infrared, the topic of our follow-on NA-22 investigation ending in 2008. These data provide the basis for our investigations proposed for the NA-22 2008 Broad Area Announcement. Beginning in June 2008, SpecTIR Corporation and Aerospace Corporation plan to fly the SpecTIR Dual and SEBASS in a stabilized mount in a twin Otter aircraft. This research provides the foundation for using reflected and emitted hyperspectral measurements together for mapping geologic and soil materials in arid to semi-arid regions.

  19. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL; Baggetto, Loic [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL

    2012-01-01T23:59:59.000Z

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  20. NANO-SCALE CALORIMETRY OF ISOLATED POLYETHYLENE SINGLE CRYSTALS

    E-Print Network [OSTI]

    Allen, Leslie H.

    #12;NANO-SCALE CALORIMETRY OF ISOLATED POLYETHYLENE SINGLE CRYSTALS BY ALEX TAN KWAN B.S., Stanford) device, the nanocalorimeter, it was possible to investigate the melting of isolated polyethylene (PE, a simple Ni-foil calorimeter, to measure the heat capacity of a thin polyethylene film to verify

  1. Bioremediation of Uranium Plumes with Nano-scale

    E-Print Network [OSTI]

    Fay, Noah

    (IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

  2. Benchmark density functional theory calculations for nanoscale conductance

    E-Print Network [OSTI]

    Thygesen, Kristian

    Benchmark density functional theory calculations for nanoscale conductance M. Strange,a I. S. The transmission functions are calculated using two different density functional theory methods, namely state density functional theory DFT . The resulting NEGF- DFT formalism provides a numerically efficient

  3. Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate

    E-Print Network [OSTI]

    Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate Geoffrey B. Saupe, Chad C. Waraksa. Revised Manuscript Received March 27, 2000 The exfoliation of acid-exchanged K4Nb6O17 with tetra formed early in the exfoliation process, which are found only as flat sheets. Tubules in colloidal

  4. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization Viatcheslav theoretical model of polyamide membrane formation via interfacial polymerization. 1. Introduction Polyamide of a microporous support (most often polysulfone) by means of interfacial polymerization (IP).3,4 The latter method

  5. Why Area Might Reduce Power in Nanoscale CMOS Paul Beckett

    E-Print Network [OSTI]

    Goldstein, Seth Copen

    Why Area Might Reduce Power in Nanoscale CMOS Paul Beckett School of Electrical and Computer Engineering RMIT University Melbourne, Australia 3000 Email: pbeckett@rmit.edu.au Seth Copen Goldstein School-- In this paper we explore the relationship between power and area. By exploiting parallelism (and thus using more

  6. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    SciTech Connect (OSTI)

    Patridge, Christopher J. [NRC/NRL Cooperative Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Love, Corey T., E-mail: corey.love@nrl.navy.mil [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Swider-Lyons, Karen E. [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Twigg, Mark E. [Electronics Science and Technology Division, Code 6812, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Ramaker, David E. [Chemistry Division, Code 6189, U.S. Naval Research laboratory, Washington, DC 20375 (United States)

    2013-07-15T23:59:59.000Z

    The local structure of nanoscale (?10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (??) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a ?? EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple scattering calculations are used to support ?? analysis.

  7. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24T23:59:59.000Z

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  8. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07T23:59:59.000Z

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  9. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09T23:59:59.000Z

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  10. Atomic-Level Study of Ion-Induced Nanoscale Disordered Domains...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The simulations suggest that it is possible to design and fabricate nanoscale optoelectronic devices based on SiC using ion-beam-induced order-disorder transformation....

  11. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

    2006-01-01T23:59:59.000Z

    of interpenetrating networks of conjugated polymer and TiO2Photodiodes from Interpenetrating Polymer Networks. Naturepolymer solar cells with nanoscale control of the interpenetrating network

  12. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  13. E-Print Network 3.0 - altered nanoscale topographies Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioelectric Scanning Probe Microscopies Summary: . Fumagalli, G. Gomila, et al. Nano Letters (2009) Topography Capacitance Dielectric constant 4. Nanoscale... to measure...

  14. Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410

    SciTech Connect (OSTI)

    Ding, S. Y.

    2013-06-01T23:59:59.000Z

    The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

  15. Fibre-scale Modeling of C/C Processing by Chemical Vapour Infiltration Using X-ray CMT Images and Random Walkers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the CVI engineer. Introduction Fibre-reinforced carbon-matrix (C/C) composites are dedicated to very high modification under chemical deposition is handled by a specific surface discretization technique and a pseudo

  16. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    E-Print Network [OSTI]

    Cai, Weiwei; Kaminski, Clemens F.

    2014-01-21T23:59:59.000Z

    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds...

  17. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect (OSTI)

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-06-09T23:59:59.000Z

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  18. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-Induced Nanoscale Wire Structure in Gallium

  19. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-Induced Nanoscale Wire Structure in

  20. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-Induced Nanoscale Wire Structure

  1. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-Induced Nanoscale Wire

  2. Measuring Diffusivity in Supercooled Liquid Nanoscale Films using Inert Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG4,Measurements of NO 2Permeation:

  3. Measuring Diffusivity in Supercooled Liquid Nanoscale Films using Inert Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG4,Measurements of NO

  4. Nanoscale Thin Film Electrolytes for Clean Energy Applications. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering Of Radiation Tolerant(SC) NanoscaleThin

  5. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces

    E-Print Network [OSTI]

    Nielsen, Steven O.

    A mean field approach for computing solid-liquid surface tension for nanoscale interfaces Chi are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension

  6. Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Tunable Nanoscale Plasmon Antenna for Localization and Enhancement of Optical Energy Douglas Howe used. The coupling of optical energy with the surface plasmons that occur on the surface of metals the optical energy that couples with surface plasmons that exist on nanoscale metal structures. Gold

  7. Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau-sud Campus Polytechnique RD 128 91127 Palaiseau cedex, France Heat transfer between two plates of polar far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling

  8. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  9. Local Heating in Nanoscale Conductors Yu-Chang Chen, Michael Zwolak, and Massimiliano Di Ventra*

    E-Print Network [OSTI]

    Zwolak, Michael

    Local Heating in Nanoscale Conductors Yu-Chang Chen, Michael Zwolak, and Massimiliano Di Ventra Received October 2, 2003 ABSTRACT We report first-principles calculations of local heating in nanoscale heat dissipation, the single molecule heats less than the gold point contact. We also find that

  10. Nanoscale patterning of graphene through femtosecond laser ablation R. Sahin, E. Simsek, and S. Akturk

    E-Print Network [OSTI]

    Simsek, Ergun

    Nanoscale patterning of graphene through femtosecond laser ablation R. Sahin, E. Simsek, and S.164.158.129 On: Mon, 10 Feb 2014 15:01:27 #12;Nanoscale patterning of graphene through femtosecond laser ablation 2014) We report on nanometer-scale patterning of single layer graphene on SiO2/Si substrate through

  11. Mid Infrared Focal Plane Arrays With Nanoscale Quantum Dots and Superlattices

    E-Print Network [OSTI]

    Krishna, Sanjay

    Mid Infrared Focal Plane Arrays With Nanoscale Quantum Dots and Superlattices S. Krishna Center- Molecular beam epitaxy, Nanoscale, Quantum Dots Superlattices, Antimonides, Mid-infrared photodetector. I. INTRODUCTION Presently, the state of the art photon detectors for the mid wave infrared (MWIR, 3-5 µm) and long

  12. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our needed for safe and high power Li-ion batteries. VC 2011 American Institute of Physics. [doi:10Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam

  13. The Kinetics of Analyte Capture on Nanoscale Sensors J. E. Solomon* and M. R. Pauly

    E-Print Network [OSTI]

    Paul, Mark

    The Kinetics of Analyte Capture on Nanoscale Sensors J. E. Solomon* and M. R. Pauly *Condensed analyte capture efficiency is a crucial measure of the ultimate sensitivity of such devices years, the potential use of nanoscale electromechanical systems has been considered for high

  14. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

    E-Print Network [OSTI]

    Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide Sasha of a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results at the nanoscale if graphite can be exfoliated into thin nanoplatelets, and even down to the single graphene sheet

  15. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    DOE Patents [OSTI]

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30T23:59:59.000Z

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  16. Nanoscale mapping of the W/Si(001) Schottky barrier

    SciTech Connect (OSTI)

    Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203 (United States)

    2014-07-14T23:59:59.000Z

    The W/Si(001) Schottky barrier was spatially mapped with nanoscale resolution using ballistic electron emission microscopy (BEEM) and ballistic hole emission microscopy (BHEM) using n-type and p-type silicon substrates. The formation of an interfacial tungsten silicide is observed utilizing transmission electron microscopy and Rutherford backscattering spectrometry. The BEEM and BHEM spectra are fit utilizing a linearization method based on the power law BEEM model using the Prietsch Ludeke fitting exponent. The aggregate of the Schottky barrier heights from n-type (0.71?eV) and p-type (0.47?eV) silicon agrees with the silicon band gap at 80?K. Spatially resolved maps of the Schottky barrier are generated from grids of 7225 spectra taken over a 1??m?×?1??m area and provide insight into its homogeneity. Histograms of the barrier heights have a Gaussian component consistent with an interface dipole model and show deviations that are localized in the spatial maps and are attributed to compositional fluctuations, nanoscale defects, and foreign materials.

  17. On Irregular Interconnect Fabrics for Self-Assembled Nanoscale Electronics

    E-Print Network [OSTI]

    Christof Teuscher

    2006-06-22T23:59:59.000Z

    Nanoscale electronics and novel fabrication technologies bear unique opportunities for self-assembling multi-billion component systems in a largely random manner, which would likely lower fabrication costs significantly compared to a definite ad hoc assembly. It has been shown that communication networks with the small-world property have major advantages in terms of transport characteristics and robustness over regularly connected systems. In this paper we pragmatically investigate the properties of an irregular, abstract, yet physically plausible small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch blocks, the number of virtual channels, the routing strategy, the distribution of long- and short-range connections, and measure the network's transport characteristics and robustness against failures. We further explore the ability and efficiency to solve two simple toy problems, the synchronization and the density classification task. The results confirm that (1) computation in irregular assemblies is a promising new computing paradigm for nanoscale electronics and (2) that small-world interconnect fabrics have major advantages over local CA-like topologies. Finally, the results will help to make important design decisions for building self-assembled electronics in a largely random manner.

  18. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains

    SciTech Connect (OSTI)

    Chatterjee, Sabornie [ORNL; Jones, Eric B [ORNL; Clingenpeel, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; McKenna, Amy [National High Magnetic Field Laboratory (Magnet Lab), Florida; Rios, Orlando [ORNL; McNutt, Nicholas W [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Johs, Alexander [ORNL

    2014-01-01T23:59:59.000Z

    Lignin is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fiber, monolithic structures or powders that could be used directly in the production of anodes for lithium-ion batteries. In this work, we report processing parameters relevant for the conversion of lignin precursors into electrochemically active carbon fibers, the impact of lignin precursor modification on melt processing and the microstructure of the final carbon material. The conversion process encompasses melt spinning of the lignin precursor, oxidative stabilization and a low temperature carbonization step in a nitrogen/hydrogen atmosphere. To assess electrochemical performance, we determined resistivities of individual carbon fiber samples and characterized the microstructure by scanning electron microscopy and neutron diffraction. The chemical modification and subsequent thermomechanical processing methods reported here are effective for conversion into carbon fibers while preserving the macromolecular backbone structure of lignin. Modification of softwood lignin produced functionalities and rheological properties that more closely resemble hardwood lignin thereby enabling the melt processing of softwood lignin in oxidative atmospheres (air). Structural characterization of the carbonized fibers reveals nanoscale graphitic domains that are linked to enhanced electrochemical performance.

