National Library of Energy BETA

Sample records for nano pico femto

  1. Pico - Nano - Mikro: Going small, fast and dilute with soft x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pico - Nano - Mikro: Going small, fast and dilute with soft x-rays Monday, April 25, 2016 ... talk are the evolution of spin waves from nano contact or the behavior of different ...

  2. LCLS Femto-Second Timing and Synchronization System Update (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: LCLS Femto-Second Timing and Synchronization System Update Citation Details In-Document Search Title: LCLS Femto-Second Timing and Synchronization System Update...

  3. LCLS Femto-Second Timing and Synchronization System Update (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: LCLS Femto-Second Timing and Synchronization System Update Citation Details In-Document Search Title: LCLS Femto-Second Timing and Synchronization System Update You...

  4. Back The Pico Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores...

  5. West Pico Food | Open Energy Information

    Open Energy Info (EERE)

    Pico Food Jump to: navigation, search Name: West Pico Food Place: Vernon, California Sector: Solar Product: A distributor of wholesale frozen foods to supermarket chains in...

  6. Nano Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Facts The concept of the extremely small world of nano is difficult to comprehend. Here are some facts to help put this incredible world into perspective * If we met for one ...

  7. MHK Projects/OWC Pico Power Plant | Open Energy Information

    Open Energy Info (EERE)

    OWC Pico Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  8. Pico Rivera, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pico Rivera is a city in Los Angeles County, California. It falls under California's 38th...

  9. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber...

    Office of Scientific and Technical Information (OSTI)

    Dark Matter Search Results from the PICO-60 CF3I Bubble Chamber Citation Details In-Document Search Title: Dark Matter Search Results from the PICO-60 CF3I Bubble Chamber...

  10. PICO: An Object-Oriented Framework for Branch and Bound

    SciTech Connect (OSTI)

    ECKSTEIN,JONATHAN; HART,WILLIAM E.; PHILLIPS,CYNTHIA A.

    2000-12-01

    This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.

  11. Preliminary Results of Mono-energetic Electron Beams from a Laser-plasma Accelerator Driven by 200 TW Femto Second Pulses

    SciTech Connect (OSTI)

    Taki, R.; Kameshima, T.; An, W. M.; Hua, J. F.; Huang, W. H.; Tang, C. X.; Gu, Y. Q.; Guo, Y.; Hong, W.; Jiao, C. Y.; Lin, Y. Z.; Liu, H. J.; Peng, H. S.; Sun, L.; Tang, C. M.; Wang, X. D.; Wen, T. S.; Wen, X. L.; Wu, Y. C.; Zhang, B. H.

    2006-11-27

    Relativistic mono-energetic electron beams have been demonstrated by worldwide laser-plasma accelerator experiments in the range of a few tens TW. Laser-plasma accelerator experiment has been carried out with 200TW, 30fs Ti:Sapphire laser pulses focused on helium gas-jets with F/8.7 optics. Intense mono-energetic electron beams have been produced in the energy range of 30 to 150 MeV by controlling plasma length and density precisely. Images of Thomson scattering and fluorescence side scattering from plasma indicate highly relativistic effects such as a long self-channeling and filamentation as well as energetic electron deflection and intense backward Raman scattering. Preliminary results of the first laser-plasma accelerator experiment in the range of 200TW femto second pulses are presented.

  12. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Apr 03, 2015 10:00 AM - Apr 12, 2015 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury Science INTERNAL: Calendar Login NanoDays - April 3-12, 2015 Event Description NanoDays is a nationwide festival of educational programs about nanoscale science and engineering and its potential impact on the future. The Bradbury Science Museum celebrates NanoDays during Spring Break week, April

  13. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Mar 24, 2016 10:00 AM - Apr 03, 2016 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description NanoDays is a national festival of educational programs about nanoscale science and engineering and it's potential impact on the future. The Bradbury Science Museum will celebrate NanoDays over local spring break, March 24 - April 3, 2016. At the

  14. Improved dark matter search results from PICO-2L Run 2 (Journal...

    Office of Scientific and Technical Information (OSTI)

    Run 2 New data are reported from a second run of the 2-liter PICO-2L C3F8 bubble ... Country of Publication: United States Language: English Subject: 79 ASTRONOMY AND ASTROPHYSICS; ...

  15. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  16. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber

    SciTech Connect (OSTI)

    Amole, C.

    2015-10-26

    We reported new data from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. We found these behaviors allow for analysis cuts to remove all background events while retaining 48.2%of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.

  17. Nano C | Open Energy Information

    Open Energy Info (EERE)

    C Jump to: navigation, search Name: Nano-C Place: Westwood, Massachusetts Zip: 2090 Product: A Boston-based company that manufactures combustion based technology. Coordinates:...

  18. NanoReady Ltd | Open Energy Information

    Open Energy Info (EERE)

    NanoReady Ltd Jump to: navigation, search Name: NanoReady Ltd Place: Caesarea, Israel Zip: 38900 Sector: Solar Product: String representation "NanoReady devel ... nd solar cells."...

  19. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  20. 2016 - Nano Days | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Days 5.26.2016 Nano Days - April 2, 2016

  1. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOE Patents [OSTI]

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  2. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ...

  3. Nano Particles - Supercritical Fluid Process - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Nano Particles ... Applications and Industries Nano particles, supercritical fluid, photovoltaic devices, ...

  4. Nano Tune Technologies Corp | Open Energy Information

    Open Energy Info (EERE)

    Product: Nano Tune use sol-gel processing technology to develop a high energy density & power storage devices. References: Nano Tune Technologies Corp.1 This article is...

  5. Photonic Metamaterials, Nano- plasmonics and Superlens | MIT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nano-scale science and technology, meta- materials, nano-photonics and bio-technologies. ... Bulletin (Materials Research Society), Photonics Spectra, Materials Today, Physics Web, ...

  6. PICASSO, COUPP and PICO - Search for dark matter with bubble chambers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; et al

    2015-05-29

    The PICASSO and COUPP collaborations use superheated liquid detectors to search for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs). These experiments, located in the underground laboratory of SNOLAB, Canada, detect phase transitions triggered by nuclear recoils in the keV range induced by interactions with WIMPs. We present details of the construction and operation of these detectors as well as the results, obtained by several years of observations. We also introduce PICO, a joint effort of the two collaborations to build a second generation ton-scale bubble chamber with 250 liters of active liquid.

  7. GM`s PICOS initiative on resource conservation and pollution prevention: Greening the supply chain

    SciTech Connect (OSTI)

    Pritchett, T.

    1997-12-31

    This paper is comprised of reprints of several related articles from business publications. The first article, on supply-side economics, describes efforts by General Motors to cut costs by encouraging suppliers to reduce the environmental impacts of their products. The PICOS{trademark} program of General Motors helps industrial identify and implement energy efficiency and pollution prevention projects that lower operating costs while reducing emissions linked to global climate change. The second article also describes the program, focusing on aspects of global competition.

  8. Nano-optomechanical transducer

    DOE Patents [OSTI]

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  9. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ... looking to make a big impact with tiny materials. PDF icon ArgonneNanoDesignWorks

  10. Nano-Composite Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nano-Composite Materials National Renewable Energy ... have developed a method of producing a nano-composite material by co-sputtering a ...

  11. Magnetic nano-particles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic nano-particles The student will be involved in assembling CoFe2O4 nano-particles onto Si wafers for further studies by X-ray magnetic circular dichroism (XMCD) that will...

