Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

In situ derivation of sulfur activated TiO{sub 2} nano porous layers through pulse-micro arc oxidation technology  

SciTech Connect (OSTI)

Highlights: {yields} S-TiO{sub 2} layers were grown by MAO technique under pulse current for the first time. {yields} Effect of growth parameters on chemical composition, topography, and morphology of the layers was studied. {yields} A correlation between photocatalytic performance and growth conditions was proposed. -- Abstract: Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO{sub 2} nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the frequency of 500 Hz and the duty cycle of 5%. Furthermore, photocatalytic activity of the layers was examined by measuring the decomposition rate of methylene blue under both ultraviolet and visible photo irradiations. Maximum photodegradation reaction rate constants over the pulse-grown S-TiO{sub 2} layers were respectively measured as 0.0202 and 0.0110 min{sup -1} for ultraviolet and visible irradiations.

Bayati, M.R., E-mail: mbayati@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of) [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran (Iran, Islamic Republic of); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of) [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Molaei, Roya [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)

2011-10-15T23:59:59.000Z

2

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

3

Photo-Degradation of Methelyne Blue over V2O5–TiO2 Nano-Porous Layers Synthesized by Micro Arc Oxidation  

Science Journals Connector (OSTI)

V2O5–TiO2 porous layers were synthesized via micro-arc oxidation for the first time. The effect of...k = 0.0228 min?1. The band gap energies of the vanadia–titania and pure titania layers were calculated as 2.56 ...

M. R. Bayati; F. Golestani-Fard; A. Z. Moshfegh

2010-01-01T23:59:59.000Z

4

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures  

Science Journals Connector (OSTI)

We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The...

Pham, Van Hoi; Bui, Huy; Hoang, Le Ha; Nguyen, Thuy Van; Nguyen, The Anh; Pham, Thanh Son; Ngo, Quang Minh

2013-01-01T23:59:59.000Z

5

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

6

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network [OSTI]

, the mixture temperature at the combustor inlet is set to 630 o C. Thermal conductivity of the ceramic wall Keywords: Catalytic combustion, Pd/nano-porous alumina, Ceramic tape casting, Thermophotovoltaic Abstract: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed

Kasagi, Nobuhide

7

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

8

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents [OSTI]

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

9

NANO - "Green" metal oxides ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANO - "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely...

10

Nanocomposite of graphene and metal oxide materials  

SciTech Connect (OSTI)

Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

2012-09-04T23:59:59.000Z

11

Methods of producing adsorption media including a metal oxide  

DOE Patents [OSTI]

Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

Mann, Nicholas R; Tranter, Troy J

2014-03-04T23:59:59.000Z

12

Three-Electrode Metal Oxide Reduction Cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

2005-06-28T23:59:59.000Z

13

Three-electrode metal oxide reduction cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

2008-08-12T23:59:59.000Z

14

Direct electrochemical reduction of metal-oxides  

DOE Patents [OSTI]

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01T23:59:59.000Z

15

Graphene/metal Oxide Nanocomposites for Li-ion Batteries  

Science Journals Connector (OSTI)

Our work focuses on preparing the graphene/metal oxide nanocomposites by facile methold and exploring the graphene/metal oxide composites with unique structural or compositions for...

Liang, Junfei; Li, Lidong; Guo, Lin

16

Understanding Atom Probe Tomography of Oxide-Supported Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Understanding Atom Probe Tomography of Oxide-Supported Metal...

17

Catalytic production of metal carbonyls from metal oxides  

DOE Patents [OSTI]

This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

1984-01-06T23:59:59.000Z

18

High surface area, electrically conductive nanocarbon-supported metal oxide  

DOE Patents [OSTI]

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

2014-03-04T23:59:59.000Z

19

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

20

Process for etching mixed metal oxides  

DOE Patents [OSTI]

An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

Anderson, M.A.

1994-05-03T23:59:59.000Z

22

Chapter 14 - Metal oxide nanopowder  

Science Journals Connector (OSTI)

Research into soft chemical techniques has gained an importance for the synthesis of high quality advanced nanosized materials with desired properties at the low crystallization temperature. The closer interaction between the material chemists and alkoxide chemists has led to the molecular design of more suitable precursors, for fabrication of functional material has resulted in synergetic developments in both the fields. Metal alkoxide is a versatile precursor and is used for the synthesis of functional gradient nanomaterials, and characterization of materials was carried out in term of composition, microstructure and specific surface area. The write-up provides simple and convenient routes to many building blocks for assembling the structure with novel properties and its functional use in nanotechnology.

Taimur Athar

2015-01-01T23:59:59.000Z

23

Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel  

SciTech Connect (OSTI)

The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

Mavila Chathoth, Suresh [ORNL; He, Lilin [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL

2012-01-01T23:59:59.000Z

24

Designing Semiconductor Metal Oxides for Photoelectrochemical Energy Conversion  

Science Journals Connector (OSTI)

Innovative materials hold the key for renewable energy conversion. In this talk, we will introduce our recent progress in semiconducting metal oxides, which underpin a number of...

Wang, Lianzhou

25

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO[sub 2] and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

Lad, R.J.

1992-11-01T23:59:59.000Z

26

Transition metal-promoted oxygen ion conductors as oxidation catalyst  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the complete oxidation of carbon monoxide and hydrocarbons was prepared by combining oxygen ion conducting materials with active transition metals. The oxygen ion conductors used were typical fluorite-type oxides, such as ceria, zirconia, and others. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of oxygen ion conductors. The intimate contact of the two kinds of materials gave rise to a highly active oxidation catalyst. On Cu-Ce-O composite catalysts, 95% of carbon monoxide was oxidized by air at {approximately} 100 C. Complete methane oxidation on the same catalyst took place at {approximately} 550 C. When the stoichiometric amount of sulfur dioxide was sued to oxidize carbon monoxide, 96% of sulfur dioxide was reduced to elemental sulfur at temperatures above 460 C with 99% of sulfur dioxide conversion. This type of composite catalyst also showed excellent resistance to water poisoning.

Liu, W.; Sarofim, A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

27

Route to transition metal carbide nanoparticles through cyanamide and metal oxides  

SciTech Connect (OSTI)

We have designed an efficient route to the synthesis of transition metal carbide nanoparticles starting from an organic reagent cyanamide and transition metal oxides. Four technologically important metal carbide nanoparticles such as tungsten carbide, niobium carbide, tantalum carbide and vanadium carbide were synthesized successfully at moderate temperatures. It is found that cyanamide is an efficient carburization reagent and that the metal oxides are completely transmitted into the corresponding carbide nanoparticles. A possible mechanism is proposed to explain the results of the reaction between cyanamide and the metal oxides.

Li, P.G. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)], E-mail: peigangiphy@yahoo.com.cn; Lei, M.; Tang, W.H. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)

2008-12-01T23:59:59.000Z

28

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

During the past six months, we have begun our studies of the fundamental properties of metal/oxide and oxide/oxide heterogeneous interfaces which are being prepared by epitaxial growth of ultra-thin-films on single crystal TiO{sub 2} and NiO surfaces. A new ultra-high vacuum film growth chamber was assembled and coupled to an existing surface analysis chamber; a sample transfer system, metal deposition sources, and a RHEED systems with microchannel plate detection were constructed and implemented. Atomic Force Microscopy was used to characterize and refine the preparation procedures for the single crystal surfaces. The electronic structure of stoichiometric, oxygen-deficient, and potassium-covered TiO{sub 2} (110) surfaces was investigated. Preliminary results on the Al/TiO{sub 2} (110) system have been obtained. Two graduate students have begun thesis research on the project. 6 figs.

Lad, R.J.

1991-01-01T23:59:59.000Z

29

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

30

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

31

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

Harris, M.T.; Scott, T.C.; Byers, C.H.

1992-06-16T23:59:59.000Z

32

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents [OSTI]

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

33

Plutonium metal and oxide container weld development and qualification  

SciTech Connect (OSTI)

Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

1996-01-01T23:59:59.000Z

34

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2001-01-01T23:59:59.000Z

35

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2000-01-01T23:59:59.000Z

36

Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene  

E-Print Network [OSTI]

Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons Oded Hod,* Vero´nica Barone theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene with nanometer scale dimen- sions. Recently, a new type of graphene-based material was experimentally realized.12

Hod, Oded

37

Metal-oxide-based energetic materials and synthesis thereof  

DOE Patents [OSTI]

A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2006-01-17T23:59:59.000Z

38

Aerosol chemical vapor deposition of metal oxide films  

DOE Patents [OSTI]

A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

Ott, K.C.; Kodas, T.T.

1994-01-11T23:59:59.000Z

39

Metallic Materials in Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC). Recently, a new type of FeC...

V. Shemet; J. Piron-Abellan; W.J. Quadakkers…

2005-01-01T23:59:59.000Z

40

Flame Synthesis of One-Dimensional Metal Oxide Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synthesis of One-Dimensional Metal Oxide Nanomaterials Synthesis of One-Dimensional Metal Oxide Nanomaterials Alexei V. Saveliev Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA Robust, scalable, and energy efficient methods of nanomaterial synthesis are needed to meet the demands of current and potential applications. Flames have been successfully applied for the synthesis of metal oxide and ceramic nanopowders largely composed of spherical particles and their aggregates. In recent years, premixed and diffusion flames have been employed for the synthesis of 1-D carbon nanoforms such as carbon fibers and carbon nanotubes. The extension of flame methods to gas phase and solid support synthesis of 1-D inorganic nanoforms is of great interest and significance. This talk presents

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Metal current collect protected by oxide film  

DOE Patents [OSTI]

Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-05-25T23:59:59.000Z

42

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

43

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells ... Initial and final state geometries are found with standard geometry optimization, then a number of intermediate states are generated by interpolation of atomic positions. ... A special "metric" and a special "preconditioning" optimized for a plane-wave basis set will be introduced. ...