  19. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect

    DOE Patents [OSTI]

    Su, Ming (Oviedo, FL); Thundat, Thomas G. (Knoxville, TN); Hedden, David (Lenoir City, TN)

    2010-02-23T23:59:59.000Z

    A method and apparatus for identifying a sample, involves illuminating the sample with light of varying wavelengths, transmitting an acoustic signal against the sample from one portion and receiving a resulting acoustic signal on another portion, detecting a change of phase in the acoustic signal corresponding to the light of varying wavelengths, and analyzing the change of phase in the acoustic signal for the varying wavelengths of illumination to identify the sample. The apparatus has a controlled source for illuminating the sample with light of varying wavelengths, a transmitter for transmitting an acoustic wave, a receiver for receiving the acoustic wave and converting the acoustic wave to an electronic signal, and an electronic circuit for detecting a change of phase in the acoustic wave corresponding to respective ones of the varying wavelengths and outputting the change of phase for the varying wavelengths to allow identification of the sample. The method and apparatus can be used to detect chemical composition or visual features. A transmission mode and a reflection mode of operation are disclosed. The method and apparatus can be applied at nanoscale to detect molecules in a biological sample.

  20. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1ofRadiative Heating in GlobalFor m ost

  1. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization

    SciTech Connect (OSTI)

    Heyderman, L.J.; Solak, H.H.; David, C.; Atkinson, D.; Cowburn, R.P.; Nolting, F. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Nanomagnetism Group, Department of Physics, University of Durham, Rochester Building, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2004-11-22T23:59:59.000Z

    X-ray interference lithography (XIL) was employed in combination with electrodeposition to fabricate arrays of nanoscale nickel dots which are uniform over 40 {mu}m and have periods down to 71 nm. Using extreme-ultraviolet light, XIL has the potential to produce magnetic dot arrays over large areas with periods well below 50 nm, and down to a theoretical limit of 6.5 nm for a 13 nm x-ray wavelength. In the nickel dot arrays, we observed the effect of interdot magnetic stray field interactions. Measuring the hysteresis loops using the magneto-optical Kerr effect, a double switching via the vortex state was observed in the nickel dots with diameters down to 44 nm and large dot separations. As the dot separations are reduced to below around 50 nm a single switching, occurring by collective rotation of the magnetic spins, is favored due to interdot magnetic stray field interactions. This results in magnetic flux closure through several dots which could be visualized with micromagnetic simulations. Further evidence of the stray field interactions was seen in photoemission electron microscopy images, where bands of contrast corresponding to chains of coupled dots were observed.

  2. Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS

    E-Print Network [OSTI]

    Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

    2013-04-04T23:59:59.000Z

    We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

  3. Electric-field-driven polymer entry into asymmetric nanoscale channels

    E-Print Network [OSTI]

    Narges Nikoofard; Hossein Fazli

    2012-02-25T23:59:59.000Z

    The electric-field-driven entry process of flexible charged polymers such as single stranded DNA (ssDNA) into asymmetric nanoscale channels such as alpha-hemolysin protein channel is studied theoretically and using molecular dynamics simulations. Dependence of the height of the free-energy barrier on the polymer length, the strength of the applied electric field and the channel entrance geometry is investigated. It is shown that the squeezing effect of the driving field on the polymer and the lateral confinement of the polymer before its entry to the channel crucially affect the barrier height and its dependence on the system parameters. The attempt frequency of the polymer for passing the channel is also discussed. Our theoretical and simulation results support each other and describe related data sets of polymer translocation experiments through the alpha-hemolysin protein channel reasonably well.

  4. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21T23:59:59.000Z

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  5. ADVANCED HEAT EXCHANGERS USING TUNABLE NANOSCALE-MOLECULAR ASSEMBLY

    SciTech Connect (OSTI)

    Kwang J. Kim; Thomas W. Bell; Srinivas Vemuri; Sailaja Govindaraju

    2004-01-01T23:59:59.000Z

    Steam condensation heat transfer on smooth horizontal tubes and enhanced tubes (TURBO-CDI and TURBO-CSL) along with nanoscale hydrophobic coated tubes was studied experimentally. Hydrophobic coatings have been created through self-assembled mono layers (SAMs) on copper alloy (99.9% Cu, 0.1% P) surfaces to enhance steam condensation through dropwise condensation. In general, a SAM system with a long-chain, hydrophobic group is nano-resistant, meaning that such a system forms a protective hydrophobic layer with negligible heat transfer resistance but a much stronger bond. When compared to complete filmwise condensation, the SAM coating on a plain tube increased the condensation heat transfer rate by a factor of 3 for copper alloy surfaces, under vacuum pressure (33.86 kPa) and by a factor of about 8 times when operated at atmospheric pressure (101 kPa). Lifetime of maintaining dropwise condensation is greatly dependent on the processing conditions.

  6. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect (OSTI)

    Sahin, R.; Akturk, S., E-mail: selcuk.akturk@itu.edu.tr [Department of Physics, Istanbul Technical University, Maslak 34469, Istanbul (Turkey); Simsek, E. [Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States)

    2014-02-03T23:59:59.000Z

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400?nm wide ablation channels could be achieved over 100??m length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  7. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03T23:59:59.000Z

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  8. Method and system for nanoscale plasma processing of objects

    DOE Patents [OSTI]

    Oehrlein, Gottlieb S. (Clarksville, MD); Hua, Xuefeng (Hyattsville, MD); Stolz, Christian (Baden-Wuerttemberg, DE)

    2008-12-30T23:59:59.000Z

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  9. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    SciTech Connect (OSTI)

    Katzenellenbogen, John, A.

    2007-04-19T23:59:59.000Z

    Summary of Progress The specific aims of this project can be summarized as follows: • Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor ? (PPAR?), a new nuclear hormone receptor target for tumor imaging and hormone therapy. • Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. • Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail below, we made excellent progress on all three of these aims; the highlights of our progress are the following: • we have prepared the first fluorine-18 labeled analogs of ligands for the PPAR? receptor and used these in tissue distribution studies in rats • we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems • we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats • we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity • we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core.

  10. Spiral precipitation patterns in confined chemical gardens

    E-Print Network [OSTI]

    Florence Haudin; Julyan H. E. Cartwright; Fabian Brau; A. De Wit

    2014-12-15T23:59:59.000Z

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nano-scale tubes, brinicles or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom and allows analysis of the patterns by tools classically used to analyze two-dimensional patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.

  11. Applications of a new theory extending continuum mechanics to the nanoscale

    E-Print Network [OSTI]

    Fu, Kaibin

    2005-11-01T23:59:59.000Z

    In this dissertation, we present the Slattery-Oh-Fu theory extending continuum mechanics to the nanoscale and its applications. We begin with an analysis of supercritical adsorption of argon, krypton, and methane on Graphon before we fully develop...

  12. Mechanics of Indentation into Micro- and Nanoscale Forests of Tubes, Rods, or Pillars

    E-Print Network [OSTI]

    Wang, Lifeng

    The force-depth behavior of indentation into fibrillar-structured surfaces such as those consisting of forests of micro- or nanoscale tubes or rods is a depth-dependent behavior governed by compression, bending, and buckling ...

  13. University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale Optofluidics for

    E-Print Network [OSTI]

    Lee, Herbie

    University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Nanoscale;University of California, Santa Cruz, Applied Optics Grouphttp://photon.soe.ucsc.edu Background Microfluidics Single molecule analysis Integrated optics Singleparticle Optofluidics Optofluidics: combination

  14. THERMAL HEAT TRANSPORT AT THE NANO-SCALE LEVEL AND ITS APPLICATION TO NANO-MACHINING.

    E-Print Network [OSTI]

    Wong, Basil T.

    2006-01-01T23:59:59.000Z

    ??Nano-manufacturing is receiving significant attention in industry due to the ever-growing interest in nanotechnology in research institutions. It is hypothesized that single-step or direct-write nano-scale… (more)

  15. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    E-Print Network [OSTI]

    Wang, Zhong L.

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

  16. Near-Bulk Conductivity of Gold Nanowires as Nanoscale Interconnects and the Role of Atomically

    E-Print Network [OSTI]

    Zubarev, Eugene

    Near-Bulk Conductivity of Gold Nanowires as Nanoscale Interconnects and the Role of Atomically, a significant portion of the chip is composed of interconnects. Besides, the engineering problems associated loss, signal degradation, interconnection delays, and other performance limitations related

  17. POLYMER PROGRAM SEMINAR "Single-chain Nanoparticles: Synthesis of Nano-scale

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Single-chain Nanoparticles: Synthesis of Nano-scale Architectures:00 AM, IMS Room 20 Recent efforts by our lab to fold single polymer chains into nano

  18. Toward Nanoscale Three-Dimensional Printing: Nanowalls Built of Electrospun Nanofibers

    E-Print Network [OSTI]

    Kim, Ho-Young

    . This novel 3D printing scheme can be applied to the development of various 3D nanoscale objects including manufacturing for several decades.1 So- called 3D printing is reaching a stage where the desired products can

  19. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography: Comparison Of Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy Thin Films...

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a long time, it was thought that their chemical complexity would preclude their use in device applications. All changed in 2004 with the discovery that the interface between...

  1. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect (OSTI)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24T23:59:59.000Z

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure of magnetite (Fe{sub 3}O{sub 4}) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe{sub 3}O{sub 4}) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging and result in low yields of nanomagnetite. Despite these limitations, magnetotactic bacteria have bee

  2. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    SciTech Connect (OSTI)

    SUGAMA,T.

    2003-06-26T23:59:59.000Z

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  3. Measuring oxygen reduction/evolution reactions on the nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Ciucci, Francesco [Harvard-Smithsonian Center for Astrophysics

    2011-01-01T23:59:59.000Z

    The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions (ORR/OER). Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nanometer resolution. In electrochemical strain microscopy (ESM), the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometer-scale volume of material, and bias-induced, picometer-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and Pt-functionalized yttria-stabilized zirconia (YSZ) surfaces is demonstrated. This approach allows directly visualization of ORR/OER activation process at the triple-phase boundary, and can be extended to broad spectrum of oxygen-conductive and electrocatalytic materials.