  12. From nano lab to how we measure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From nano lab to how we measure At the Bradbury Latest Issue:September 2016 all issues All Issues » submit From nano lab to how we measure Scientist in the Spotlight, 11 a.m. to 1 p.m., Saturday, September 10 There are activities for all ages! Stop by for some fun Seeing nano Come by and play in a simplified version of a nano lab! Nano means one billionth of something so a nanometer is one billionth of a meter. To help put that in perspective, a sheet of newspaper is about 100,000 nanometers

  13. nano_argonne.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information nano_argonne

  14. CO2 Conversion By Nano Heaters

    ScienceCinema (OSTI)

    None

    2014-06-23

    A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

  15. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  16. CO2 Conversion By Nano Heaters

    SciTech Connect (OSTI)

    2014-03-11

    A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

  17. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  18. C3Nano, inc | Open Energy Information

    Open Energy Info (EERE)

    has emerged from Stanford University in Stanford, California. C3Nano, inc. is team of students from Stanford University, who recently won the Massachusetts Institute of Technology...

  19. Nano Nouvelle Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Nano-Nouvelle uses advanced materials technology, including nanotechnology, to develop technology in key large markets. Its particular focus is on...

  20. 'Nano'tubes, Surface Area & NanoSolar Cells

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit takes students through several introductory lessons designed to gain a better understanding of the 'nano' scale as it relates to the creation of a (dye-sensitized) solar cell (DSSC). The introductory lessons guide students through activities covering volume, surface area and density and exploration of the relationship between these factors. The unit culminates with students building a Gratzel cell, a solar cell employing a layer of nanospheres of TiO2 as the semiconductor and blackberry juice as the light absorber in a non-Si-based solar cell. Students are able to build a small solar cell and test its efficiency.

  1. Nano-composite stainless steel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Nano-composite stainless steel Citation Details In-Document Search Title: Nano-composite stainless steel A composite stainless steel composition is composed essentially of, ...

  2. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the ... wear resistant nano-composite coatings and components for a wide range of applications. ...

  3. Tools for the Microbiome: Nano and Beyond (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Tools for the Microbiome: Nano and Beyond Prev Next Title: Tools for the Microbiome: Nano and Beyond Authors: Biteen, Julie S. ; Blainey, Paul C. ; Cardon, Zoe G. ; Chun, ...

  4. Small and Powerful: Pushing the Boundaries of Nano-Magnets |...

    Office of Science (SC) Website

    and Powerful: Pushing the Boundaries of Nano-Magnets Basic Energy Sciences (BES) BES ... Small and Powerful: Pushing the Boundaries of Nano-Magnets Newly discovered particles ...

  5. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel ...

  6. NanoComposite Stainless Steel Powder Technologies (Technical...

    Office of Scientific and Technical Information (OSTI)

    NanoComposite Stainless Steel Powder Technologies Citation Details In-Document Search Title: NanoComposite Stainless Steel Powder Technologies You are accessing a document from ...

  7. 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion Citation Details In-Document Search Title: 2011 Final Report - Nano-Oxide Photocatalysis ...

  8. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling ...

  9. Korea Advanced Nano Fab Center KANC | Open Energy Information

    Open Energy Info (EERE)

    Korea (Republic) Zip: 443-270 Product: String representation "The Korea Advan ... f nano devices." is too long. References: Korea Advanced Nano Fab Center (KANC)1 This...

  10. Dipole nano-laser: Theory and properties

    SciTech Connect (OSTI)

    Ghannam, T.

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  11. Pi-CO? aqueous post-combustion CO? capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    SciTech Connect (OSTI)

    Blount, G.; Gorensek, M.; Hamm, L.; ONeil, K.; Kervvan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO?) capture system (Pi-CO?) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO? has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO? from local industrial sources.

  12. DNA Assembly Line for Nano-Construction

    ScienceCinema (OSTI)

    Oleg Gang

    2010-01-08

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  13. Cima NanoTech | Open Energy Information

    Open Energy Info (EERE)

    including nanoparticle conductive inks and transparent conductive coatings for solar cells. References: Cima NanoTech1 This article is a stub. You can help OpenEI by...

  14. Lipid bilayers on nano-templates

    DOE Patents [OSTI]

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  15. Nano structural anodes for radiation detectors

    SciTech Connect (OSTI)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  16. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand Droplet-Based Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2013-07-08

    We present an integrated droplet-on-demand microfluidic platform for dispensing, mixing, incubating, extracting and analyzing by mass spectrometry pico- to nanoliter sized droplets. Droplet generation is accomplished using computer-controlled pneumatic valves. Controlled actuation of valves for different aqueous streams enables controlled dosing and rapid mixing of reagents within droplets in the droplet generation area or in a region with widening channel cross-section. Following incubation, which takes place while droplets travel in the oil stream, the droplet contents are extracted to an aqueous channel for subsequent ionization at an integrated nanoelectrospray emitter. As an initial demonstration of the platform, rapid enzymatic digestions of a model protein are performed in droplets and detected on-line by nanoelectrospray ionization mass spectrometry.

  17. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers ... electron-beam lithographic techniques or nano-imprint lithography, but these methods are ...

  18. Nano-Composite Arsenic Sorbent - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nano-Composite Arsenic Sorbent N-CAS: A low cost, ... Contact INL About This Technology Publications: PDF Document Publication Nano-Composite ...

  19. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Surface Icephobic Coating Delays Ice Formation Click to email this to a friend (Opens ... A Nano Surface Icephobic Coating Delays Ice Formation Azar Alizadeh 2012.03.08 Hi folks, ...

  20. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be ... available nanoparticles over multiple length scales, ranging from the nano to the macro. ...

  1. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Self-Assembly of Polymer Nano-Elements on Sapphire Print Wednesday, 25 March 2009 00:00 Self-assembly of polymers promises to ...

  2. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will ...

  3. Nano tech Silicon India Ltd | Open Energy Information

    Open Energy Info (EERE)

    tech Silicon India Ltd Jump to: navigation, search Name: Nano-tech Silicon India Ltd Place: Hyderabad, Andhra Pradesh, India Product: Nano-tech Silicon is a manufacturer of PV...

  4. NanoMas Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: NanoMas develops silver nanoparticle-based dyes which can be used in printable solar cells and other printable electronics. References: NanoMas Technologies Inc.1 This...

  5. Nano-material and method of fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  6. Nano Communication Networks Update | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Communication Networks Update Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nano Communication Networks Update Steve Bush 2011.12.09 Hi everybody, In my last blog I talked about some of the work I have been doing pertaining to advanced communications for the Smart Grid. However, I wanted to post a blog updating

  7. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  8. Asphaltenes-based polymer nano-composites

    DOE Patents [OSTI]

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  9. Electrochemical method of producing nano-scaled graphene platelets

    SciTech Connect (OSTI)

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  10. Los Alamos shares Nano 50 award for directed assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano 50 award for directed assembly Los Alamos shares Nano 50 award for directed assembly Nano 50 Awards recognize "the top 50 technologies, products, and innovators that have significantly impacted, or will impact, the development of nanotechnology." September 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  11. Nano-sized structured layered positive electrode materials to...

    Office of Scientific and Technical Information (OSTI)

    positive electrode materials to enable high energy density and high rate capability lithium batteries Title: Nano-sized structured layered positive electrode materials to ...

  12. Nano Design Works: Industry's contact for emerging tech, leading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works: Industry's contact for emerging tech, leading tools, and experts Argonne's Nano Design Works gives companies and entrepreneurs the solutions that enable technological ...

  13. 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy...

    Office of Scientific and Technical Information (OSTI)

    Photocatalysis for Solar Energy Conversion Citation Details In-Document Search Title: 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion You are ...

  14. Nano-based PCMs for building energy efficiency

    SciTech Connect (OSTI)

    Biswas, Kaushik

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  15. BioCentric Energy Inc formerly Nano Chemical Systems Holdings...

    Open Energy Info (EERE)

    search Name: BioCentric Energy Inc (formerly Nano Chemical Systems Holdings) Place: Santa Ana, California Zip: 90707 Product: California-based development-stage company that...