Timothy P. Holme; Fritz B. Prinz

2011-05-24T23:59:59.000Z

44

Metal complexes of substituted Gable porphyrins as oxidation catalysts  

DOE Patents [OSTI]

Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

1996-01-01T23:59:59.000Z

45

Metal complexes of substituted Gable porphyrins as oxidation catalysts  

DOE Patents [OSTI]

Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

1996-01-02T23:59:59.000Z

46

Metal Oxide Nanoparticles as Bactericidal Agents  

Science Journals Connector (OSTI)

8 Magnesium oxide prepared through an aerogel procedure (AP-MgO)9 yields square and polyhedral shaped nanoparticles with diameters varying slightly around 4 nm, arranged in an extensive porous structure with considerable pore volume. ... Approximately 106 CFU (colony forming units) of bacteria or spores were deposited on water filtration membranes with pore size 0.45 ?m (Millipore Corp.). ... The filters were dried at ambient conditions for 30 min and then completely covered with 0.25 g of AP-MgO/X2 (X = Cl, Br, none). ...

Peter K. Stoimenov; Rosalyn L. Klinger; George L. Marchin; Kenneth J. Klabunde

2002-07-04T23:59:59.000Z

47

Reduction of Metal Oxides by Microwave Heating of Multi-walled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Metal Oxides by Microwave Heating of Multi-walled Carbon Nanotubes Microwave heating of a metal oxide in the presence of multi-walled carbon nanotubes may result in...

48

Electrical excitation of colloidally synthesized quantum dots in metal oxide structures  

E-Print Network [OSTI]

This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

Wood, Vanessa Claire

2010-01-01T23:59:59.000Z

49

Cyclic catalytic upgrading of chemical species using metal oxide materials  

DOE Patents [OSTI]

Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

White, James H; Schutte, Erick J; Rolfe, Sara L

2013-05-07T23:59:59.000Z

50

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

51

Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts  

SciTech Connect (OSTI)

Hydrous Metal Oxides (HMOs) are chemically synthesized materials that, because of their high cation exchange capacity, possess a unique ability to allow the preparation of highly dispersed supported-metal catalyst precursors with high metal loadings. This study evaluates high weight loading Rh/HMO catalysts with a wide range of HMO support compositions, including hydrous titanium oxide (HTO), silica-doped hydrous titanium oxide (HTO:Si), hydrous zirconium oxide (HZO), and silica-doped hydrous zirconium oxide (HZO:Si), against conventional oxide-supported Rh catalysts with similar weight loadings and support chemistries. Catalyst activity measurements for a structure-sensitive model reaction (n-butane hydrogenolysis) as a function of catalyst activation conditions show superior activity and stability for the ZrO{sub 2}, HZO, and HZO:Si supports, although all of the Rh/HMO catalysts have high ethane selectivity indicative of high Rh dispersion. For the TiO{sub 2}-, HTO-, and HTO:Si supported Rh catalysts, a significant loss of both catalyst activity and Rh dispersion is observed at more aggressive activation conditions, consistent with TiO{sub x} migration associated with SMSI phenomena. Of all the Rh/HMO catalysts, the Rh/HZO:Si catalysts appear to offer the best tradeoff in terms of high Rh dispersion, high activity, and high selectivity.

Gardner, T.J.; McLaughlin, L.I.; Evans, L.R. [Sandia National Labs., Albuquerque, NM (United States). Catalysis and Chemical Technologies Dept.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

52

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

1999-01-01T23:59:59.000Z

53

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

Flinn, J.E.; Kelly, T.F.

1999-06-01T23:59:59.000Z

54

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

55

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

56

Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution  

Science Journals Connector (OSTI)

Exotic features of a metal/oxide/metal sandwich, which will be the basis for a drastically innovative nonvolatile memory device, is brought to light from a physical point of view. Here the insulator is one of the ubiquitous and classic binary-transition-metal oxides (TMO), such as Fe2O3, NiO, and CoO. The sandwich exhibits a resistance that reversibly switches between two states: one is a highly resistive off state and the other is a conductive on state. Several distinct features were universally observed in these binary TMO sandwiches: namely, nonpolar switching, nonvolatile threshold switching, and current-voltage duality. From the systematic sample-size dependence of the resistance in on and off states, we conclude that the resistance switching is due to the formation of “electric faucet” at the interface, which shows up as a homogeneous to inhomogeneous transition of the current distribution.

I. H. Inoue; S. Yasuda; H. Akinaga; H. Takagi

2008-01-03T23:59:59.000Z

57

Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis  

SciTech Connect (OSTI)

The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO{sub 2} hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

Boffa, A.B. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

1994-07-01T23:59:59.000Z

58

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

Capone, D.W.; Dunlap, B.D.; Veal, B.W.

1990-07-17T23:59:59.000Z

59

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

1990-01-01T23:59:59.000Z

60

Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex  

E-Print Network [OSTI]

Compositionally uniform mixed metals, metal oxides, and alloys are used extensively as corrosion protective and catalysts. I-~For example, nickel-containing oxides and alloys are used for oxidative protection of very. Although Cu-Ni alloy deposition has been stud- ied for many years, none of the previous approaches has led

Kounaves, Samuel P.

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems  

SciTech Connect (OSTI)

The Al{sub 2}O{sub 3}/GaAs and HfO{sub 2}/GaAs interfaces after atomic layer deposition are studied using in situ monochromatic x-ray photoelectron spectroscopy. Samples are deliberately exposed to atmospheric conditions and interfacial oxide re-growth is observed. The extent of this re-growth is found to depend on the dielectric material and the exposure temperature. Comparisons with previous studies show that ex situ characterization can result in misleading conclusions about the interface reactions occurring during the metal oxide deposition process.

McDonnell, S.; Dong, H.; Hawkins, J. M.; Brennan, B.; Milojevic, M.; Aguirre-Tostado, F. S.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

2012-04-02T23:59:59.000Z

62

Cyclic catalytic upgrading of chemical species using metal oxide materials  

DOE Patents [OSTI]

Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

White, James H. (Boulder, CO); Schutte, Erick J. (Thornton, CO); Rolfe, Sara L. (Loveland, CO)

2010-11-02T23:59:59.000Z

63

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

64

A Low Temperature Fully Lithographic Process For Metal–Oxide Field-Effect Transistors  

E-Print Network [OSTI]

We report a low temperature ( ~ 100à °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

Sodini, Charles G.

65

E-Print Network 3.0 - alkaline-earth metal oxides Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

differ in the nature of the angle... ). Weidner and Hamaya (1983) observed that the transition-metal oxides and the alkaline-earth oxides fail... ... Source: Price, G. David -...

66

Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying  

Science Journals Connector (OSTI)

A planar solid oxide fuel cell (SOFC) consisting of a cell supported with a porous metallic substrate and a metallic separator has been developed. In the fabrication of the cell, anodes and electrolytes were form...

Shunji Takenoiri; Naruaki Kadokawa; Kazuo Koseki

2000-09-01T23:59:59.000Z

67

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOE Patents [OSTI]

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-01-01T23:59:59.000Z

68

High-throughput synthesis and characterization of vanadium mixed metal oxide pigments using synchroton radiation.  

E-Print Network [OSTI]

??UNA range of inorganic vanadium mixed metal oxides, with potential applications as inorganic pigments, have been synthesised and characterised in terms of their crystal structure,… (more)

Russu, Sergio

2008-01-01T23:59:59.000Z

69

E-Print Network 3.0 - active complementary metal-oxide-semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion-implanted p and n dopants in germanium Summary: wavelength spectrum allowing optoelectronic integra- tion to enhance complementary-metal-oxide- semiconductor... lim- its in...

70

E-Print Network 3.0 - area metal-oxide-semiconductor electron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inversion layer mobility Joo-Hiuk Son,a) Seongtae... measured absorption of terahertz radiation pulses by metal-oxide-semiconductor MOS inversion layers... of the...

71

Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides  

Broader source: Energy.gov [DOE]

General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

72

Synergistic Metal–Metal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation  

Science Journals Connector (OSTI)

Panels a and b in Figure 1 depict the schematic representation of mechanism of glucose oxidation at the graphene–WO3–Au hybrid membrane modified with glucose oxidase (GOD) enzyme. ... The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. ...

Anitha Devadoss; P. Sudhagar; Santanu Das; Sang Yun Lee; C. Terashima; K. Nakata; A. Fujishima; Wonbong Choi; Yong Soo Kang; Ungyu Paik

2014-03-09T23:59:59.000Z

73

Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2  

Science Journals Connector (OSTI)

Atom probe tomography has been used to study for the first time the metal–oxide interface region in Zircaloy-2. Segregation of Fe and Ni to both deformation-induced sub-grain boundaries in the metal and planar features in the oxide has been found. Apparently, the oxide inherits the chemistry of the sub-grain boundaries as the material oxidizes, which may have implications for the waterside corrosion kinetics of the alloy.

G. Sundell; M. Thuvander; H.-O. Andrén

2012-01-01T23:59:59.000Z

74

Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

1995-05-01T23:59:59.000Z

75

Studies on supported metal oxide-oxide support interactions (an incorporation model)  

SciTech Connect (OSTI)

XRD, XPS, SSIMS, LRS, and FT-IR are used to explore the valency, composition and structure of the dispersed metal oxide species on supports with different structures, i.e., on ceria and {gamma}-alumina. The results indicated that the dispersion of various ionic compounds are proceeded by the incorporation of the metal cations into the surface vacant sites on the support provided that the loading amounts of the compounds are not higher than their dispersion capacities. The key factors determining the dispersion capacities of the ionic compounds are: (1) the surface structure of the support which determines the size and number of the vacant sites available. (2) the valency of the dispersed ionic compound and the size of the anion, from which the shielding effect of the capping anion(s) can be evaluated, and (3) the sizes of the dispersed cations and the vacant sites on the surface, from which the sites can be used for incorporation can be identified. The Quantitative results deduced from the incorporation model and from the independent experiments are consistent, providing further evidence that the model captures the essentials of the interactions between the dispersed metal oxide and support.