  4. Nanoscale order in ZnSe:(Mg, O)

    SciTech Connect (OSTI)

    Elyukhin, Vyacheslav A. [Department of Electrical Engineering, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politecnico Nacional 2508, 07360 México (Mexico)

    2014-02-21T23:59:59.000Z

    Self-assembling of 1O4Mg identical tetrahedral clusters resulting in the nanoscale order in ZnSe:(Mg, O) is presented. Co-doping transforms ZnSe into Mg{sub x}Zn{sub 1?x}O{sub y}Se{sub 1?y} alloy of MgO, MgSe, ZnO and ZnSe. The decrease of a sum of the enthalpies of the constituent compounds and diminution of the strain energy are the causes of this phenomenon. The self-assembling conditions are obtained from the free energy minimum when magnesium and oxygen are in the dilute and ultra dilute limits, correspondingly. The occurrence of 1O4Mg clusters and completion of self-assembling when all oxygen atoms are in clusters are results of the continuous phase transitions. The self-assembling occurrence temperature does not depend on the oxygen content and it is a function of magnesium concentration. Mg{sub x}Zn{sub 1?x}O{sub y}Se{sub 1?y} with all oxygen atoms in clusters can be obtained in temperature ranges from T = 206 °C (x = 0.001, y = 1×10{sup ?4}) to T = 456 °C (x = 0.01, y = 1×10{sup ?4}) and from T = 237 °C (x = 0.001, y = 1×10{sup ?6}) to T = 462 °C (x = 0.01, y = 1×10{sup ?6})

  5. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  6. Computational insights of water droplet transport on graphene sheet with chemical density

    SciTech Connect (OSTI)

    Zhang, Liuyang; Wang, Xianqiao, E-mail: xqwang@uga.edu [College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602 (United States)

    2014-05-21T23:59:59.000Z

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  7. NANOSCALE SCIENCE AND TECHNOLOGY FOR THE DEVELOPMENT OF ENVIRONMENTAL SENSORS

    SciTech Connect (OSTI)

    Ronald Andres, School of Chemical Engineering, Purdue University

    2007-01-03T23:59:59.000Z

    Under this funding, we proposed to: i) develop a ChemFET sensor platform, ii) develop a ChemDiode sensor platform, iii) synthesize receptor molecules suitable for chemical sensing, iv) study the electrostatic potential changes induced by receptor/target binding on surfaces and v) develop VLSI fabrication approaches for micron-scale chemical sensor devices. The accomplishments under these various thrusts are summarized in this section.

  8. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect (OSTI)

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

    2010-09-15T23:59:59.000Z

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

  9. Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    E-Print Network [OSTI]

    Dhar, Rudra Sankar

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the ...

  10. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemical

  11. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    SciTech Connect (OSTI)

    Epstein, Arthur J. [Professor

    2013-09-10T23:59:59.000Z

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  12. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  13. Chemical Evolution

    E-Print Network [OSTI]

    Francesca Matteucci

    2007-04-05T23:59:59.000Z

    In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

  14. SUPPORTING CHEMICALS

    E-Print Network [OSTI]

    See Section

    The High Production Volume (HPV) Challenge Program 1 was conceived as a voluntary initiative aimed at developing and making publicly available screening-level health and environmental effects information on chemicals manufactured in or imported into the United States in quantities greater than one million pounds per year. In the Challenge Program, producers and importers of HPV chemicals voluntarily sponsored chemicals; sponsorship entailed the identification and initial assessment of the adequacy of existing toxicity data/information, conducting new testing if adequate data did not exist, and making both new and existing data and information available to the public. Each complete data submission contains data on 18 internationally agreed to “SIDS” (Screening Information Data Set 1,2) endpoints that are screening-level indicators of potential hazards (toxicity) for humans or the environment. The Environmental Protection Agency’s Office of Pollution Prevention and Toxics (OPPT) is evaluating the data submitted in the HPV Challenge Program on approximately 1400 sponsored chemicals by developing hazard characterizations (HCs). These HCs consist of an evaluation of the quality and completeness of the data set provided in the Challenge Program submissions. They are not intended to be definitive statements regarding the possibility of unreasonable risk of

  15. Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems

    E-Print Network [OSTI]

    1 Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems Patrick James McCluskey, and Joost J. Vlassak Division of Engineering is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano

  16. Impact of Nano-scale Through-Silicon Vias on the Quality of Today and Future 3D IC Designs

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Impact of Nano-scale Through-Silicon Vias on the Quality of Today and Future 3D IC Designs Dae Hyun sub-micron dimensions in a few years. This downscaling of TSVs requires research on the impact of nano. In this paper, we investigate, for the first time, the impact of nano-scale TSVs on the area, wirelength, delay

  17. Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors

    E-Print Network [OSTI]

    D. J. Carrad; A. M. Burke; R. W. Lyttleton; H. J. Joyce; H. H. Tan; C. Jagadish; K. Storm; H. Linke; L. Samuelson; A. P. Micolich

    2014-04-08T23:59:59.000Z

    We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO$_{4}$ polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices.

  18. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide

    SciTech Connect (OSTI)

    Freeman, Eugene, E-mail: exf181@psu.edu; Shukla, Nikhil; Datta, Suman [Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Stone, Greg; Engel-Herbert, Roman; Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Paik, Hanjong [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)] [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Moyer, Jarrett A. [Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cai, Zhonghou; Wen, Haidan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States) [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-12-23T23:59:59.000Z

    The structural evolution of tensile strained vanadium dioxide thin films was examined across the electrically driven insulator-to-metal transition by nanoscale hard X-ray diffraction. A metallic filament with rutile (R) structure was found to be the dominant conduction pathway for an electrically driven transition, while the majority of the channel area remained in the monoclinic M1 phase. The filament dimensions were estimated using simultaneous electrical probing and nanoscale X-ray diffraction. Analysis revealed that the width of the conducting channel can be tuned externally using resistive loads in series, enabling the M1/R phase ratio in the phase coexistence regime to be tuned.

  19. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09T23:59:59.000Z

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  20. Micro- and nano-scale hollow TiO{sub 2} fibers by coaxial electrospinning: Preparation and gas sensing

    SciTech Connect (OSTI)

    Zhang Jin; Choi, Sun-Woo [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Kim, Sang Sub, E-mail: sangsub@inha.ac.kr [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2011-11-15T23:59:59.000Z

    We report the preparation of micro- and nano-scale hollow TiO{sub 2} fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO{sub 2} fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO{sub 2} fibers as a function of viscosity. The successful control over the diameter of hollow TiO{sub 2} fibers is expected to bring extensive applications. To test a potential use of hollow TiO{sub 2} fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature. - Graphical abstract: Microstructures of as-prepared and calcined hollow TiO{sub 2} fibers prepared by the electrospinning technique with a coaxial needle. Dynamic response at various CO concentrations for the sensor fabricated with the hollow TiO{sub 2} fibers. Highlights: > Hollow TiO{sub 2} fibers were synthesized using a coaxial electrospinning technique. > Their diameter can be controlled by changing the viscosity of electrospinning solutions. > Lower viscosities produce slim hollow nanofibers. > In contrast, fat hollow microfibers are obtained in the case of higher viscosities. > Successful control over the diameter of hollow TiO{sub 2} fibers will bring extensive applications.

  1. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    the ideal source for examining matter on fundamental length and time scales. The next evolution of FELs and the number of experiments that can simultaneously operate at the same time reducing the physical scale at higher energy, or can be used to reduce the physical scale of the FEL, by reduction of the electron

  2. Spatially resolved chemical imaging of individual atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode....

  3. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    knock-on radiation damage in materials such as graphene. As a result, very large electron doses can pioneered by Nion. Correction of electron-optical aberrations has resulted in electron beams. He has been developing electron-optical instruments since his post-doctorate: serial- detection EELS

  4. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    of carbon aerogels able to wick cryogenic hydrogen needed for laser fusion targets and development of super strong carbon aerogels able to with stand volume changes associated charge- discharge in super capacitors

  5. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    , the concept of a folding funnel with kinetic traps used to describe protein folding is also applicable

  6. Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

    E-Print Network [OSTI]

    Metlushko, Vitali

    Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor A. PACS: 74.25.Ha; 74.76.)w Keywords: Nanostructures; Anti-dots; Commensurability 1. Introduction atomic layers on periodical substrate [5], magnetic bubble arrays [6] and the magnetically induced Wigner

  7. Nanoscience This course explores the frontiers of science on the nanoscale. Many developing 21st

    E-Print Network [OSTI]

    Strathclyde, University of

    Nanoscience MSc/PgDip This course explores the frontiers of science on the nanoscale. Many and behaviours of systems in this submicrometrescale size domain. The multidisciplinary nature of nanoscience. The projects take place primarily in research labs associated with nanoscience located in the University

  8. Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate

    E-Print Network [OSTI]

    Byer, Robert L.

    Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

  9. Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1

    E-Print Network [OSTI]

    Kofinas, Peter

    Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1 , and Peter Kofinas2 1 Department to an all solid- state polymer battery. Such a battery would have greater safety, without potential, the search for an all solid-state battery has continued. Research on polymeric materials for batteries has

  10. Material Standards for EHS for Engineered Nanoscale Materials Material Standards for

    E-Print Network [OSTI]

    Magee, Joseph W.

    #12;#12;Material Standards for EHS for Engineered Nanoscale Materials Material Standards of Standards and Technology, Gaithersburg, MD Workshop Co-Chairs and Principle Report Editors Dianne L. Poster, John A. Small, Michael T. Postek National Institute of Standards and Technology Sponsored by U

  11. Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory

    E-Print Network [OSTI]

    Wu, Zhigang

    Charge separation in nanoscale photovoltaic materials: recent insights from first-scale photovoltaic materials; in particular recent theoretical/computational work based on first principles electron and hole in so-called excitonic photovoltaic cells. Emphasis is placed on theoretical results

  12. Nanoscale photon management in silicon solar cells Sangmoo Jeong, Shuang Wang, and Yi Cui

    E-Print Network [OSTI]

    Cui, Yi

    benefits. For power generation, low-cost fossil fuel has, however, been pre- ferred to renewable energy and wind, can be accessed easily in most of the world. In particular, the solar energy deliveredNanoscale photon management in silicon solar cells Sangmoo Jeong, Shuang Wang, and Yi Cui Citation

  13. Radiation fields for nanoscale systems Ming Liang Zhang* and D. A. Drabold**

    E-Print Network [OSTI]

    Drabold, David

    Radiation fields for nanoscale systems Ming Liang Zhang* and D. A. Drabold** Department of Physics-classical radiation theory, temporal coarse graining * Corresponding author: e-mail zhangm@ohio.edu, Phone: (01) 740 semi-classical radiation theory (SCRT) with these sources, the microscopic Maxwell equations can

  14. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  15. Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005

  16. Fluid structure and boundary slippage in nanoscale liquid films Nikolai V. Priezjev

    E-Print Network [OSTI]

    Priezjev, Nikolai V.

    Fluid structure and boundary slippage in nanoscale liquid films Nikolai V. Priezjev Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824 (Dated: August 19, 2011 in micro and nanofluidic systems and, in particular, in accurate prediction of fluid flows with slip

  17. Nanoscale Strainability of Graphene by Laser Shock-Induced Three-Dimensional Shaping

    E-Print Network [OSTI]

    Chen, Yong P.