  16. Nano, photonic research gets boost from new 3-D visualization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nanotechnology, particularly nanofilms, photonics and micro- and nano-electronics. ... Total External Reflection", published online this month in the journal Nature Photonics. ...

  17. Tools for the Microbiome: Nano and Beyond (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Tools for the Microbiome: Nano and Beyond Authors: Biteen, Julie S. ; Blainey, Paul C. ; Cardon, Zoe G. ; Chun, Miyoung ; Church, George M. ; Dorrestein, Pieter C. ;...

  18. Sustainable Nano-Materials: What is happening at the cellular...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-Materials What is happening at the cellular level? Art J. Ragauskas, Institute of Paper Science and Technology Georgia Institute of Technology Advanced Materials: Cellular ...

  19. Nano Structure Control and Selectivity of Hydrogen Release from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Structure Control and Selectivity of Hydrogen Release from Hydrogen Storage Pacific Northwest National Laboratory Contact PNNL About This Technology Illustration depicting...

  20. NanoBright Technologies Pte Ltd | Open Energy Information

    Open Energy Info (EERE)

    develops luminescent materials, including substances used to improve the efficiency of solar cells. References: NanoBright Technologies Pte Ltd1 This article is a stub. You...

  1. Nano-focused Bremstrahlung Isochromat Spectroscopy (nBIS) Determinatio...

    Office of Scientific and Technical Information (OSTI)

    Spectroscopy (nBIS) Determination of the Unoccupied Electronic Structure of Pu Citation Details In-Document Search Title: Nano-focused Bremstrahlung Isochromat Spectroscopy ...

  2. OSTIblog Articles in the nano Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    nano Topic Nano research in DOE collections by Kathy Chambers 24 Jul, 2012 in Science Communications 4311 Javey-baseball-300x266.jpg Nano research in DOE collections Read more ...

  3. "Plastic" Solar Cells: Self-Assembly of Bulk HeterojunctionNano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation ... self-assembly of bulk heterojunction (BHJ) nano-materials by spontaneous phase separation. ...

  4. Nano-structures Thermoelectric Materals - Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002_deer_venkatasubramanian1.pdf (1.13 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 2 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Thermoelectric Developments for Vehicular Applications

  5. Nano-structures Thermoelectric Materals - Part 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International 2002_deer_venkatasubramanian2.pdf (3.14 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 1 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy?

  6. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genotoxicity Studies to Support Engineering Development of Emission Controls | Department of Energy Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER

  7. Nano-superconducting quantum interference devices with suspended junctions

    SciTech Connect (OSTI)

    Hazra, D.; Hasselbach, K.; Kirtley, J. R.

    2014-04-14

    Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5?K and magnetic flux densities up to over 20?mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

  8. Method of producing nano-scaled inorganic platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  9. Direct Energy Conversion Nano-hybrid Fuel

    SciTech Connect (OSTI)

    Popa-Simil, Liviu

    2008-07-01

    Most of the exothermic nuclear reactions transfer the mass defect or binding and surplus energy into kinetic energy of the resulting particles. These particles are traveling through material lattices, interacting by ionization and nuclear collisions. Placing an assembly of conductive-insulating layers in the path of such radiation, the ionization energy is transformed into charge accumulation by polarization. The result is a super-capacitor charged by the moving particles and discharged electrically. Another more promising solution is to use bi-material nanoparticles organized such as to act like a serial connection and add the voltage. A spherical symmetry fission products source coated in several nano-layers is desired for such structures. The system may operate as dry or liquid-immersed battery, removing the fission products from the fissile material. There is a tremendous advantage over the current heat flow based thermal stabilization system allowing a power density up to 1000 times higher. (author)

  10. Light modulation with a nano-patterned diffraction grating and...

    Office of Scientific and Technical Information (OSTI)

    with a nano-patterned diffraction grating and MEMS pixel. Abstract not provided. Authors: Skinner, Jack L. ; Talin, Albert Alec ; Horsley, David A. Publication Date: 2008-05-01...

  11. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  12. In situ XAS Characterization of Catalytic Nano-Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying ...

  13. NREL: Awards and Honors - NanoCeram Nanoalumina Fiber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of time. For bone tissue engineering, NanoCeram provides a strong fibrous material, molding a scaffolding to which bone-forming osteoblast cells can adhere and build. Trials...

  14. Bilayer self-assembly on a hydrophilic, deterministically nano...

    Office of Scientific and Technical Information (OSTI)

    This study provides insight into film transfer both outside and inside regular nano-patterned features. Authors: Smith, Gregory Scott 1 ; Jung, Seung-Yong 1 ; Browning, Jim 1 ...

  15. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward...

  16. Near-field NanoThermoMechanical memory

    SciTech Connect (OSTI)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-12-15

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer.

  17. Shenzhen Institute of Nano Materials and Technology | Open Energy...

    Open Energy Info (EERE)

    Solar Product: An institute of nano technology, which could be applied in DLC film coated solar cells (diamond solar cells). Coordinates: 22.546789, 114.112556 Show Map Loading...

  18. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important...

  19. New nano-mechanical plasmonic phase modulator offers electronics potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory nano-mechanical plasmonic phase modulator offers electronics potential April 3, 2015 Tweet EmailPrint By using standard semiconductor manufacturing equipment, a team of scientists from the U.S. Department of Energy's Argonne National Laboratory, the National Institute of Standards and Technology (NIST), Rutgers University and the University of Colorado at Colorado Springs, has demonstrated a nano-mechanical plasmon phase modulator that can control and manipulate

  20. NanoCapillary Network Proton Conducting Membranes for High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen/Air Fuel Cells | Department of Energy NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. pintauro.pdf (276.25 KB) More Documents & Publications High Temperature Membrane Working Group Vehicle Technologies Office Merit Review 2016: Li-Ion Battery Anodes from

  1. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Self-Assembly of Polymer Nano-Elements on Sapphire Print Wednesday, 25 March 2009 00:00 Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned

  2. Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Page Home About Us Departments News Partnering Research J. Charles Barbour J. Charles Barbour Director Beverly Eppinga Beverly A. Eppinga Sr. Mgt. Asst. DOI Research Briefs CINT Physical, Chemical, and Nano Sciences Center The Physical, Chemical, and Nano Sciences Center supports Sandia's mission by providing new scientific knowledge.We have two key activities: Support the National Nuclear Security Administration's (NNSA) mission with our unique expertise in science-based solutions

  3. High Strength Nano-Structured Steel - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search High Strength Nano-Structured Steel Idaho National Laboratory Success Story Details Partner Location Agreement Type Publication Date Nanosteel, Inc. Providence, Rhode Island License Work for Others (WFO) June 4, 2013 Video Bulk Materials Nanotechnology Summary The NanoSteel Company Complex modern challenges are driving new industrial market demands for metal alloys with properties and performance capabilities outside the known boundaries of

  4. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  5. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    SciTech Connect (OSTI)

    Moslem, W. M.; El-Said, A. S.

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  6. Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...

    Energy Savers [EERE]

    Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts This presentation ...

  7. Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Yanbing ... Preparation In-situ growth of nano-array on monolith Free of binders ...

  8. A Three-Dimensional Carbon Nano-Network for High Performance...

    Office of Scientific and Technical Information (OSTI)

    A Three-Dimensional Carbon Nano-Network for High Performance Lithium Ion Batteries. Citation Details In-Document Search Title: A Three-Dimensional Carbon Nano-Network for High...

  9. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect (OSTI)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  10. Chemical imaging of biological materials by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Smith, J B; Hutcheon, I D; Shmakov, A; Rybitskaya, I; Curran, H

    2004-08-23

    The NanoSIMS 50 represents the state -of-the-art for in situ microanalysis for secondary ion mass spectrometry (SIMS), combining unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (MDL of 200 atoms). The NanoSIMS incorporates an array of detectors, enabling simultaneous collection of 5 elements or isotopes originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution is unique to the NanoSIMS and provides a novel new approach to the study of the distribution of elements in biological materials. We have applied this technique extensively to mammalian cells and bacterial spores. Results from these studies and critical analytical issues such as sample preparation, instrument tuning, and data processing will be discussed.