Yi Chen; Lin Dong; Y.S. Jin; Bing Xu; Weijie Ji [Nanjing Univ. (China)

1996-12-31T23:59:59.000Z

76

Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn  

DOE Patents [OSTI]

The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

2008-10-28T23:59:59.000Z

77

Self assembled multi-layer nanocomposite of graphene and metal oxide materials  

DOE Patents [OSTI]

Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

2013-10-22T23:59:59.000Z

78

Self assembled multi-layer nanocomposite of graphene and metal oxide materials  

SciTech Connect (OSTI)

Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

2014-09-16T23:59:59.000Z

79

Development of a Plasma Arc Manufacturing Process and Machine to Create Metal Oxide Particles in Water From Wire Feedstock.  

E-Print Network [OSTI]

??A plasma arc erosion process can be used to create metal and metal oxide particles in the ultra-fine size range (<70 um). An electric arc… (more)

George, Jonathan Alan 1983-

2010-01-01T23:59:59.000Z

80

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials  

SciTech Connect (OSTI)

The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

Singh, Ranjan [Los Alamos National Laboratory; Xiong, Jie [Los Alamos National Laboratory; Azad, Md A. [Los Alamos National Laboratory; Yang, Hao [Los Alamos National Laboratory; Trugman, Stuart A. [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

82

Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal levels  

E-Print Network [OSTI]

contamination of aquatic ecosystems by heavy metals. Among them, copper is a widespread pollutant found, 1999). Although this metal is a required element, high concentrations appear to be toxic to freshwater1 Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal

Paris-Sud XI, Université de

83

Comparative study of polyoxometalates and semiconductor metal oxides as catalyst. Photochemical oxidative degradation of thioethers  

SciTech Connect (OSTI)

The photochemical degradation of thioether substrates catalyzed by representative semiconductor metal oxides and sulfides (anatase TiO{sub 2}, SnO{sub 2}, cubic WO{sub 3}, and CdS) and photoredox-active early-transition-metal polyometalates (W{sub 10}O{sub 32}{sup 4{minus}}, PMo{sub 12}O{sub 40}{sup 3{minus}}, PW{sub 12}O{sub 40}{sup 3{minus}}, SiMo{sub 12}O{sub 40}{sup 4{minus}}, PV{sub 2}Mo{sub 10}O{sub 10}{sup 5{minus}}, and P{sub 2}W{sub 18}O{sub 62}{sup 6{minus}}) have been examined under both anaerobic and aerobic conditions. Under anaerobic conditions, all the semiconductors are completely ineffective at photochemically oxidizing or degrading the exemplary thioether substrate tetrahydrothiophene (THT) in the oxidatively resistant solvent acetonitrile. In contrast, all the homogeneous polyoxometalate systems under the same reaction condition, except the neutral tetra-n-butylammonium (Q) salt of PW{sub 12}O{sub 40}{sup 3{minus}}, are quite effective. The latter systems generate products derived from the carbon-based radical {alpha} to the sulfur atom and not sulfoxide or sulfone, the usual products of thioether oxidation by oxometal species. The rate for the most active anaerobic system, that involving the photochemical degradation of THT by Q{sub 4}W{sub 10}O{sub 32}, under optically dilute conditions, is first order in W{sub 10}O{sub 32} {sup 4{minus}} and light intensity and variable order in THT substrate. A rate law consistent with these data is given. Upon addition of O{sub 2}, TiO{sub 2} (with or without Pt(O)) becomes highly active, SnO{sub 2} becomes active, but WO{sub 3} and CdS remain inactive. Reactivity in thioether oxidation is dominated by the interactions of the semiconductors with O{sub 2} and O{sub 2}-derived intermediates; there is no correlation between reactivity and semiconductor band gap. Upon addition of O{sub 2}, all the polyoxometalate systems become more active. 29 refs., 4 figs., 3 tabs.

Chambers, R.C.; Hill, C.L. (Emory Univ., Atlanta, GA (United States))

1991-06-26T23:59:59.000Z

84

Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion  

DOE Patents [OSTI]

The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

Siriwardane, Ranjani V.; Miller, Duane D.

2014-08-19T23:59:59.000Z

85

Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study  

SciTech Connect (OSTI)

Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Kwon, K.D.; Sposito, G.

2010-02-01T23:59:59.000Z

86

Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions  

SciTech Connect (OSTI)

A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of metallic nickel in hydrogenated ammonia and sodium hydroxide solutions between 175 and 315 C. The solubility measurements were interpreted by means of an oxidative dissolution reaction followed by a sequence of Ni(II) ion hydrolysis reactions: Ni(s) + 2H+(aq) = Ni2+(aq) + H2(g) and Ni{sup 2+}(aq) + nH{sub 2}O = Ni(OH){sub n}{sup 2-n}(aq) + nH{sup +}(aq) where n = 1 and 2. Gibbs energies associated with these reaction equilibria were determined from a least-squares analysis of the data. The extracted thermochemical properties ({Delta}fG{sup 0}, {Delta}fH{sup 0} and S{sup 0}) for Ni2{sup +}(aq), Ni(OH){sup +}(aq) and Ni(OH){sub 2}(aq) were found to be consistent with those determined in a previous solubility study of NiO/Ni(OH){sub 2} conducted in our laboratory. The thermodynamic basis of the Ni/NiO phase boundary in aqueous solutions is examined to show that Ni(s) is stable relative to NiO(s) in solutions saturated at 25 C with 1 atm H{sub 2} for temperatures below 309 C.

Ziemniak SE, Guilmette PA, Turcotte RA, Tunison HM

2007-03-27T23:59:59.000Z

87

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents [OSTI]

Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

1998-06-23T23:59:59.000Z

88

Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films  

E-Print Network [OSTI]

We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

Osedach, Timothy P.

89

Low temperature lithographically patterned metal oxide transistors for large area electronics  

E-Print Network [OSTI]

Optically transparent, wide bandgap metal oxide semiconductors are a promising candidate for large-area electronics technologies that require lightweight, temperature-sensitive flexible substrates. Because these thin films ...

Wang, Annie I. (Annie I-Jen), 1981-

2011-01-01T23:59:59.000Z

90

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents [OSTI]

Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

1998-01-01T23:59:59.000Z

91

Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators  

SciTech Connect (OSTI)

The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

1985-04-01T23:59:59.000Z

92

Emerging Applications of Liquid Metals Featuring Surface Oxides  

Science Journals Connector (OSTI)

Figure 4. 3D printing of free-standing liquid metal structures. ... Ladd, C.; So, J.-H.; Muth, J.; Dickey, M. D.3D Printing of Free Standing Liquid Metal Microstructures Adv. ... 3D Printing of Free Standing Liquid Metal Microstructures ...

Michael D. Dickey

2014-10-06T23:59:59.000Z

93

Characterization of metal oxide layers grown on CVD graphene  

SciTech Connect (OSTI)

Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

Matsubayashi, Akitomo; Abel, Joseph; Prasad Sinha, Dhiraj; Lee, Ji Ung; LaBella, Vincent P. [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

2013-03-15T23:59:59.000Z

94

Thermal resistance of contact with oxidized metal surfaces  

Science Journals Connector (OSTI)

A model of an elementary heat channel is analyzed which simulates the ... is derived which describes the increment of contact resistance due to the presence of an oxide...

V. M. Popov; A. I. Krasnoborod'ko

1973-10-01T23:59:59.000Z

95

Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications  

DOE Patents [OSTI]

The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

2014-01-28T23:59:59.000Z

96

Electronically conducting metal oxide nanoparticles and films for optical sensing applications  

DOE Patents [OSTI]

The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

2014-09-16T23:59:59.000Z

97

Photoelectron Imaging Spectroscopic Investigations of Transition Metal Silicides and Oxides.  

E-Print Network [OSTI]

??This dissertation presents the experimental progress in the use of photoelectron imaging spectroscopy to probe the electronic structure of negatively charged transition metal silicides and… (more)

Gunaratne, K. Don

2012-01-01T23:59:59.000Z

98

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

1992-10-13T23:59:59.000Z

99

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

1992-01-01T23:59:59.000Z

100

CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES  

SciTech Connect (OSTI)

High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

2000-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere  

SciTech Connect (OSTI)

A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

Van den Sype, J.S.

1993-07-13T23:59:59.000Z

102

Perspectives on the metallic interconnects for solid oxide fuel cells  

Science Journals Connector (OSTI)

The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as intercon...

Wei-zhong Zhu; Mi Yan

2004-12-01T23:59:59.000Z

103

Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Surfaces. Abstract: The O-H bond distribution of hydroxyl groups at the 110 goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was...

104

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Technical progress report, August 1, 1992--July 31, 1993  

SciTech Connect (OSTI)

Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO{sub 2} and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

Lad, R.J.

1992-11-01T23:59:59.000Z

105

Mesoporous metal oxide microsphere electrode compositions and their methods of making  

SciTech Connect (OSTI)

Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

2014-12-16T23:59:59.000Z

106

Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects  

SciTech Connect (OSTI)

The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2008-01-21T23:59:59.000Z

107

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts  

Science Journals Connector (OSTI)

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts ... So in this work we investigated the action of transition metal oxides (TMOs) other than Ni (e.g., Fe, Mn) mixed with REOs for tar reforming, at a medium temperature range (923–1073 K) and under conditions where direct reforming would dominate. ... The heated gas mixture passed through a 1/2” stainless steel tube containing 0.2–1 g of catalyst (40–60 mesh size) diluted with mullite and positioned between beds of ?-Al2O3. ...