    Nanoscale Strainability of Graphene by Laser Shock-Induced Three- Dimensional Shaping Ji Li,, Ting, West Lafayette, Indiana 47907, United States ABSTRACT: Graphene has many promising physical properties. It has been discovered that local strain in a graphene sheet can alter its conducting properties

  18. From self-assembly to engines: Simulating the nanoscale D. C. Rapaport, Bar-Ilan University

    E-Print Network [OSTI]

    Adler, Joan

    From self-assembly to engines: Simulating the nanoscale D. C. Rapaport, Bar-Ilan University Two self-assembly, namely, the formation of the exquisitely designed protein capsids of spherical viruses. New insights into the assembly mechanisms have emerged from simulations carried out using simplified

  19. Effects of nanoscale thickness and elastic nonlinearity on measured mechanical properties of polymeric films

    E-Print Network [OSTI]

    Van Vliet, Krystyn J.

    of polymeric films B. Oommen, K.J. Van Vliet Department of Materials Science and Engineering, Massachusetts the mechanical properties of nanoscale, compliant material volumes such as polymeric films and bio materials of semi-infinite thickness fails to accurately predict the nominal elastic modulus E for polymeric

  20. Nanoscale tunable reduction of graphene oxide for graphene electronics , D. Wang2*

    E-Print Network [OSTI]

    Nanoscale tunable reduction of graphene oxide for graphene electronics Z. Wei1* , D. Wang2* , S contributed equally to this work. paul.sheehan@nrl.navy.mil elisa.riedo@physics.gatech.edu Graphene is now in graphene oxide (GO) has risen for producing large-scale flexible conductors and for its potential to open

  1. ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale

    E-Print Network [OSTI]

    Hill, Wendell T.

    ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale Growing demands for energy, particularly renewable energy, require not only new sources but new methods of storage tests newly created nanostructures for their energy storage capacities. His work in micro

  2. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    E-Print Network [OSTI]

    Southern California, University of

    Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces

  3. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts

    E-Print Network [OSTI]

    King, William P.

    Nanoscale Joule heating, Peltier cooling and current crowding at graphene­metal contacts Kyle L are the Joule and Peltier effects. The Joule effect9 occurs as charge carriers dissipate energy within the lattice, and is pro- portional to resistance and the square of the current. The Peltier effect17

  4. Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    reforming catalysts for jet fuel", The Ohio Fuel Cell Symposium of the Ohio Fuel Cell Coalition, May 23Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

  5. Transport Simulation of a Nanoscale Silicon Rod Field-Effect C. Dwyer, R. Taylor, L. Vicci

    E-Print Network [OSTI]

    Dwyer, Chris

    ://ftp.cs.unc.edu/pub/packages/GRIP/publication_addenda /TSNSRFET. I. INTRODUCTION Recent advances in nanoscience enable new possibilities for nanoscale computer CMOS inverter in the shape of a 3D rod lattice. The junctions between rods are metallized DNA strands components of the fabrication technique starting with its transistors. The importance of low power digital

  6. Last Revised: 04/03/2014 UNDERGRADUATE MINOR IN "NANOSCALE SCIENCE AND ENGINEERING"

    E-Print Network [OSTI]

    Subramanian, Venkat

    . It is open to any UG student pursuing an Engineering or Arts & Sciences (Chemistry, Physics, BiologyLast Revised: 04/03/2014 UNDERGRADUATE MINOR IN "NANOSCALE SCIENCE AND ENGINEERING" SCHOOL OF ENGINEERING AND APPLIED SCIENCE Available to any UG pursuing an Arts and Science or Engineering degree I

  7. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale hydrogen embrittlement of ferritic steels has been a subject of significant research, one of the major challenges in tackling hydrogen embrittlement is that the mechanism of embrittlement is not fully resolved

  8. Nanoscale fabrication and modification of selected battery materials

    SciTech Connect (OSTI)

    Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim; McLarnon, Frank

    2001-06-22T23:59:59.000Z

    Carbon is an integral part of many battery electrodes. We explored the use of semiconductor-processing techniques that involve photolithography to pattern photoresists and subsequent pyrolysis to form carbon microstructures that function as microelectrodes. In this study, we describe the status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist. Electrochemical nanometer-scale patterning of the surface of a conducting lithium manganese oxide (LiMn{sub 2}O{sub 4}) by scanning probe microscopy (SPM) was studied. We show that a localized surface chemical change can be confined to a depth which depends on the oxide-tip voltage difference and ambient humidity The ability to produce nanometer-size patterns of chemically modified oxide or nanometer-sized alterations of the oxide morphology is demonstrated and discussed with reference to possible mechanisms.

  9. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

    2011-01-01T23:59:59.000Z

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  10. Chemical Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of1 DOEKinetics

  11. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    SciTech Connect (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  12. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  13. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

    1990-01-01T23:59:59.000Z

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  14. CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Provancher, William

    CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

  15. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, David N. (San Antonio, TX); Kiel, Johnathan L. (San Antonio, TX); Batishko, Charles R. (West Richland, WA); Stahl, Kurt A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  16. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14T23:59:59.000Z

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  17. A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface

    E-Print Network [OSTI]

    Gimzewski, James

    low-noise measurements in ambient, in situ, and electrochemical environments. II. DESIGNA flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface, specifically in electrolyte environments. Quantification of system noise limits

  18. Stick-Slip Control in Nanoscale Boundary Lubrication by Surface Wettability

    E-Print Network [OSTI]

    Wei Chen; Adam S. Foster; Mikko J. Alava; Lasse Laurson

    2015-02-13T23:59:59.000Z

    We study the effect of atomic scale surface-lubricant interactions on nanoscale boundary-lubricated friction, by considering two example surfaces - hydrophilic mica and hydrophobic graphene - confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic scale details affect the wettability of the confining surfaces, and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.

  19. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01T23:59:59.000Z

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  20. Nanoscale chemical and mechanical characterization of thin films: sum frequency generation (SFG) vibrational spectroscopy at buried interfaces

    E-Print Network [OSTI]

    Kweskin, S.J.

    2006-01-01T23:59:59.000Z

    gases, i.e. , CO (AirGas, CP grade), H 2 (Praxair, UHP,99.999%), He (Praxair, UHP, 99.999%), and 20%O 2 /He mixture (Praxair, UHP, 99.999%), all used in the as-

  1. Nanoscale chemical and mechanical characterization of thin films: sum frequency generation (SFG) vibrational spectroscopy at buried interfaces

    E-Print Network [OSTI]

    Kweskin, S.J.

    2006-01-01T23:59:59.000Z

    roughness of 5-10 nm (Red Optronics, Mountain View, CA) withroughness of 5-10 nm (Red Optronics, Mountain View, CA) androughness of 5-10 nm (Red Optronics, Mountain View, CA) with

  2. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    SciTech Connect (OSTI)

    Ruberu, Thanthrige P. [Ames Laboratory] [Ames Laboratory

    2013-05-15T23:59:59.000Z

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  3. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30T23:59:59.000Z

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  4. Microfluidic chemical reaction circuits

    SciTech Connect (OSTI)

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26T23:59:59.000Z

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  5. Chemical and Biomolecular Engineering

    E-Print Network [OSTI]

    Pennycook, Steve

    Chemical and Biomolecular Engineering Combining theory and neutron scattering to understand molecular diffusion in porous materials David Sholl School of Chemical & Biomolecular Engineering Georgia Institute of Technology #12;Chemical and Biomolecular Engineering Porous materials www

  6. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  7. chemical analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical analysis chemical analysis Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

  8. Magnetic resonance spectroscopic imaging using parallel transmission at 7T

    E-Print Network [OSTI]

    Gagoski, Borjan Aleksandar

    2011-01-01T23:59:59.000Z

    Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible ...

  9. Image Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognition Image Analysis and Recognition Snapshot1498121slicesqResedison Fibers permeating imaged material (Courtesy: Bale, Loring, Perciano and Ushizima) Imagery coming from...

  10. Conversion of Waste CO2 and Shale Gas to High-Value Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    acid using known technologies or combined with Schematic illustrating the NovomerPraxair semi-integrated process to produce high- value chemical intermediates. Graphic image...

  11. Probing Interactions at the Nanoscale: Sensing Protein Molecules

    SciTech Connect (OSTI)

    Sohn, Lydia; Weiss, Ron; Tavazoie, Saeed

    2003-09-15T23:59:59.000Z

    Introduction We have developed a high-frequency electronic biosensor of parallel-plate geometry that is embedded within a microfluidic device. This novel biosensor allows us to perform dielectric spectroscopy on a variety of biological samples—from cells to molecules—in solution. Because it is purely electronic, the sensor allows for rapid characterization with no sample preparation or chemical alteration. In addition, it is capable of probing length scales from millimeters to microns over a frequency range 50 MHz to 40 GHz, and sample volumes as small as picoliters [1,2]. Our high-frequency biosensor has evolved from previous device designs based on a coplanar waveguide (CPW) geometry [2]. For our current device, we employ microfluidic tectonics (µFT) [3] to embed two microstrip conductors within a microfluidic channel. The electronic coupling between the two conductors is greater than in our previous CPW design and more importantly, leads to an enhanced sensitivity. Our utilization of µFT allows us to incorporate easily this high-frequency electronic biosensor with a variety of lab-on-a-chip architectures. Device Description Figure 1 is a schematic of our high-frequency electronic biosensor. We fabricate this sensor by first depositing a 500 Ĺ seed layer of gold onto two glass microscope slides. We then use photolithography to pattern the gold that is subsequently electroplated to a thickness of 4-6 µm. After reactive-ion etching the photoresist and removing the unplated gold with a standard iodine-based gold etchant, we align the two slides under a microscope such that the microstrip conductors overlap one another in a parallel-plate geometry (80 µm x 500 µm). We control the separation between the microstrip conductors using gold foil spacers 3–25 µm thick. The foil additionally ensures coupling between the grounds on each slide. Following alignment, we employ µFT to bond the two glass slides together and to create a microfluidic channel running perpendicular to the microstrip conductors (see Figure 1). We complete the device by inserting 0.02” ID vinyl tubing through predrilled input and output holes of the device [3]. All of our devices are designed to have a 50 ? matched impedance and minimal insertion loss for 0.05 – 40 GHz. With these characteristics, we expect a sensitivity of 0.05 dB. Results By accessing frequencies > 20 GHz with our device, we can probe unique low-frequency vibrational or rotational modes of bio-macromolecules, since at these frequencies the counterions have fully relaxed, the dipole moment of water is rapidly decreasing, and the macroscopic distortions of macromolecules become important and are reflected in the obtained spectra. As a first demonstration, we have measured PCR products. We are able to distinguish between non-reacted primers for PCR amplification and reacted PCR products (24 amplification cycles). Figure 2 shows representative spectra of the two different DNA solutions obtained from a single device and scaled to DI water. We have obtained similar spectral features from additional devices and are currently developing a quantitative model to explain our results. This initial demonstration of molecular differentiation using a high-frequency electronic biosensor shows the great promise of electronic biosensing.

  12. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    SciTech Connect (OSTI)

    Buratto, Steven K. [UC Santa Barbara

    2013-09-03T23:59:59.000Z

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  13. Guidance Document Reactive Chemicals

    E-Print Network [OSTI]

    showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

  14. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  15. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  16. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10T23:59:59.000Z

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  17. Free Energy Barrier for Electric Field Driven Polymer Entry into Nanoscale Channels

    E-Print Network [OSTI]

    Narges Nikoofard; Hossein Fazli

    2011-04-27T23:59:59.000Z

    Free energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.

  18. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer

    E-Print Network [OSTI]

    Makoto Naruse; Song-Ju Kim; Masashi Aono; Hirokazu Hori; Motoichi Ohtsu

    2014-12-19T23:59:59.000Z

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  19. Systematic Investigation of Nanoscale Adsorbate Effects at Organic Light-Emitting diode Interfaces. Interfacial Structure-Charge Injection-Luminance Relationships

    SciTech Connect (OSTI)

    Huang,Q.; Li, J.; Evmenenko, G.; Dutta, P.; Marks, T.