  11. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  12. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect (OSTI)

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  13. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and

  14. Method for nano-pumping using carbon nanotubes

    DOE Patents [OSTI]

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  15. Nanoconstriction-based spin-Hall nano-oscillator

    SciTech Connect (OSTI)

    Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.

    2014-10-27

    We experimentally demonstrate magnetic nano-oscillators driven by pure spin current produced by the spin Hall effect in a bow tie-shaped nanoconstriction. These devices exhibit single-mode auto-oscillation and generate highly-coherent electronic microwave signals with a significant power and the spectral linewidth as low as 6.2 MHz at room temperature. The proposed simple and flexible device geometry is amenable to straightforward implementation of advanced spintronic structures such as chains of mutually coupled spin-Hall nano-oscillators.

  16. Tiny subject, big fun with NanoDays at Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays at Bradbury Science Museum Tiny subject, big fun with NanoDays at Bradbury Science Museum NanoDays is a national campaign, engaging people of all ages in learning about the emerging field of nanoscale science and engineering. March 18, 2013 Visitors to the Bradbury Science Museum's NanoDays can learn about the strange science of this intriguing field of research. Visitors to the Bradbury Science Museum's NanoDays can learn about the strange science of this intriguing field of research.

  17. Nano-Composite Material Development for 3-D Printers

    SciTech Connect (OSTI)

    Satches, Michael Randolph

    2015-10-14

    The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

  18. Transparent Conductive Nano-Composites - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Transparent Conductive Nano-Composites Nanomaterials for Applications Ranging From Photovoltaic Cells to Display Technologies Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Indium Tin Oxide, the most widely used commercial transparent conducting coating, has severe limitations such

  19. Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departments Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Departments Radiation, Nano Materials, & Interface Sciences Radiation and Solid Interactions Nanomaterials Sciences Surface and Interface Sciences Semiconductor & Optical Sciences Semiconductor Material and Device Sciences Advanced Materials Sciences Lasers, Optics, and Remote Sensing Energy Sciences CINT User Program CINT Science Small Science

  20. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  1. Nano-Composite Material Development for 3-D Printers

    SciTech Connect (OSTI)

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  2. Method for forming a nano-textured substrate

    SciTech Connect (OSTI)

    Jeong, Sangmoo; Hu, Liangbing; Cui, Yi

    2015-04-07

    A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale, roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.

  3. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect (OSTI)

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  4. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    SciTech Connect (OSTI)

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  5. Plasma meets nano at PPPL | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma meets nano at PPPL By John Greenwald February 13, 2013 Tweet Widget Google Plus One Share on Facebook Physicist Yevgeny Raitses, right, with Washington University undergraduate Mitchell Eagles in the PPPL nanolaboratory. (Photo by Elle Starkman/PPPL Office of Communications) Physicist Yevgeny Raitses, right, with Washington University undergraduate Mitchell Eagles in the PPPL nanolaboratory. Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL)

  6. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  7. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  8. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  9. Slip casting nano-particle powders for making transparent ceramics

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  10. Nano-structured polymer composites and process for preparing same

    DOE Patents [OSTI]

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  11. Muon Application to Advanced Bio- and Nano-Sciences

    SciTech Connect (OSTI)

    Nagamine, Kanetada

    2008-02-21

    Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

  12. Mega-Pore Nano-Structured Carbon - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Mega-Pore Nano-Structured Carbon Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryCurrent supercapacitor technologies cannot meet the growing demands for high-power energy storage. Meeting this challenge requires the development of new electrode materials.DescriptionScientists at ORNL have developed robust carbon monolithic having hierarchical

  13. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema (OSTI)

    Jim Schuck and Alice Egan

    2010-01-08

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  14. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  15. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  16. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  17. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  18. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  19. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  20. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or

  1. Exploring packaging strategies of nano-embedded thermoelectric generators

    SciTech Connect (OSTI)

    Singha, Aniket; Muralidharan, Bhaskaran; Mahanti, Subhendra D.

    2015-10-15

    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multi moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.

  2. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect (OSTI)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  3. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  4. OSTIblog Articles in the nano Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information nano Topic Nano research in DOE collections by Kathy Chambers 24 Jul, 2012 in Science Communications 4311 Javey-baseball-300x266.jpg Nano research in DOE collections Read more about 4311 Research involving nanoscale dimensions enable development of innovative materials to help solve challenges in the world you live in. As an example, printing electronic circuitry on flexible and stretchable backplanes could revolutionize a number of industries, including

  5. Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts This presentation demonstrates how nano-array catalysts have excellent robustness, use ultra-low amounts of PGM, and can be tuned for optimum performance. deer12_guo.pdf (3.95 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low

  6. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and bulk components for geothermal drilling applications. highpeternanocompositebits.pdf (945.84 KB) More Documents & Publications Wear-Resistant, Nano-Composite Steel Coatings

  7. Picture of the Week: Hacking the bio-nano interface for better...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hacking the bio-nano interface for better biofuels Los Alamos theoretical physicists and chemists are using computers to develop more efficient ways of converting biofuels into ...

  8. 2013 IEEE International Symposium on Biomedical Imaging: From Nano to Macro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 IEEE International Symposium on Biomedical Imaging: From Nano to Macro http://www.biomedicalimaging.org/2013/ April 7-11, 2013; San Francisco, CA, USA

  9. High energy density capacitors using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  10. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    SciTech Connect (OSTI)

    Yakobson, Boris I

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  11. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2009-09-01

    The expanding role of microfluidics for chemical and biochemical analysis is due to factors including the favorable scaling of separation performance with reduced channel dimensions,[1] flexibility afforded by computer-aided device design, and the ability to integrate multiple sample handling and analysis steps into a single platform.[2] Such devices enable smaller liquid volumes and sample sizes to be handled than can be achieved on the benchtop, where sub-microliter volumes are difficult to work with and where sample losses to the surfaces of multiple reaction vessels become prohibitive. A particularly attractive microfluidic platform for sample-limited analyses employs aqueous droplets or plugs encapsulated by an immiscible oil.[3,4] Each droplet serves as a discrete compartment or reaction chamber enabling, e.g., high throughput screening[5,6] and kinetic studies[7-9] of femto- to nanoliter samples, as well as the encapsulation[10-12] and lysis[10] of individual cells with limited dilution of the cellular contents

  12. Nano powders, components and coatings by plasma technique

    DOE Patents [OSTI]

    McKechnie, Timothy N.; Antony, Leo V. M.; O'Dell, Scott; Power, Chris; Tabor, Terry

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  13. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward Los Alamos National Laboratory Timothy Ward, Plamen Atanassov University of New Mexico Karren More Oak Ridge National Laboratory Fuel Cell Technologies Program Kick-off Meeting September 30 - October 1, 2009 Washington DC Operated by Los Alamos National Security, LLC for NNSA U

  14. Method of producing carbon coated nano- and micron-scale particles

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  15. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    SciTech Connect (OSTI)

    Li, Nannan; Pang, Shucai; Yan, Fei; Chen, Lei; Jin, Dazhi; Xiang, Wei; Zhang, De; Zeng, Baoqing

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.

  16. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  17. Process of making titanium carbide (TiC) nano-fibrous felts

    SciTech Connect (OSTI)

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  18. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  19. Design Optimization of Radionuclide Nano-Scale Batteries

    SciTech Connect (OSTI)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-10-06

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW-hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas.