Rui Li; Amitava Roy; Joseph Bridges; Kerry M. Dooley

2014-04-24T23:59:59.000Z

108

Metal oxide coating on first mirror in fusion reactor with carbon wall  

Science Journals Connector (OSTI)

Abstract The lifetime of diagnostic equipment in a fusion reactor is typically very short. The first mirror used to reflect optical signals for diagnostics plays a crucial role in the reactor, and it is highly important to develop a more durable first mirror which can survive in the hostile environment. In this work, by conducting electron beam deposition on molybdenum substrates, metallic oxide mirrors are prepared and studied in the simulated environment. The multi-layered metal oxide mirror exhibits much higher reflectivity than the original molybdenum one and the in situ technique to monitor the performance of the first mirror is developed and described.

Xirui Hou; Zhengwei Wu; Paul K. Chu

2014-01-01T23:59:59.000Z

109

Chemicl-looping combustion of coal with metal oxide oxygen carriers  

SciTech Connect (OSTI)

The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.

Siriwardane, R.; Tian, H.; Richards, G.; Simonyi, T.; Poston, J.

2009-01-01T23:59:59.000Z

110

Metal oxide/organic interface investigations for photovoltaic devices  

E-Print Network [OSTI]

summarises work I have carried out as a PhD student of the Optoelectronics Group at Cavendish Laboratory of the University of Cambridge since October 2010. I am thankful to the Engineering and Physical Sciences Research Council and the A.G. Leventis... are often used in many other optoelectronic devices such as photovoltaics and light emitting diodes. Sufficiently conducting oxides with the appropriate electron affinities and ionisation potentials, can be employed as charge transport and injection layers...

Pachoumi, Olympia

2014-10-07T23:59:59.000Z

111

Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.  

E-Print Network [OSTI]

of a typical device (middle); schematic energy diagram of interfacial layers PbS/MoOx, indicating carrier metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated the overall conversion efficiency. This allows for inexpensive metals such as Al to be employed without loss

112

Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage  

SciTech Connect (OSTI)

This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

NONE

1994-12-01T23:59:59.000Z

113

Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations  

E-Print Network [OSTI]

obvious. In this paper, we show by means of density functional theory DFT calcula- tions that a rationalUnderstanding the NMR shifts in paramagnetic transition metal oxides using density functional functional theory DFT calculations in the generalized gradient approximation. For each compound, we calculate

Ceder, Gerbrand

114

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes  

E-Print Network [OSTI]

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes ScienceDaily (Aug. 29, 2007) -- Moving beyond carbon nanotubes, researchers are developing insights-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control

Nair, Sankar

115

Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion  

E-Print Network [OSTI]

Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion and examined as oxygen carrier materials for chemical-looping combustion (CLC). Unlike conventional support agglomeration. 1. INTRODUCTION 1.1. Chemical-Looping Combustion. Chemical-looping combustion (CLC

Azad, Abdul-Majeed

116

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory  

E-Print Network [OSTI]

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

Metz, Ricardo B.

117

Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget  

E-Print Network [OSTI]

of the oxygen-17 excess (D17 O) of sulfate in the Arctic to quantify the sulfate source from aqueous SO2 (S concentrations, respectively. The solubility and oxidation state of these metals is determined by cloud liquid discrepancies with surface SO2 and sulfate observations in Europe. Oxygen isotope measurements of sulfate

Alexander, Becky

118

Self-assembly of oxide-supported metal clusters into ring-like Kristoffer Meinander,  

E-Print Network [OSTI]

Self-assembly of oxide-supported metal clusters into ring-like structures Kristoffer Meinander, Kai, Finland Abstract Self-assembly is a phenomenon that continuously occurs at the nanoscale, as atoms form of these organized systems, but the precise mechanism, with which this self-assembly progresses, is seldom known

Nordlund, Kai

119

Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant  

DOE Patents [OSTI]

An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

Gillaspie, Dane T; Weir, Douglas G

2014-04-01T23:59:59.000Z

120

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network [OSTI]

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin of nanoporous thin films without increasing the recombination rate. To ensure efficient charge carrier

Konezny, Steven J.

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Borohydride reduction: A technique to synthesize nanosize transition metal oxides and nanocomposites  

SciTech Connect (OSTI)

This paper summarizes recent studies of using borohydride reduction to synthesize W, transition metal oxides such as WO{sub 2} and MoO{sub 2}, and Fe-Al{sub x}B{sub y}O{sub z}

Zhu, Yuntian T.; Lowe, T.C.; Stout, M.G. [Los Alamos National Lab., NM (United States); Manthiram, A.; Guggilla, S. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering

1996-06-01T23:59:59.000Z

122

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen  

E-Print Network [OSTI]

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen K. D. Gibson, Mark Viste, Errol C. Sanchez, and S. J. Sibener The James Franck Institute; accepted 30 November 1998 Exposure of Rh 111 to atomic oxygen leads to the facile formation of a full

Sibener, Steven

123

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces  

E-Print Network [OSTI]

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces Juan Salafranca, Nashville, Tennessee 37235, United States *S Supporting Information ABSTRACT: The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However

Pennycook, Steve

124

Electrospun and oxidized cellulose materials for environmental remediation of heavy metals in groundwater  

SciTech Connect (OSTI)

This chapter focuses on the use of modified cellulosic materials in the field of environmental remediation. Two different chemical methods were involved in fabricating oxidized cellulose (OC), which has shown promise as a metal ion chelator in environmental applications. Electrospinning was utilized to introduce a more porous structure into an oxidized cellulose matrix. FTIR and Raman spectroscopy were used to study both the formation of OC and its surface complexation with metal ions. IR and Raman spectroscopic data demonstrate the formation of characteristic carboxylic groups in the structure of the final products and the successful formation of OC-metal complexes. Subsequent field tests at the Field Research Site at Oak Ridge National Laboratory confirmed the value of OC for sorption of both U and Th ions.

Han, Dong [Stony Brook University (SUNY); Halada, Gary P. [Stony Brook University (SUNY); Spalding, Brian Patrick [ORNL; Brooks, Scott C [ORNL

2009-12-01T23:59:59.000Z

125

ESS 2012 Peer Review - Architectural Diversity of Metal Oxide Nanostructures - Esther Takeuchi, Stony Brook University  

Broader source: Energy.gov (indexed) [DOE]

Architectural Diversity of Metal Oxide Nanostructures: Architectural Diversity of Metal Oxide Nanostructures: An Opportunity for the Rational Optimization of Group II Cation Based Batteries. Esther S. Takeuchi, Kenneth J. Takeuchi, Amy C. Marschilok esther.takeuchi@stonybrook.edu, kenneth.takeuchi.1@stonybrook.edu, amy.marschilok@stonybrook.edu Utilize earth abundant, low cost elements with minimal environmental impact as battery materials. Exploit magnesium due to air stability and ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead. Cathode materials feature Mn, Fe or V metal centers. Strategy Results Results This project targets some of the unique needs of large scale power storage: 1) reduced cost 2) low environmental impact 3) scalability 4) reversibility

126

Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion  

SciTech Connect (OSTI)

The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

Siriwardane, Ranjani; Richards, George; Poston, James [US Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 (United States); Tian, Hanjing; Miller, Duane; Simonyi, Thomas [US Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 (United States); URS, 3610 Collins Ferry Road, Morgantown, WV 26505 (United States)

2010-11-15T23:59:59.000Z

127

Metal oxide catalysts for the low temperature selective oxidation of propane to iso-propanol.  

E-Print Network [OSTI]

??A range of Ga203/Mo03 and C03O4 catalysts have been prepared and tested for the oxidative dehydrogenation of propane to propene. The Ga2(VMo03 physical mixture demonstrated… (more)

Davies, Thomas Edward.

2006-01-01T23:59:59.000Z

128

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray  

E-Print Network [OSTI]

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic. Hence, to understand the mobility and bioavailability of these metal contaminants, these sorption suggesting that sorption of these metal ions onto ferrihydrite can be described by one average type of site

Sparks, Donald L.

129

The Velocity of Oxidation of the Metals and the Structure of Coloured Oxide Films  

Science Journals Connector (OSTI)

... The simplest explanation of these facts would appear to be that the treatment causes a roughening of the surface, whereby the effective area of the metal is increased. If this ...

D. H. BANGHAM; J. STAFFORD

1925-01-17T23:59:59.000Z

130

Method of making a catalytic metal oxide selective for the conversion of a gas and a coating system for the selective oxidation of hydrocarbons and carbon monoxide  

SciTech Connect (OSTI)

A method is described of making a catalytic metal oxide selective to catalyzing the conversion of given gas species, comprising: intimately supporting a solid film of catalytic metal oxide on an electrically conducting material, said film having an exposed outer surface spaced no greater than 1,000 angstroms from said conducting material and said conducting material being matched to the composition of said oxide to change the electron state of the exposed outer surface to promote a reaction between given gas species and said oxide, said metal oxide being selected from the group consisting of TiO[sub 2], SnO[sub 2], FeO, SrTiO[sub 3], and CoO, and said conducting material being selected from the group consisting of Au, Pt, TiN, Pd, Rh, Ni, and Co.

Logothetis, E.M.; Soltis, R.E.

1993-07-20T23:59:59.000Z

131

Chemical-looping combustion of coal with metal oxide oxygen carriers  

SciTech Connect (OSTI)

The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe{sub 2}O{sub 3}, CO{sub 3}O{sub 4}, NiO, and Mn{sub 2}O{sub 3} were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO{sub 2}), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500{sup o}C and complete the full combustion at 700{sup o}C. In addition, the reduced copper can be fully reoxidized by air at 700{sup o}C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO{sub 2} and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 {sup o}C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers. 22 refs., 12 figs., 2 tabs.

Ranjani Siriwardane; Hanjing Tian; George Richards; Thomas Simonyi; James Poston [United States Department of Energy, Morgantown, WN (United States). National Energy Technology Laboratory

2009-08-15T23:59:59.000Z

132

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.  