    2006-01-01T23:59:59.000Z

    Molecule-scale structure effects at indium tin oxide (ITO) anode-hole transport layer (HTL) interfaces in organic light-emitting diode (OLED) heterostructures are systematically probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine precursors differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure and charge-injection/electroluminescence properties. These precursors form conformal and largely pinhole-free self-assembled monolayers (SAMs) on the ITO anode surface with angstrom-level thickness control. Deposition of a HTL on top of the SAMs places the probe molecules precisely at the anode-HTL interface. OLEDs containing ITO/SAM/HTL configurations have dramatically varied hole-injection magnitudes and OLED responses. These can be correlated with the probe molecular structures and electrochemically derived heterogeneous electron-transfer rates for such triarylamine fragments. The large observed interfacial molecular structure effects offer an approach to tuning OLED hole-injection flux over 1-2 orders of magnitude, resulting in up to 3-fold variations in OLED brightness at identical bias and up to a 2 V driving voltage reduction at identical brightness. Very bright and efficient ({approx}70 000 cd/m{sup 2}, {approx}2.5% forward external quantum efficiency, {approx}11 lm/W power efficiency) Alq (tris(8-hydroxyquinolinato)aluminum(III))-based OLEDs can thereby be fabricated.

  20. Chemistry 455 Chemical Nanotechnology

    E-Print Network [OSTI]

    Rohs, Remo

    Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

  1. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27T23:59:59.000Z

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  2. People Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

  3. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

  4. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22T23:59:59.000Z

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  5. HARVARD UNIVERSITY CHEMICAL BIOLOGY

    E-Print Network [OSTI]

    Church, George M.

    HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

  6. CHEMICAL SAFETY Emergency Numbers

    E-Print Network [OSTI]

    Bolch, Tobias

    - 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

  7. Department of Chemical Engineering

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

  8. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    : Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

  9. REPORT ON 6TH U.S.-JAPAN JOINT SEMINAR ON NANOSCALE TRANSPORT PHENOMENA.SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Maruyama, Shigeo

    and heat transfer community and the importance of nanoscale transport phenomena for nanostructured sessions, as well as a dedicated poster session of selected presentations from an open call for papers. All for each session were summarized by session chairs. Following is a brief summary of the sessions. OPENING

  10. Direct Observation of Nanoscale Peltier and Joule Effects at Metal-Insulator Domain Walls in Vanadium Dioxide Nanobeams

    E-Print Network [OSTI]

    Wu, Junqiao

    Direct Observation of Nanoscale Peltier and Joule Effects at Metal- Insulator Domain Walls localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain the monoclinic phase identification. KEYWORDS: Vanadium dioxide, thermoreflectance microscopy, Peltier effect

  11. Intrinsic vacancy induced nanoscale wire structure in heteroepitaxial Ga2Se3/Si(001) Taisuke Ohta,1,

    E-Print Network [OSTI]

    Olmstead, Marjorie

    Intrinsic vacancy induced nanoscale wire structure in heteroepitaxial Ga2Se3/Si(001) Taisuke Ohta,1-blende structure of -Ga2Se3, which contains ordered 110 arrays of Ga vacancies. These ordered vacancy lines structural vacancies of semiconducting chalcogenides lead to numerous interesting structural, electronic

  12. PHYSICAL REVIEW E 85, 031117 (2012) Stochastically driven single-level quantum dot: A nanoscale finite-time thermodynamic

    E-Print Network [OSTI]

    Lindenberg, Katja

    2012-01-01T23:59:59.000Z

    as a nanoscale finite-time thermodynamic machine. The dot is driven by an external stochastic force that switches that extracts heat from the cold reservoir via the work input of the stochastic driving. The efficiency coupling conditions, familiar features are recovered in appropriate limits: Carnot efficiency

  13. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates

    E-Print Network [OSTI]

    Ferguson, Andrew

    A computational investigation of the phase behavior and capillary sublimation of water confined behavior and capillary sublimation of water confined between nanoscale hydrophobic plates Andrew L 11210, USA 3 Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA 4

  14. Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan (CHP) (Appendix C in Lab Safety Manual........................................................................................................................1-1 Chapter 2: Chemical Hazard Communication....................................................................................2-1 Chapter 3: Classes of Hazardous Chemicals

  15. Chemical exchange program analysis.

    SciTech Connect (OSTI)

    Waffelaert, Pascale

    2007-09-01T23:59:59.000Z

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

  16. Controlling light at the nanoscale: imaging and spectroscopy with ultrahigh spatial and temporal resolution using specialized o

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops01Controlling Graphene'sBottom-Up. |

  17. Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory

    SciTech Connect (OSTI)

    Lee, Bong-Sub, E-mail: bongsub@gmail.com; Darmawikarta, Kristof; Abelson, John R. [Department of Materials Science and Engineering and the Coordinated Sciences Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Raoux, Simone; Shih, Yen-Hao; Zhu, Yu [IBM/Macronix PCRAM Joint Project, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Bishop, Stephen G. [Department of Materials Science and Engineering and the Coordinated Sciences Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Coordinated Sciences Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-17T23:59:59.000Z

    The nanoscale crystal nuclei in an amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} bit in a phase change memory device were evaluated by fluctuation transmission electron microscopy. The quench time in the device (?10 ns) afforded more and larger nuclei in the melt-quenched state than in the as-deposited state. However, nuclei were even more numerous and larger in a test structure with a longer quench time (?100 ns), verifying the prediction of nucleation theory that slower cooling produces more nuclei. It also demonstrates that the thermal design of devices will strongly influence the population of nuclei, and thus the speed and data retention characteristics.

  18. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

    SciTech Connect (OSTI)

    Morris, James R [ORNL] [ORNL; Averill, Frank [ORNL] [ORNL; Cooper, Valentino R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

  19. Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO{sub 2}

    SciTech Connect (OSTI)

    Kluth, P.; Giulian, R.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Pakarinen, O. H.; Djurabekova, F.; Nordlund, K. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki (Finland); Byrne, A. P. [Department of Nuclear Physics, Australian National University, Canberra ACT 0200 (Australia)

    2011-12-15T23:59:59.000Z

    We report on the observation of nanoscale density fluctuations in 2 {mu}m thick amorphous SiO{sub 2} layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 x 10{sup 12} ions/cm{sup 2}, where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track ''annihilation'' process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.

  20. Nanoscale compositional banding in binary thin films produced by ion-assisted deposition

    SciTech Connect (OSTI)

    Mark Bradley, R. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)] [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2013-12-14T23:59:59.000Z

    During the ion-assisted deposition of a binary material, the ion beam can induce the formation of nanoscale ripples on the surface of the growing thin film and compositional banding within its bulk. We demonstrate that this remains true even if the curvature dependence of the sputter yields and ballistic mass redistribution are negligible, and the two atomic species are completely miscible. The concentration of the species with the lower of the two sputter yields is higher at the crests of the ripples than at their troughs. Depending on the angles of incidence of the two atomic species, the incident flux of atoms with the higher sputter yield can either stabilize or destabilize the initially flat surface of the thin film.

  1. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

  2. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    · ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  3. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

  4. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G. Chemicals #12;#12;Appendix G. Chemicals G-3 Appendix G. Chemicals This appendix

  5. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G: Chemicals #12;#12;Appendix G: Chemicals G-3 Appendix G: Chemicals This appendix

  6. Appendix H: Chemicals Appendix H: Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix H: Chemicals #12;#12;Appendix H: Chemicals H-3 Appendix H: Chemicals This appendix

  7. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect (OSTI)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China) [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China)] [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China)] [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China)] [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)] [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)] [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-09-06T23:59:59.000Z

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of Fc?Rs were measured directly on macrophages. •The nanoscale distributions of Fc?Rs were mapped on macrophages. -- Abstract: Fc gamma receptors (Fc?R), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of Fc?Rs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of Fc?Rs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of Fc?Rs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the Fc?Rs, revealing the nanoscale distribution of Fc?Rs on local areas of macrophages. The experimental results can improve our understanding of Fc?Rs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  8. Chemical evolution STRUCTURE OF GALAXIES

    E-Print Network [OSTI]

    Kruit, Piet van der

    Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

  9. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect (OSTI)

    Zhang, Zhen; Lee, James D., E-mail: jdlee@gwu.edu [Department of Mechanical and Aerospace Engineering, the George Washington University, Washington, DC 20052 (United States); Wang, Xianqiao [College of Engineering, University of Georgia, Athens, Georgia 30602 (United States)

    2014-03-21T23:59:59.000Z

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  10. Computing Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Images The interior of an automated tape library in Brookhaven's RHIC and ATLAS Computing Facility. Brookhaven engineers in the RHIC and ATLAS Computing Facility....

  11. Biomass pyrolysis for chemicals.

    E-Print Network [OSTI]

    Wild, Paul de

    2011-01-01T23:59:59.000Z

    ??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

  12. Chemically Reactive Working Fluids

    Broader source: Energy.gov (indexed) [DOE]

    commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

  13. EMSL - chemical analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical-analysis en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-...

  14. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2011-05-10T23:59:59.000Z

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  15. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01T23:59:59.000Z

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  16. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Zare, Richard N.

    bonds, 2 to 10 ev). The methods that have revealed this richness and order of medium- and high-energy, mass spectrometry. While hot-atom studies overcome the energy limitations of thermochemical methods energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical

  17. CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM FeCl3 Iron(III) chloride Corrosive - acid FeSO4 Iron(II) sulfate Toxic H2O Water HCl Hydrochloric

  18. Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang, L. Q. Chen, and C. W. Nan

    E-Print Network [OSTI]

    Chen, Long-Qing

    Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang://scitation.aip.org/termsconditions. Downloaded to ] IP: 146.186.211.66 On: Thu, 09 Jan 2014 19:48:21 #12;Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu,1,a) T. N. Yang,2 L. Q. Chen,1,2 and C. W. Nan1,a) 1

  19. Chemical Engineering Andrew Zydney

    E-Print Network [OSTI]

    Maranas, Costas

    ;ChE Employment (2003 at PSU) Merck Dow ExxonMob Air Products Amgen PPG Sunoco Kraft Foods NRC Procter, microelectronics, consumer products, biotechnology, fuels / energy, environmental engineering, etc. ·Chemical Engineers focus on the processes involved in making new products, including chemical reactions

  20. Chemical and Biochemical

    E-Print Network [OSTI]

    Neimark, Alexander V.

    carrying out two experi- ments each semester. Graduates find careers at hospitals, nuclear plants, research how plastics, petrochemicals, or certain foods are made? Chemical engineers develop ways of converting to a variety of industries including the chemical and petrochemical fields and the pharmaceutical and biotech

  1. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21T23:59:59.000Z

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  2. PhD Chemical Engineering MS Chemical Engineering

    E-Print Network [OSTI]

    Collins, Gary S.

    1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School facultyD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description

  3. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animalsAppendix B: Chemicals #12;Appendix B: Chemicals B-3 Appendix B: Chemicals This appendix presents

  4. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  5. or ChemiCal engineering?