  20. A nano lamella NbTi–NiTi composite with high strength

    SciTech Connect (OSTI)

    Jiang, Jiang; Jiang, Daqiang; Hao, Shijie; Yu, Cun; Zhang, Junsong; Ren, Yang; Lu, Deping; Xie, Shifang; Cui, Lishan

    2015-05-01

    A hypereutectic Nb60Ti24Ni16 (at%) alloy was prepared by vacuum induction melting, and a nano lamellae NbTi-NiTi composite was obtained by hot-forging and wire-drawing of the ingot Microscopic analysis showed that NbTi and NiTi nano lamellae distributed alternatively in the composite, and aligned along the wire axial direction, with a high volume fraction (similar to 70%) of NbTi nano lamellae. In situ synchrotron X-ray diffraction analysis revealed that stress induced martensitic transformation occurred upon loading, which would effectively weaken the stress concentration at the interface and avoid the introduction of defects into the nano reinforced phase. Then the embedded NbTi nano lamellae exhibited a high elastic strain up to 2.72%, 1.5 times as high as that of the Nb nanowires embedded in a conventional plastic matrix, and the corresponding stress carried by NbTi was evaluated as 2.53 GPa. The high volume fraction of NbTi nano lamellae improved the translation of high strength from the nano reinforced phase into bulk properties of the composite, with a platform stress of similar to 1.7 GPa and a fracture strength of similar to 1.9 GPa. (C) 2015 Elsevier B.V. All rights reserved.

  1. Phototoxicity of nano titanium dioxides in HaCaT keratinocytesGeneration of reactive oxygen species and cell damage

    SciTech Connect (OSTI)

    Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong

    2012-08-15

    Nano-sized titanium dioxide (TiO{sub 2}) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO{sub 2} particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO{sub 2} dose-dependent. The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO{sub 2} can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO{sub 2} is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. Highlights: ? We evaluate the phototoxicity of nano-TiO{sub 2} with different sizes and crystal forms. ? The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. ? The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. ? ESR oximetry and immuno-spin trapping techniques confirm UVA-induced cell damage. ? Phototoxicity is mediated by ROS generated during UVA irradiation of nano-TiO{sub 2}.

  2. Shape and edge dependent electronic and magnetic properties of silicene nano-flakes

    SciTech Connect (OSTI)

    Mohan, Brij Pooja,; Ahluwalia, P. K.; Kumar, Ashok

    2015-06-24

    We performed first-principle study of the geometric, electronic and magnetic properties of arm-chair and zigzag edge silicene nano-flakes of triangular and hexagonal shapes. Electronic properties of silicene nano-flakes show strong dependence on their edge structure and shape. The considered nanostructures shows energy gap ranging ∼ 0.4 – 1.0 eV. Zigzag edged triangular nano-flake is magnetic and semiconducting in nature with 4.0 µ{sub B} magnetic moment and ∼ 0.4 eV energy gap.

  3. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    SciTech Connect (OSTI)

    Lu, Gui; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 ; Hu, Han; Sun, Ying E-mail: ysun@coe.drexel.edu; Duan, Yuanyuan E-mail: ysun@coe.drexel.edu

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  4. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    SciTech Connect (OSTI)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong

    2014-10-20

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  5. CNM Participates in 2014 NanoDays Outreach Event | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory CNM Participates in 2014 NanoDays Outreach Event May 1, 2014 Tweet EmailPrint On April 14, 2014, the CNM held a Nanoscale Informal Science Education Network (NISE) NanoDays Event for 62 local fifth-grade science students and their teachers. CNM has a strong committment to activities that increase science, technology, engineering, and math (STEM) literacy and enthusiasm among students, their families, and educators. The NanoDays kits were an excellent resource for this audience,

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  7. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  8. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  9. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  10. Synthesis of nano-crystalline multifibrous zirconia needle

    SciTech Connect (OSTI)

    Biswas, Mridula; Bandyopadhyay, Siddhartha

    2013-06-01

    Graphical abstract: - Highlights: Zirconia needles have been successfully prepared by simple inorganic solgel route. The shape of the needles was retained after firing with aspect ratio > 400. Needles are composed of multiple fibres. Fibres are composed of nano crystals. - Abstract: Zirconia needles have been successfully synthesized using a simple inorganic solgel process without using any template. The method employs mixture of zirconium oxychloride octahydrate and sulphuric acid in aqueous medium. This process requires heat treatment at 40 C for 2 h in an oven for nucleus formation. Complete formation of needle occurs after 17 days. The green needle retained its original shape after calcination at 1200 C. Fired needles were of 12 cm in length and 550 ?m in diameter and possess monoclinic phase. Needles are composed of multiple fibres. Depending on the heat treatment temperature, crystallite size varies in the range of 8 to around 300 nm.

  11. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect (OSTI)

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  12. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray; Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  13. Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite

    SciTech Connect (OSTI)

    Dang, Hongli; Liu, Yingdi; Xue, Wenhua; Anderson, Ryan S.; Sewell, Cody R.; Xue, Sha; Crunkleton, Daniel W.; Shen, Yaogen; Wang, Sanwu

    2014-03-03

    We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d > 1.4 nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0 eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d ≤ 1.4 nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation.

  14. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Progress of ...

  15. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    SciTech Connect (OSTI)

    Fomin, Vladimir M.; Balandin, Alexander A.

    2015-10-10

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

  16. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  17. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fomin, Vladimir M.; Balandin, Alexander A.

    2015-10-10

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  18. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  19. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOE Patents [OSTI]

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  20. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  1. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation es009jang2011o.pdf (764.62 KB) More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress ...

  2. Improvement of X-ray Analysis of Nano-scaled Materials by Means...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement of X-ray Analysis of Nano-scaled Materials by Means of High Resolution X-ray Emission Spectrometry Monday, August 1, 2011 - 2:00pm SSRL Bldg. 137 Conference Room ...

  3. Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

    Broader source: Energy.gov (indexed) [DOE]

    0kumta.pdf (1.9 MB) More Documents & Publications Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nanoscale ...

  4. Understanding Li-ion battery processes at the atomic- to nano...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Understanding Li-ion battery processes at the atomic- to nano-scale Authors: Sullivan, J P ; Huang, Jianyu ; Shaw, M J ; Subramanian, A ; ...

  5. Water-mediated electrochemical nano-writing on thin ceria films...

    Office of Scientific and Technical Information (OSTI)

    ... SciTech Connect Search Results Journal Article: Water-mediated electrochemical nano-writing on thin ceria films Citation Details In-Document Search Title: Water-mediated ...

  6. THz near-field microscopy of graphene nano-ribbon arrays. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: THz near-field microscopy of graphene nano-ribbon arrays. Authors: Pan, Wei ; Brener, Igal ; Mitrofanov, O. ; Thompson, R ; Yu, W. ; berger, c ; de heer, w.a. ; Jiang, Z. ...

  7. X-ray and neutron scattering from nano-mgantic clusters | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray and neutron scattering from nano-mgantic clusters The student will participate in hands on X-ray scattering experiments on bio-inspired inorganic materials (i.e., magnetic...

  8. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to machine materials. 150 m diameter holes cut in a 50 m thick silicon wafer via nano (left), pico (center), and femtosecond (right) pulse lasers. Photo credit Raydiance. ...

  9. Nano-Composite Designs for Energy Storage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-Composite Designs for Energy Storage Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.13 Nano-Composite Designs for Energy Storage

  10. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect (OSTI)

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  11. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators

    SciTech Connect (OSTI)

    Ulrichs, H. Demidov, V. E.; Demokritov, S. O.

    2014-01-27

    We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.

  12. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    SciTech Connect (OSTI)

    Kaur, Jaskiran Kaur, Harmanmeet Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-04-24

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot.