SciTech Connect (OSTI)

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

2013-09-01T23:59:59.000Z

133

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents [OSTI]

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

1996-01-01T23:59:59.000Z

134

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents [OSTI]

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

1996-09-24T23:59:59.000Z

135

Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999  

SciTech Connect (OSTI)

The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

Ekerdt, John G.

1999-07-31T23:59:59.000Z

136

Study of metallic materials for solid oxide fuel cell interconnect applications.  

SciTech Connect (OSTI)

Metallic interconnect acts as a gas separator and a gas distributor and therefore, it needs to function adequately in two widely different environments. The interconnect material will be exposed to air on one side and natural gas or coal-derived synthesis gas on the other side. The viable material for the interconnect application must be resistant not only to oxidation but also carburization in hydrocarbon containing low-oxygen environments. In addition, the scales that develop on the exposed surfaces must possess adequate electrical conductivity for them to function as current leads over long service life of the fuel cell. This report addresses five topics of interest for the development of metallic interconnects with adequate performance in fuel cells for long service life. The research conducted over the years and the conclusions reached were used to identify additional areas of research on materials for improved performance of components, especially metallic interconnects, in the complex fuel cell environments. This report details research conducted in the following areas: measurement of area specific electrical resistivity, corrosion performance in dual gas environments by experiments using alloy 446, long term corrosion performance of ferritic and austenitic alloys in hydrogen and methane-reformed synthesis fuel-gas environments, approaches to reduce the area resistance of metallic interconnect, and reduction of electrical resistivity of alumina scales on metallic interconnect. Based on the key requirements for metallic interconnects and the data developed on the corrosion behavior of candidate materials in meeting those requirements, several areas are recommended for further research to develop metallic interconnects with acceptable and reliable long-term performance in solid oxide fuel cells.

Natesan, K.; Zeng, Z.; Nuclear Engineering Division

2009-04-24T23:59:59.000Z

137

Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers  

DOE Patents [OSTI]

Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

2014-12-16T23:59:59.000Z

138

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

139

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

140

Oxidative dehydrogenation (ODH) of ethane with O[subscript 2] as oxidant on selected transition metal-loaded zeolites  

SciTech Connect (OSTI)

Ni-, Cu-, and Fe-loaded acidic and basic Y zeolites were synthesized, and their catalytic properties for oxidative dehydrogenation of ethane (ODHE) to ethylene were characterized. Acidic Ni-loaded Y zeolite exhibits an ethylene productivity of up to 108 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} with a selectivity of {approx}75%. Acidic Cu- and Fe-loaded Y zeolites have an ethylene productivity of up to 0.37 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} and a selectivity of {approx}50%. For the same metal, the acidity of the zeolite favors both ODHE productivity and ethylene selectivity. Extended X-ray absorption fine structure (EXAFS) studies show that Ni, present in particles on Ni/HY during the ODHE catalytic process, contains both Ni-Ni and Ni-O bonds, and that the ratio of oxidized Ni versus metallic Ni increases with the temperature. The insights these studies provide into the ODHE reaction mechanism are discussed.

Lin, Xufeng; Hoel, Cathleen A.; Sachtler, Wolfgang M.H.; Poeppelmeier, Kenneth R.; Weitz, Eric; (NWU)

2009-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The steady-state thermal-hydraulic performance of 3500 MWth metal and oxide fueled LMRs  

SciTech Connect (OSTI)

The thermal-hydraulic performance of a 3500 MWth metal and oxide fueled LMR is reported. Orifice zones are defined and coolant flowrates are given for use in safety analyses. The flux calculations were carried out in three-dimensional hexagonal-Z geometry using a finite differenced diffusion theory code. The heating calculations included the transport and deposition of gamma energy. The assembly temperature calculations were performed using a subchannel code.

Vilim, R.B.; Hill, R.N.

1989-03-01T23:59:59.000Z

142

Surface Science Letters Bulk-defect dependent adsorption on a metal oxide surface  

E-Print Network [OSTI]

-6028(01)01067-6 #12;Titanium dioxide is a wide-band gap semicon- ductor (Egap 3 eV) that can easily be reducedSurface Science Letters Bulk-defect dependent adsorption on a metal oxide surface: S/TiO2(1 1 0) E Abstract The adsorption of molecular sulfur on TiO2(1 1 0)(1 Ã? 1) has been studied with scanning tunneling

Diebold, Ulrike

143

The interactions between transition metal nanoparticles and their metal-oxide supports are often critical for heterogeneous metal nanoparticle  

E-Print Network [OSTI]

for selective hydrogenations (2, 3), oxidations (3­5), and the water-gas shift (WGS) reaction (3, 6). Several to saturation kinetics, with added water affecting the kinetics of the RDS. We explored potential mechanistic oxygen from the support (21, 27). Perhaps most importantly, as Fig. 1A shows, water dramatically

Napp, Nils

144

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

145

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

146

Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects  

SciTech Connect (OSTI)

This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

Vladimir Gorokhovsky

2008-03-31T23:59:59.000Z

147

Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications  

SciTech Connect (OSTI)

The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

Ohodnicki, Paul R., Jr.; Wang, Congjun; Andio, Mark

2013-07-31T23:59:59.000Z

148

Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions  

SciTech Connect (OSTI)

This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.

Rodriguez J. A.; Illas, F.

2012-01-01T23:59:59.000Z

149

Catalytic activity of tetravalent metal phosphates and phosphonates on the oxidation of (+)-3-carene  

Science Journals Connector (OSTI)

Tetravalent metal phosphates and phosphonates form highly insoluble inorganic polymers and can act as good catalysts in some oxidative reactions. In the present work, zirconium phosphate amorphous (ZrPA), scandium exchanged zirconium phosphate amorphous (ScZrPA), sodium exchanged zirconium phosphate amorphous (NaZrPA), potassium exchanged zirconium phosphate amorphous (KZrPA), zirconium phenylphosphonate amorphous (ZrPPA) and zirconium phenylphosphonate phosphate amorphous (ZrPA/ZrPPA), were prepared and evaluated as catalysts for the oxidation of 3,7,7-trimethylbicyclo[4.1.0]hept-3-ene [(+)-3-carene)] by hydrogen peroxide, in different solvents. It was found that the oxidation reaction of (+)-3-carene yielded three major products, namely ?-3,4-epoxycarane, carane-3?,4?-diol and 3?-acetoxycaran-4?-ol, depending on the catalyst and solvent conditions. No ?-3,4-epoxycarane was detected in the studied conditions.

Graça M.S.R.O. Rocha; Rui M.A. Domingues; Mário M.Q. Simões; Artur M.S. Silva

2009-01-01T23:59:59.000Z

150

Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors  

E-Print Network [OSTI]

A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

Karahan, Aydin

2009-01-01T23:59:59.000Z

151

Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications  

Science Journals Connector (OSTI)

The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other ...

Sarah C. Motshekga; Sreejarani K. Pillai; Suprakas Sinha Ray; Kalala Jalama; Rui. W. M. Krause

2012-01-01T23:59:59.000Z

152

Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides  

SciTech Connect (OSTI)

Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

Das, Supriyo

2010-05-16T23:59:59.000Z

153

Modifications of the surface properties of metals by oxide overlayers: 1, Oxidized zirconium deposited on the Pt(100) single crystal surface  

SciTech Connect (OSTI)

Metallic zirconium was deposited on a single crystal Pt(100) surface by thermal evaporation in UHV conditions. The deposit was oxidized by exposure to oxygen immediately after deposition. Oxidized zirconium was found to grow on the platinum ace by the layer-by-layer mechanism. The adsorption of carbon monoxide on the surface was studied as a function of the zirconium coverage. The results show that oxidized zirconium forms a chemically inert layer which blocks the adsorptive sites of the underlying platinum substrate. The properties of the free Pt surface were unaffected by the presence of the oxidized zirconium layer.

Bardi, U.; Ross, P.N.

1986-06-01T23:59:59.000Z

154

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide Semiconductor Field  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide memory window, faster writing and erasing, and longer retention lifetime as a result of the metallic property of the silicide NCs. Due to thermally stable, CMOS compatible properties, TiSi2 NCs are highly

Yang, Zheng

155

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

156

Correlation effects in (111) bilayers of perovskite transition-metal oxides  

SciTech Connect (OSTI)

We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

Okamoto, Satoshi [ORNL] [ORNL; Zhu, Wenguang [University of Science and Technology of China] [University of Science and Technology of China; Nomura, Yusuke [University of Tokyo, Japan] [University of Tokyo, Japan; Arita, R. [University of Tokyo, Japan] [University of Tokyo, Japan; Xiao, Di [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Nagaosa, Naoto [University of Tokyo, Japan] [University of Tokyo, Japan

2014-01-01T23:59:59.000Z

157

Pt–metal oxide aerogel catalysts: X-ray photoemission investigation  

Science Journals Connector (OSTI)

X-ray photoemission spectroscopy was used to study Pt–metal oxide aerogel catalysts that have been developed to respond to increased NO x emissions of lean-burn engines. Lean-burn engines critical components of low and zero emission vehicles produce much higher levels of engine-out NO x and current three-way catalytic converters are not sufficient to meet Clean Air Act standards. Platinum catalysts were formed by the reaction of modified Pt coordination compounds with selected transition–metal alkoxides through sol–gel techniques into aerogels. Photoemission measurements of the Pt 4f Si 2p Ti 2p O 1s and C 1s core lines were used to evaluate the chemistry of the material after each processing step. Results indicate Pt–O bonding and reduced Pt disbursed in the aerogel. In addition Si 2p Ti 2p and O 1s binding energies indicate an oxo-bridged network structure.