    E-Print Network [OSTI]

    Wagner, Stephan

    Chemistry or ChemiCal engineering? Do both at Wits! www.wits.ac.za #12;Chemistry or ChemiCal by a BScEng (Chem Eng)! Which should I choose: Chemistry or Chemical Engineering? Because the chemist and the chemical engineer work so closely in industry, there is little doubt that the chemical engineer who has

  6. Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering

    E-Print Network [OSTI]

    Bordenstein, Seth

    Chemistry Chem 220B 3 hours Physical Chemistry Chem 230 3 hours Chemical Reactor Engineering ChBE 225 3Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering Semester hours SOPHOMORE YEAR FALL SPRING Chem 219A

  7. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemicalChemicalModeling

  8. Dynamic imaging with electron microscopy

    SciTech Connect (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  9. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  10. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  11. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS

    SciTech Connect (OSTI)

    Feygenson, Mikhail [ORNL; Carruth, John William [ORNL; Hoffmann, Ron [ORNL; Chipley, Kenneth King [ORNL; Neuefeind, Joerg C [ORNL

    2012-01-01T23:59:59.000Z

    The Nanoscale Ordered Materials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair dist ribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a $\\delta Q/Q \\sim 0.8\\%$ FWHM (typical), and an achievable $\\delta Q/Q$ of 0.24\\% FWHM (best). The real space resolution is related to the maximum momentum transfer; A maximum momentum transfer of 50\\AA$^{-1}$ can be achieved routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 \\AA$^{-1}$. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

  12. Foundations for in vivo nano-scale measurement of memory processes.

    SciTech Connect (OSTI)

    Forsythe, James Chris

    2006-09-01T23:59:59.000Z

    An ongoing program of research and development is utilizing nanomaterials as a basis for observing and measuring neurophysiological processes. Work commencing in fiscal year 2007 will focus on expanding current capabilities to create nanoelectrode arrays that will allow nanoscale measurement of the activity of 10's to 100's of neurons. This development is a vital step in gaining scientific insights concerning network properties associated with neural representations and processes. Specifically, attention will be focused the representation of memory in the hippocampus, for which extensive research has been conducted using laboratory rats. This report summarizes background research providing a foundation for work planned for fiscal year 2007 and beyond. In particular, the neuroanatomy and neurophysiology of the hippocampus is described. Additionally, several programs of research are described that have addressed the relationship between neurophysiological processes and behavioral measures of memory performance. These studies provide insight into methodological and analytic approaches for studying the representation of memory processes in the hippocampus. The objective of this report is to document relevant literature in a reference document that will support future research in this area.

  13. Ab-initio friction forces on the nanoscale: A DFT study of fcc Cu(111)

    E-Print Network [OSTI]

    Michael Wolloch; Gregor Feldbauer; Peter Mohn; Josef Redinger; András Vernes

    2014-08-26T23:59:59.000Z

    While there are a number of models that tackle the problem of calculating friction forces on the atomic level, providing a completely parameter-free approach remains a challenge. Here we present a quasi-static model to obtain an approximation to the nanofrictional response of dry, wearless systems based on quantum mechanical all-electron calculations. We propose a mechanism to allow dissipative sliding, which relies on atomic relaxations. We define two different ways of calculating the mean nanofriction force, both leading to an exponential friction-versus-load behavior for all sliding directions. Since our approach does not impose any limits on lengths and directions of the sliding paths, we investigate arbitrary sliding directions for an fcc Cu(111) interface and detect two periodic paths which form the upper and lower bound of nanofriction. For long aperiodic paths the friction force convergences to a value in between these limits. For low loads we retrieve the Derjaguin generalization of Amontons-Coulomb kinetic friction law which appears to be valid all the way down to the nanoscale. We observe a non-vanishing Derjaguin-offset even for atomically flat surfaces in dry contact.

  14. Nanoscale transport of phonons: Dimensionality, subdiffusion, molecular damping, and interference effects

    SciTech Connect (OSTI)

    Walczak, Kamil; Yerkes, Kirk L. [Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-05-07T23:59:59.000Z

    We examine heat transport carried by acoustic phonons in the systems composed of nanoscale chains of masses coupled to two thermal baths of different temperatures. Thermal conductance is obtained by using linearized Landauer-type formula for heat flux with phonon transmission probability calculated within atomistic Green's functions (AGF) method. AGF formalism is extended onto dissipative chains of masses with harmonic coupling beyond nearest-neighbor approximation, while atomistic description of heat reservoirs is also included into computational scheme. In particular, the phonon lifetimes and the phonon frequency shifts are discussed for harmonic lattices of different dimensions. Further, resonant structure of phonon transmission spectrum is analyzed with respect to reservoir-induced effects, molecular damping, and mass-to-mass harmonic coupling. Analysis of transmission zeros (antiresonances) and their accompanied Fano-shape resonances are discussed as a result of interference effects between different vibrational modes. Finally, we also predict subdiffusive transport regime for low-frequency ballistic phonons propagated along a linear chain of harmonically coupled masses.

  15. CHEMICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    CHEMICAL ENGINEERING Program of Study Research Facilities Financial Aid Applying Correspondence The Department of Chemical Engineering and Biological Engineering has well-established programs at both area of chemical engineering and include both fundamental and applied topics. The Department has

  16. Chemical Engineering Is Chemical Engineering right for me?

    E-Print Network [OSTI]

    Harman, Neal.A.

    Chemical Engineering Is Chemical Engineering right for me? If you are interested in the uses and processes surrounding the engineering of new and raw materials, a degree in Chemical Engineering may be well suited to you. The Chemical Engineering degree programme will focus on the development of products

  17. Chemical Organization Theory as a Theoretical Base for Chemical Computing

    E-Print Network [OSTI]

    Dittrich, Peter

    Chemical Organization Theory as a Theoretical Base for Chemical Computing NAOKI MATSUMARU, FLORIAN-07743 Jena, Germany http://www.minet.uni-jena.de/csb/ Submitted 14 November 2005 In chemical computing- gramming chemical systems a theoretical method to cope with that emergent behavior is desired

  18. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    . Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses or way in which a person can come in contact with a chemical substance. Chemicals released to the air may are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animals

  19. Appendix H. Chemicals Appendix H. Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    . Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses or way in which a person can come in contact with a chemical substance. Chemicals released to the air may are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animals

  20. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods, or they may effluents, which can enter streams and rivers. People are exposed to chemicals by inhalation (breathing air

  1. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02T23:59:59.000Z

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  2. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA)

    1999-03-02T23:59:59.000Z

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  3. November 2006 CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Bordenstein, Seth

    .0 DEPARTMENTAL SAFETY MANAGEMENT 4.1 CHEMISTRY SAFETY COMMITTEE 4.2 TRAINING 4.3 CHEMICAL SAFETY PROTOCOLS 4.2 CHEMICAL HAZARD INFORMATION 6.3 CHEMICAL STORAGE IN LABORATORIES 6.4 WORKING WITH PARTICULARLY HAZARDOUS PROCEDURES 6.8 CHEMICAL WASTE DISPOSAL 6.9 COMPRESSED GASES 6.10 CRYOGENIC LIQUIDS #12;November 2006 3 6

  4. New Science for Chemicals Policy

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Disease Control and Prevention, Third National Report on Human Exposure to Environmental Chemicals (

  5. Process Intensification - Chemical Sector Focus

    Office of Environmental Management (EM)

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

  6. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01T23:59:59.000Z

    G-31 Fluorocarbonhydrocarbons, and (3) fluorocarbon solvents. However, aHigh Hazard Chemicals Fluorocarbon Solvents Fluorocarbon

  7. Chemical Label Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical Label Information Chemical

  8. Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes.

    SciTech Connect (OSTI)

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Kwok, W. K.; Peeters, F. M. (Materials Science Division); (Northern Illinois Univ.); (Universiteit Antwerpen)

    2012-01-01T23:59:59.000Z

    The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.

  9. Chemical Imaging DOI: 10.1002/anie.201000900

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    fuels and the unstable and uncertain sources of oil and natural gas.[1] Under ideal conditions be produced domestically and can make use of waste products from agricultural activity already taking place.[2 in current biomass conversion technol- ogy. This process uses oxidizing, acidic, or basic conditions along

  10. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20T23:59:59.000Z

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  11. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SR-FTIR spectromicroscopy measurements. Future applications of the SR-FTIR-based microfluidics approach may help explain why some bacteria maintain biofilms in given...

  12. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare | NationalReal-Time

  13. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare | NationalReal-TimeReal-Time

  14. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare |

  15. Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A: HandlingJefferson

  16. Spatially resolved chemical imaging of individual atmospheric particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering Facilities »Southern Great

  17. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  18. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  19. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  20. Digital Compressive Quantitation and Hyperspectral Imaging

    E-Print Network [OSTI]

    2013-07-25T23:59:59.000Z

    Jun 20, 2013 ... produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component .... simulated annealing to ?nd the rotation matrix elements that ... the image registration was also performed in Matlab R2012a.

  1. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    SciTech Connect (OSTI)

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26T23:59:59.000Z

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in the public domain. However, for those findings and knowledge that have not been published yet, more detailed information will be provided. The report will be divided into 4 major sections based on the material systems investigated.

  2. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13T23:59:59.000Z

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  3. COOEE bitumen: chemical aging

    E-Print Network [OSTI]

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01T23:59:59.000Z

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  4. Methods for spectral image analysis by exploiting spatial simplicity

    DOE Patents [OSTI]

    Keenan, Michael R. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  5. ISSN 1359-7345 Chemical Communications

    E-Print Network [OSTI]

    Cao, Guozhong

    semiconductor gas sensors were greatly enhanced by utilizing hollow nano- structures.4b,d However, even;Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated prepared using nanoscale SnO2 hollow spheres with NiO- functionalized inner walls. The exceptional ultra

  6. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  7. Cotton Harvest-Aid Chemicals.

    E-Print Network [OSTI]

    Metzer, Robert B.; Supak, James

    1987-01-01T23:59:59.000Z

    of Application Managing Harvest-Aid Program Secondary Growth Insect Control Care of Equipment Safety with Chemicals Guide for Using Cotton Harvest Aids Defoliants Desiccants Mixtures Plant Regulators-Conditioners 3 3 4 4 4 4 5 5 6 7 7 COTTON... HARVEST-AID CHEMICALS Robert B. Metzer and James Supak* As the name implies, harvest-aid chemicals pre pare the cotton crop for harvest by reducing foliage and plant moisture that interfere with harvesting operations. Harvest-aid chemicals...

  8. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24T23:59:59.000Z

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  9. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  10. ANALYTICAL METHODS in CHEMICAL ECOLOGY

    E-Print Network [OSTI]

    ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

  11. Proton-Conducting Films of Nanoscale Ribbons Formed by Exfoliation of the Layer Perovskite H2SrTa2O7

    E-Print Network [OSTI]

    Proton-Conducting Films of Nanoscale Ribbons Formed by Exfoliation of the Layer Perovskite H2SrTa2OTa2O7 were grown and characterized as solid-state proton conductors. The ribbons, made by exfoliation membranes made from layered materials such as exfoliated zirconium phosphate.12 Unfortunately, the proton

  12. Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging F Jamme1, 2 coupled to an infrared microscope allows imaging at the so-called diffraction limit. Thus, numerous infrared beamlines around the world have been developed for infrared chemical imaging. Infrared microscopes

  13. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  14. Chemical sensing flow probe

    SciTech Connect (OSTI)

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16T23:59:59.000Z

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  15. Chemical Sciences Division - CSD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser ChemicalCSD

  16. Chemical Processing Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of16-2010 February

  17. CAMD Cleanroom Chemical List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (notCAMD Cleanroom Chemical List

  18. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  19. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  20. Chemical Reactions in DSMC

    SciTech Connect (OSTI)

    Bird, G. A. [GAB Consulting Pty Ltd, 144/110 Sussex Street, Sydney NSW 2000 (Australia)

    2011-05-20T23:59:59.000Z

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  1. Chemical Looping Combustion Kinetics

    SciTech Connect (OSTI)

    Edward Eyring; Gabor Konya

    2009-03-31T23:59:59.000Z

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  2. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  3. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2007-05-29T23:59:59.000Z

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  7. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect (OSTI)

    Lee, M.H.; Kim, B.S.; Kim, D.H.; Ott, R.T.; Sansoz, F.; Eckert, J.