  13. Decomposition Pathway of Ammonia Borane on the Surface of nano-BN

    SciTech Connect (OSTI)

    Neiner, Doinita; Luedtke, Avery T.; Karkamkar, Abhijeet J.; Shaw, Wendy J.; Wang, Julia; Browning, Nigel; Autrey, Thomas; Kauzlarich, Susan M.

    2010-08-19

    Ammonia borane (AB) is under significant investigation as a possible hydrogen storage material. While many chemical additives have been demonstrated to have a significant positive effect on hydrogen release from ammonia borane, many provide additional complications in the regeneration cycle. Mechanically alloyed hexagonal BN (nano-BN) has been shown to facilitate the release of hydrogen from AB at lower temperature, with minimal induction time, less exothermically, and inert nano-BN may be easily removed during any regeneration of the spent AB. The samples were prepared by mechanically alloying AB with nano-BN. Raman spectroscopy indicates that the AB:nano-BN samples are physical mixtures of AB and h-BN. The release of hydrogen from AB:nano-BN mixtures as well as the decomposition products were characterized by 11B magic angle spinning (MAS) solid state NMR, TGA/DSC/MS with 15N labeled AB, and solution 11B NMR spectroscopy. The 11B MAS solid state NMR spectrum shows that diammonate of diborane (DADB) is present in the mechanically alloyed mixture, which drastically shortens the induction period for hydrogen release from AB. Analysis of the TGA/DSC/MS spectra using 15N labeled AB shows that all the borazine (BZ) produced in the reaction comes from AB and that increasing nano-BN surface area results in increased amounts of BZ. However, under high temperature, 150?C, isothermal conditions, the amount of BZ released was the same as for neat AB. High resolution transmission electron microscopy (HRTEM), selected area diffraction (SAD), and electron energy loss spectroscopy (EELS) of the initial and final nano-BN additive provide evidence for crystallinity loss but not significant chemical changes. The higher concentration of BZ observed for low temperature dehydrogenation of AB:nano-BN mixtures versus neat AB is attributed to a surface interaction that favors the formation of precursors which ultimately result in BZ. This pathway can be avoided through isothermal heating

  14. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    SciTech Connect (OSTI)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-07-31

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  15. Carbon NanoFiber Systems for Tissue Interfacing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Carbon NanoFiber Systems for Tissue Interfacing Platform Technology for Electrophysiological Interfacing and for Drug and Gene Delivery Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Scientists at ORNL have created vertically aligned carbon nano?fibers (VACNF) that are well suited for cell and tissue interfacing applications, such as electrophysiological stimulus and

  16. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect (OSTI)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  17. Characterization of the nanoDot OSLD dosimeter in CT

    SciTech Connect (OSTI)

    Scarboro, Sarah B.; Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F.; Alvarez, Paola; Zhang, Di; McNitt-Gray, Michael

    2015-04-15

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  18. Recyclability assessment of nano-reinforced plastic packaging

    SciTech Connect (OSTI)

    Sánchez, C.; Hortal, M.; Aliaga, C.; Devis, A.; Cloquell-Ballester, V.A.

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  19. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  20. Intrinsic dissipation in a nano-mechanical resonator

    SciTech Connect (OSTI)

    Kunal, K.; Aluru, N. R.

    2014-09-07

    We investigate the effect of size on intrinsic dissipation in nano-structures. We use molecular dynamics simulation and study dissipation under two different modes of deformation: stretching and bending mode. In the case of stretching deformation (with uniform strain field), dissipation takes place due to Akhiezer mechanism. For bending deformation, in addition to the Akhiezer mechanism, the spatial temperature gradient also plays a role in the process of entropy generation. Interestingly, we find that the bending modes have a higher Q factor in comparison with the stretching deformation (under the same frequency of operation). Furthermore, with the decrease in size, the difference in Q factor between the bending and stretching deformation becomes more pronounced. The lower dissipation for the case of bending deformation is explained to be due to the surface scattering of phonons. A simple model, for phonon dynamics under an oscillating strain field, is considered to explain the observed variation in dissipation rate. We also studied the scaling of Q factor with initial tension, in a beam under flexure. We develop a continuum theory to explain the observed results.

  1. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    SciTech Connect (OSTI)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ? Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ? Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ? CIS-exposure induces oxidative sperm DNA damage and

  2. Photoluminescence emission at room temperature in zinc oxide nano-columns

    SciTech Connect (OSTI)

    Rocha, L.S.R.; Deus, R.C.; Foschini, C.R.; Simes, A.Z.

    2014-02-01

    Highlights: ZnO nanoparticles were obtained by microwave-hydrothermal method. X-ray diffraction reveals a hexagonal structure. Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 C for 8 min.

  3. Preparation and photocatalytic properties of AgISnO{sub 2} nano-composites

    SciTech Connect (OSTI)

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ? AgISnO{sub 2} nano-composites have been successfully synthesized. ? As-prepared AgISnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ? As-prepared AgISnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup ?} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UVVis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgISnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  4. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    SciTech Connect (OSTI)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, Peter; MacDowell, Alastair; Schaible, Eirc; Wenk, H.R.; Macdowell, Alastair A.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper.

  5. Characterizing the nano and micro structure of concrete to improve its durability

    SciTech Connect (OSTI)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools will be shown on this paper.

  6. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  7. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    SciTech Connect (OSTI)

    Mousa, Sahar; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh ; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 C and calcined at 600 C and 900 C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  8. Chemically Functionalized Arrays Comprising Micro and Nano-Electro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    SciTech Connect (OSTI)

    Michael J. Sepaniak

    2008-10-08

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing.

  9. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    SciTech Connect (OSTI)

    Solovyov, VF; Wu, LJ; Rupich, MW; Sathyamurthy, S; Li, XP; Li, Q

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  10. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on(001) ceria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; Sathyamurthy, Srivatsan; Li, Xiaoping; Li, Qiang

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  11. Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing

    SciTech Connect (OSTI)

    Zeng, Aiping; Jin, Chunyan; Cho, Sang-Jin; Seo, Hyun Ook; Kim, Young Dok; Lim, Dong Chan; Kim, Doo Hwan; Hong, Byungyou; Boo, Jin-Hyo

    2012-10-15

    Electrochemical method has been employed in this work to modify nitrogen-doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel nano-particle-modified N-DLC electrodes. The electrochemical behavior of the nickel nano-particle-modified N-DLC electrodes has been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano-particles on the N-DLC surface have been investigated using micro-Raman spectroscopy and atomic force microscopy. The nickel nano-particle-modified N-DLC electrode exhibits a high catalytic activity and low background current. This result shows that the nickel nano-particle deposition on N-DLC surface could be a promising method to fabricate novel electrode materials for glucose sensing.

  12. Nano-magnetism of magnetostriction in Fe{sub 35}Co{sub 65}

    SciTech Connect (OSTI)

    Lisfi, A.; Ren, T.; Wuttig, M.; Khachaturyan, A.

    2014-03-03

    The nature of the large magnetostriction in body-centered Fe-based solid solutions has been widely discussed in the literature. Here, we use a combination of magnetostriction, magnetization, torque, and transmission electron microscopy measurements of specially annealed Co{sub 65}Fe{sub 35} to show that the magnetostriction is caused by coherent uniaxial nano-precipitates. We show further that these nano-precipitates lower the magnetocrystalline anisotropy in these alloys to K{sub 1}?=??2.16??10{sup 4}?J/m{sup 3}.

  13. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead Scientist : Gannet Hallar For data sets, see below. Abstract Current estimates indicate that new particle formation globally account for a majority of Cloud

  14. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  15. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    SciTech Connect (OSTI)

    Uchida, T.; Minezaki, H.; Ishihara, S.; Muramatsu, M.; Kitagawa, A.; Drentje, A. G.; Rcz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.; Graduate School of Engineering, Toyo University, Kawagoe 350-8585

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  16. Magnetizable intravascular stents for sequestration of systemically circulating magnetic nano- and microspheres.