A. J. Nelson; John G. Reynolds; R. D. Sanner; P. R. Coronado; L. M. Hair

2001-01-01T23:59:59.000Z

158

Strain induced electronic structure changes in magnetic transition metal oxides thin films  

SciTech Connect (OSTI)

We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

2010-07-08T23:59:59.000Z

159

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect (OSTI)

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ({alpha}{sub n} and {gamma}{sub n}) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of {alpha}{sub n} and {gamma}{sub n} with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on {alpha} and {gamma} quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

160

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect (OSTI)

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ([alpha][sub n] and [gamma][sub n]) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of [alpha][sub n] and [gamma][sub n] with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on [alpha] and [gamma] quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

162

Synthesis of transition metal nitride by nitridation of metastable oxide precursor  

SciTech Connect (OSTI)

Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

Wang, Huamin; Wu, Zijie; Kong, Jing [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang, E-mail: zqwang@mail.nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China) [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, No. 393 Binshui Road, Xiqing Dist., Tianjin 300387 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)

2012-10-15T23:59:59.000Z

163

Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor  

Science Journals Connector (OSTI)

Metal oxide systems with a high lattice-oxygen content, which exhibit reversibility of oxidationreduction transitions, have been synthesized and characterized. Oxidant Solid Contacts have been prepared using t...

I. M. Gerzeliev; N. Ya. Usachev; A. Yu. Popov; S. N. Khadzhiev

2012-09-01T23:59:59.000Z

164

Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect  

SciTech Connect (OSTI)

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-09-15T23:59:59.000Z

165

Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

166

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups  

SciTech Connect (OSTI)

The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

2008-09-01T23:59:59.000Z

167

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides M. K. Aydinol, A. F. Kohan, and G. Ceder  

E-Print Network [OSTI]

-metal-oxides due to their application potential as rechargeable battery electrodes1 and electrochromic displays.2. In electrochromic applications, band filling is used to adjust the electronic and optical properties.3 Figure 1-potential difference between cathode and anode is desirable as this leads to a high OCV. For electrochromic

Ceder, Gerbrand

168

Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

Freiboth, Cameron J.; Gibbs, Frank E.

2000-03-01T23:59:59.000Z

169

Gate Metal-Induced Diffusion and Interface Reactions in Hf Oxide Films on Si  

SciTech Connect (OSTI)

When metal electrodes are deposited on a high-{kappa} metal-oxide/SiO{sub 2}/Si stack, chemical interactions may occur both at the metal/high-{kappa} and the high-{kappa}/Si interfaces, causing changes in electrical performance. We report here results from medium energy ion scattering (MEIS) and x-ray photoelectron (XPS) studies of oxygen and silicon transport and interfacial layer reactions in multilayer gate stacks. Our results show that Ti deposition on HfO{sub 2}/SiO{sub 2}/Si stacks causes reduction of the SiO{sub 2} interfacial layer and (to a lesser extent) the HfO{sub 2} layer. Silicon atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for titanium-silicon interdiffusion through the high-{kappa} film in the presence of a titanium gate in crystalline HfO{sub 2} films is also reported.

Goncharova, Lyudmila V.; Dalponte, Mateus; Celik, Ozgur; Garfunkel, Eric; Gustafsson, Torgny [Departments of Physics and Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08854 (United States); Lysaght, Pat S.; Bersuker, Gennadi I. [Sematech, Austin, Texas 78741 (United States)

2007-09-26T23:59:59.000Z

170

Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-10-14T23:59:59.000Z

171

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

172

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

SciTech Connect (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

173

Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

2009-01-01T23:59:59.000Z

174

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

175

Performance and degradation of metal-supported solid oxide fuel cells with impregnated electrodes  

Science Journals Connector (OSTI)

Abstract Metal-supported solid oxide fuel cells (MS-SOFCs) containing porous 430L stainless steel supports, YSZ electrolytes and porous YSZ cathode backbones are fabricated by tape casting, laminating and co-firing in a reducing atmosphere. Nano-scale Ni and La0.6Sr0.4Fe0.9Sc0.1O3?? (LSFSc) coatings are impregnated onto the internal surfaces of porous 430L and YSZ, acting as the anode and the cathode catalysts, respectively. The resulting MS-SOFCs exhibit maximum power densities of 193, 418, 636 and 907 mW cm?2 at 650, 700, 750 and 800 °C, respectively. Nevertheless, a continuous degradation in the fuel cell performance is observed at 650 °C and 0.7 V during a 200-h durability measurement. Possible degradation mechanisms were discussed in detail.

Yucun Zhou; Xianshuang Xin; Junliang Li; Xiaofeng Ye; Changrong Xia; Shaorong Wang; Zhongliang Zhan

2014-01-01T23:59:59.000Z

176

Spectroscopic Studies of O-Vacancy Defects in Transition Metal Oxides  

SciTech Connect (OSTI)

Dielectrics comprised of nano-crystalline HfO{sub 2} in gate stacks with thin SiO{sub 2}/SiON interfacial transition regions display significant asymmetries with respect to trapping of Si substrate injected holes and electrons. Based on spectroscopic studies, and guided by ab initio theory, electron and hole traps in HfO{sub 2} and other transition metal elemental oxides are assigned to O-atom divacancies clustered at internal grain boundaries of nano-crystalline films. Engineering solutions in which grain boundary defects are suppressed include: (i) ultra-thin, <2 nm, HfO{sub 2} fims, (ii) chemically phase separated high HfO2 content silicate films, and (iii) non-crystalline Zr/Hf Si oxynitride films.

Lucovsky, G.; Luning, J.; Fleming, L.B.; Ulrich, M.D.; Rowe, J.E.; Seo, H.; Lee, S.; Lysaght, P.; Bersuker, G.

2009-06-03T23:59:59.000Z

177

Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2007-12-09T23:59:59.000Z

178

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate  

E-Print Network [OSTI]

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium-effect transistors have been formed by incorporating barium strontium titanate (BST) deposited by rf magnetron in increased leakage. Due to its large dielectric constant, barium strontium ti- tanate [Ba1-xSrxTiO3, (BST

York, Robert A.

179

High-temperature corrosion of metallic alloys in an oxidizing atmosphere containing NaCl  

SciTech Connect (OSTI)

A particular heat-exchanger application involved metallic alloys exposed to flue gases of an aluminum remelt furnace. Because the flue gases might contain NaCl and other halides, the corrosion behavior of the alloys was to be investigated. Planned direct exposure of candidate alloys to the flue gases, however, was not conducted because of premature termination of the project. Complementary laboratory testing was conducted on seven commercially available alloys and two nickel aluminides. These materials were exposed to an oxidizing atmosphere containing 0.06 wt % NaCl for 1100 h at 1000/degree/C. Most of the alloy exhibited grain-boundary attack, which resulted in complete oxidation of enveloped grains. The alloys Incoloy MA-956, Incoloy 800, Inconel 625, Inconel 601, Hastelloy X, Haynes 188, and nickel aluminide IC-50 were substantially more corroded than Alloy 214 and nickel aluminide IC-221. The latter two alloys, therefore, would probably be superior to the others in application involving flue gases containing NaCl. Strength fabricability, and weldability, which are briefly discussed, would also affect selection of materials. 8 refs., 12 figs., 5 tabs.

Federer, J.I.

1989-02-01T23:59:59.000Z

180

Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks  

SciTech Connect (OSTI)

The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, 610 Taylor Rd., Piscataway, New Jersey 08854 (United States); SEMATECH, 2705 Montopolis Dr., Austin, Texas 78741 (United States)

2007-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INFLUENCE OF OXIDE GROWTH AND METAL CREEP ON STRAIN DEVELOPMENT IN THE STEAM-SIDE OXIDE IN BOILER TUBES  

SciTech Connect (OSTI)

This effort is concerned with developing a quantitative description of the exfoliation behavior of oxide scales grown inside steam tubes in a pressure boiler. Consideration of the development of stress/strain in growing oxides has included expansion mismatch-induced strains during thermal cycling as well as inelastic mechanical effects from oxide/alloy creep phenomena and volume change from oxide growth. The magnitude of the parameters used has been closely matched to actual boiler operating practice. The creep model used was validated against published data. Representation of oxide growth-induced strain was found to be a difficult challenge because the processes involved are not fully understood. In addition to the traditional uniaxial (radial) and dilatational models, lateral growth models are discussed in the context of experimentally-derived criteria, such as the level of elastic strains involved in oxide exfoliation. It was found that strain variation in the oxide cannot be neglected.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

2010-01-01T23:59:59.000Z

182

Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells  

E-Print Network [OSTI]

Symposium on Solid Oxide Fuel Cells (SOFC-VI) ed. S. C.FOR REDUCED TEMPERATURE SOLID OXIDE FUEL CELLS Peggy Y. Hou,for low temperature solid oxide fuel cell is discussed in

Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

1999-01-01T23:59:59.000Z

183

Rapid thermal cycling of metal-supported solid oxide fuel cell membranes  

E-Print Network [OSTI]

effect of pressure on solid oxide fuel cell performance," inand flat plate solid oxide fuel cells," in Proceedings ofSymposium on Solid Oxide Fuel Cells. Electrochem. Soc. 1993,

Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

2004-01-01T23:59:59.000Z

184

Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors  

E-Print Network [OSTI]

substrates can be transformed into their corresponding phosphides. Furthermore, this strategy is applicable towards the conversion of supported metal nanocrystals into metal phosphides. Supported metal phosphides are used as hydrotreating catalysts...

Henkes, Amanda Erin

2009-05-15T23:59:59.000Z

185

Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation  

E-Print Network [OSTI]

, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

Trice, Rodney W.