    2014-04-25T23:59:59.000Z

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  8. Thermalization properties at mK temperatures of a nanoscale optomechanical resonator with acoustic-bandgap shield

    E-Print Network [OSTI]

    Sean M. Meenehan; Justin D. Cohen; Simon Groeblacher; Jeff T. Hill; Amir H. Safavi-Naeini; Markus Aspelmeyer; Oskar Painter

    2014-03-14T23:59:59.000Z

    Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6GHz are performed at sub-kelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (10mK), the localized mechanical resonance is found to couple at a rate of 400Hz (Q=9x10^6) to a thermal bath of temperature 270mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.

  9. Identification of the stimulated-emission threshold in high-{beta} nanoscale lasers through phase-space reconstruction

    SciTech Connect (OSTI)

    Hachair, X.; Elvira, D.; Le Gratiet, L.; Lemaitre, A.; Abram, I.; Sagnes, I.; Robert-Philip, I.; Beveratos, A. [Laboratoire de Photonique et de Nanostructures, CNRS-UPR20, Route de Nozay, 91460 Marcoussis (France); Braive, R. [Laboratoire de Photonique et de Nanostructures, CNRS-UPR20, Route de Nozay, 91460 Marcoussis (France); Universite Paris Denis Diderot, 75205 Paris, Cedex 13 (France); Lippi, G. L. [Institut Non Lineaire de Nice, Universite de Nice-Sophia Antipolis, 1361 Route des Lucioles, F-06560 Valbonne (France); Institut Non Lineaire de Nice, CNRS UMR 6618, 1361 Route des Lucioles, F-06560 Valbonne (France)

    2011-05-15T23:59:59.000Z

    Nanoscale lasers sustain a few optical modes so that the fraction of spontaneous emission {beta} funnelled into the useful (lasing) mode is high (of the order of 10{sup -1}) and the threshold, which traditionally corresponds to an abrupt kink in the light-in-light-out curve, becomes ill defined. We propose an alternative definition of the threshold that is based on the dynamical response of the laser and is valid even for {beta}=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitations. Crossing the threshold, brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous determination of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic-crystal laser.

  10. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    SciTech Connect (OSTI)

    Lee, James W.; Thundat, Thomas G.

    2005-06-14T23:59:59.000Z

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  11. CHEMICAL ENGINEERING 2012-2014 CATALOG

    E-Print Network [OSTI]

    Texas at Austin, University of

    CHEMICAL ENGINEERING 2012-2014 CATALOG (catalog valid until August 2020) Suggested Arrangement 204, Introduction to Chemical Practice............................2 CHE 102, Introduction to Chemical ..............................1 CHE 317, Intro to Chemical Engineering Analysis...................3 CH 353, Physical Chemistry

  12. CHEMICAL SENSORS School of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Sherrill, David

    CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

  13. Nano-scale brushes: How to build a smart surface coating

    E-Print Network [OSTI]

    Holger Merlitz; Gui-Li He; Chen-Xu Wu; Jens-Uwe Sommer

    2008-12-01T23:59:59.000Z

    Via computer simulations, we demonstrate how a densely grafted layer of polymers, a {\\it brush}, could be turned into an efficient switch through chemical modification of some of its end-monomers. In this way, a surface coating with reversibly switchable properties can be constructed. We analyze the fundamental physical principle behind its function, a recently discovered surface instability, and demonstrate that the combination of a high grafting density, an inflated end-group size and a high degree of monodispersity are conditions for an optimal functionality of the switch.

  14. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    , Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

  15. Chemical comminution of coal

    SciTech Connect (OSTI)

    Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

    1987-02-01T23:59:59.000Z

    The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

  16. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  17. Femtosecond Transient Imaging

    E-Print Network [OSTI]

    Kirmani, Ahmed (Ghulam Ahmed)

    2010-01-01T23:59:59.000Z

    This thesis proposes a novel framework called transient imaging for image formation and scene understanding through impulse illumination and time images. Using time-of-flight cameras and multi-path analysis of global light ...

  18. Appendix G. Chemicals Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix G. Chemicals #12;Annual Site Environmental Report Appendix G. Chemicals G-3 Appendix G chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more. Chemicals This appendix presents basic facts about chemicals. The information is intended to be a basis

  19. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    SciTech Connect (OSTI)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09T23:59:59.000Z

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  20. Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications

    E-Print Network [OSTI]

    Verma, Shobhit

    2005-11-01T23:59:59.000Z

    and the sample. While working in noncontact mode the AFM tip does not touch the sample but gets the topographic image of sample from attractive force [13]. The AFM have resolution up to 10 pm. The basic working principle of AFM is very much like a record...-earth permanent-magnet-biased magnetic-bearing suspension [48]. The permanent magnet provides bias flux and the electromagnet can increase or reduce flux of the permanent magnet. The flux path of the electromagnet does not pass through the permanent magnet so...

  1. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  2. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31T23:59:59.000Z

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  3. ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium,

    E-Print Network [OSTI]

    Miami, University of

    2/25/2009 1 ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium, Sulphur Isotopes Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department evolves over time, with the geological time line running from right to left in this graph. The increased

  4. Chemical Biology Chemical Screening for Hair Cell Loss and Protection

    E-Print Network [OSTI]

    Rubel, Edwin

    Chemical Biology Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line Rubel,1,2 and David W. Raible1,4 Abstract In humans, most hearing loss results from death of hair cells, the mechanosensory receptors of the inner ear. Two goals of current hearing research are to protect hair cells from

  5. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  6. Imaging Sciences Workshop Proceedings

    SciTech Connect (OSTI)

    Candy, J.V.

    1996-11-21T23:59:59.000Z

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  7. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires

    SciTech Connect (OSTI)

    Venkatesan, Sriram; Scheu, Christina [Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandstr 5-13(E), 81377 München (Germany)] [Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandstr 5-13(E), 81377 München (Germany); Madsen, Morten H.; Krogstrup, Peter; Johnson, Erik [Nano-Science Center and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark)] [Nano-Science Center and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Schmid, Herbert [INM-Leibniz Institute for New Materials, 66123 Saarbrücken (Germany)] [INM-Leibniz Institute for New Materials, 66123 Saarbrücken (Germany)

    2013-08-05T23:59:59.000Z

    Straight, axial InAs nanowire with multiple segments of Ga{sub x}In{sub 1?x}As was grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveals the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the Ga{sub x}In{sub 1?x}As/InAs interfaces and a higher Ga concentration for the early grown Ga{sub x}In{sub 1?x}As segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.

  8. MATLAB Applications in Chemical Engineering

    E-Print Network [OSTI]

    Al-Juhani, Abdulhadi A.

    MATLAB® Applications in Chemical Engineering James A. Carnell North Carolina State University MATLAB is a powerful code-based mathematical and engineering calculation program. It performs all introduction to MATLAB in chemical engineering, and in no way attempts to be a comprehensive MATLAB learning

  9. Chemical Evolution in Omega Centauri

    E-Print Network [OSTI]

    Verne V. Smith

    2003-10-22T23:59:59.000Z

    The globular cluster Omega Centauri displays evidence of a complex star formation history and peculiar internal chemical evolution, setting it apart from essentially all other globular clusters of the Milky Way. In this review we discuss the nature of the chemical evolution that has occurred within Omega Cen and attempt to construct a simple scenario to explain its chemistry.

  10. Preferred orientation of nanoscale order at the surface of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} films

    SciTech Connect (OSTI)

    Tony Li, Tian; Abelson, John R. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States) [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, Illinois 61801 (United States); Hoon Lee, Tae; Elliott, Stephen R. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)] [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2013-11-11T23:59:59.000Z

    We report evidence that as-deposited amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} thin films contain nanoscale clusters that exhibit a preferred orientation, attributed to the earliest stages of heterogeneous nucleation. Fluctuation transmission electron microscopy reveals structural order in the samples, but (220)-related contributions are suppressed. When homogeneous nucleation is promoted via electron bombardment, the sample remains diffraction amorphous but the (220) contribution appears. We simulated data for randomly oriented nanoscale order using ab initio molecular-dynamics models of Ge{sub 2}Sb{sub 2}Te{sub 5}. The simulated (220) contribution always has larger magnitude than higher-order signals; thus, the lack of the experimental signal indicates a significant preferred orientation.

  11. NMR imaging of materials

    SciTech Connect (OSTI)

    Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

    1989-01-01T23:59:59.000Z

    Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

  12. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

    2007-10-09T23:59:59.000Z

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  13. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lai Qiongyu, E-mail: laiqy5@hotmail.co [College of Chemistry, Sichuan University, Chengdu 610064 (China); Xu Xiaoyun [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2010-11-15T23:59:59.000Z

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  14. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  15. Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy

    SciTech Connect (OSTI)

    Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

    2010-10-19T23:59:59.000Z

    Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

  16. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  17. Contribution of nano-scale effects to the total efficiency of converters of thermal neutrons on the basis of gadolinium foils

    E-Print Network [OSTI]

    D. A. Abdushukurov; D. V. Bondarenko; Kh. Kh. Muminov; D. Yu. Chistyakov

    2008-02-04T23:59:59.000Z

    We study the influence of nano-scale layers of converters made from natural gadolinium and its 157 isotope into the total efficiency of registration of thermal neutrons. Our estimations show that contribution of low-energy Auger electrons with the runs about nanometers in gadolinium, to the total efficiency of neutron converters in this case is essential and results in growth of the total efficiency of converters. The received results are in good consent to the experimental data.

  18. THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical

    E-Print Network [OSTI]

    Straube, Arthur V.

    THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Ramon Grima,1,a) Philipp Thomas,1,2 and Arthur V. Straube2 1 School August 2011) The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com

  19. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool...

  20. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg (Center for Functional Nanomaterials) [Center for Functional Nanomaterials

    2012-01-18T23:59:59.000Z

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  1. NETL's High-Speed Imaging System Successfully Applied in Medicine, Broad Spectrum of Industry

    Broader source: Energy.gov [DOE]

    A groundbreaking Department of Energy-developed imaging system originally designed to help create cleaner fossil energy processes is finding successful applications in a wide range of medical, chemical processing, energy, and other industries.