    SciTech Connect (OSTI)

    Chen, H.; Kaminski, M. D.; Ebner, A. D.; Ritter, J. A.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Univ. of South Carolina; Illinois Inst. of Tech.

    2005-01-01

    A 2-D theoretical model was established and used to evaluate the sequestration of blood borne magnetic nano- and microspheres by a magnetizable intravascular stent system. Furthermore, an in vitro flow model system examined the efficiency of a prototype magnetizable intravascular stent to sequestrate the nano- and microspheres from arterial and/or venous blood flow. Comparisons of experimental and corresponding modeling data verified theoretical predictions. The results suggest that the magnetizable intravascular stents can be developed as an effective magnetic drug-targeting tool with potential medical applications.

  17. Improved light extraction with nano-particles offering directional radiation diagrams

    SciTech Connect (OSTI)

    Jouanin, A.; Hugonin, J. P.; Besbes, M.; Lalanne, P.

    2014-01-13

    We propose a unique approach for light extraction, using engineered nano-particles to efficiently decouple the light guided in transverse-magnetic guided modes into free-space radiation modes that leak out normally to the thin-film stacks. The underlying mechanism takes advantage of a small electric field variation at the nano-particle scale and induces a polarization conversion, which renders the induced dipole moment perpendicular to the polarization of the incident light. Our analysis is supported by 2D fully vectorial computational results. Potential applications for light emitting or photovoltaic devices are outlined.

  18. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    SciTech Connect (OSTI)

    Sanders, Kristen; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina ; Degn, Laura L.; Mundy, William R.; Zucker, Robert M.; Dreher, Kevin; Zhao, Baozhong; National Center for Nanoscience and Technology, Beijing ; Roberts, Joan E.; Fordham University, New York, New York ; and others

    2012-01-15

    Titanium dioxide nanoparticles (nano-TiO{sub 2}) catalyze reactions under UV radiation and are hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six samples of nano-TiO{sub 2} and exposed to UVA radiation. The TiO{sub 2} nanoparticles were independently characterized to have mean primary particle sizes and crystal structures of 22 nm anatase/rutile, 25 nm anatase, 31 nm anatase/rutile, 59 nm anatase/rutile, 142 nm anatase, and 214 nm rutile. Particles were suspended in cell culture media, sonicated, and assessed for stability and aggregation by dynamic light scattering. Cells were treated with 0, 0.3, 1, 3, 10, 30, or 100 ?g/ml nano-TiO{sub 2} in media for 24 hrs and then exposed to UVA (2 hrs, 7.53 J/cm{sup 2}) or kept in the dark. Viability was assessed 24 hrs after the end of UVA exposure by microscopy with a live/dead assay (calcein-AM/propidium iodide). Exposure to higher concentrations of nano-TiO{sub 2} with UVA lowered cell viability. The 25 nm anatase and 31 nm anatase/rutile were the most phototoxic (LC{sub 50} with UVA < 5 ?g/ml), while the 142 nm anatase and 214 nm rutile were the least phototoxic. An acellular assay ranked TiO{sub 2} nanoparticles for their UVA photocatalytic reactivities. The particles were found to be capable of generating thiobarbituric acid reactive substances (TBARS) under UVA. Flow cytometry showed that nano-TiO{sub 2} combined with UVA decreased cell viability and increased the generation of reactive oxygen species (ROS, measured by Mitosox). LC{sub 50} values under UVA were correlated with TBARS reactivity, particle size, and surface area. -- Highlights: ? Nano-TiO{sub 2} enters cells within 24 hours ? Nano-TiO{sub 2} causes dose-dependent cytotoxicity greatly enhanced by UVA radiation ? Treatment with nano-TiO{sub 2} and UVA produces reactive oxygen species ? Phototoxicity is correlated with particle size, surface area, and TBARS reactivity.

  19. Helium nano-bubble evolution in aging metal tritides.

    SciTech Connect (OSTI)

    Cowgill, Donald F.

    2004-05-01

    A continuum-scale, evolutionary model of helium (He) nano-bubble nucleation, growth and He release for aging bulk metal tritides is presented which accounts for major features of the experimental database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, is found to occur during the first few days following tritium introduction into the metal and is sensitive to the He diffusivity and pairing energy. An effective helium diffusivity of 0.3 x 10{sup -16} cm{sup 2}/s at 300 K is required to generate the average bubble density of 5x 1017 bubbles/cm3 observed by transmission electron microscopy (TEM). Early bubble growth by dislocation loop punching with a l/radius bubble pressure dependence produces good agreement with He atomic volumes and bubble pressures determined from swelling data, nuclear magnetic resonance (NMR) measurements, and hydride pressure-composition-temperature (PCT) shifts. The model predicts that later in life neighboring bubble interactions may first lower the loop punching pressure through cooperative stress effects, then raise the pressure by partial blocking of loops. It also accounts for the shape of the bubble spacing distribution obtained from NMR data. This distribution is found to remain fixed with age, justifying the separation of nucleation and growth phases, providing a sensitive test of the growth formulation, and indicating that further significant bubble nucleation does not occur throughout life. Helium generated within the escape depth of surfaces and surface-connected porosity produces the low-level early helium release. Accelerated or rapid release is modeled as inter-bubble fracture using an average ligament stress criterion. Good agreement is found between the predicted onset of fracture and the observed He-metal ratio (HeM) for rapid He release from bulk palladium tritide. An examination of how inter-bubble fracture varies over the bubble spacing distribution shows that the critical Hem will be

  20. Nano Design Works: Industry's contact for emerging tech, leading tools, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experts | Argonne National Laboratory Works: Industry's contact for emerging tech, leading tools, and experts Argonne's Nano Design Works gives companies and entrepreneurs the solutions that enable technological innovations that save money, increase efficiencies, and create products that transform industries. PDF icon NDW_fact_sheet

  1. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Tang, Xia; Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca

  2. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore » in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  3. A three-dimensional carbon nano-network for high performance lithium ion batteries

    SciTech Connect (OSTI)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.

  4. Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials

    SciTech Connect (OSTI)

    Boppana, Venkata Bharat Ram; Hould, Nathan D.; Lobo, Raul F.

    2011-05-15

    We report the first instance of a hydrothermal synthesis of zinc germanate (Zn{sub 2}GeO{sub 4}) nano-materials having a variety of morphologies and photochemical properties in surfactant, template and catalyst-free conditions. A systematic variation of synthesis conditions and detailed characterization using X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy and small angle X-ray scattering led to a better understanding of the growth of these particles from solution. At 140 {sup o}C, the zinc germanate particle morphology changes with pH from flower-shaped at pH 6.0, to poly-disperse nano-rods at pH 10 when the Zn to Ge ratio in the synthesis solution is 2. When the Zn to Ge ratio is reduced to 1.25, mono-disperse nano-rods could be prepared at pH 7.5. Nanorod formation is also independent of the addition of cetyltrimethylammonium bromide (CTAB), in contrast to previous reports. Photocatalytic tests show that Zn{sub 2}GeO{sub 4} nano-rods (by weight) and flower shaped (by surface area) are the most active for methylene blue dye degradation among the synthesized zinc germanate materials. -- Graphical abstract: Zinc germanate materials were synthesized possessing unique morphologies dependent on the hydrothermal synthesis conditions in the absence of surfactant, catalyst or template. These novel materials are characterized and evaluated for their photocatalytic activities. Display Omitted highlights: > Zinc germanate synthesized hydrothermally (surfactant free) with unique morphologies. > Flower-shaped, nano-rods, globular particles obtained dependent on synthesis pH. > At 140 {sup o}C, they possess the rhombohedral crystal irrespective of synthesis conditions. > They are photocatalytically active for the degradation of methylene blue. > Potential applications could be photocatalytic water splitting and CO{sub 2} reduction.

  5. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

    Broader source: Energy.gov [DOE]

    Presentation given by U. Conn at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal oxide nano-array catalysts for...

  6. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOE Patents [OSTI]

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  7. Photodegradation of luminescence in organic-ligand-capped Eu{sup 3+}:LaF{sub 3} nano-particles

    SciTech Connect (OSTI)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-28

    The luminescence from europium doped lanthanum trifluoride (Eu{sup 3+}:LaF{sub 3}) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm{sup −2}, the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms.

  8. Coherent and intense multibeam generation by the apex of sharp nano-objects: Electron half-circular prism

    SciTech Connect (OSTI)

    Cho, B.; Ishikawa, T.; Oshima, C.

    2007-10-15

    Mutually coherent multiple electron beams (multibeam) were generated from diffraction at the apex of sharp nano-objects, especially carbon nanotubes, in a field emission projection microscope. Simulation using a simple scalar diffraction model showed that the apex of sharp nano-objects played the role of an electron half-circular prism, deflecting an electron beam through a constant angle toward the prism axis. The multibeam diffraction pattern gave a high visibility of {approx}0.8 and high intensity.

  9. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    SciTech Connect (OSTI)

    Xu, Hang Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 1015 nm. - Highlights: Nano-TiO{sub 2} was prepared by complex techniques of solgel, micro-emulsion and solvent thermal. The size of TiO{sub 2} was nano level and uniformity. Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a solgel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400510 C, while the transformation of anatase into rutile takes place above 510 C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 1015 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  10. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    SciTech Connect (OSTI)

    Aziz, Hammad Ahmad, Faiz Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  11. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    SciTech Connect (OSTI)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90?m. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  12. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOE Patents [OSTI]

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  13. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    SciTech Connect (OSTI)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  14. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect (OSTI)

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  15. Study of nano imprinting using soft lithography on Krafty glue and PVDF polymer thin films

    SciTech Connect (OSTI)

    Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

    2014-04-24

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 ?m wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (?5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

  16. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Hu, Michael Z.

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  17. Design of novel nano-carriers for multi-enzyme co-localization

    SciTech Connect (OSTI)

    Jia, Feng

    2013-01-01

    The main objective of this project is to design novel nano-structured carriers and strategies to co-localize multiple enzymes to mimic the functionalities of MECs. In order to achieve this goal, distinct approaches for enzyme co-localization were developed and evaluated. Specifically, we investigated different polymeric nano-carriers, both flexible and rigid, as platforms for co-localization, as well as distinct enzyme attachment techniques using model enzyme systems using glucose oxidase and horseradish peroxidase to control the spatial arrangement of the multiple enzymes on the nanocarriers. This platform technology can be potentially used to co-localize various enzyme systems and its broad applicability will be tested using the sclareol biosynthesis process to control the formation of products through the formation of MECs with multiple enzymes NgCPS and sSsSS to regulate the pathway of reactive intermediate to enhance the final product conversion rate.

  18. Probing the non-scalable nano regime in catalytic nanoparticles with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronic structure calculations | Argonne Leadership Computing Facility Electron density perturbation from carbon monoxide adsorption on a multi-hundred atom gold nanoparticle. The perturbation causes significant quantum size effects in CO catalysis on gold particles. Probing the non-scalable nano regime in catalytic nanoparticles with electronic structure calculations PI Name: Jeffrey Greeley PI Email: jgreeley@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE

  19. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect (OSTI)

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  20. In situ XAS Characterization of Catalytic Nano-Materials with Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Fuel Cells and Batteries | Stanford Synchrotron Radiation Lightsource XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying Jia, Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA The development of novel electrode materials is hindered by the lack of fundamental understanding of the precise structural effects on the catalytic activity and

  1. Geometrical effects on the electron residence time in semiconductor nano-particles

    SciTech Connect (OSTI)

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ{sub r} in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r{sup 2} model) or through the whole particle (r{sup 3} model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ{sub r}. It has been observed that by increasing the coordination number n, the average value of electron residence time, τ{sup ¯}{sub r} rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ{sup ¯}{sub r} is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ{sup ¯}{sub r}. Our simulations indicate that for volume distribution of traps, τ{sup ¯}{sub r} scales as d{sup 2}. For a surface distribution of traps τ{sup ¯}{sub r} increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  2. NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency Breakthrough should eliminate need for anti-reflection layer, cutting costs October 12, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have produced solar cells using nanotechnology techniques at an efficiency - 18.2% -- that is competitive. The breakthrough should be a major step toward helping lower the cost of solar energy. NREL tailored a nanostructured surface while ensuring that

  3. Nano-photonic phenomena in van der Waals heterostructures | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Excitonics Nano-photonic phenomena in van der Waals heterostructures March 31, 2015 at 4:30 PM/ RLE Haus 36-428 Dmitri Basov Department of Physics, University of California, San Diego Dimitri_basov_01 abstract: Layered van der Waals (vdW) crystals consist of individual atomic planes weakly coupled by vdW interaction, similar to graphene monolayers in bulk graphite. These materials can harbor superconductivity and ferromagnetism with high transition temperatures, emit light and

  4. Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  5. Superior model for fault tolerance computation in designing nano-sized circuit systems

    SciTech Connect (OSTI)

    Singh, N. S. S. Muthuvalu, M. S.; Asirvadam, V. S.

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  6. nano-energy | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology: Energizing our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  7. Bridging the Nano-World and the Real World in Polymer Solar Cells | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Bridging the Nano-World and the Real World in Polymer Solar Cells Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information »

  8. Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites

    SciTech Connect (OSTI)

    Cuello, N.; Elas, V.; Crivello, M.; Oliva, M.; Eimer, G.

    2013-09-15

    Synthesis, structure and magnetic properties of Co/MCM-41 as magnetic nano-composites have been investigated. Mesoporous materials with different degrees of metal loading were prepared by wet impregnation and characterized by ICP, XRD, N{sub 2} adsorption, UVvis DRS, TPR and EPMA-EDS. Cobalt oxide clusters and Co{sub 3}O{sub 4} nano-particles could be confined inside the mesopores of MCM-41, being this fact favored by the Co loading increasing. In addition, larger crystals of Co{sub 3}O{sub 4} detectable by XRD also grow on the surface when the Co loading is enhanced. The magnetic characterization was performed in a SQUID magnetometer using a maximum magnetic applied field {sub 0}Ha=1 T. While the samples with the higher Co loadings showed a behavior typically paramagnetic, a superparamagnetic contribution is more notorious for lower loadings, suggesting high Co species dispersion. - Graphical abstract: Room temperature hysteresis loops as a function of the Co content. Display Omitted - Highlights: Co species as isolated Co{sup 2+}, oxide clusters and Co{sub 3}O{sub 4} nano-particles were detected. For higher Co loads were detected, by XRD, Co{sub 3}O{sub 4} particles on the external surface. The confining of Co species inside the mesopores was achieved by increasing Co load. Paramagnetism from oxide clusters/nano-particles becomes dominant for higher Co loads. Superparamagnetism can be assigned to Co species of small size and finely dispersed.

  9. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    SciTech Connect (OSTI)

    Vieira Jnior, D. S.; Leonel, S. A. Dias, R. A. Toscano, D. Coura, P. Z. Sato, F.

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurationsvortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned statestype Cas a function of the shape of each elliptical nano-islands and constructed a phase diagram vortextype C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  10. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    SciTech Connect (OSTI)

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K.; Yoon, Seog-Joon; Ambade, Swapnil B.; Lokhande, B.J.; Mane, Rajaram S.; Han, Sung-Hwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ? These structures were characterized by XRD and SEM. ? LPG, CO{sub 2} and NH{sub 4} gases were exposed. ? Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.