186

Ultra-high vacuum fabrication and electrical characterization of environmentally sensitive metal oxide semiconductor capacitors  

SciTech Connect (OSTI)

We describe an integrated, ultra-high vacuum system for metal oxide semiconductor (MOS) device fabrication and characterization. Such a system is advantageous for electrical property measurements of electronic devices consisting of environmentally sensitive materials especially as device dimensions approach the nanoscale. Without exposure to atomosphere, MOS capacitors were fabricated by evaporating gate metal on molecular-beam-epitaxy (MBE) grown dielectrics on 3 inch-diameter substrates through a shadow mask in a UHV electrode-patterning chamber. The finished device is transferred in vacuum to an in-situ, UHV electrical characterization probe station that was designed with standard UHV coaxial feedthroughs and UHV-compatible, Kapton-insulated coaxial cable. The probe station also includes a heated sample stage that allows for annealing and measurements in a controlled ambient. We obtained excellent agreement between air-ambient ex-situ and in-situ probe station measurements utilizing a capacitor standard compatible with UHV based on single crystal sapphire as the dielectric. The measurements show less than 0.3 % dispersion for frequencies from 20 Hz to 1 MHz. We have successfully measured MOS capacitors and are sensitive to a density of interface states of 1x1010 states cm-2 eV-1. These measurements also show 0.5 % dispersion for measurement frequencies from 20 Hz to 1 kHz and less than 0.1 % from 1 kHz to 1 MHz. The integrated system presented here is one where complex, MBE-grown MOS heterostructures can be synthesized and tested rapidly to elucidate new field-effect-device physics and functionality.

Billman, Curt [Oak Ridge National Laboratory (ORNL); Walker, Frederick Joseph [ORNL

2007-01-01T23:59:59.000Z

187

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

Absorption Metal (Zr) Metal (Mo) Carbide Nitride Oxidef /? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide Table? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide CHAPTER

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

188

High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

189

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

190

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

SciTech Connect (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

191

Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur  

SciTech Connect (OSTI)

Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

Ziomek-Moroz, M.; Hawk, Jeffrey A.

2005-01-01T23:59:59.000Z

192

Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy  

SciTech Connect (OSTI)

Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

2013-12-01T23:59:59.000Z

193

Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply  

Science Journals Connector (OSTI)

In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

Koh Nozawa; Marie-Hélène Delville; Hideharu Ushiki; Pascal Panizza; Jean-Pierre Delville

2005-07-11T23:59:59.000Z

194

Doped palladium containing oxidation catalysts  

DOE Patents [OSTI]

A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

Mohajeri, Nahid

2014-02-18T23:59:59.000Z

195

Metallic Interconnects for Solid Oxide Fuel Cell: Performance of Reactive Element Oxide Coating During 10, 20 and 30 Months Exposure  

Science Journals Connector (OSTI)

One of challenges in improving the performance and cost-effectiveness of SOFCs (Solid Oxide Fuel Cells) is the development of suitable interconnect materials. Chromia-forming alloys and especially ferritic sta...

S. Fontana; S. Chevalier; G. Caboche

2012-12-01T23:59:59.000Z

196

Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage  

SciTech Connect (OSTI)

Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

Bitterwolf, Thomas E. [University of Idaho

2014-12-09T23:59:59.000Z

197

Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same  

DOE Patents [OSTI]

A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

1988-01-01T23:59:59.000Z

198

Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region  

Science Journals Connector (OSTI)

Combining pulse-probe measurements as well as local transport measurements in an electron microscope system by a simultaneous monitoring of the structural changes, we show that the nonvolatile electric pulse induced resistance change in Ca-doped praseodymium manganite is related to a polaron order-disorder transition, modified by electronic band bending in the vicinity of an interface to a metallic electrode. A pronounced resistance change requires a critical distance between the two electrode and/or oxide interfaces to form an insulating incommensurate polaron-ordered phase during the initialization of the device. Based on these observations, a qualitative model for the electronic structure of the metal-oxide interface is developed.

Ch. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, and Y. Zhu

2008-04-23T23:59:59.000Z

199

Scaling properties in the adsorption of ionic polymeric surfactants on generic nanoparticles of metallic oxides by mesoscopic simulation  

E-Print Network [OSTI]

We study the scaling of adsorption isotherms of polyacrylic dispersants on generic surfaces of metallic oxides $XnOm$ as a function of the number of monomeric units, using Electrostatic Dissipative Particle Dynamics simulations. The simulations show how the scaling properties in these systems emerge and how the isotherms rescale to a universal curve, reproducing reported experimental results. The critical exponent for these systems is also obtained, in perfect agreement with the scaling theory of deGennes. Some important applications are mentioned.

E. Mayoral; E. Nahmad-Achar

2014-02-11T23:59:59.000Z

200

Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments  

SciTech Connect (OSTI)

Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Product/metal ratio (PMR): A novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys  

Science Journals Connector (OSTI)

Product/metal ratio (PMR...) was introduced as a novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys....PBR), focused on the roles of electrolytes for the compactn...

LaiWen Song; YingWei Song; DaYong Shan; GuoYi Zhu…

2011-10-01T23:59:59.000Z

202

Single crystal flow reactor for studying reactivities on metal oxide model catalysts at atmospheric pressure to bridge the pressure gap to the adsorption properties determined under UHV conditions  

Science Journals Connector (OSTI)

A flow reactor for the investigation of heterogeneous catalytic reactions on single crystalline metal oxide model catalysts has been designed. It is located in a high pressure cell attached to an UHV analysis cha...

C. Kuhrs; M. Swoboda; W. Weiss

2001-01-01T23:59:59.000Z

203

Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes  

SciTech Connect (OSTI)

A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.

Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo, E-mail: jghwu@ntu.edu.tw [Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

2014-03-28T23:59:59.000Z

204

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect (OSTI)

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

205

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications  

E-Print Network [OSTI]

applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

Chen, Po-Chun

2014-01-13T23:59:59.000Z

206

Operation of mixed conducting metal oxide membrane systems under transient conditions  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

Carolan, Michael Francis (Allentown, PA)

2008-12-23T23:59:59.000Z

207

E-Print Network 3.0 - alkali metal oxides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, sodium carbide, turpentine, finely divided metals Calcium water, carbon dioxide, carbon tetrachloride... , and chlorinated hydrocarbons Carbon, activated calcium...

208

Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors  

E-Print Network [OSTI]

and are driven by the energy provided by a heated substrate. Both these vacuum-based techniques require in the precursor adsorption, oxidation and by-product desorption. [5] Use of solvation energy may provide a viable. Pressurized CO2 was delivered using an ISCO 260D syringe pump through a high- pressure manifold. Resistive

Gougousi, Theodosia

209

Hydrolysis of Naptalam and Structurally Related Amides: Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces  

E-Print Network [OSTI]

. INTRODUCTION Several important classes of agrochemicals possess amide and anilide functional groups. Naptalam). Agrochemicals often possess functional groups in the vicinity of amide and anilide linkages; participation and anilide agrochemicals. Granados et al. (1995) reported no significant effects of dissolved divalent metal

Huang, Ching-Hua

210

Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals  

SciTech Connect (OSTI)

We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

Nekrasov, I. A., E-mail: nekrasov@iep.uran.ru; Pavlov, N. S.; Sadovskii, M. V. [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)

2013-04-15T23:59:59.000Z

211

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

212

Cu–Zn–Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature  

Science Journals Connector (OSTI)

One series of Cu–Zn and two series of Cu–Zn–Al hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25–100 °C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of Cu–Zn–Al mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7 g S/100 g-sorbent with increase of Cu/Zn molar ratio) at 40 °C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the Cu–Zn and Cu–Zn–Al mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS?/S2? and O2?. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS?, S2? and O2? or exchange of HS?/S2? and O2? during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.

Dahao Jiang; Lianghu Su; Lei Ma; Nan Yao; Xiaoliang Xu; Haodong Tang; Xiaonian Li

2010-01-01T23:59:59.000Z

213

Control of differential strain during heating and cooling of mixed conducting metal oxide membranes  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

Carolan, Michael Francis (Allentown, PA)

2007-12-25T23:59:59.000Z

214

Molten Metal Anodes for Direct Carbon-Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The aim of this thesis was to enable the direct utilization of solid carbonaceous fuels like coal and biomass, in solid oxide fuel cells (SOFC).… (more)

Jayakumar, Abhimanyu

2012-01-01T23:59:59.000Z

215

Experimental Study of Electron Transport through Nanometer-Scale Metal-Oxide Junctions  

E-Print Network [OSTI]

-annealing. The resistive bistability effect has been observed for all these materials, with particularly high switching, crested barrier, rapid thermal annealing, endurance, resistive bistability, reproducibility. #12;v List properties of Nb/Al/Nb junctions fabricated using thermal oxidation or rf-plasma oxidation at various

216

Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran  

Science Journals Connector (OSTI)

The potential of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-hydroxy-TEMPO radical) as an oxidant with [bis(acetoxy)-iodo]benzene (BAIB) and acetic acid (CH3COOH) as co-oxidants to convert 5-hydroxymethylfurfural

Neha Mittal; Grace M. Nisola; Lenny B. Malihan…

2014-08-01T23:59:59.000Z

217

Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector  

SciTech Connect (OSTI)

This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

2010-02-15T23:59:59.000Z

218

Life Prediction of Coated and Uncoated Metallic Interconnect for Solid Oxide Fuel Cell Applications  

SciTech Connect (OSTI)

Oxidation reaction of the ferritic stainless interconnects in a typical SOFC working environment is unavoidable and the thickness of the oxide scale will continue to grow with operating time, even with protective coatings. The interfacial strength of the various interfaces for the uncoated and coated ferritic interconnects is crucial to long term performance of SOFCs. In this paper, we employ an integrated experimental/modeling approach to quantify the interfacial strength and to further predict the life of Crofer 22 APU as SOFC interconnect under isothermal cooling condition. The life of Crofer 22 APU was predicted by comparing the predicted interfacial strength, interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the growth kinetics of oxide scale with and without spinel coating. It was found that the interfacial strength between the oxide scale and Crofer 22 APU substrate decreases with the growth of the oxide scale. The interfacial strength of the oxide scale and spinel coating is much higher than that of the oxide scale and Crofer 22 APU substrate. With the spinel coating, the predicted life of the Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2009-04-15T23:59:59.000Z

219

Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells  

E-Print Network [OSTI]

The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

La O', Gerardo Jose Cordova

2008-01-01T23:59:59.000Z

220

Suitability of Metallic Materials for Interconnects in Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

FeCr model alloys with variation of chromium content, reactive element addition and spinel forming elements were studied in respect to oxidation resistance at 800°C. Additionally, in-situ studies were carried ...