  2. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22T23:59:59.000Z

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  3. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  4. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06T23:59:59.000Z

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  5. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

    1993-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  6. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  7. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31T23:59:59.000Z

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  8. Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond

    E-Print Network [OSTI]

    Ashok Ajoy; Ulf Bissbort; Mikhail D. Lukin; Ronald L. Walsworth; Paola Cappellaro

    2014-07-11T23:59:59.000Z

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nano-scale sensors has given hope of achieving the long-standing goal of single-protein, high spatial-resolution structure determination in their natural environment and ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of Nitrogen Vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge, since it requires not only the ability to sense the magnetic field of an isolated nuclear spin, but also to achieve atomic-scale spatial resolution. Here we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the Nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  9. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA)

    2011-08-09T23:59:59.000Z

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  10. Non-planar chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Sokolowski, Sara S. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2006-10-10T23:59:59.000Z

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  11. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    As part of its ACHEMA coverage, Hydrocarbon Processing contacted executives of petrochemical/chemical industry trade associations in 11 countries, seeking views of on the state of the industry. These reports thus provide an added dimension to feature articles in this issue that focus on petrochemical/chemical-product supply/demand trends, economic forecasts, etc. The nations represented here were chosen for commentary because collectively they contain most of the world's petrochemical capacity. Space limitations prohibit the publishing of commentaries from all countries that have petrochemical/chemical capacity. The countries are: Belgium, China, France, Germany, India, Italy, Japan, Korea, The Netherlands, United Kingdom, and the United States.

  12. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A., E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); K?os, J. W.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

    2014-01-28T23:59:59.000Z

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain iso–frequency contours of spin waves. Iso–frequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  13. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect (OSTI)

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2008-11-15T23:59:59.000Z

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  14. Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering

    E-Print Network [OSTI]

    Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

  15. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering

    E-Print Network [OSTI]

    Azevedo, Ricardo

    | Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

  16. New Science for Chemicals Policy

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    of the State-of-the-Science of Endocrine Disruptors (WHO,461, 472 (2009). 17. NRC, Science and Decisions: AdvancingPOLICYFORUM SCIENCE AND REGULATION New Science for Chemicals

  17. Genotoxicity of complex chemical mixtures

    E-Print Network [OSTI]

    Phillips, Tracie Denise

    2009-05-15T23:59:59.000Z

    studies, specifically on carbon monoxide. Schmiedeberg focused on liver and its detoxification mechanisms. Lewin?s work included chronic toxicity of narcotics, along with toxicity of chemicals such as methanol, glycerol, acrolein and chloroform...

  18. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2007-01-30T23:59:59.000Z

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  19. Chemical Evolution of CNO abundances

    E-Print Network [OSTI]

    M. Gavilan; M. Molla

    2003-02-05T23:59:59.000Z

    New low and intermediate star yields calculated by Buell (1997) are evaluated by using them in a Galactic Chemical Evolution model. We analyze their effects on CNO elemental abundances

  20. CHEMICAL ENGINEERING Fall 2013-Winter 2014

    E-Print Network [OSTI]

    California at Davis, University of

    ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

  1. chemical (CHE) CHE overview programs available

    E-Print Network [OSTI]

    Rohs, Remo

    , Environmental, Manufacturing and Petroleum En- gineering. Programs Available · Chemical Engineering Bachelor Engineering (Environmental) Bachelor of Science 135 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering (Polymer Science) Bachelor of Science 136 units · Petroleum

  2. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect (OSTI)

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01T23:59:59.000Z

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  3. LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area)

    E-Print Network [OSTI]

    Oliver, Douglas L.

    WSTPS.rtf LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area) Excess Chemicals and Chemical Wastes · Toxic and Flammable Chemicals - These cannot go down the drain. Call Environmental Health and Safety (EHSO) at x-2723 for collection. · Corrosive Chemicals (Acids & Bases) - When

  4. Multidimensional simulation and chemical kinetics development...

    Broader source: Energy.gov (indexed) [DOE]

    processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Simulation of High...

  5. Correlations Between Optical, Chemical and Physical Properties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols....

  6. Chemical Safety Program - Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Library Chemical Safety Program - Library Operating Experience Level 3 OSHA's Revised Hazard Communication Standard Safe Management of Mercury DOE Documents & Guidelines Chemical...

  7. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

  8. Tribo-Chemical Modeling of Copper CMP

    E-Print Network [OSTI]

    Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

    2006-01-01T23:59:59.000Z

    TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,Technical Area: CMP (Copper) Abstract We are developing antribo-chemical model of copper CMP that considers abrasive

  9. Correlation Between Optical Properties And Chemical Composition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeOx) Films . Correlation Between Optical Properties And Chemical Composition Of...

  10. Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging

    E-Print Network [OSTI]

    G. M. De Silva; K. C. Freeman; M. Asplund; J. Bland-Hawthorn; M. S. Bessell; R. Collet

    2006-11-28T23:59:59.000Z

    This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from VLT/UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr and Ba. We find the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However some alpha elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, Hyades and the HR1614 moving group to examine the uniqueness of the individual cluster abundance patterns, ie. chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures, and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.

  11. Imaging in radiotherapy

    SciTech Connect (OSTI)

    Taylor, J.

    1987-01-01T23:59:59.000Z

    The text contains details of recording media, image quality, sensitometry, processing and equipment used in radiotherapy for imaging. It reflects part of the syllabus for the College of Radiographers.

  12. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image: OBrianImageBig.png | png | 5 MB SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  13. Dual Plane Imaging

    E-Print Network [OSTI]

    Parry, Ian

    2015-01-01T23:59:59.000Z

    We outline a technique called Dual Plane Imaging which should significantly improve images which would otherwise be blurred due to atmospheric turbulence. The technique involves capturing all the spatial, directional and temporal information about the arriving photons and processing the data afterwards to produce the sharpened images. The technique has particular relevance for imaging at around 400-1000nm on extremely large telescopes (ELTs).

  14. Consumers' Image of Broilers.

    E-Print Network [OSTI]

    Courtenay, Henry V.; Branson, Robert E.

    1962-01-01T23:59:59.000Z

    which they feel the product possesses. This research was designed to determine consumers' favorable and unfavorable images as to broilers, both in making purchases in stores and in serving them as a meat dish. These images, summarized briefly here... count. The Preparation and Cooking Image: The h0u.l wife's image of broilers focuses on one metliotl- frying. The major deterrent to preparing othci dishes was that these are either too difficult or canno* be prepared satisfactorily...

  15. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  16. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V

    2013-06-25T23:59:59.000Z

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  17. Magnetic Imaging Wolfgang Kuch

    E-Print Network [OSTI]

    Kuch, Wolfgang

    Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

  18. Human Functional Brain Imaging

    E-Print Network [OSTI]

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

  19. Human Functional Brain Imaging

    E-Print Network [OSTI]

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review #12;2 | Portfolio Review: Human Functional Brain ImagingThe Wellcome Trust is a charity registered in England and Wales, no's role in supporting human functional brain imaging and have informed `our' speculations for the future

  20. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

    2000-01-01T23:59:59.000Z

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  1. Automation in image cytometry : continuous HCS and kinetic image cytometry

    E-Print Network [OSTI]

    Charlot, David J.

    2012-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Automation in Image Cytometry:xiv Abstract of Dissertation Automation in Image Cytometry:

  2. High power THz sources for nonlinear imaging

    SciTech Connect (OSTI)

    Tekavec, Patrick F.; Kozlov, Vladimir G. [Microtech Instruments, 858 West Park Street, Eugene, OR 97401 (United States)

    2014-02-18T23:59:59.000Z

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 ?W and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  3. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04T23:59:59.000Z

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  4. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01T23:59:59.000Z

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  5. HPI's role in chemicals' future

    SciTech Connect (OSTI)

    Hoffman, H.L.; Riddle, L.

    1988-02-01T23:59:59.000Z

    The hydrocarbon processing industry (HPI) concerns manufacturing of products from natural gas and crude petroleum oils. Also included are those other natural raw materials such as coal, kerogen and shale oil that are sources of fuels called ''synfuels,'' denoting these products are made from raw materials other than natural gas or crude petroleum oil. So the HPI is a major producer and consumer of thousands of different chemicals. Gathering supporting statistics remains largely a problem of definition and convention. Whether one chemical or another is included in a specific list often depends on the way its manufacturer is classified. To judge HPI's potential impact on worldwide chemical manufacturing, the authors reviewed all listings of petrochemical projects included in the ''HPI Construction Boxscore'' during the past few years. From the total, they selected those that had been announced in 1986 or later. Once the list was established, they added 1985 counts to help establish trends. This article discusses the resulting list.

  6. Chemical Evolution of the Galaxy

    E-Print Network [OSTI]

    M. Tosi

    1994-11-15T23:59:59.000Z

    Standard models for the chemical evolution of the Galaxy are reviewed with particular emphasis on the history of the abundance gradients in the disk. The effects on the disk structure and metallicity of gas accretion are discussed, showing that a significant fraction of the current disk mass has been accreted in the last Gyrs and that the chemical abundances of the infalling gas can be non primordial but should not exceed 0.3 Z(sun). The distributions with time and with galactocentric distance of chemical elements are discussed, comparing the observational data with the corresponding theoretical predictions by standard models, which reproduce very well the ISM abundances at various epochs, but not equally well all the features derived from observations of old stellar objects.

  7. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01T23:59:59.000Z

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  8. Chemical Hygiene Plan For University of Florida

    E-Print Network [OSTI]

    Slatton, Clint

    Chemical Hygiene Plan For University of Florida Laboratories This is a site specific Chemical Reviewed August 2007 Revised August 2007 #12;2 I. Introduction This Chemical Hygiene Plan has been with UF laboratory chemical operations and is intended to meet the requirements of the OSHA Laboratory

  9. Chemical Hygiene Plan 1.0 Introduction

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Chemical Hygiene Plan 1.0 Introduction Satisfying Cal-OSHA (Title 8 CCR 5191) and campus regulations, this Chemical Hygiene Plan includes safety information specific to the Center for Nano and Micro chemicals and gasses available. If you have any questions about this Chemical Hygiene Plan, please email

  10. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  11. Synthesis of graphene platelets by chemical and electrochemical route

    SciTech Connect (OSTI)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15T23:59:59.000Z

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  12. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In & RegistrationChemicalDropletsChemical

  13. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25T23:59:59.000Z

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  14. Qualitative Theory and Chemical Explanation

    E-Print Network [OSTI]

    Weisberg, Michael

    Abstract Roald Hoffmann and other theorists claim that we we ought to use highly idealized chemical models defend Hoffmann's norm for modelling. Many thanks to Michael Friedman, Robin Hendry, Ben Kerr, Deena to thank Roald Hoffmann who has been an in- spiring mentor and who's reflections on the philosophical

  15. Biological and Chemical Engineering Building,

    E-Print Network [OSTI]

    Kay, Mark A.

    BioE/ChemE Building West ampus creation enter, Under struction Biological and Chemical Engineering Building, Under Construction Lucile Packard Children's Hospital, Under Construction Arrillaga Sports Center. Eng. Paul G. Allen Building Roble Pool Roble Modulars Godzilla Thornton Center Bambi Roble Gym orsythe

  16. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18T23:59:59.000Z

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  17. Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of --Chemical Engineering and Chemical Technology This publication refers to the session 2009­10. The information given opportunities go to www.imperial.ac.uk/pgprospectus. #12;2 Undergraduate syllabuses Chemical Engineering

  18. Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program

    E-Print Network [OSTI]

    Machel, Hans

    Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

  19. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  20. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.