W. J. Quadakkers; J. Piron-Abellan…

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis… (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

222

Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study  

SciTech Connect (OSTI)

An analysis of surface potential nonlinearity at metal oxide/electrolyte interfaces is presented. By using Grand Canonical Monte Carlo simulations of a simple lattice model of an interface, we show a correlation exists between ionic strength as well as surface site densities and the non-Nernstian response of a metal oxide electrode. We propose two approaches to deal with the 0-nonlinearity: one based on perturbative expansion of the Gibbs free energy and another based on assumption of the pH-dependence of surface potential slope. The theoretical anal ysis based on our new potential form gives excellent performance at extreme pH regions, where classical formulae based on the Poisson-Boltzmann equation fail. The new formula is general and independent of any underlying assumptions. For this reason, it can be directly applied to experimental surface potential measurements, including those for individual surfaces of single crystals, as we present for data reported by Kallay and Preocanin [Kallay, Preocanin J. Colloid and Interface20 Sci. 318 (2008) 290].

Zarzycki, Piotr P.; Rosso, Kevin M.

2010-01-01T23:59:59.000Z

223

High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides  

SciTech Connect (OSTI)

We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H{sub 2}S, along with H{sub 2}, CO{sub 2}, and water. More complex REO sorbents outperform the simpler CeO{sub 2}/La{sub 2}O{sub 3} mixtures, in some cases significantly. Supporting REOs on Al{sub 2}O{sub 3} (?20 wt % REO) or ZrO{sub 2} actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnO{sub x} or FeO{sub x} is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al{sub 2}O{sub 3}-supported MnO{sub x} or FeO{sub x} alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

2011-01-01T23:59:59.000Z

224

Interplay between electronic structure and catalytic activity in transition metal oxide model system  

E-Print Network [OSTI]

The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen ...

Suntivich, Jin

2012-01-01T23:59:59.000Z

225

Biomonitoring on Carcinogenic Metals and Oxidative DNA Damage in a Cross-Sectional Study  

Science Journals Connector (OSTI)

...result of human activities such as mining, smelting, fossil fuel combustion, and industrial application of metals. The highest...production of stainless steel, high-nickel alloys, Ni-Cd batteries, and electronic components. A major fraction of nickel absorbed...

Hiltrud Merzenich; Andrea Hartwig; Wolfgang Ahrens; Detmar Beyersmann; Regina Schlepegrell; Martin Scholze; Jürgen Timm; and Karl-Heinz Jöckel

2001-05-01T23:59:59.000Z

226

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion  

SciTech Connect (OSTI)

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

JENNISON,DWIGHT R.; BOGICEVIC,ALEXANDER

2000-03-06T23:59:59.000Z

227

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

2000-04-10T23:59:59.000Z

228

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded research of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

1999-11-30T23:59:59.000Z

229

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Akyurtlu, A.; Akyurtlu, J.F.

1999-03-31T23:59:59.000Z

230

Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews,*, Andreas Rohrbacher, Christopher M. Laperle, and Robert E. Continetti  

E-Print Network [OSTI]

, approximately 10% of the gas sample condensed on the 10K copper plate. For ablation a focused (10 cm f of the laser-ablated metal atoms and O2 in excess argon during condensation at 10 K, have been laser desorbed spectrometry. Adding the C6H5Br chromophore to the Ar/O2 gas mixture also enhanced the metal and oxide ion

Continetti, Robert E.

231

Investigation of zinc oxide doped with metal impurities for use as thin film conductive phosphors  

E-Print Network [OSTI]

of a viable flat panel display, low voltage, conductive phosphors which emit blue, red, and green light will be required for the field emission technology. This thesis examines zinc oxide (ZnO) based thin ( ) phosphors for such an application. ZnO is a...

Evatt, Steven R.

1994-01-01T23:59:59.000Z

232

Method of producing highly oxidized superconductors containing barium, copper, and a third metal  

DOE Patents [OSTI]

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1996-02-20T23:59:59.000Z

233

Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting  

Science Journals Connector (OSTI)

...system that uses a carbon cathode to reduce protons and a...SiW 12 O 40 ] at a carbon cathode. Alternatively, starting from the fully oxidized...Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction . J...electrocatalysis to stack development . Int. J. Hydrogen Energy...

Benjamin Rausch; Mark D. Symes; Greig Chisholm; Leroy Cronin

2014-09-12T23:59:59.000Z

234

Giant and switchable surface activity of liquid metal via surface oxidation  

Science Journals Connector (OSTI)

...recent developments . Adv Colloid Interface Sci 159 ( 2 ): 198 – 212 . 27 Ladd C So J-H Muth J Dickey MD ( 2013 ) 3D printing of free standing liquid metal microstructures . Adv Mater 25 ( 36 ): 5081 – 5085 . 28 Regan MJ ( 1997 ) X-ray reflectivity...

Mohammad Rashed Khan; Collin B. Eaker; Edmond F. Bowden; Michael D. Dickey

2014-01-01T23:59:59.000Z

235

Selective Separation of Thiols from a Model Fuel by Metal Oxides  

Science Journals Connector (OSTI)

These fossil fuels typically contain sulfur compounds on the order of a few percent. ... The authors have found that sulfur-loaded coals adsorb heavy metals in aqueous solutions. ... methods for fuel oils in relation to demand of low-sulfur fuel oils for air pollution control. ...

Yuuki Mochizuki; Katsuyasu Sugawara

2008-10-14T23:59:59.000Z

236

Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites  

SciTech Connect (OSTI)

Graphene sheets have been extensively studied as a key functional component of graphene-based nanocomposites for electronics, energy, catalysis,and sensing applications. However, fundamental understanding of the interfacial binding and nucleation processes at graphene surfaces remains lacking, and the range of controlled structures that can be produced are limited. Here, by using a combination of theoretical and experimental approaches, we demonstrate that functionalized graphene sheets (FGS) can function as a new class of molecular templates to direct nucleation and self-assembly and produce novel, three-dimensional nanocomposite materials. Two key aspects are demonstrated: First, the functional groups on FGS surface determine the nucleation energy, and thus control the nucleation sites and nucleation density, as well as the preferred crystalline phases. Second, FGS can function as a template to direct the self-assembly of surfactant micelles and produce ordered, mesoporous arrays of crystalline metal oxides and composites.

Li, Xiaolin; Qi, Wen N.; Mei, Donghai; Sushko, Maria L.; Aksay, Ilhan A.; Liu, Jun

2012-09-25T23:59:59.000Z

237

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents [OSTI]

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

238

Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives.  

SciTech Connect (OSTI)

Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually not reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.

Ma, Zhen [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

2007-01-01T23:59:59.000Z

239

Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC  

SciTech Connect (OSTI)

The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

Albert F. Zeller

2012-12-28T23:59:59.000Z

240

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nano-porous metal oxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sorption Capacity of Mesoporous Metal Oxides for the Removal of MCPA from Polluted Waters  

Science Journals Connector (OSTI)

where qe and q are the amount of herbicide sorbed (?mol kg?1) at equilibrium and at time t, respectively, Ka is the rate constant of sorption (min?1) and t is the time (min). ... The sorbing capacity for Zn and Cu was strongly influenced by Cr(III), whereas the sorbing capacity of for(III) was not affected by the presence of the other two metals. ...

Veria Addorisio; Serena Esposito; Filomena Sannino

2010-03-24T23:59:59.000Z

242

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents [OSTI]

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

243

PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful application to LiMn2O4 spinel nanoparticlesw  

E-Print Network [OSTI]

PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful-MnO2, may react with the electrolyte, leading to passivating structural changes of the active material retention compared to the bare counterpart. Spinel LiMn2O4 cathodes have been studied for possible use in Li

Cho, Jaephil

244

Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2Production  

E-Print Network [OSTI]

solar energy by production of hydrogen from water splitting is of great importance from both theoretical strategy for solving simultaneously the incoming energy and environmental problems.2 So far, numerousNoble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic

Gong, Jian Ru

245

Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties  

Science Journals Connector (OSTI)

Iron oxide thin films have been deposited over fused quartz substrate by simple metal organic deposition from Fe-(III) acetylacetonate as the organic precursor. The decomposition of Fe-acetylacetonate is characterised by its distinct transition temperatures and thermogravimetric loss rates, which have been measured by thermal gravimetric analysis. As-deposited films were sintered in the temperature range 365–800°C and the structural changes of the iron oxide thin films as they transform into different crystalline phases have been studied by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and scanning electron microscopy techniques. Mainly amorphous ?-Fe2O3 is formed at an annealing temperature of approximately 365–400°C, which transforms to ?-Fe2O3 phase with a further increase (600–800°C) in sintering temperature. The film sintered at 800°C consists of mainly crystalline ?-Fe2O3 phase, which shows photocatalytic degradation of an oxygenated aqueous solution of phenol upon visible light illumination.

Bonamali Pal; Maheshwar Sharon

2000-01-01T23:59:59.000Z

246

Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere  

SciTech Connect (OSTI)

Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22453-970, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66328, 05315-970, Sao Paulo, SP (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

2010-09-15T23:59:59.000Z

247

Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation  

SciTech Connect (OSTI)

Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

2014-03-26T23:59:59.000Z

248

Determining the Behavior of RuO(x) Nanoparticles in Mixed-Metal Oxides:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanism of Ethanol Synthesis from Syngas on Rh(111) Understanding of Mechanism of Ethanol Synthesis from Syngas on Rh(111) Understanding of ethanol decomposition on Rh(1 1 1) from density functional theory and kinetic Monte Carlo simulations Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation