National Library of Energy BETA

Sample records for namibia sb st

  1. Bicon Namibia Consulting Engineers | Open Energy Information

    Open Energy Info (EERE)

    Name: Bicon Namibia Consulting Engineers Place: Windhoek, Namibia Sector: Wind energy Product: Windhoek-based engineering consultancy firm. Provides design and supervision of...

  2. Namibia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Unexpected > operator. SWERA logo.png SWERA View the Solar and Wind Energy Resource Atlas for Namibia. 5 Programs Namibia-UNEP Green Economy Advisory Services National Action...

  3. Namibia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Namibia NNSA Supports IAEA Regional Training in Zambia on Management Practices for Uranium The International Atomic Energy Agency (IAEA), European Commission and National Nuclear Security Administration (NNSA) co-sponsored a training course in Livingstone, Zambia this week focusing on good management practices for uranium ore concentrate (UOC). The Zambia Radiation Protection Authority

  4. ST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ST Meeting of the Joint Working Group on Safety for the U.S.-PRC Coordinating Committee of Fusion Energy (U.S.-PRC Safety Monitoring Program) Meeting in China, December 9-14, 2009 Respectfully submitted on April 12, 2010 to: Barry Sullivan U.S. DOE - Office of Fusion Energy Sciences Professor Yican Wu, Deputy Director Academy of Science Institute for Plasma Physics Professor Yong Liu, Director Southwestern Institute of Physics - Center for Fusion Science Prepared by: Lee Cadwallader, Rick

  5. MHK Projects/GPP Namibia | Open Energy Information

    Open Energy Info (EERE)

    Namibia utility, GPP (subsidiary of Southern African Utility SELCo), for a 1.5 MW unit. Once this unit reaches its agreed performance criteria, it will be followed by a further 10...

  6. SB 1149 Schools Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oregon's retail electricity restructuring law, SB 1149, includes a requirement for the state's two largest utilities, Pacific Power and Portland General Electric, to collect a 3% public purpose...

  7. CRAD, NNSA- Safety Basis (SB)

    Broader source: Energy.gov [DOE]

    CRAD for Safety Basis (SB). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  8. via Spence St 39 min

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    via Spence St 39 min

  9. DWPF SB6 INITIAL CPC FLOWSHEET TESTING SB6-1 TO SB6-4L TESTS OF SB6-A AND SB6-B SIMULANTS

    SciTech Connect (OSTI)

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-09-09

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to {approx}1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  10. Scavenging Elemental Sb Through Addition of NbSb to Mm0.9Fe3...

    Office of Scientific and Technical Information (OSTI)

    Title: Scavenging Elemental Sb Through Addition of NbSb to Mm0.9Fe3.5Co0.5S12 Skutterudites Authors: Zhang, Long ; Zhou, Chen ; Morelli, Donald T ; Sakamoto, Jeffrey Publication ...

  11. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

  12. Method of making an InAsSb/InAsSbP diode lasers

    DOE Patents [OSTI]

    Razeghi, M.

    1997-08-19

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 {micro}m to 5 {micro}m is possible by varying the ratio of As:Sb in the active layer. 9 figs.

  13. Method of making an InAsSb/InAsSbP diode lasers

    DOE Patents [OSTI]

    Razeghi, Manijeh

    1997-01-01

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 .mu.m to 5 .mu.m is possible by varying the ratio of As:Sb in the active layer.

  14. Relation between the magnetization and the electrical properties of alloy GaSb-MnSb films

    SciTech Connect (OSTI)

    Koplak, O. V.; Polyakov, A. A.; Davydov, A. B.; Morgunov, R. B.; Talantsev, A. D.; Kochura, A. V.; Fedorchenko, I. V.; Novodvorskii, O. A.; Parshina, L. S.; Khramova, O. D.; Shorokhova, A. V.; Aronzon, B. A.

    2015-06-15

    The influence of the charge carrier concentration on the magnetic properties of GaSb-MnSb alloys is studied. The ferromagnetism of GaSb-MnSb films is caused by the presence of MnSb granules and manifests itself in both magnetometric measurements and the presence of an anisotropic magnetoresistance and the anomalous Hall effect. Electric conduction is executed by charge carriers (holes) in a GaSb matrix. The magnetization of clusters depends on stoichiometry and the concentration of Mn{sup 2+} and Mn{sup 3+} ions, which is specified by the film growth conditions. At high film growth temperatures, ferromagnetic clusters containing Mn{sup 2+} ions mainly form. At low growth temperatures, an antiferromagnetic phase containing Mn{sup 3+} ions forms.

  15. SbSI nanocrystal formation in AsSbSI glass under laser beam

    SciTech Connect (OSTI)

    Azhniuk, Yu.M.; Stoyka, V.; Petryshynets, I.; Rubish, V.M.; Guranich, O.G.; Gomonnai, A.V.; Zahn, D.R.T.

    2012-06-15

    Highlights: ? AsSbSI glasses are obtained by co-melting of As{sub 2}S{sub 3} and SbSI. ? The glass structure and composition are confirmed by SEM, EDX, and Raman studies. ? Laser-induced crystallization of SbSI from the glass is observed by Raman spectroscopy. -- Abstract: AsSbSI glasses are obtained by co-melting of As{sub 2}S{sub 3} and SbSI in a broad compositional interval. Their structure and composition are confirmed by the studies of scanning electron microscopy, energy dispersive X-ray spectroscopy, and micro-Raman scattering. Laser-induced crystallization of SbSI crystallites from the glass matrix is observed in the course of the micro-Raman measurement as a result of local laser beam heating.

  16. Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer

    SciTech Connect (OSTI)

    Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1; Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 ; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.; Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7; Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7

    2013-09-21

    The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSb islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.

  17. ST. LCUIS ST. LallS JOKIN KFms Clrv S!. LrMS ST. Lcm

    Office of Legacy Management (LM)

    Ho. 30 !2121/87 smt6w cm ST. LCUIS ST. LallS JOKIN KFms Clrv S!. LrMS ST. Lcm

  18. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices

    SciTech Connect (OSTI)

    Wang, C.A.; Choi, H.K.; Turner, G.W.; Spears, D.L.; Manfra, M.J.; Charache, G.W.

    1997-05-01

    The materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for lattice-matched thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2--2.4 {micro}m at room temperature and lattice-matched to GaSb substrates were grown by both low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These layers exhibit high optical and structural quality. For demonstrating lattice-matched thermophotovoltaic devices, p- and n-type doping studies were performed. Several TPV device structures were investigated, with variations in the base/emitter thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer. Significant improvement in the external quantum efficiency is observed for devices with an AlGaAsSb window layer compared to those without one.

  19. DWPF simulant CPC studies for SB8

    SciTech Connect (OSTI)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  20. St. Bernard Project Update

    Broader source: Energy.gov [DOE]

    The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

  1. Peter St. John | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    St. John Peter St. John Postdoctoral Researcher, Systems Biology and Metabolic Engineering Peter.StJohn@nrel.gov | 303-275-4399 Education Peter St. John received his B.S. in chemical engineering from Tufts University in 2010, followed by his Ph.D. in chemical engineering from the University of California at Santa Barbara in 2015. During his Ph.D., St. John applied techniques from systems biology and dynamic systems to understand the gene regulatory networks underlying mammalian circadian

  2. DWPF Simulant CPC Studies For SB8

    SciTech Connect (OSTI)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  3. Fragile structural transition in Mo3Sb7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Jiaqiang -Q.; McGuire, Michael A; May, Andrew F; Parker, David S.; Mandrus, D. G.; Sales, Brian C.

    2015-01-01

    Mo3Sb7 single crystals lightly doped with Cr, Ru, or Te are studied in order to explore the interplay between superconductivity, magnetism, and the cubic-tetragonal structural transition. The structural transition at 53 K is extremely sensitive to Ru or Te substitution which introduces additional electrons, but robust against Cr substitution. We observed no sign of a structural transition in superconducting Mo2.91Ru0.09Sb7 and Mo3Sb6.975Te0.025. In contrast, 3 at.% Cr doping only slightly suppresses the structural transition to 48 K while leaving no trace of superconductivity above 1.8 K. Analysis of magnetic properties suggests that the interdimer interaction in Mo3Sb7 is near amore » critical value and essential for the structural transition. Futhermore, all dopants suppress the superconductivity of Mo3Sb7. The tetragonal structure is not necessary for superconductivity.« less

  4. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb M ssbauer spectroscopies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loic; Hah, Hien-Yoong; Jumas, Dr. Jean-Claude; Johnson, Prof. Dr. Charles E.; Johnson, Jackie A.; Keum, Jong Kahk; Bridges, Craig A; Veith, Gabriel M

    2014-01-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb M ssbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95 C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) M ssbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  5. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; Johnson, Charles E.; Johnson, Jacqueline A.; Keum, Jong K.; Bridges, Craig A.; Veith, Gabriel M.

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reaction takesmore » place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  6. Anisotropic giant magnetoresistance in NbSb?

    SciTech Connect (OSTI)

    Wang, Kefeng [Brookhaven National Lab. (BNL), Upton, NY (United States); Graf, D. [Florida State Univ., Tallahassee, FL (United States); Li, Lijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, Limin [Brookhaven National Lab. (BNL), Upton, NY (United States); Petrovic, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-12-05

    We report large transverse magnetoreistance (the magnetoresistant ratio ~ 1.3 10?% in 2 K and 9 T field, and 4.3 10?% in 0.4 K and 32 T field, without saturation) and field-induced metal semiconductor-like transition in NbSb?. Magnetoresistance is significantly suppressed but the metal-semiconductor-like transition persists when the current is along the ac-plane. The sign reversal of the Hall resistivity and Seebeck coefficient in the field, plus the electronic structure reveal the coexistence of a small number of holes with very high mobility and a large number of electrons with low mobility. The large MR is attributed to the change of the Fermi surface induced by the magnetic field in addition to the high mobility metal.

  7. Geology of offshore southern Namibia: Evidence from tectonic and basin-fill modeling based on modern seismic data

    SciTech Connect (OSTI)

    Houghton, M.L.; Peacock, D.N. )

    1993-09-01

    License 2815 is located offshore southern Namibia between Cape Dernberg and the South African border, approximately 50 km east of the 1974 Kudu gas discovery. Interactive workstation modeling of modern two-dimensional seismic data from the License area provides an improved understanding of the geology and tectonic history of this unexplored region. Although presently a broad submarine shelf influenced by late Cretaceous-Tertiary deltaic sedimentation from the Orange River, Interpretation based on modern seismic coverage has resulted in the recognition of a Late Jurassic-Early Cretaceous rift complex associated with the initial opening of the Atlantic Ocean. Geologic modeling suggests that a seismically-identified elongate rift localized along a major westward-dipping bounding fault may contain significant thicknesses of Neocomian( ) clastic sediments. Barremian-Aptian marine flooding of this area followed the rifting episode. Mixed marine and deltaic sedimentation has dominated the region since the middle Aptian. Palinspastic restorations of depth-converted seismic lines have helped to unravel the episodic tectonic history of rifting in this area. Input of geologic parameters, including relative sea level changes and sedimentation rates, has yielded computer-derived basin-fill models, which have in turn been integrated with the local tectonic model to make lithology predictions.

  8. Set the PACE St. Louis

    Broader source: Energy.gov [DOE]

    Commercial property owners, community associations (e.g., Home Owners Associations), and some residential property owners are eligible for Set the PACE St. Louis. Currently, only residential prop...

  9. Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells

    SciTech Connect (OSTI)

    Lin, Chien-Hung Lee, Chien-Ping

    2014-10-21

    High quality GaInAsSb/AlGaAsSb quantum wells (QWs) have been grown by molecular beam epitaxy using proper interface treatments. By controlling the group-V elements at interfaces, we obtained excellent optical quality QWs, which were free from undesired localized trap states, which may otherwise severely affect the exciton recombination. Strong and highly efficient exciton emissions up to room temperature with a wavelength of 2.2 μm were observed. A comprehensive investigation on the QW quality was carried out using temperature dependent and power dependent photoluminescence (PL) measurements. The PL emission intensity remains nearly constant at low temperatures and is free from the PL quenching from the defect induced localized states. The temperature dependent emission energy had a bulk-like behavior, indicating high quality well/barrier interfaces. Because of the uniformity of the QWs and smooth interfaces, the low temperature limit of inhomogeneous line width broadening is as small as 5 meV.

  10. St Andrews Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    St Andrews Fuel Cells Place: Fife, Scotland, United Kingdom Product: A spin-out fuel cell company from the University of St Andrews to work on further prototypes of St Andrews'...

  11. St. Lucie Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard St. Lucie Data Dashboard The data dashboard for St. Lucie, Florida, a partner in the Better Buildings Neighborhood Program. St. Lucie Data Dashboard (300.64 KB) More ...

  12. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    SciTech Connect (OSTI)

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; Johnson, Charles E.; Johnson, Jacqueline A.; Keum, Jong K.; Bridges, Craig A.; Veith, Gabriel M.

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reaction takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.

  13. TANK 40 FINAL SB6 CHEMICAL CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2010-08-13

    A sample of Sludge Batch 6 (SB6) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS), and a portion of the sample was designated for SB6 processing studies. The SB6 WAPS sample was also analyzed for chemical composition including noble metals and fissile composition, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to DWPF as SB6. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB6 sample was transferred from the shipping container into a 4-L high density polyethylene vessel and solids were allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 485 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples.

  14. Chemical ordering rather than random alloying in SbAs (Journal...

    Office of Scientific and Technical Information (OSTI)

    Chemical ordering rather than random alloying in SbAs Title: Chemical ordering rather than random alloying in SbAs Authors: Shoemaker, Daniel P. ; Chasapis, Thomas C. ; Do, Dat ; ...

  15. A new n-type half-Heusler thermoelectric material NbCoSb (Journal...

    Office of Scientific and Technical Information (OSTI)

    A new n-type half-Heusler thermoelectric material NbCoSb Citation Details In-Document Search Title: A new n-type half-Heusler thermoelectric material NbCoSb Highlights: * ...

  16. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    SciTech Connect (OSTI)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-26

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency ({eta}{sub TPV}) and a power density (PD) of {eta}{sub TPV} = 19% and PD=0.58 W/cm{sup 2} were measured for T{sub radiator} = 950 C and T{sub diode} = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be {eta}{sub TPV} = 26% and PD = 0.75 W/cm{sup 2}. These limits are extended to {eta}{sub TPV} = 30% and PD = 0.85W/cm{sup 2} if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of

  17. SB Electronics Breaks Ground on New Factory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SB Electronics Breaks Ground on New Factory SB Electronics Breaks Ground on New Factory April 29, 2010 - 5:22pm Addthis U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A Vermont company broke ground on a new

  18. Growth of Sb-Bi gradient single crystals

    SciTech Connect (OSTI)

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  19. Structural transformations in amorphous ↔ crystalline phase change of Ga-Sb alloys

    SciTech Connect (OSTI)

    Edwards, T. G.; Sen, S.; Hung, I.; Gan, Z.; Kalkan, B.; Raoux, S.

    2013-12-21

    Ga-Sb alloys with compositions ranging between ∼12 and 50 at. % Ga are promising materials for phase change random access memory applications. The short-range structures of two such alloys with compositions Ga{sub 14}Sb{sub 86} and Ga{sub 46}Sb{sub 54} are investigated, in their amorphous and crystalline states, using {sup 71}Ga and {sup 121}Sb nuclear magnetic resonance spectroscopy and synchrotron x-ray diffraction. The Ga and Sb atoms are fourfold coordinated in the as-deposited amorphous Ga{sub 46}Sb{sub 54} with nearly 40% of the constituent atoms being involved in Ga-Ga and Sb-Sb homopolar bonding. This necessitates extensive bond switching and elimination of homopolar bonds during crystallization. On the other hand, Ga and Sb atoms are all threefold coordinated in the as-deposited amorphous Ga{sub 14}Sb{sub 86}. Crystallization of this material involves phase separation of GaSb domains in Sb matrix and a concomitant increase in the Ga coordination number from 3 to 4. Results from crystallization kinetics experiments suggest that the melt-quenching results in the elimination of structural “defects” such as the homopolar bonds and threefold coordinated Ga atoms in the amorphous phases of these alloys, thereby rendering them structurally more similar to the corresponding crystalline states compared to the as-deposited amorphous phases.

  20. St. Lucie County Summary of Reported Data

    Broader source: Energy.gov [DOE]

    Summary of data reported by Better Buildings Neighborhood Program partner St. Lucie County, Florida.

  1. Quaternary InGaAsSb Thermophotovoltaic Diodes

    SciTech Connect (OSTI)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  2. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-03-15

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB7b. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base

  3. Magnetic properties of MnSb inclusions formed in GaSb matrix directly during molecular beam epitaxial growth

    SciTech Connect (OSTI)

    Lawniczak-Jablonska, Krystyna; Wolska, Anna; Klepka, Marcin T.; Kret, Slawomir; Kurowska, Boguslawa; Kowalski, Bogdan J.; Twardowski, Andrzej; Wasik, Dariusz; Kwiatkowski, Adam; Sadowski, Janusz

    2011-04-01

    Despite of intensive search for the proper semiconductor base materials for spintronic devices working at room temperature no appropriate material based on ferromagnetic semiconductors has been found so far. We demonstrate that the phase segregated system with MnSb hexagonal inclusions inside the GaSb matrix, formed directly during the molecular beam epitaxial growth reveals the ferromagnetic properties at room temperature and is a good candidate for exploitation in spintronics. Furthermore, the MnSb inclusions with only one crystalline structure were identified in this GaMn:MnSb granular material. The SQUID magnetometry confirmed that this material exhibits ferromagnetic like behavior starting from helium up to room temperature. Moreover, the magnetic anisotropy was found which was present also at room temperature, and it was proved that by choosing a proper substrate it is possible to control the direction of easy axis of inclusions' magnetization moment between in-plane and out-of-plane; the latter is important in view of potential applications in spintronic devices.

  4. Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb{sub 3}-based skutterudites

    SciTech Connect (OSTI)

    Hui, Si; Nielsen, Michele D.; Homer, Mark R.; Medlin, Douglas L.; Tobola, Janusz; Salvador, James R.; Heremans, Joseph P.; Pipe, Kevin P.; Uher, Ctirad

    2014-03-14

    Band structure calculations that incorporate impurity effects suggest that a band resonant state may be formed in p-type CoSb{sub 3}-based skutterudites by replacing Sb atoms with Sn dopant atoms. Such resonant states have the potential to greatly improve thermoelectric energy conversion efficiency by increasing the density of states variation near the Fermi level, thereby increasing the Seebeck coefficient at a given carrier concentration. Through transport measurements of the Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient, we show that a practical band resonant state is not achieved by Sn doping. Compared to undoped CoSb{sub 3}, the dimensionless figure of merit (ZT) in Sn-doped CoSb{sub 3} is enhanced slightly at high temperatures to a value of 0.2, mostly due to a reduction in thermal conductivity. The Fermi level is calculated not to reach the band resonant state induced by Sn impurity atoms within the range of Sn concentrations examined here.

  5. St. Louis FUSRAP Lessons Learned

    SciTech Connect (OSTI)

    Eberlin, J.; Williams, D.; Mueller, D.

    2003-02-26

    The purpose of this paper is to present lessons learned from fours years' experience conducting Remedial Investigation and Remedial Action activities at the St. Louis Downtown Site (SLDS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Many FUSRAP sites are experiencing challenges conducting Remedial Actions within forecasted volume and budget estimates. The St. Louis FUSRAP lessons learned provide insight to options for cost effective remediation at FUSRAP sites. The lessons learned are focused on project planning (budget and schedule), investigation, design, and construction.

  6. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    SciTech Connect (OSTI)

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q. E-mail: hongqi.xu@ftf.lth.se

    2015-09-07

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective

  7. St. Lucie County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hutchinson Island South, Florida Indian River Estates, Florida Lakewood Park, Florida Port St. Lucie, Florida Port St. Lucie-River Park, Florida St. Lucie Village, Florida White...

  8. St. Charles County, Missouri: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Missouri O'Fallon, Missouri Portage Des Sioux, Missouri St. Charles, Missouri St. Paul, Missouri St. Peters, Missouri Weldon Spring Heights, Missouri Weldon Spring, Missouri...

  9. GaSb substrates with extended IR wavelength for advanced space based applications

    SciTech Connect (OSTI)

    Allen, Lisa P.; Flint, Patrick; Dallas, Gordon; Bakken, Daniel; Blanchat, Kevin; Brown, Gail J.; Vangala, Shivashankar R.; Goodhue, William D.; Krishnaswami, Kannan

    2009-05-01

    GaSb substrates have advantages that make them attractive for implementation of a wide range of infrared (IR) detectors with higher operating temperatures for stealth and space based applications. A significant aspect that would enable widespread commercial application of GaSb wafers for very long wavelength IR (VLWIR) applications is the capability for transmissivity beyond 15 m. Due largely to the GaSb (antisite) defect and other point defects in undoped GaSb substrates, intrinsic GaSb is still slightly p-type and strongly absorbs in the VLWIR. This requires backside thinning of the GaSb substrate for IR transmissivity. An extremely low n-type GaSb substrate is preferred to eliminate thinning and provide a substrate solution for backside illuminated VLWIR devices. By providing a more homogeneous radial distribution of the melt solute to suppress GaSb formation and controlling the cooling rate, ultra low doped n:GaSb has been achieved. This study examines the surface properties and IR transmission spectra of ultra low doped GaSb substrates at both room and low temperatures. Atomic force microscopy (AFM), homoepitaxy by MBE, and infrared Fourier transform (FTIR) analysis was implemented to examine material quality. As compared with standard low doped GaSb, the ultra low doped substrates show over 50% transmission and consistent wavelength transparency past 23 m with improved %T at low temperature. Homoepitaxy and AFM results indicate the ultra low doped GaSb has a low thermal desorbtion character and qualified morphology. In summary, improvements in room temperature IR transmission and extended wavelength characteristics have been shown consistently for ultra low doped n:GaSb substrates.

  10. Phase transitions in Ge-Sb phase change materials

    SciTech Connect (OSTI)

    Raoux, Simone; Virwani, Kumar; Hitzbleck, Martina; Salinga, Martin; Madan, Anita; Pinto, Teresa L.

    2009-03-15

    Thin films of the phase change material Ge-Sb with Ge concentrations between 7.3 and 81.1 at. % were deposited by cosputtering from elemental targets. Their crystallization behavior was studied using time-resolved x-ray diffraction, Auger electron spectroscopy, differential scanning calorimetry, x-ray reflectivity, profilometry, optical reflectivity, and resistivity versus temperature measurements. It was found that the crystallization temperature increases with Ge content. Calculations of the glass transition temperature (which is a lower limit for the crystallization temperature T{sub x}) also show an increase with Ge concentration closely tracking the measured values of T{sub x}. For low Ge content samples, Sb x-ray diffraction peaks occurred during a heating ramp at lower temperature than Ge diffraction peaks. The appearance of Ge peaks is related to Ge precipitation and agglomeration. For Ge concentrations of 59.3 at. % and higher, Sb and Ge peaks occurred at the same temperature. Upon crystallization, film mass density and optical reflectivity increase as well as electrical contrast (ratio of resistivity in amorphous phase to crystalline phase) all showed a maximum for the eutectic alloy (14.5 at. % Ge). For the alloy with 59.3 at. % Ge there was very little change in any of these parameters, while the alloy with 81.1 at. % Ge behaved opposite to a typical phase change alloy and showed reduced mass density and reflectivity and increased resistivity.

  11. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    SciTech Connect (OSTI)

    Craig, A. P.; Percy, B.; Marshall, A. R. J.; Jain, M.; Wicks, G.; Hossain, K.; Golding, T.; McEwan, K.; Howle, C.

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  12. GaInP semiconductor compounds doped with the Sb isovalent impurity

    SciTech Connect (OSTI)

    Skachkov, A. F.

    2015-05-15

    GaInP{sub 1−x}Sb{sub x} layers containing different Sb fractions are produced by metal-organic vaporphase epitaxy on GaAs and Ge substrates. The charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers are measured at room temperature and 77 K. The room-temperature charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers additionally doped with donor and acceptor impurities are measured. The photoluminescence peaks of GaInP{sub 1−x}Sb{sub x} are detected. The influence of the Sb impurity on the band gap and charge-carrier mobility in GaInP is determined.

  13. Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)

    SciTech Connect (OSTI)

    Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.

    2015-03-30

    Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.

  14. Comparative analysis of hole transport in compressively strained InSb and Ge quantum well heterostructures

    SciTech Connect (OSTI)

    Agrawal, Ashish; Barth, Michael; Madan, Himanshu; Datta, Suman; Lee, Yi-Jing; Lin, You-Ru; Wu, Cheng-Hsien; Ko, Chih-Hsin; Wann, Clement H.; Loubychev, Dmitri; Liu, Amy; Fastenau, Joel; Lindemuth, Jeff

    2014-08-04

    Compressively strained InSb (s-InSb) and Ge (s-Ge) quantum well heterostructures are experimentally studied, with emphasis on understanding and comparing hole transport in these two-dimensional confined heterostructures. Magnetotransport measurements and bandstructure calculations indicate 2.5 lower effective mass for s-InSb compared to s-Ge quantum well at 1.9??10{sup 12}?cm{sup 2}. Advantage of strain-induced m* reduction is negated by higher phonon scattering, degrading hole transport at room temperature in s-InSb quantum well compared to s-Ge heterostructure. Consequently, effective injection velocity is superior in s-Ge compared to s-InSb. These results suggest s-Ge quantum well heterostructure is more favorable and promising p-channel candidate compared to s-InSb for future technology node.

  15. Science in St. Louis - Dr. Christine Kirmaier | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center in St. Louis - Dr. Christine Kirmaier Science in St. Louis - Dr. Christine Kirmaier

  16. Method of making AlInSb by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  17. Chemical ordering rather than random alloying in SbAs (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Chemical ordering rather than random alloying in SbAs Authors: Shoemaker, Daniel P. ; Chasapis, Thomas C. ; Do, Dat ; Francisco, Melanie C. ; Chung, Duck Young ; Mahanti, S. ...

  18. ST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Monitoring Program) Meeting in China, December 9-14, 2009 Respectfully ... Rick Savercool and Keith Rule - U.S. JWG to China Reviewed by: Prof. Huang and Dr. ...

  19. High-temperature luminescence in an n-GaSb/n-InGaAsSb/p-AlGaAsSb light-emitting heterostructure with a high potential barrier

    SciTech Connect (OSTI)

    Petukhov, A. A., E-mail: andrey-rus29@rambler.ru; Zhurtanov, B. E.; Kalinina, K. V.; Stoyanov, N. D.; Salikhov, H. M.; Mikhailova, M. P.; Yakovlev, Yu. P. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15

    The electroluminescent properties of an n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with a high potential barrier in the conduction band (large conduction-band offset) at the n-GaSb/n-InGaAsSb type-II heterointerface ({Delta}E{sub c} = 0.79 eV) are studied. Two bands with peaks at 0.28 and 0.64 eV at 300 K, associated with radiative recombination in n-InGaAsSb and n-GaSb, respectively, are observed in the electroluminescence (EL) spectrum. In the entire temperature range under study, T = 290-480 K, additional electron-hole pairs are formed in the n-InGaAsSb active region by impact ionization with hot electrons heated as a result of the conduction-band offset. These pairs contribute to radiative recombination, which leads to a nonlinear increase in the EL intensity and output optical power with increasing pump current. A superlinear increase in the emission power of the long-wavelength band is observed upon heating in the temperature range T = 290-345 K, and a linear increase is observed at T > 345 K. This work for the first time reports an increase in the emission power of a light-emitting diode structure with increasing temperature. It is shown that this rise is caused by a decrease in the threshold energy of the impact ionization due to narrowing of the band gap of the active region.

  20. The reaction mechanism of FeSb2 as anode for sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loic; Hah, Hien-Yoong; Charles E. Johnson; Bridges, Craig A.; Johnson, Jackie A.; Veith, Gabriel M.

    2014-04-04

    The electrochemical reaction of FeSb2 with Na is reported for the first time. The first discharge (sodiation) potential profile of FeSb2 is characterized by a gentle slope centered at 0.25 V. During charge (Na removal) and the subsequent discharge, the main reaction takes place near 0.7 V and 0.4 V, respectively. The reversible storage capacity amounts to 360 mA h g-1, which is smaller than the theoretical value of 537 mA h g-1. The reaction, studied by ex situ and in situ X-ray diffraction, is found to proceed by the consumption of crystalline FeSb2 to form an amorphous phase. Uponmore » further sodiation, the formation of nanocrystalline Na3Sb domains is evidenced. During desodiation, Na3Sb domains convert into an amorphous phase. The chemical environment of Fe, probed by 57Fe Mo ssbauer spectroscopy, undergoes significant changes during the reaction. During sodiation, the well-resolved doublet of FeSb2 with an isomer shift around 0.45 mm s-1 and a quadrupole splitting of 1.26 mm s-1 is gradually converted into a doublet line centered at about 0.15 mm s1 along with a singlet line around 0 mm s-1. The former signal results from the formation of a Fe-rich FexSb alloy with an estimated composition of Fe4Sb while the latter signal corresponds to superparamagnetic Fe due to the formation of nanosized pure Fe domains. Interestingly the signal of Fe4Sb remains unaltered during desodiation. This mechanism is substantially different than that observed during the reaction with Li. The irreversible formation of a Fe-rich Fe4Sb alloy and the absence of full desodiation of Sb domains explain the lower than theoretical practical storage capacity.« less

  1. Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu2 Sb Anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loïc; Carroll, Kyler J.; Hah, Hien-Yoong; Johnson, Charles E.; Mullins, David R.; Unocic, Raymond R.; Johnson, Jacqueline A.; Meng, Ying Shirley; Veith, Gabriel M.

    2014-03-25

    Cycling Cu2Sb films with fluoroethylene carbonate additive drastically improves the capacity retention of the electrode compared to cycling in pure PC with about 250 mAh g-1 retained capacity for about two hundred cycles. TEM photographs reveal that the pristine films are formed of nanoparticles of 5-20 nm diameters. XRD results highlight that during the first discharge the reaction leads to the formation of Na3Sb via an intermediate amorphous phase. During charge, Na3Sb crystallites convert into an amorphous phase, which eventually crystallizes into Cu2Sb at full charge, indicating a high degree of structural reversibility. The subsequent discharge is marked by amore » new plateau around 0.5 V at low Na/Sb content which does not correspond to the formation of a crystalline phase. XAS data show that the fully discharged electrode material has interatomic distances matching those expected for the coexistence of Cu and Na3Sb nanodomains. At 1 V charge, the structure somewhat differs from that of Cu2Sb whereas at 2 V charge, when all Na is removed, the structure is significantly closer to that of the starting material. 121Sb Mössbauer spectroscopy isomer shifts of Cu2Sb powder (-9.67 mm s-1) and thin films (-9.65 mm s-1) are reported for the first time, and agree with the value predicted theoretically. At full discharge, an isomer shift (-8.10 mm s-1) rather close to that of a Na3Sb reference powder (-8.00 mm s-1) is measured, in agreement with the formation of Na3Sb domains evidenced by XRD and XAS data. The isomer shift at 1 V charge (-9.29 mm s-1) is close to that of the pristine material and the higher value is in agreement with the lack of full desodiation at 1 V.« less

  2. Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baggetto, Loic; Carroll, Kyler J.; Hah, Hien -Yoong; Johnson, Charles E.; Mullins, David R.; Unocic, Raymond R.; Johnson, Jacqueline A.; Meng, Ying Shirley; Veith, Gabriel M.

    2014-03-25

    Cycling Cu2Sb films with fluoroethylene carbonate additive drastically improves the capacity retention of the electrode compared to cycling in pure PC with about 250 mAh g-1 retained capacity for about two hundred cycles. TEM photographs reveal that the pristine films are formed of nanoparticles of 5-20 nm diameters. XRD results highlight that during the first discharge the reaction leads to the formation of Na3Sb via an intermediate amorphous phase. During charge, Na3Sb crystallites convert into an amorphous phase, which eventually crystallizes into Cu2Sb at full charge, indicating a high degree of structural reversibility. The subsequent discharge is marked by amore » new plateau around 0.5 V at low Na/Sb content which does not correspond to the formation of a crystalline phase. XAS data show that the fully discharged electrode material has interatomic distances matching those expected for the coexistence of Cu and Na3Sb nanodomains. At 1 V charge, the structure somewhat differs from that of Cu2Sb whereas at 2 V charge, when all Na is removed, the structure is significantly closer to that of the starting material. 121Sb Mössbauer spectroscopy isomer shifts of Cu2Sb powder (-9.67 mm s-1) and thin films (-9.65 mm s-1) are reported for the first time, and agree with the value predicted theoretically. At full discharge, an isomer shift (-8.10 mm s-1) rather close to that of a Na3Sb reference powder (-8.00 mm s-1) is measured, in agreement with the formation of Na3Sb domains evidenced by XRD and XAS data. As a result, the isomer shift at 1 V charge (-9.29 mm s-1) is close to that of the pristine material and the higher value is in agreement with the lack of full desodiation at 1 V.« less

  3. Florida Nuclear Profile - St Lucie

    U.S. Energy Information Administration (EIA) Indexed Site

    St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,839,"5,299",72.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,839,"7,331",99.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  4. Tank 40 Final SB7b Chemical Characterization Results

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-11-06

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon? vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235

  5. Temperature dependence of the dielectric response of AlSb

    SciTech Connect (OSTI)

    Jung, Y. W.; Kim, T. J.; Kim, Y. D.; Shin, S. H.; Kim, S. Y.; Song, J. D.

    2011-12-23

    Spectroscopic ellipometry was used to determine the optical response of an intrinsic AlSb film as a function of temperature. The 1.5 {mu}m thick film was grown on a (001) GaAs substrate by molecular beam epitaxy. Measurements were done at temperatures from 300 K to the growth temperature of 800 K over a spectral range of 0.7 to 5.0 eV. To avoid oxidation artifacts, measurements were done with the film in situ. The data were analyzed using a parametric semiconductor model for its temperature dependence.

  6. Spintronic properties of Li1.5Mn0.5Z (Z=As, Sb) compounds in...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Spintronic properties of Li1.5Mn0.5Z (ZAs, Sb) compounds in the Cu2Sb structure This content will become publicly available on January 26, 2017 ...

  7. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures

    SciTech Connect (OSTI)

    Luo, W; Lorger, S; Wang, B; Bommier, C; Ji, XL

    2014-01-01

    We demonstrate a novel synthetic route to fabricate a one-dimensional peapod-like Sb@C structure with disperse Sb submicron-particles encapsulated in carbon submicron-tubes. The synthetic route may well serve as a general methodology for fabricating carbon/metallic fine structures by thermally reducing their carbon-coated metal oxide composites.

  8. In-situ crystallization of GeTe\\GaSb phase change memory stacked films

    SciTech Connect (OSTI)

    Velea, A.; Borca, C. N.; Grolimund, D.; Socol, G.; Galca, A. C.; Popescu, M.; Bokhoven, J. A. van

    2014-12-21

    Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C, the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.

  9. Interface Reactions and Electrical Characteristics of Au/GaSb Contacts

    SciTech Connect (OSTI)

    H. Ehsani; R.J. Gutmann; G.W. Charache

    2000-07-07

    The reaction of Au with GaSb occurs at a relatively low temperature (100 C). Upon annealing, a AuSb{sub 2} compound and several Au-Ga phases are produced. Phase transitions occur toward higher Ga concentration with increasing annealing temperatures. Furthermore, the depth of the contact also increases with increased annealing temperature. They found that the AuSb{sub 2} compound forms on the GaSb surface, with the compound crystal partially ordered with respect to the substrate. The transition of Schottky- to ohmic-contact behavior in Au/n-type GaSb occurs simultaneously with the formation of the AuGa compound at about a 250 C annealing temperature. This ohmic contact forms without the segregation of dopants at the metallic compound/GaSb interface. Therefore it is postulated that transition from Schottky- to ohmic-contact behavior is obtained through a series of tunneling transitions of electrons through defects in the depletion region in the Au/n-type GaSb contacts. Contact resistivities of 6-7 x 10{sup -6} {Omega}-cm{sup 2} were obtained with the annealing temperature between 300 and 350 C for 30 seconds. In Au/p-type GaSb contacts, the resistivity was independent of the annealing temperature. This suggested that the carrier transport in p-type contact dominated by thermionic emission.

  10. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect (OSTI)

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  11. Mount St. Mary's Abbey | Open Energy Information

    Open Energy Info (EERE)

    Energy Developments Energy Purchaser Mount St. Mary's Abbey Location Wrentham MA Coordinates 42.033096, -71.393711 Show Map Loading map... "minzoom":false,"mappings...

  12. Pennsylvania's 1st congressional district: Energy Resources ...

    Open Energy Info (EERE)

    in Pennsylvania's 1st congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s1stcongressionaldistrict&oldid198299...

  13. California's 31st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 31st congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s31stcongressionaldistrict&oldid181523...

  14. Connecticut's 1st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    1st congressional district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp...

  15. St. Paul Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSt.PaulBiomassFacility&oldid398161" Feedback Contact needs updating Image needs updating...

  16. Green St Energy | Open Energy Information

    Open Energy Info (EERE)

    Green St. Energy Place: Tehachapi, California Zip: 93561 Sector: Wind energy Product: California-based OTC-quoted wind energy project developer. Coordinates: 35.132245,...

  17. California's 21st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

  18. California's 41st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

  19. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  20. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    SciTech Connect (OSTI)

    Feng, ShiQuan; Cheng, XinLu; Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 ; Zhao, JianLing; Zhang, Hong

    2013-07-28

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T{sub e} = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.

  1. DWPF SIMULANT CPC STUDIES FOR SB7B

    SciTech Connect (OSTI)

    Koopman, D.

    2011-11-01

    Lab-scale DWPF simulations of Sludge Batch 7b (SB7b) processing were performed. Testing was performed at the Savannah River National Laboratory - Aiken County Technology Laboratory (SRNL-ACTL). The primary goal of the simulations was to define a likely operating window for acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT). In addition, the testing established conditions for the SRNL Shielded Cells qualification simulation of SB7b-Tank 40 blend, supported validation of the current glass redox model, and validated the coupled process flowsheet at the nominal acid stoichiometry. An acid window of 105-140% by the Koopman minimum acid (KMA) equation (107-142% DWPF Hsu equation) worked for the sludge-only flowsheet. Nitrite was present in the SRAT product for the 105% KMA run at 366 mg/kg, while SME cycle hydrogen reached 94% of the DWPF Slurry Mix Evaporator (SME) cycle limit in the 140% KMA run. The window was determined for sludge with added caustic (0.28M additional base, or roughly 12,000 gallons 50% NaOH to 820,000 gallons waste slurry). A suitable processing window appears to be 107-130% DWPF acid equation for sludge-only processing allowing some conservatism for the mapping of lab-scale simulant data to full-scale real waste processing including potentially non-conservative noble metal and mercury concentrations. This window should be usable with or without the addition of up to 7,000 gallons of caustic to the batch. The window could potentially be wider if caustic is not added to SB7b. It is recommended that DWPF begin processing SB7b at 115% stoichiometry using the current DWPF equation. The factor could be increased if necessary, but changes should be made with caution and in small increments. DWPF should not concentrate past 48 wt.% total solids in the SME cycle if moderate hydrogen generation is occurring simultaneously. The coupled flowsheet simulation made more hydrogen in the SRAT and SME cycles than the sludge-only run with the

  2. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    2009-01-15

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  3. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers

    SciTech Connect (OSTI)

    Janiak, F. Motyka, M.; S?k, G.; Dyksik, M.; Ryczko, K.; Misiewicz, J.; Weih, R.; Hfling, S.; Kamp, M.; Patriarche, G.

    2013-12-14

    Optical properties of molecular beam epitaxially grown type II W shaped GaSb/AlSb/InAs/GaIn(As)Sb/InAs/AlSb/GaSb quantum wells (QWs) designed for the active region of interband cascade lasers have been investigated. Temperature dependence of Fourier-transformed photoluminescence and photoreflectance was employed to probe the effects of addition of arsenic into the original ternary valence band well of GaInSb. It is revealed that adding arsenic provides an additional degree of freedom in terms of band alignment and strain tailoring and allows enhancing the oscillator strength of the active type II transition. On the other hand, however, arsenic incorporation apparently also affects the structural and optical material quality via generating carrier trapping states at the interfaces, which can deteriorate the radiative efficiency. These have been evidenced in several spectroscopic features and are also confirmed by cross-sectional transmission electron microscopy images. While arsenic incorporation into type II QWs is a powerful heterostructure engineering tool for optoelectronic devices, a compromise has to be found between ideal band structure properties and high quality morphological properties.

  4. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries

    SciTech Connect (OSTI)

    Nithyadharseni, P.; Reddy, M.V.; Nalini, B.; Ravindran, T.R.; Pillai, B.C.; Kalpana, M.; Chowdari, B.V.R.

    2015-10-15

    Highlights: • Si added SnSb and CNT exhibits very low particle size of below 30 nm • A strong PL quenching due to the addition of Si to SnSb. • Electrochemical studies show CNT added SnSb shows good capacity retention. - Abstract: Nano-structured SnSb, SnSb–CNT, Si–SnSb and Si–SnSb–CNT alloys were synthesized from metal chlorides of Sn, Sb and Si via reductive co-precipitation technique using NaBH{sub 4} as reducing agent. The as prepared compounds were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, Fourier transform infra-red (FTIR) and photoluminescence (PL) spectroscopy. The electrochemical performances of the compounds were characterized by galvanostatic cycling (GC) and cyclic voltammetry (CV). The Si–SnSb–CNT compound shows a high reversible capacity of 1200 mAh g{sup −1}. However, the rapid capacity fading was observed during cycling. In contrast, SnSb–CNT compound showed a high reversible capacity of 568 mAh g{sup −1} at 30th cycles with good cycling stability. The improved reversible capacity and cyclic performance of the SnSb–CNT compound could be attributed to the nanosacle dimension of SnSb particles and the structural advantage of CNTs.

  5. Structural properties of Sb2S3 under pressure: Evidence of an electronic topological transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Efthimiopoulos, Ilias; Buchan, Cienna; Wang, Yuejian

    2016-04-06

    High-pressure Raman spectroscopy and x-ray diffraction of Sb2S3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb2S3 near 5 GPa. Close comparison between Sb2S3 and Sb2S3 up to 10 GPa reveals a slightly diverse structuralmore » behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb2S3 and Sb2S3 up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb2S3 up to that pressure. Lastly, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at ~20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.« less

  6. Pressure dependence of donor excitation spectra in AlSb

    SciTech Connect (OSTI)

    Hsu, L.; McCluskey, M.D.; Haller, E.E.

    2002-01-16

    We have investigated the behavior of ground to bound excited-state electronic transitions of Se and Te donors in AlSb as a function of hydrostatic pressure. Using broadband far-infrared Fourier transform spectroscopy, we observe qualitatively different behaviors of the electronic transition energies of the two donors. While the pressure derivative of the Te transition energy is small and constant, as might be expected for a shallow donor, the pressure derivatives of the Se transition energies are quadratic and large at low pressures, indicating that Se is actually a deep donor. In addition, at pressures between 30 and 50 kbar, we observe evidence of an anti-crossing between one of the selenium electronic transitions and a two-phonon mode.

  7. Virginia's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Virginia's 1st congressional district Delta T Corporation E85 Inc Virginia Biodiesel Refinery Utility Companies in Virginia's 1st congressional district Rappahannock Electric Coop...

  8. 21st century Green Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    21st century Green Solutions LLC Jump to: navigation, search Name: 21st century Green Solutions, LLC Place: Grand Blanc, Michigan Zip: 48439 Sector: Wind energy Product: Exclusive...

  9. St. James Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Generation Facilities in St. James Parish, Louisiana IMC Phosphates Company Uncle Sam Biomass Facility Places in St. James Parish, Louisiana Gramercy, Louisiana Lutcher,...

  10. St. Charles Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana Montz, Louisiana New Sarpy, Louisiana Norco, Louisiana Paradis, Louisiana St. Rose, Louisiana Taft, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.C...

  11. Michigan's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Michigan's 1st congressional district AG Solutions Inc Dow Chemical Co Dow Kokam Energy Generation Facilities in Michigan's 1st congressional...

  12. Washington University in St Louis | Open Energy Information

    Open Energy Info (EERE)

    in St Louis Jump to: navigation, search Name: Washington University in St Louis Place: Missouri Product: University with large research departments, particularly medical....

  13. St. Mary's Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St....

  14. St. Clair County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in St. Clair County, Illinois DarkStar VI Mid America Advanced Power Solutions Midwest Biodiesel Products Energy Generation Facilities in St. Clair County, Illinois Milam Gas...

  15. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. ...

  16. East Grand St Bridge Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East...

  17. Arkansas's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Arkansas's 1st congressional district Woodruff Electric Smart Grid Project Utility Companies in Arkansas's 1st congressional district City Water...

  18. Hawaii's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Hawaii. Registered Networking Organizations in Hawaii's 1st congressional district Hawaii Public Utilities Commission Registered Energy Companies in Hawaii's 1st congressional...

  19. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  20. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 2000) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  1. Geothermometry At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    St Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mt St Helens Area (Shevenell & Goff,...

  2. Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  3. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Exploration Activity: Compound and Elemental Analysis At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique...

  4. Using SDI-12 with ST microelectronics MCU's

    SciTech Connect (OSTI)

    Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose; Proicou, Michael Chris; Borges, Louis

    2015-09-03

    ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.

  5. In-situ TEM study of sodiation and failure mechanism of Sb anodes...

    Office of Scientific and Technical Information (OSTI)

    Title: In-situ TEM study of sodiation and failure mechanism of Sb anodes. Abstract not provided. Authors: XueHai Tan ; Jungjohann, Katherine Leigh ; Mook, William ; David Mitlin ...

  6. A new n-type half-Heusler thermoelectric material NbCoSb (Journal...

    Office of Scientific and Technical Information (OSTI)

    new n-type half-Heusler thermoelectric material NbCoSb Citation Details In-Document Search This content will become publicly available on June 15, 2017 Title: A new n-type ...

  7. A new n-type half-Heusler thermoelectric material NbCoSb (Journal...

    Office of Scientific and Technical Information (OSTI)

    A new n-type half-Heusler thermoelectric material NbCoSb This content will become publicly available on June 15, 2017 Prev Next Title: A new n-type half-Heusler ...

  8. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  9. Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials ... Resource Relation: Journal Name: Appl. Phys. Lett.; Journal Volume: 104; Journal Issue: 25 Research ...

  10. SL/ST Performance Management Training

    Broader source: Energy.gov [DOE]

    The training provides an overview of DOE's SL/ST appraisal system, as well as describes key actions within all of the major phases of the annual performance management cycle. The guidance/training...

  11. Material and device characteristics of InAs/GaAsSb sub-monolayer quantum dot solar cells

    SciTech Connect (OSTI)

    Kim, Yeongho; Ban, Keun-Yong Zhang, Chaomin; Honsberg, Christiana B.

    2015-10-12

    We have studied the material and photovoltaic characteristics of InAs/GaAsSb sub-monolayer quantum dot solar cells (QDSCs) with different Sb contents of 0%, 5%, 15%, and 20%. All QDSCs exhibit an extended external quantum efficiency (EQE) response in the wavelength range of 960–1000 nm that corresponds to sub-bandgap photon absorption. As Sb content increases from 5% to 20%, the cutoff wavelength in the EQE extends towards longer wavelength whilst the EQE in the wavelength region of 300–880 nm is lowered due to increased defect density. Compared to the QDSC (Sb 0%), an Sb incorporation of 5% enhances the short-circuit current density from 20.65 to 22.15 mA/cm{sup 2} induced by Sb surfactant effect. Since the open-circuit voltage and fill factor of the QDSC (Sb 5%) are comparable to those of the QDSC (Sb 0%), an enhancement in solar cell efficiency (10.5%) of the QDSC (Sb 5%) is observed. Further increasing Sb content to 15% and 20% results in the degradation of solar cell performance due to increased nonradiative recombination and large valence band offset in a type-II band line-up.

  12. Structure and magnetic properties of LnMnSbO ( Ln=La and Ce)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Qiang; Kumar, C. M. N.; Tian, Wei; Dennis, Kevin W.; Goldman, Alan I.; Vaknin, David

    2016-03-11

    Here, a neutron powder diffraction (NPD) study of LnMnSbO (Ln = La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the P4/nmm space group down to 2 K, and whereas magnetization measurements do not show obvious anomaly at high temperatures, NPD reveals a C-type antiferromagnetic (AFM) order below TN = 255K for LaMnSbO and 240 K for CeMnSbO. While the magnetic structure of LaMnSbO is preserved to base temperature, a sharp transition at TSR = 4.5K is observed in CeMnSbO due tomore » a spin-reorientation (SR) transition of the Mn2+ magnetic moments from pointing along the c axis to the ab plane. The SR transition in CeMnSbO is accompanied by a simultaneous long-range AFM ordering of the Ce moments, which indicates that the Mn SR transition is driven by the Ce-Mn coupling. The ordered moments are found to be somewhat smaller than those expected for Mn2+ (S = 5/2) in insulators, but large enough to suggest that these compounds belong to the class of local-moment antiferromagnets. The lower TN found in these two compounds compared to the As-based counterparts (TN = 317 for LaMnAsO, TN = 347K for CeMnAsO) indicates that the Mn-Pn (Pn=As or Sb) hybridization that mediates the superexchange Mn-Pn-Mn coupling is weaker for the Sb-based compounds.« less

  13. AlSb/InAs HIGH ELECTRON MOBILITY TRANSISTORS - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search AlSb/InAs HIGH ELECTRON MOBILITY TRANSISTORS Naval Research Laboratory Contact NRL About This Technology Technology Marketing Summary The Naval Research Laboratory (NRL) has developed materials growth and fabrication technology for the manufacture of high-speed, low power AlSb/InAs high electron mobility transistors (HEMTs) that exhibit state-of-the-art low-power

  14. Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials Citation Details In-Document Search Title: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials Authors: Shu, Michael J. ; Zalden, Peter ; Chen, Frank ; Weems, Ben ; Chatzakis, Ioannis ; Xiong, Feng ; Jeyasingh, Rakesh ; Hoffmann, Matthias C. ; Pop, Eric ; Wong, H.-S.Philip ; Wuttig, Matthias ; Lindenberg, Aaron M. Publication Date: 2014-07-08 OSTI

  15. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    SciTech Connect (OSTI)

    Mitchel, W. C. Haugan, H. J.; Mou, Shin; Brown, G. J.; Elhamri, S.; Berney, R.

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  16. Antiferromagnetic ordering in the doped Kondo insulator CeRhSb

    SciTech Connect (OSTI)

    Menon, L.; Malik, S.K.

    1997-06-01

    CeRhSb, the so-called {open_quotes}Kondo insulator,{close_quotes} is a mixed-valent compound showing a gap formation in the electronic density of states. On the other hand, CePdSb is ferromagnetically ordered with a Curie temperature of {approximately}17 K. We have carried out magnetic susceptibility and electrical resistivity measurements on CeRh{sub 1{minus}x}Pd{sub x}Sb (0{le}x{le}1.0), to study the ground-state properties of this system. For small Pd doping in CeRhSb, up to 20{percent}, the gap continually diminishes and no magnetic ordering is observed down to 2 K. In the region 0.3{le}x{le}0.4, as soon as the gap is suppressed, an antiferromagnetic ground state is observed. In the region 0.5{le}x{lt}0.7, the compounds are not single phase. At the CePdSb end, in the region 0.7{le}x{le}1, the ground state is ferromagnetic. The observation of an antiferromagnetic phase in the phase diagram of CeRh{sub 1{minus}x}Pd{sub x}Sb, where neither end is antiferromagnetic, is interesting and is discussed in the light of some recent theoretical models. {copyright} {ital 1997} {ital The American Physical Society}

  17. The magnetic structure of EuCu2Sb2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  18. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    SciTech Connect (OSTI)

    Dias, Marcelino; Costa, Thiago; Rocha, Otávio; Spinelli, José E.; Cheung, Noé; Garcia, Amauri

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  19. Solvothermal synthesis of graphene-Sb{sub 2}S{sub 3} composite and the degradation activity under visible light

    SciTech Connect (OSTI)

    Tao, Wenguang; Chang, Jiuli; Wu, Dapeng; Gao, Zhiyong; Duan, Xiaoli; Xu, Fang; Engineering Technology Research Center of Motive Power and Key Materials, Henan, 453007 ; Jiang, Kai; Engineering Technology Research Center of Motive Power and Key Materials, Henan, 453007

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Graphene-Sb{sub 2}S{sub 3} composites were synthesized through a facile solvothermal method. ? Hydroxyl radicals are the main species responsible for the photodegradation activity. ? Graphene-Sb{sub 2}S{sub 3} demonstrated dramatically improved visible light degradation activity. -- Abstract: Novel graphene-Sb{sub 2}S{sub 3} (G-Sb{sub 2}S{sub 3}) composites were synthesized via a facile solvothermal method with graphene oxide (GO), SbCl{sub 3} and thiourea as the reactants. GO played an important role in controlling the size and the distribution of the formed Sb{sub 2}S{sub 3} nanoparticles on the graphene sheets with different density. Due to the negative surface charge, smaller Sb{sub 2}S{sub 3} particles size and efficient electrons transfer from Sb{sub 2}S{sub 3} to graphene, the composites demonstrated improved photodegradation activity on rhodamine B (RhB). Among these composites, the product G-Sb{sub 2}S{sub 3} 0.1, which was synthesized with the GO concentration of 0.1 mg/mL, exhibited the highest photodegradation activity owing to the considerable density of Sb{sub 2}S{sub 3} nanoparticles onto graphene sheet free of aggregation. Hydroxyl radicals (OH) derived from conduction band (CB) electrons of Sb{sub 2}S{sub 3} is suggested to be responsible for the photodegradation of RhB. The high visible light degradation activity and the satisfactory cycling stability made the as-prepared G-Sb{sub 2}S{sub 3} 0.1 an applicable photocatalyst.

  20. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  1. Sb{sub 2}O{sub 4} at high pressures and high temperatures

    SciTech Connect (OSTI)

    Orosel, D.; Balog, P.; Liu, H.; Qian, J.; Jansen, M. . E-mail: m.jansen@fkf.mpg.de

    2005-09-15

    Investigations on Sb{sub 2}O{sub 4} at high pressure and temperature have been performed up to 600{sup o}C and up to 27.3GPa. The so-called 'high temperature' phase ({beta}-Sb{sub 2}O{sub 4}) was obtained following pressure increase at ambient temperature and at relatively low temperatures. Thus, in contrast to previous perceptions, {beta}-Sb{sub 2}O{sub 4} is the modification more stable at high pressures, i.e., at low temperatures. The fact that the metastable {alpha}-form is typically obtained through the conventional way of preparation has to be attributed to kinetic effects. The pressure-induced phase transitions have been monitored by in-situ X-ray diffraction in a diamond anvil cell, and confirmed ex-situ, by X-ray diffraction at ambient conditions, following temperature decrease and decompression in large volume devices. Bulk modulus values have been derived from the pressure-induced volume changes at room temperature, and are 143GPa for {alpha}-Sb{sub 2}O{sub 4} and 105GPa for the {beta}-Sb{sub 2}O{sub 4}.

  2. Performance Study of K2CsSb Photocathode Inside a DC High Voltage Gun

    SciTech Connect (OSTI)

    McCarter J. L.; Rao T.; Smedley, J.; Grames, J.; Mammei, R.; Poelker, M.; Suleiman, R.

    2011-09-01

    In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K{sub 2}CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the K{sub 2}CsSb photocathode inside a DC gun. Since the multialkali cathode is a compound with constant characteristics over its entire thickness, we anticipate that the lifetime issues seen in GaAs:Cs due to surface damage by ion bombardment would be minimized. Hence successful operation of the K{sub 2}CsSb cathode in a DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of a K{sub 2}CsSb cathode in a DC gun, we have designed and built a load lock system that allows the fabrication of the cathode at Brookhaven National Lab (BNL) and its testing at Jefferson Lab (JLab). In this paper, we will present the performance of the K{sub 2}CsSb photocathode in the preparation chamber and in the DC gun.

  3. Fragile structural transition in Mo3Sb7

    SciTech Connect (OSTI)

    Yan, Jiaqiang -Q.; McGuire, Michael A; May, Andrew F; Parker, David S.; Mandrus, D. G.; Sales, Brian C.

    2015-08-10

    Mo3Sb7 single crystals lightly doped with Cr, Ru, or Te are studied in order to explore the interplay between superconductivity, magnetism, and the cubic-tetragonal structural transition. The structural transition at 53 K is extremely sensitive to Ru or Te substitution which introduces additional electrons, but robust against Cr substitution. We observed no sign of a structural transition in superconducting Mo2.91Ru0.09Sb7 and Mo3Sb6.975Te0.025. In contrast, 3 at.% Cr doping only slightly suppresses the structural transition to 48 K while leaving no trace of superconductivity above 1.8 K. Analysis of magnetic properties suggests that the interdimer interaction in Mo3Sb7 is near a critical value and essential for the structural transition. Futhermore, all dopants suppress the superconductivity of Mo3Sb7. The tetragonal structure is not necessary for superconductivity.

  4. Superconductivity in strong spin orbital coupling compound Sb2Se3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; et al

    2014-10-20

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. We report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related tomore » the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. As a result, high pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.« less

  5. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOE Patents [OSTI]

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  6. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOE Patents [OSTI]

    Spahn, Olga B.; Lear, Kevin L.

    1998-01-01

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  7. 21st International Conference on Photochemical Conversion and Storage of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy "IPS-21" (St. Petersburg, Russia) - JCAP 1st International Conference on Photochemical Conversion and Storage of Solar Energy "IPS-21" (St. Petersburg, Russia) 21st International Conference on Photochemical Conversion and Storage of Solar Energy "IPS-21" (St. Petersburg, Russia) Mon, Jul 25, 2016 3:30pm 15:30 Fri, Jul 29, 2016 4:30pm 16:30 St. Petersburg Russia Joel Haber, "Artificial Photosynthesis-Progress and Prospects" July 24 2016

  8. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    SciTech Connect (OSTI)

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2014-01-20

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences.

  9. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    SciTech Connect (OSTI)

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang E-mail: shaohorn@mit.edu; Ma, Jie; May, Andrew F.; Delaire, Olivier E-mail: shaohorn@mit.edu

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ?0.7?W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1?x}Sb{sub 1+x}Sb{sub 2+x} (with x?=?0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ?2.55?nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  10. St. Croix Chippewa Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    The St. Croix tribe's interest in sustainable economic development has led them to explore using locally available biofuel for power generation. A biofuel power project will leverage community assets and resources and provide a foundation for future sustainable development. It will also help to meet power demands and reduce dependence on imported nonrenewable energy sources.

  11. The Crystallization Behavior of Stochiometric and Off-stochiometric Ga-Sb-Te Materials for Phase-Change Memory

    SciTech Connect (OSTI)

    H Cheng; S Raoux; J Jordan-Sweet

    2011-12-31

    The stoichiometric Ga{sub 4}Sb{sub 6}Te{sub 3} and Ga-Sb materials were systematically studied. The alloy Ga{sub 4}Sb{sub 6}Te{sub 3} shows a fast crystallization speed, very high crystallization temperature, T{sub x}, and high electrical contrast. Although stoichiometric GaSb has similar performance and even faster crystallization speed, the electrical contrast is much lower. The other off-stoichiometric compounds we studied all have higher T{sub x} than Ge{sub 2}Sb{sub 2}Te{sub 5} indicating a good amorphous stability. By raising the Sb/Te ratio with GaSb incorporation, T{sub x} and the recrystallization time of melt-quenched, amorphous samples can be effectively increased. The stoichiometric Ga{sub 4}Sb{sub 6}Te{sub 3} with less likelihood of phase-segregation compared to nonstoichiometric compounds is a promising candidate for phase-change memory.

  12. Evaluation Of Glass Density To Support The Estimation Of Fissile Mass Loadings From Iron Concentrations In SB8 Glasses

    SciTech Connect (OSTI)

    Edwards, T. B.; Peeler, D. K.; Kot, W. K.; Gan, H.; Pegg, I. L.

    2013-04-30

    The Department of Energy Savannah River (DOE-SR) has provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of that guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft Excel spreadsheet for the evaluation of fissile loading in Sludge Batch 5 (SB5), Sludge Batch 6 (SB6), Sludge Batch 7a (SB7a), and Sludge Batch 7b (SB7b) glass based on the iron (Fe) concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that the necessary density information be provided to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 8 (SB8). One of the primary inputs into the fissile loading spreadsheet includes an upper bound for the density of SB8-based glasses. Thus, these bounding density values are to be used to assess the fissile concentration in this glass system. It should be noted that no changes are needed to the underlying structure of the Excel-based spreadsheet to support fissile assessments for SB8. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB8 Waste Acceptance Product Specification (WAPS) sample.

  13. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  14. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    SciTech Connect (OSTI)

    Liu, J. Q.; Wang, C.; Zhu, T.; Wu, W. J.; Fan, J.; Tu, L. C.

    2015-11-15

    This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ⋅ cm{sup 2} at 425 {sup o}C. Scanning electron microscopy (SEM) reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS) shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  15. 1st Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Total production of uranium concentrate in the United States, 1996 - 1st quarter 2016 pounds U 3 O 8 Calendar-year quarter 1st quarter 2nd quarter 3rd quarter 4th quarter ...

  16. FY 2014 SL/ST Performance Appraisal System Guidance

    Broader source: Energy.gov [DOE]

    This document provides a summary of the key performance management requirements for the FY 2014 SL/ST performance management cycle. These requirements should be understood and applied for all SL/ST...

  17. EECBG Success Story: St. Louis Launches Plan for More Sustainable...

    Energy Savers [EERE]

    St. Louis Launches Plan for More Sustainable Community EECBG Success Story: St. Louis Launches Plan for More Sustainable Community March 1, 2013 - 1:56pm Addthis Using money from ...

  18. Complex Systems: Science for the 21st Century (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Complex Systems: Science for the 21st Century Citation Details In-Document Search Title: Complex Systems: Science for the 21st Century The workshop was designed ...

  19. Complex Systems: Science for the 21st Century (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Complex Systems: Science for the 21st Century Citation Details In-Document Search Title: Complex Systems: Science for the 21st Century You are accessing a document from the ...

  20. Sunrayce 97 Continues Day 7 - Smith Center to St. Francis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 - Smith Center to St. Francis For more information contact: Patrick Booher, Sunrayce Program Manager (202) 586-0713 St. Francis, Kan. -- It was a close race for the top three ...

  1. Gate-tunable high mobility remote-doped InSb/In{sub 1−x}Al{sub x}Sb quantum well heterostructures

    SciTech Connect (OSTI)

    Yi, Wei E-mail: MSokolich@hrl.com; Kiselev, Andrey A.; Thorp, Jacob; Noah, Ramsey; Nguyen, Binh-Minh; Bui, Steven; Rajavel, Rajesh D.; Hussain, Tahir; Gyure, Mark F.; Sokolich, Marko E-mail: MSokolich@hrl.com; Kratz, Philip; Qian, Qi; Manfra, Michael J.; Pribiag, Vlad S.; Kouwenhoven, Leo P.; Marcus, Charles M.

    2015-04-06

    Gate-tunable high-mobility InSb/In{sub 1−x}Al{sub x}Sb quantum wells (QWs) grown on GaAs substrates are reported. The QW two-dimensional electron gas (2DEG) channel mobility in excess of 200 000 cm{sup 2}/V s is measured at T = 1.8 K. In asymmetrically remote-doped samples with an HfO{sub 2} gate dielectric formed by atomic layer deposition, parallel conduction is eliminated and complete 2DEG channel depletion is reached with minimal hysteresis in gate bias response of the 2DEG electron density. The integer quantum Hall effect with Landau level filling factor down to 1 is observed. A high-transparency non-alloyed Ohmic contact to the 2DEG with contact resistance below 1 Ω·mm is achieved at 1.8 K.

  2. Microstructural stability in LPE Ga{sub x}In{sub (1{minus}x)}As{sub y}Sb{sub (1{minus}y)}/GaSb heterostructures

    SciTech Connect (OSTI)

    Chen, C.Y.; Bucklen, V.; Rajan, K.; Freeman, M.; Cardines, R.P.

    1998-06-01

    The morphological and structural characteristics associated with the growth of lattice matched In{sub x}Ga{sub (1{minus}x)}As{sub y}Sb{sub (1{minus}y)}/GaSb (100) heterostructures is presented. The experiments focused on studying the effect of growth on vicinal surfaces tilted from the exact (100) orientation as well as variations in epilayer chemistry. It was found that variations in these process parameters had very strong effects on both the nucleation characteristics of the epilayer and the atomistic scale homogeneity of the alloy. The <100> and <110> variants in compositional modulation/phase separation were detected, as well as the evolution of weak (110) ordering. These results are discussed in the context of other studies on phase stability in III-V epitaxial structures, especially in terms of surface reconstruction and kinetic effects near conditions of spinodal decomposition.

  3. Properties of Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} thin films obtained by pulsed laser ablation

    SciTech Connect (OSTI)

    Virt, I. S.; Rudyj, I. O.; Kurilo, I. V.; Lopatynskyi, I. Ye.; Linnik, L. F.; Tetyorkin, V. V.; Potera, P.; Luka, G.

    2013-07-15

    The properties of Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} thin films of variable thickness deposited onto Al{sub 2}O{sub 3}, Si, and KCl substrates are investigated by the method of pulsed laser ablation. The samples are obtained at a substrate temperature of 180 Degree-Sign C in a vacuum chamber with a residual pressure of 10{sup -5} Torr. The thickness of the films amounted to 40-1500 nm. The structure of the bulk material of the targets and films is investigated by the methods of X-ray diffraction and transmission high-energy electron diffraction, respectively. The electrical properties of the films are investigated in the temperature range of 253-310 K. It is shown that the films have semiconductor properties. The structural features of the films determine their optical parameters.

  4. National Electric Transmission Congestion Study - St. Louis Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy St. Louis Workshop National Electric Transmission Congestion Study - St. Louis Workshop On December 8, 2011, DOE hosted a regional pre-study workshop in St. Louis, MO to receive input and suggestions concerning the National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below. National Electric Transmission Congestion Study Eastern Workshops (89.81 KB) 12-08-11 Congestion Workshop Agenda - St Louis

  5. PP-99 St. Clair Tunnel Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 St. Clair Tunnel Company PP-99 St. Clair Tunnel Company Presidential Permit authorizong St. Clair Tunnel Company to construct, operate,a nd maintain eelctric transmission facilities at the U.S. - Canada Border PP-99 St. Clair Tunnel Company (1.08 MB) More Documents & Publications PP-48-3 El Paso Eelctric Company PP-90-1 Imperial Irrigation District PP-76 The Vermont Electric Transmission Company

  6. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 21st Century Truck Partnership The 21st Century Truck Partnership 2002 DEER Conference Presentation: 2002_deer_howden.pdf (268.3 KB) More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical White Papers for 21st Century Truck Partnership Vehicle Technologies Office Merit Review 2016: Annual Merit Review and Peer Evaluation Meeting

  7. Frit Development Efforts for Sludge Batch 4 (SB4): Operating Window Assessments fo Scenarios Leading Up to the Selected Preparation Plan for SB4

    SciTech Connect (OSTI)

    Peeler, D

    2006-03-21

    The objective of this report is to document technical information that has been provided to Defense Waste Processing Facility (DWPF) and Closure Business Unit (CBU) personnel as part of the frit development support for Sludge Batch 4 (SB4). The information presented in this report includes projected operating windows (expressed in terms of waste loading) for various sludge blending and/or washing options coupled with candidate frits of interest. Although the Nominal Stage assessment serves as the primary tool for these evaluations, select systems were also evaluated using a Variation Stage assessment in which compositional variations were introduced. In addition, assessments of the impacts of nepheline formation potential and the SO{sub 4}{sup -} solubility limit on the projected operating windows are also provided. Although this information was used as part of the technical basis leading to CBU's development of the preferred SB4 preparation plan, none of the options presented in this report was selected as the preferred plan. Therefore, the information is presented without significant interpretation of the resulting operating windows, but the projected windows are provided so additional insight can be explored if desired. Detailed assessments of the projected operating windows (using both Nominal and Variation Stage assessments) of the preferred sludge preparation plan with candidate frits are to be documented elsewhere. The information provided in this report is focused solely on model-based projections of the operating windows for various SB4 blending strategies of interest. Although nepheline formation potential is monitored via model predictions as a part of this assessment, experimental work investigating the impact of nepheline on glass quality is also being addressed in a parallel study. The results of this paper study and the experimental assessments of melt rate, SO{sub 4} solubility, and/or nepheline formation potential are all critical components of the

  8. Science in St. Louis | Dr. Tristram R. Kidder | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Tristram R. Kidder Science in St. Louis | Dr. Tristram R. Kidder Ancient Lessons for Modern Times: An Environmental History of the Yellow River, China, 5000-2000 BC November 10, 2015 - 7:00pm Mid-County Branch, St. Louis County Library, 7821 Maryland Ave. St. Louis, MO 63105-3875

  9. Structural phase transition and phonon instabilities in Cu12Sb4S13

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; Lara-Curzio, Edgar; Susner, Michael A.; Abernathy, Douglas L.; Kirkham, Melanie J.; McGuire, Michael A.

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  10. The radiation chemistry of Cs-7SB, a solvent modifier used in Cs and Sr extraction

    SciTech Connect (OSTI)

    Mincher, B.J.; Martin, L.R.; Elias, G.; Mezyk, S.P.

    2008-07-01

    The solvent modifier 1-(2,2,3,3-tetrafluoro-propoxy)-3-(4-sec-butylphenoxy)-2-propanol, (Cs- 7SB) is used in conjunction with calixarenes and crown ethers dissolved in alkane diluents for the extraction of Cs and Sr from highly radioactive solutions. Its purpose is to solvate the ligands and the resulting ligand-metal complexes in the organic phase. Given this role, and its relatively high concentration in the formulations used for solvent extraction, radiolytic degradation of Cs-7SB might decrease the extraction efficiency of these elements as the solvent accumulates absorbed radiation dose. This work presents the results of studies of Cs-7SB using post-radiolysis gas chromatography with electron-capture detection and solvent-extraction distribution-ratio measurements. Also presented is the kinetic analysis of the bimolecular rate constant for the modifier's reaction with nitrogen trioxide and nitrogen dioxide radicals, major radiolytically-produced radical species in irradiated aqueous nitric acid. Although Cs-7SB was found to undergo reactions with nitrogen-centered radicals, little decrease in extraction efficiency was found. It is concluded the modifier, always present at concentrations much higher than the ligands, acts as a radical scavenger, protecting ligands from radiolytic attack. (authors)

  11. Performance Study of K2CsSb Photocathode inside a DC High Voltage Gun

    SciTech Connect (OSTI)

    T. Rao, J. Smedley, J.M. Grames, R. Mammei, J.L. McCarter, M. Poelker, R. Suleiman

    2011-03-01

    In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K2CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the GaAs:Cs in RF injector and the K2CsSb cathode in the DC gun in order to widen our choices. Since the multialkali cathode is a compound with uniform stochiometry over its entire thickness, we anticipate that the life time issues seen in GaAs:Cs due surface damage by ion bombardment would be minimized with this material. Hence successful operation of the K2CsSb cathode in DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of K2CsSb cathode in a DC gun, we have designed and built a load lock system that would allow the fabrication of the cathode at BNL and its testing at JLab. In this paper, we will present the design of the load-lock system, cathode fabrication, and the cathode performance in the preparation chamber and in the DC gun.

  12. Thermoelectric properties of AgSbTe₂ from first-principles calculations

    SciTech Connect (OSTI)

    Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad

    2014-09-14

    The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.

  13. Structural phase transition and phonon instability in Cu12Sb4S13

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; Lara-Curzio, Edgar; Susner, Michael A.; Abernathy, Douglas L.; Kirkham, Melanie J.; McGuire, Michael A.

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  14. Rashba effect in single-layer antimony telluroiodide SbTeI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Houlong L.; Cooper, Valentino R.; Xu, Haixuan; Ganesh, P.; Hennig, Richard G.; Kent, P. R. C.

    2015-09-04

    Exploring spin-orbit coupling (SOC) in single-layer materials is important for potential spintronics applications. In this paper, using first-principles calculations, we show that single-layer antimony telluroiodide SbTeI behaves as a two-dimensional semiconductor exhibiting a G0W0 band gap of 1.82 eV. More importantly, we observe the Rashba spin splitting in the SOC band structure of single-layer SbTeI with a sizable Rashba coupling parameter of 1.39 eV Å, which is significantly larger than that of a number of two-dimensional systems including surfaces and interfaces. The low formation energy and real phonon modes of single-layer SbTeI imply that it is stable. Finally, our studymore » suggests that single-layer SbTeI is a candidate single-layer material for applications in spintronics devices.« less

  15. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect (OSTI)

    Gilbertson, Adam; Cohen, L. F.; Lambert, C. J.; Solin, S. A.

    2013-12-04

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  16. Baseline risk assessment for exposure to contaminants at the St. Louis Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The St. Louis Site comprises three noncontiguous areas in and near St. Louis, Missouri: the St. Louis Downtown Site (SLDS), the St. Louis Airport Storage Site (SLAPS), and the Latty Avenue Properties. The main site of the Latty Avenue Properties includes the Hazelwood Interim Storage Site (HISS) and the Futura Coatings property, which are located at 9200 Latty Avenue. Contamination at the St. Louis Site is the result of uranium processing and disposal activities that took place from the 1940s through the 1970s. Uranium processing took place at the SLDS from 1942 through 1957. From the 1940s through the 1960s, SLAPS was used as a storage area for residues from the manufacturing operations at SLDS. The materials stored at SLAPS were bought by Continental Mining and Milling Company of Chicago, Illinois, in 1966, and moved to the HISS/Futura Coatings property at 9200 Latty Avenue. Vicinity properties became contaminated as a result of transport and movement of the contaminated material among SLDS, SLAPS, and the 9200 Latty Avenue property. This contamination led to the SLAPS, HISS, and Futura Coatings properties being placed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA). The US Department of Energy (DOE) is responsible for cleanup activities at the St. Louis Site under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The primary goal of FUSRAP is the elimination of potential hazards to human health and the environment at former Manhattan Engineer District/Atomic Energy Commission (MED/AEC) sites so that, to the extent possible, these properties can be released for use without restrictions. To determine and establish cleanup goals for the St. Louis Site, DOE is currently preparing a remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS). This baseline risk assessment (BRA) is a component of the process; it addresses potential risk to human health and the environment associated wi

  17. Advanced ST Plasma Scenario Simulations for NSTX

    SciTech Connect (OSTI)

    C.E. Kessel; E.J. Synakowski; D.A. Gates; R.W. Harvey; S.M. Kaye; T.K. Mau; J. Menard; C.K. Phillips; G. Taylor; R. Wilson; the NSTX Research Team

    2004-10-28

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high {beta} and high {beta}{sub N} inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high {beta} for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with {beta} {approx} 40% at {beta}{sub N}'s of 7.7-9, I{sub P} = 1.0 MA, and B{sub T} = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H{sub 98(y,2)} = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations.

  18. Solar Policy Environment: Minneapolis/St. Paul

    Broader source: Energy.gov [DOE]

    The cities of Minneapolis and St. Paul joined forces to implement a comprehensive approach to promoting “Solar in the Cities” including commercial and residential solar installations, technical training programs, and city and state policy review. The Cities are marshalling a wide array of expertise through strategic partnerships with Xcel Energy, Minnesota Dept. of Commerce, Minnesota Renewable Energy Society, Green Institute, freEner-g, Int’l Brotherhood of Electrical Workers, League of Minnesota cities, Neighborhood Energy Connection, and Century College.

  19. TANK 40 FINAL SB5 CHEMICAL CHARACTERIZATION RESULTS PRIOR TO NP ADDITION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.

    2010-01-06

    A sample of Sludge Batch 5 (SB5) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for chemical composition including noble metals. Prior to radionuclide inventory analyses, a final sample of the H-canyon Np stream will be added to bound the Np addition anticipated for Tank 40. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to DWPF as SB5. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB5 sample was transferred from the shipping container into a 4-L high density polyethylene vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 239 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four in Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Additionally, other alkali metals, such as Li and K that may be contaminants in the Na{sub 2}O{sub 2} are not determined from this preparation. Three Analytical Reference Glass - 14 (ARG-1) standards were digested along with a blank for each preparation. The ARG-1 glass allows for an assessment of the completeness of each digestion. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICPAES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis of masses 81-209 and 230

  20. Molecular Beam Epitaxy on Gas Cluster Ion Beam Prepared GaSb Substrates: Towards Improved Surfaces and Interfaces

    SciTech Connect (OSTI)

    Krishnaswami, Kannan; Vangala, Shivashankar R.; Dauplaise, Helen; Allen, Lisa; Dallas, Gordon; Bakken, Daniel; Bliss, David; Goodhue, William

    2008-04-01

    A key problem in producing mid-infrared optoelectronic and low-power electronic devices in the GaSb material system is the lack of substrates with appropriate surfaces for epitaxial growth. Chemical mechanical polishing (CMP) of GaSb results in surface damage accompanied by tenacious oxides that do not easily desorb. To overcome this, we have developed a process using gas cluster ion beams (GCIB) to remove surface damage and produce engineered surface oxides. In this paper, we present surface modification results on GaSb substrates using O2-, CF4/O2-, and HBr-GCIB processes. X-ray photoelectron spectroscopy of GCIB produced surface layers showed the presence of mixed Ga- and Sb-oxides, with mostly Ga-oxides at the interface, desorbing at temperatures ranging 530°C to 560°C. Cross-sectional transmission electron microscopy of molecular beam epitaxy grown GaSb/AlGaSb layers showed that GCIB surfaces yielded smooth defect free substrate to epi transitions as compared to CMP surfaces. Furthermore, HBr-GCIB surfaces exhibited neither dislocation layers nor discernable interfaces, indicating complete oxide desorbtion prior to epigrowth on a clean single crystal template. Atomic force microscopy of GCIB epilayers exhibited smooth surfaces with characteristic step-terrace formations comprising monatomic steps and wide terraces. The HBr-GCIB process can be easily adapted to a large scale manufacturing process for epi-ready GaSb.

  1. Engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Hartmann, H.M.; Nimmagadda, M.R. ); Williams, M.J. )

    1991-05-01

    The US Department of Energy (DOE) is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area: the St. Louis Downtown Site (SLDS), the St. Louis Airport Site (SLAPS) and vicinity properties, and the Latty Avenue Properties, including the Hazelwood Interim Storage Site (HISS). The general location of these properties is shown in Figure 1; the properties are referred to collectively as the St. Louis Site. None of the properties are owned by DOE, but each property contains radioactive residues from federal uranium processing activities conducted at the SLDS during and after World War 2. The activities addressed in this environmental evaluation/cost analysis (EE/CA) report are being proposed as interim components of a comprehensive cleanup strategy for the St. Louis Site. As part of the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP), DOE is proposing to conduct limited decontamination in support of proprietor-initiated activities at the SLDS, commonly referred to as the Mallinckrodt Chemical Works. The primary goal of FUSRAP activity at the SLDS is to eliminate potential environmental hazards associated with residual contamination resulting from the site's use for government-funded uranium processing activities. 17 refs., 3 figs., 5 tabs.

  2. Direct Evidence for Abrupt Postcrystallization Germanium Precipitation in Thin Phase-Change Films of Sb-15 at. % Ge

    SciTech Connect (OSTI)

    Cabral,C.; Krusin-Elbaum, L.; Bruley, J.; Raoux, S.; Deline, V.; Madan, A.; Pinto, T.

    2008-01-01

    We present evidence for the instability in the crystalline (metallic) state of binary Te-free phase-change Ge-Sb thin films considered for integration into nonvolatile nanosized memory cells. We find that while the amorphous (semiconducting) phase of eutectic Sb-15 at. % Ge is very robust until Sb crystallization at 240 C, at about 350 C, germanium rapidly precipitates out. Ge precipitation, visualized directly with transmission electron microscopy, is exothermic and is found to affect the films' reflectivity, resistance, and stress. It converts melting into a two-step process, which may seriously impact the switching reliability of a device.

  3. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    SciTech Connect (OSTI)

    Ritter, C; Dhar, S K; Kulkarni, R; Provino, A; Paudyal, Durga; Manfrinetti, Pietro; Gschneidner, Karl A

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  4. Carrier localization and in-situ annealing effect on quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y}/GaAs quantum wells grown by Sb pre-deposition

    SciTech Connect (OSTI)

    Thoma, Jiri; Huyet, Guillaume; Tyndall National Institute, UCC, Lee Maltings, Cork ; Liang, Baolai; Huffaker, Diana L.; Lewis, Liam; Hegarty, Stephen P.

    2013-03-18

    Using temperature-dependent photoluminescence spectroscopy, we have investigated and compared intrinsic InGaAs, intrinsic GaInAsSb, and p-i-n junction GaInAsSb quantum wells (QWs) embedded in GaAs barriers. Strong carrier localization inside the intrinsic GaInAsSb/GaAs QW has been observed together with its decrease inside the p-i-n sample. This is attributed to the effect of an in-situ annealing during the top p-doped AlGaAs layer growth at an elevated temperature of 580 Degree-Sign C, leading to Sb-atom diffusion and even atomic redistribution. High-resolution X-ray diffraction measurements and the decrease of both maximum localization energy and full delocalization temperature in the p-i-n QW sample further corroborated this conclusion.

  5. Temperature-dependent structural property and power factor of n type thermoelectric Bi{sub 0.90}Sb{sub 0.10} and Bi{sub 0.86}Sb{sub 0.14} alloys

    SciTech Connect (OSTI)

    Malik, K.; Das, Diptasikha; Bandyopadhyay, S.; Banerjee, Aritra; Center for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098 ; Mandal, P.; Srihari, Velaga

    2013-12-09

    Thermal variation of structural property, linear thermal expansion coefficient (?), resistivity (?), thermopower (S), and power factor (PF) of polycrystalline Bi{sub 1-x}Sb{sub x} (x?=?0.10 and 0.14) samples are reported. Temperature-dependent powder diffraction experiments indicate that samples do not undergo any structural phase transition. Rietveld refinement technique has been used to perform detailed structural analysis. Temperature dependence of ? is found to be stronger for Bi{sub 0.90}Sb{sub 0.10}. Also, PF for direct band gap Bi{sub 0.90}Sb{sub 0.10} is higher as compared to that for indirect band gap Bi{sub 0.86}Sb{sub 0.14}. Role of electron-electron and electron-phonon scattering on ?, S, and PF has been discussed.

  6. 1994 SSRL 21st USERS MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL 21st USERS MEETING SSRL 12 Oct 1994 October 17-18, 1994, SLAC Auditorium PROGRAM MONDAY, OCTOBER 17 7:30 Registration and Continental Breakfast - Auditorium Breezeway SESSION I Chair: Louis Terminello 8:30 Welcome - L. Terminello (LLNL) 8:35 SSRL Director's Report - A. Bienenstock (SSRL) 9:15 SSRLUO Report - J. Kortright (LBL) 9:30 Report from Washington - W. Oosterhuis (DOE) 9:45 Coffee Break SESSION II Surface and Reduced Dimensional Studies Chair: Charles Fadley lO:15 Ultra-trace Metal

  7. Defect reduction in epitaxial GaSb grown on nanopatterned GaAs substrates using full wafer block copolymer lithography

    SciTech Connect (OSTI)

    Jha, Smita; Liu, C.-C.; Nealey, P. F.; Kuech, T. F.; Kuan, T. S.; Babcock, S. E.; Park, J. H.; Mawst, L. J.

    2009-08-10

    Defect reduction in the large lattice mismatched system of GaSb on GaAs, {approx}7%, was accomplished using full wafer block copolymer (BCP) lithography. A self-assembled BCP mask layer was used to generate a hexagonal pattern of {approx}20 nm holes on {approx}40 nm centers in a 20 nm SiO{sub 2} layer. GaSb growth initially takes place selectively within these holes leading to a dense array of small, strain-relaxed epitaxial GaSb islands. The GaSb grown on the patterned SiO{sub 2} layer exhibits a reduction in the x-ray linewidth attributed to a decrease in the threading dislocation density when compared to blanket pseudomorphic film growth.

  8. Characterization of silver photodiffusion in Ge{sub 8}Sb{sub 2}Te{sub 11} thin films

    SciTech Connect (OSTI)

    Kumar, Sandeep; Singh, D.; Sandhu, S.; Thangaraj, R.

    2015-06-24

    Silver-doped amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films have been prepared by photodiffusion at room-temperature; the Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer was deposited by vacuum thermal evaporation. Photodiffusion of Ag into the amorphous Ge{sub 8}Sb{sub 2}Te{sub 11} thin films has been carried out by illuminating the prepared Ge{sub 8}Sb{sub 2}Te{sub 11}/Ag bilayer with halogen lamp. The photodiffused silver depth profile was traced by means of time of flight secondary ion mass spectroscopy. The film remains amorphous after Ag photodiffusion. The crystallization temperature of the films was evaluated by temperature dependent sheet resistance measurement. The amorphous nature and crystalline phases of the films have been identified by using X-ray diffraction.

  9. Effect of rare-earth doping in RCrSb3 (R = La, Pr, Sm, and Gd...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Effect of rare-earth doping in RCrSb3 (R La, Pr, Sm, and Gd) Citation Details In-Document Search ... We report on the electrical resistivity and magnetic ...

  10. Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001)

    SciTech Connect (OSTI)

    Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.; Honsberg, C. B.; Smith, D. J.

    2013-09-14

    We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of a dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.

  11. The reaction mechanism of FeSb2 as anode for sodium-ion batteries

    SciTech Connect (OSTI)

    Baggetto, Loic; Hah, Hien-Yoong; Charles E. Johnson; Bridges, Craig A.; Johnson, Jackie A.; Veith, Gabriel M.

    2014-04-04

    The electrochemical reaction of FeSb2 with Na is reported for the first time. The first discharge (sodiation) potential profile of FeSb2 is characterized by a gentle slope centered at 0.25 V. During charge (Na removal) and the subsequent discharge, the main reaction takes place near 0.7 V and 0.4 V, respectively. The reversible storage capacity amounts to 360 mA h g-1, which is smaller than the theoretical value of 537 mA h g-1. The reaction, studied by ex situ and in situ X-ray diffraction, is found to proceed by the consumption of crystalline FeSb2 to form an amorphous phase. Upon further sodiation, the formation of nanocrystalline Na3Sb domains is evidenced. During desodiation, Na3Sb domains convert into an amorphous phase. The chemical environment of Fe, probed by 57Fe Mo ssbauer spectroscopy, undergoes significant changes during the reaction. During sodiation, the well-resolved doublet of FeSb2 with an isomer shift around 0.45 mm s-1 and a quadrupole splitting of 1.26 mm s-1 is gradually converted into a doublet line centered at about 0.15 mm s1 along with a singlet line around 0 mm s-1. The former signal results from the formation of a Fe-rich FexSb alloy with an estimated composition of Fe4Sb while the latter signal corresponds to superparamagnetic Fe due to the formation of nanosized pure Fe domains. Interestingly the signal of Fe4Sb remains unaltered during desodiation. This mechanism is substantially different than that observed during the reaction with Li. The irreversible formation of a Fe-rich Fe4Sb alloy and the absence of full desodiation of Sb domains explain the lower than theoretical practical storage capacity.

  12. Chicago-St. Louis high speed rail plan

    SciTech Connect (OSTI)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  13. Program Update: 1st Quarter 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 Program Update: 1st Quarter 2009 The Program Update newsletter is produced every quarter and highlights major activities and events that occurred across the DOE complex during that period of time. Office of Legacy Management (LM) Program Update, January-March 2009 (3.33 MB) More Documents & Publications Program Update: 1st Quarter 2011 Program Update: 1st Quarter 2010 Program Update: 2nd Quarter 2013

  14. DOE - Office of Legacy Management -- Fort St Vrain - 011

    Office of Legacy Management (LM)

    Fort St Vrain - 011 FUSRAP Considered Sites Site: Fort St Vrain (011) DOE Office of Environmental Management assumed the radioactive materials license for storage of spent nuclear fuel in 1999. Designated Name: Not Designated under FUSRAP Alternate Name: Fort St Vrain Independent Spent Fuel Storage Installation (ISFSI) Location: Platteville, Colorado Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Nuclear power plant Site Disposition: Decommissioned in 1989 with

  15. InAs quantum dot morphology after capping with In, N, Sb alloyed thin films

    SciTech Connect (OSTI)

    Keizer, J. G.; Koenraad, P. M.; Ulloa, J. M.; Utrilla, A. D.

    2014-02-03

    Using a thin capping layer to engineer the structural and optical properties of InAs/GaAs quantum dots (QDs) has become common practice in the last decade. Traditionally, the main parameter considered has been the strain in the QD/capping layer system. With the advent of more exotic alloys, it has become clear that other mechanisms significantly alter the QD size and shape as well. Larger bond strengths, surfactants, and phase separation are known to act on QD properties but are far from being fully understood. In this study, we investigate at the atomic scale the influence of these effects on the morphology of capped QDs with cross-sectional scanning tunneling microscopy. A broad range of capping materials (InGaAs, GaAsSb, GaAsN, InGaAsN, and GaAsSbN) are compared. The QD morphology is related to photoluminescence characteristics.

  16. Doping Effects on the Thermoelectric Properties of Cu3SbSe4

    SciTech Connect (OSTI)

    Skoug, Eric; Cain, Jeffrey D.; Morelli, Donald; Majsztrik, Paul W; Kirkham, Melanie J; Lara-Curzio, Edgar

    2011-01-01

    We present the first systematic doping study on the ternary semiconductor Cu3SbSe 4 . We have developed a novel synthesis procedure that produces high-quality polycrystalline samples with hole concentrations an order of magnitude lower than have been reported for the undoped compound. The hole concentration can be increased by adding small amounts of either Ge or Sn on the Sb site. The power factor increases with increasing doping, reaching a maximum value of 16 W/cmK^2 . The thermoelectric properties are optimized for the 2% Sn doped compound which has ZT=0.72 at 630K, rivaling that of state-of-the-art thermoelectric materials in this temperature range.

  17. Structural stability and electronic properties of InSb nanowires: A first-principles study

    SciTech Connect (OSTI)

    Zhang, Yong; Tang, Li-Ming Ning, Feng; Chen, Ke-Qiu; Wang, Dan

    2015-03-28

    Using first-principles calculations, we investigate the structural stability and electronic properties of InSb nanowires (NWs). The results show that, in contrast to the bulk InSb phase, wurtzite (WZ) NWs are more stable than zinc-blende (ZB) NWs when the NW diameter is smaller than 10 nm. Nonpassivated ZB and WZ NWs are found to be metallic and semiconducting, respectively. After passivation, both ZB and WZ NWs exhibit direct-gap semiconductor character, and the band gap magnitude of the NWs strongly depends on the suppression of surface states by the charge-compensation ability of foreign atoms to surface atoms. Moreover, the carrier mobility of the NW can be strengthened by halogen passivation.

  18. Irreversible altering of crystalline phase of phase-change Ge-Sb thin films

    SciTech Connect (OSTI)

    Krusin-Elbaum, L.; Shakhvorostov, D.; Cabral, C. Jr.; Raoux, S.; Jordan-Sweet, J. L.

    2010-03-22

    The stability of the crystalline phase of binary phase-change Ge{sub x}Sb{sub 1-x} films is investigated over a wide range of Ge content. From Raman spectroscopy we find the Ge-Sb crystalline structure irreversibly altered after exposure to a laser beam. We show that with increasing beam intensity/temperature Ge agglomerates and precipitates out in the amount growing with x. A simple empirical relation links Ge precipitation temperature T{sub Ge}{sup p} to the rate of change dT{sub cryst}/dx of crystallization, with the precipitation easiest on the mid-range x plateau, where T{sub cryst} is nearly constant. Our findings point to a preferable 15% < or approx. x < 50% window, that may achieve the desired cycling/archival properties of a phase-change cell.

  19. Funding Opportunity Announcement: Solar Bankability Data to Advance Transactions and Access (SB-DATA)

    Broader source: Energy.gov [DOE]

    The Solar Bankability Data to Advance Transactions and Access (SB-DATA) funding program targets soft cost reduction by increasing data accessibility and quality. It will facilitate the growth and expansion of the solar industry by creating a standardized data landscape for distributed solar. As the solar market continues to rapidly grow, it’s critical that the collection, management, and exchange of solar datasets across the value chain – especially those that affect the bankability of solar assets – are coordinated and streamlined to protect consumers, increase efficient pricing, and support new and existing businesses entering the solar marketplace. The goal of SB-DATA is to support the creation and adoption of industry-led open data standards for rapid and seamless data exchange across the value chain from origination to decommissioning.

  20. Two-dimensional topological crystalline insulator phase in Sb/Bi planar honeycomb with tunable Dirac gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, Chia -Hsiu; Huang, Zhi -Quan; Crisostomo, Christian P.; Yao, Liang -Zi; Chuang, Feng -Chuan; Liu, Yu -Tzu; Wang, Baokai; Hsu, Chuang -Han; Lee, Chi -Cheng; Lin, Hsin; et al

    2016-01-14

    We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states. Our computations show that the electronic spectrum of a planar Sb/Bi nanoribbon with armchair or zigzag edges contains two Dirac cones within the band gap and an even number of edge bands crossing themore » Fermi level. Lattice constant of the planar Sb honeycomb is found to nearly match that of hexagonal-BN. As a result, the Sb nanoribbon on hexagonal-BN exhibits gapped edge states, which we show to be tunable by an out-of the-plane electric field, providing controllable gating of edge state important for device applications.« less

  1. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800?meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780?cm{sup ?1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  2. Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    SciTech Connect (OSTI)

    Parnell, John J.; Callister, Stephen J.; Rompato, Giovanni; Nicora, Carrie D.; Pasa-Tolic, Ljiljana; Williamson, Ashley; Pfrender, Michael E.

    2011-06-29

    Organisms in the genus Shewanella have become models for response to environmental stress. One of the most important environmental stresses is change in osmolarity. In this study, we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during osmotic stress. Osmotic stress in SB2B was induced through exposure to NaCl, and the time-course proteomics response was measured using liquid chromatography mass spectrometry. Protein trends were qualitatively compared to gene expression trends and to phenotypic characterization. Osmotic stress affects motility, and has also been associated with a change in the membrane fatty acid composition (due to induction of branched chain amino acid degradation pathways); however, we show this is not the case for SB2B. Although proteins and genes involved with branched chain amino acid degradation are induced, fatty acid degradation pathways are not induced and no change in the fatty acid profile occurs in SB2B as a result of osmotic shock. The most extensive response of SB2B over the time course of acclimation to high salt involves an orchestrated sequence of events comprising increased expression of signal transduction associated with motility and restricted cell division and DNA replication. After SB2B has switched to increased branched chain amino acid degradation, motility, and cellular replication proteins return to pre-perturbed levels.

  3. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  4. St. Mary Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in St. Mary Parish, Louisiana Amelia, Louisiana Baldwin, Louisiana Bayou Vista, Louisiana Berwick, Louisiana Charenton, Louisiana Franklin, Louisiana Morgan City,...

  5. St. Clair County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Missouri Gerster, Missouri Lowry City, Missouri Osceola, Missouri Roscoe, Missouri Vista, Missouri Retrieved from "http:en.openei.orgwindex.php?titleSt.ClairCounty,Mis...

  6. Utah's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Utah's 1st congressional district Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy...

  7. St. George, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    St. George, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0164709, -69.1989341 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Food and Fuel for the 21st Century

    Broader source: Energy.gov [DOE]

    Food and Fuel for the 21st Century held its annual symposium March 12–13, 2015, at Atkinson Hall, University of California San Diego.

  9. North Carolina's 1st congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Policy Organizations in North Carolina's 1st congressional...

  10. Job Creation and Energy Savings in St. Paul, Minnesota

    Broader source: Energy.gov [DOE]

    Check out this video where Mayor Chris Coleman explains how St. Paul is using grant money to create jobs while cutting waste and saving energy.

  11. City of St Clairsville, Ohio (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Clairsville, Ohio (Utility Company) Jump to: navigation, search Name: City of St Clairsville Place: Ohio Website: www.stclairsville.comassist.s Outage Hotline: 740.695.0123...

  12. St. Johns County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in St. Johns County, Florida Butler Beach, Florida Crescent Beach, Florida Fruit Cove, Florida Hastings, Florida...

  13. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  14. Texas's 21st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Companies in Texas's 21st congressional district Texas General Land Office Retrieved from "http:en.openei.orgwindex.php?titleTexas%27s21stcongressionaldistrict&oldid204390...

  15. Maine's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Companies in Maine's 1st congressional district Central Maine Power Co Retrieved from "http:en.openei.orgwindex.php?titleMaine%27s1stcongressionaldistrict&oldid192967...

  16. Louisiana's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Louisiana's 1st congressional district Entergy New Orleans Inc Retrieved from "http:en.openei.orgwindex.php?titleLouisiana%27s1stcongressionaldistrict&oldid192537...

  17. Washington's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Washington's 1st congressional district Snohomish County PUD No 1 Retrieved from "http:en.openei.orgwindex.php?titleWashington%27s1stcongressionaldistrict&oldid189772...

  18. MIT- Center for 21st Century Energy | Open Energy Information

    Open Energy Info (EERE)

    Name: MIT- Center for 21st Century Energy Address: 77 Massachusetts Avenue Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Website: web.mit.educ21ce...

  19. Florida's 21st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Florida's 21st congressional district Biodiesel of South Florida LLC Biofuels Digest Cambridge Project Development Caribbean Energy Resources Corp ClimeCo Corporation Electron...

  20. Texas's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Texas's 1st congressional district Eisenbach Consulting NM Invest Retrieved from "http:en.openei.orgwindex.php?titleTexas%27s1stcongressionaldis...

  1. The 21st International Conference on Laser Spectroscopy - ICOLS 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The 21st International Conference on Laser Spectroscopy - ICOLS 2013 http://icols.berkeley.edu/ June 9-14, 2013; Berkeley, CA

  2. Laboratories for the 21st Century Case Studies

    Broader source: Energy.gov [DOE]

    These case studies feature examples of energy-efficient laboratories for the 21st century. The Featured Concepts Table outlines technologies covered in each case study.

  3. St. Kitts and Nevis-Caribbean Community (CARICOM) Sustainable...

    Open Energy Info (EERE)

    Kitts and Nevis-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name St. Kitts and Nevis-Caribbean Community (CARICOM) Sustainable...

  4. The 21st International Conference on Laser Spectroscopy - ICOLS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The 21st International Conference on Laser Spectroscopy - ICOLS 2013 http:icols.berkeley.edu June 9-14, 2013; Berkeley, CA

  5. West Virginia's 1st congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in West Virginia. Registered Research Institutions in West Virginia's 1st congressional...

  6. Washington University in St. Louis | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Career Award I-CARES Director, Himadri Pakrasi DOE awards 2 million to design a battery management system for electric cars Washington People: Tiffany Knight About WUSTL & St. ...

  7. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details...

  8. St. Tammany Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Madisonville, Louisiana Mandeville, Louisiana Pearl River, Louisiana Slidell, Louisiana Sun, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.TammanyParish,L...

  9. Vehicle Technologies Office: 21st Century Truck Partnership | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 21st Century Truck Partnership Vehicle Technologies Office: 21st Century Truck Partnership Logo for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and heavy-duty trucks play a vital role in moving freight and passengers, serving as the backbone of America's economy. These trucks also play essential roles in other parts of society, such as maintaining our electricity

  10. Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open...

    Open Energy Info (EERE)

    structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of...

  11. St. Martin Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Broussard, Louisiana Cecilia, Louisiana Henderson, Louisiana Morgan City, Louisiana Parks, Louisiana St. Martinville, Louisiana Retrieved from "http:en.openei.orgw...

  12. City of St James, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    St James Place: Minnesota Phone Number: (507) 375-3241 Website: www.ci.stjames.mn.usindex.asp Twitter: @cityofstjames Facebook: https:www.facebook.compages...

  13. City of St James, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    St James Place: Missouri Phone Number: 573-265-7011 or 573.265.7013 Website: stjamesmo.orgindex.phpdepart Facebook: https:www.facebook.comstjamesmo Outage Hotline:...

  14. Maryland's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Maryland. Registered Energy Companies in Maryland's 1st congressional district Gore Fuel Cell Technologies Maryland Biodiesel Retrieved from "http:en.openei.orgw...

  15. Proceedings of the 21st Seismic Research Symposium: Technologies...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Test-Ban Treaty Citation Details In-Document Search Title: Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear ...

  16. DOE - Office of Legacy Management -- Fort St Vrain - 011

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... Vrains spent nuclear fuel. Originally, Fort St. Vrain was a nuclear power generating ...

  17. St. Mary's County, Maryland: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Zone Subtype A. Places in St. Mary's County, Maryland California, Maryland Charlotte Hall, Maryland Golden Beach, Maryland Leonardtown, Maryland Lexington Park, Maryland...

  18. Ohio's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    RBI Solar Inc SEMCO THOR Turner Hunt Ocean Renewable LLC The Utilities Group Inc Vision Energy Energy Generation Facilities in Ohio's 1st congressional district Melink Solar...

  19. St. Clair County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marine City, Michigan Marysville, Michigan Memphis, Michigan Pearl Beach, Michigan Port Huron, Michigan Richmond, Michigan St. Clair, Michigan Yale, Michigan Retrieved from...

  20. Minnesota's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    1st congressional district Agra Resources Cooperative EXOL Agri Energy LLC Corn Plus High Country Energy Juhl Wind Inc MinnErgy LLC Minwind Energy LLC Next Generation...

  1. Iowa's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Iowa. Registered Energy Companies in Iowa's 1st congressional district Clinton County Bio Energy LLC Natural Solutions Waverly Light and Power Retrieved from "http:...

  2. Nevada's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Companies in Nevada's 1st congressional district Algodyne Ethanol Energy Inc Bio Solutions Manufacturing Inc Innovative Energy Solutions Inc Li ion Motors Corp formerly...

  3. New Hampshire's 1st congressional district: Energy Resources...

    Open Energy Info (EERE)

    New Hampshire. Registered Energy Companies in New Hampshire's 1st congressional district Bio Energy US New Hampshire Cate Street Capital Inc Environmental Power Corp Eolian...

  4. City of St Paul, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Paul, Nebraska (Utility Company) Jump to: navigation, search Name: City of St Paul Place: Nebraska Phone Number: 308.754.4661 Website: www.stpaulnebraska.comlive-he Outage...

  5. North St. Paul, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    St. Paul, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0124657, -92.9918828 Show Map Loading map... "minzoom":false,"mappingse...

  6. Vehicle Technologies Office: 21st Century Truck Technical Goals

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership aims to improve fuel efficiency in heavy trucks through improvements in engine efficiency, aerodynamics, and rolling resistance.

  7. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report ...

  8. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of ...

  9. Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers

    SciTech Connect (OSTI)

    Lu, Q.; Zhuang, Q.; Hayton, J.; Yin, M.; Krier, A.

    2014-07-21

    There have been relatively few reports of lasing from InSb quantum dots (QDs). In this work, type II InSb/InAs QD laser diodes emitting in the mid-infrared at 3.1??m have been demonstrated and characterized. The gain was determined to be 2.9?cm{sup ?1} per QD layer, and the waveguide loss was ?15?cm{sup ?1} at 4?K. Spontaneous emission measurements below threshold revealed a blue shift of the peak wavelength with increasing current, indicating filling of ground state heavy hole levels in the QDs. The characteristic temperature, T{sub 0}?=?101?K below 50?K, but decreased to 48?K at higher temperatures. The emission wavelength of these lasers showed first a blue shift followed by a red shift with increasing temperature. A hybrid structure was used to fabricate the laser by combining a liquid phase epitaxy grown p-InAs{sub 0.61}Sb{sub 0.13}P{sub 0.26} lower cladding layer and an upper n{sup +} InAs plasmon cladding layer which resulted in a maximum operating temperature (T{sub max}) of 120?K in pulsed mode, which is the highest reported to date.

  10. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    SciTech Connect (OSTI)

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2015-06-07

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest features are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.

  11. Vacancy structures and melting behavior in rock-salt GeSbTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju; Li, Xian -Bin; Wang, Chuan -Shou; Chen, Yong -Jin; Li, Ji -Xue; Zhang, Jin -Xing; Zhang, Ze; Zhang, Sheng -Bai; et al

    2016-05-03

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less

  12. Science in St. Louis | Dr. Benjamin Kumfer | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Benjamin Kumfer Science in St. Louis | Dr. Benjamin Kumfer An Introduction to Carbon Capture, Utilization, and Storage December 8, 2015 - 7:00pm Jamestown Bluffs Branch, St. Louis County Library, 4153 N. Highway 67 Florissant, MO

  13. Optical properties of amorphous and crystalline Sb-doped SnO{sub 2} thin films studied with spectroscopic ellipsometry: Optical gap energy and effective mass

    SciTech Connect (OSTI)

    So, Hyeon Seob; Park, Jun-Woo; Jung, Dae Ho; Ko, Kun Hee; Lee, Hosun

    2015-08-28

    We investigated the optical properties of amorphous and crystalline antimony (Sb)-doped tin dioxide (SnO{sub 2}) thin films grown using the co-sputtering deposition method at room temperature. We used undoped and Sb-doped (8 wt. %) SnO{sub 2} targets. Varying the relative power ratio of the two targets, we controlled the Sb-composition of the SnO{sub 2}:Sb thin films up to 2.3 at. % of Sb contents. Through annealing, the as-grown amorphous SnO{sub 2}:Sb thin films were transformed to crystalline thin films. Dielectric functions were obtained from the measured ellipsometry angles, Ψ and Δ, using the Drude and parametric optical constant models. We determined the absorption coefficients and optical gap energies of the SnO{sub 2}:Sb thin films from the dielectric functions. We found increasing optical gap energy with increasing Sb composition. Increases in the Drude tail amplitudes, a signature of free carrier concentrations, were found in annealed, crystalline thin films with increasing Sb composition. The increase in the optical gap energy with increasing Sb composition was mainly attributed to the Burstein-Moss effect. Using Hall effect measurements, we obtained Hall carrier concentrations (N{sub Hall}) and electron Hall mobilities (μ{sub Hall}). The carrier concentrations and mobilities increased from 2.6 × 10{sup 19 }cm{sup −3} and 1.0 cm{sup 2}/(V s) to 2.0 × 10{sup 20 }cm{sup −1} and 7.2 cm{sup 2}/(V s), respectively, with increasing Sb contents. This result suggests that the nominally undoped SnO{sub 2} films are unintentionally n-type doped. Assuming that the N{sub Hall} and optical carrier concentrations (N{sub opt}) were the same, we obtained the effective masses of the SnO{sub 2}:Sb thin films with increasing Sb compositions. The effective masses of the SnO{sub 2}:Sb thin films increased from 0.245 m{sub 0} to 0.4 m{sub 0} with increasing Sb doping contents, and the nonparabolicity of the conduction band was estimated. We

  14. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding

    SciTech Connect (OSTI)

    Yokoyama, Masafumi Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Haruki

    2015-02-16

    We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with the 20-nm-thick GaSb layer.

  15. Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

    SciTech Connect (OSTI)

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; Hekmaty, Michelle; Lensch-Falk, Jessica L.; Erickson, Kristopher; Pillars, Jamin; Yelton, W. Graham

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi0.75 Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.

  16. In-situ characterization of the optical and electronic properties in GeTe and GaSb thin films

    SciTech Connect (OSTI)

    Velea, A.; Popescu, M.; Galca, A. C.; Socol, G.

    2015-10-07

    GeTe and GaSb thin films obtained by pulsed laser deposition were investigated by spectroscopic ellipsometry at controlled temperatures. The GeTe films were fully amorphous, while the GaSb films were partially crystalized in the as-deposited state. The Tauc-Lorentz model was employed to fit the experimental data. From the temperature study of the optical constants, it was observed the crystallization in the 150–160 °C range of GeTe amorphous films and between 230 and 240 °C of GaSb amorphous phase. A second transition in the resonance energy and the broadening parameter of the Lorentz oscillator was observed due to the crystallization of Sb after 250 °C. The temperatures of 85 °C and 130 °C are noticed as the start of the relaxation of the amorphous GeTe phase and as-deposited GaSb. The peaks of the imaginary part of the dielectric function red shifted after the phase change, while the variation with temperature of the crystalline phase follows the Varshni law. The electron-phonon coupling constants are 2.88 and 1.64 for c-GeTe and c-GaSb, respectively. An optical contrast up to 60% was obtained for GeTe films and a maximum value of 7.5% is revealed in the case GaSb, which is altered by the partial crystallinity of the as-deposited films.

  17. Microstructural evaluation of Sb-adjusted Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer layer systems for IR applications

    SciTech Connect (OSTI)

    Chen, E.; Paine, D.C.; Uppal, P.; Ahearn, J.S.; Nichols, K.; Charache, G.W.

    1998-06-01

    The authors report on a transmission electron microscopy (TEM) study of Sb-adjusted quaternary Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBE at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBe at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} is successively increased in a series of 125 nm thick layers. Post growth analysis using conventional bright field and weak beam dark field imaging of these buffer layers in cross-section reveals that the interface misfit dislocations are primarily of the 60{degree} type and are distributed through out the interfaces of the buffer layer. When optimized, the authors have shown, using plan view and cross-sectional TEM, that this approach can reduce the threading defect density to below the detectability limit of TEM (< 10{sup 5}/cm{sup 2}) and preserve growth surface planarity. The Sb-graded approach was used to fabricate two 2.2 {micro}m power converter structures fabricated using InGaAs grown on Sb-based buffer layers on GaAs substrates. A microstructural and electrical characterization was performed on these device structures and the results are contrasted with a sample in which InP was selected as the substrate. Microstructure, defect density and device performance in these not-yet-optimized Sb-based buffer layers compares favorably to equivalent devices fabricated using InP substrates.

  18. St. Louis Airport site environmental report for calendar year 1989, St. Louis, Missouri

    SciTech Connect (OSTI)

    none,

    1990-05-01

    The environmental monitoring program, which began in 1984, continued during 1989 at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. SLAPS and its vicinity properties, including ditches north and south of the site, were designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to identify and decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program. The monitoring program at SLAPS measures radon concentrations in air; external gamma dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To assess the potential effect of SLAPS on public health, the potential radiation dose was estimated for a hypothetical maximally exposed individual. This report presents the findings of the environmental monitoring program conducted at the St. Louis Airport Site (SLAPS) during calendar year 1989. 19 refs., 13 figs., 14 tabs.

  19. Investigation of high hole mobility In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum well structures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, Juan; Xing, Jun-Liang; Xiang, Wei; Wang, Guo-Wei; Xu, Ying-Qiang; Ren, Zheng-Wei; Niu, Zhi-Chuan

    2014-02-03

    Modulation-doped In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum-well (QW) structures were grown by molecular beam epitaxy. Cross-sectional transmission electron microscopy and atomic force microscopy studies show high crystalline quality and smooth surface morphology. X-ray diffraction investigations confirm 1.94% compressive strain within In{sub 0.41}Ga{sub 0.59}Sb channel. High room temperature hole mobility with high sheet density of 1000 cm{sup 2}/Vs, 0.877??10{sup 12}/cm{sup 2}, and 965 cm{sup 2}/Vs, 1.112??10{sup 12}/cm{sup 2} were obtained with different doping concentrations. Temperature dependent Hall measurements show different scattering mechanisms on hole mobility at different temperature range. The sheet hole density keeps almost constantly from 300?K to 77?K. This study shows great potential of In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb QW for high-hole-mobility device applications.

  20. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck ...

  1. High thermal stability Sb{sub 3}Te-TiN{sub 2} material for phase change memory application

    SciTech Connect (OSTI)

    Ji, Xinglong; Zhou, Wangyang; Wu, Liangcai Zhu, Min; Rao, Feng; Song, Zhitang; Cao, Liangliang; Feng, Songlin

    2015-01-12

    For phase change memory (PCM) applications, it has been widely accepted that δ phase Sb-Te has fast operation speed and good phase stability. However, the fast growth crystallization mechanism will cause poor amorphous phase stability and overlarge grain size. We introduce TiN{sub 2} into δ phase Sb-Te (Sb{sub 3}Te) to enhance the amorphous thermal stability and refine the grain size. With TiN{sub 2} incorporating, the temperature for 10-year data retention increases from 79 °C to 124 °C. And the grain size decreases to dozens of nanometers scale. Based on X-ray photoelectron spectroscopy and transmission electron microscopy results, we knew that nitrogen atoms bond with titanium, forming disorder region at the grain boundary of Sb{sub 3}Te-TiN{sub 2} (STTN). Thus, STTN has a quite different crystallization mechanism from Sb{sub 3}Te. Furthermore, PCM device based on STTN can realize reversible phase change under 20 ns electrical pulse.

  2. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    SciTech Connect (OSTI)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-15

    The new metastable compound Cr{sub 1+x}Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni{sub 2}In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr{sub 1+x}Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr{sub 1+x}Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr{sub 1.6}Sb in Ni{sub 2}In-type structure. • The new Cr-rich phase shows half-metallic behavior.

  3. Superconductivity in strong spin orbital coupling compound Sb2Se3

    SciTech Connect (OSTI)

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; Zhu, J. L.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Ahuja, R.; Mao, H. K.; Jin, C. Q.

    2014-10-20

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. We report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. As a result, high pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.

  4. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    SciTech Connect (OSTI)

    Sun, Ying, E-mail: sunying@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Guo, Yanfeng; Li, Jun; Wang, Xia [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [Materials Processing Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Wang, Cong [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari, E-mail: yamaura.kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Matsushita, Yoshitaka [Analysis Station, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x?=?0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x?=?0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  5. DOE/BES Workshop on Clean and Efficient Combustion of 21st Century...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels ...

  6. Production and properties of Si-SiO2-In Sb structures

    SciTech Connect (OSTI)

    Padalko, A.G.; Kotov, B.A.; Lazarev, V.B.; Sukharev, V.I.; Volkov, V.V.

    1985-10-01

    When MIS structures are formed by pyrolysis of silane with subsequent thermal oxidation of the film of polycrystalline silicon on sapphire and with oriented crystallization of thin layers of an indium antimonide melt on the produced structures, the highly doped silicon-silicon dioxide-InSb has a concentration of majority charge carriers of (2-5) . 10/sup 15/ cm/sup -9/ with a density of surface states of (2-8) . 10/sup 11/ ev/sup -1/ . cm/sup -2/.

  7. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    SciTech Connect (OSTI)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S.

    1996-12-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the {open_quote}Thrust Rating Increase{close_quote} test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner`s rule. Model predictions were validated against actual cyclic loading test results.

  8. Pairing phenomenon in doubly odd neutron rich {sup 136}Sb nucleus

    SciTech Connect (OSTI)

    Laouet, N.; Benrachi, F.

    2012-06-27

    Based on p-n and n-n pairing gap energies giving by K. Kaneko et al. (2003), we make modifications on the kh5082 interaction. Calculations and study of some nuclear properties for {sup 136}Sb nucleus are developed in the framework of the nuclear shell model by means of OXBASH structure code. We get the same energetic sequence as the recent experimental values of single particle energies. The effective charge values e{sub p}=1.35e and e{sub n}=0.9e, and factors given by V. I. Isakov are used to evaluate multipole electromagnetic moments.

  9. Hybridized Nature of Pseudogap in Kondo Insulators CeRhSb and CeRhAs

    SciTech Connect (OSTI)

    Kumigashira, H.; Takahashi, T.; Yoshii, S.; Kasaya, M.

    2001-08-06

    We studied the electronic structure of Kondo insulators CeRhSb and CeRhAs using high-resolution photoemission spectroscopy. We found that the 4f -derived density of states shows a depletion (pseudogap) at E{sub F} in contrast to metallic Kondo materials. It was found that the size of the f pseudogap is smaller than that of conduction electrons (c pseudogap) while both scale well with the Kondo temperature. The present results indicate that the hybridization between 4f and conduction electrons near E{sub F} is essential for the Kondo gap in the Ce-based compounds.

  10. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    SciTech Connect (OSTI)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  11. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect (OSTI)

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  12. McMillan-Rowell Like Oscillations in a Superconductor-InAs/GaSb-Superconductor Junction

    SciTech Connect (OSTI)

    Shi, Xiaoyan; Yu, Wenlong; Hawkins, Samuel D.; Klem, John F.; Pan, Wei

    2015-08-04

    We fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were also carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. A much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  13. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOE Patents [OSTI]

    Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.

    1991-01-01

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  14. Photoluminescence studies of individual and few GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Young, M. P.; Woodhead, C. S.; Roberts, J.; Noori, Y. J.; Noble, M. T.; Krier, A.; Hayne, M.; Young, R. J.; Smakman, E. P.; Koenraad, P. M.

    2014-11-15

    We present optical studies of individual and few GaSb quantum rings embedded in a GaAs matrix. Contrary to expectation for type-II confinement, we measure rich spectra containing sharp lines. These lines originate from excitonic recombination and are observed to have resolution-limited full-width at half maximum of 200 ?eV. The detail provided by these measurements allows the characteristic type-II blueshift, observed with increasing excitation power, to be studied at the level of individual nanostructures. These findings are in agreement with hole-charging being the origin of the observed blueshift.

  15. Spin Hall effect-controlled magnetization dynamics in NiMnSb

    SciTech Connect (OSTI)

    Dürrenfeld, P. Ranjbar, M.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Åkerman, J.

    2015-05-07

    We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the present device geometry.

  16. Science for the 21st Century

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now take for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.

  17. No charging on Hopper until Aug. 21st

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No charging on Hopper until Aug. 21st No charging on Hopper until Aug. 21st August 13, 2015 by Katie Antypas NERSC is offering users free time on Hopper until August 21st at 12:01am Pacific time. All jobs that complete before this time won't be charged. Happy Computing! Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014

  18. AY 2016 ERCAP Renewals Due Sept 21st

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AY 2016 ERCAP Renewals Due Sept 21st AY 2016 ERCAP Renewals Due Sept 21st September 18, 2015 Rememeber to submit your AY 2016 ERCAP renewal requests by 21:59 on Monday Sept. 21st. Thanks. Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014 November 2014 October 2014 August 2014 June 2014 May 2014 April 2014 March 2014 January

  19. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    SciTech Connect (OSTI)

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C. Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  20. Depth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning

    SciTech Connect (OSTI)

    Aldous J. D.; Sanchez-Hanke C.; Burrows, C.W.; Maskery, I.; Brewer, M.S.; Hase, T.P.A.; Duffy, J.A.; Lees, M. Rs; Decoster, T.; Theis, W.; Quesada, A.; Schmid, A.K.; Bell, G.R.

    2012-03-15

    Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide {approx}4.5 nm thick covers air-exposed samples which increases the film's coercivity. HCl etching efficiently removes this oxide and in situ surface treatment of etched samples enables surface magnetic contrast to be observed in SPLEEM. A thin Sb capping layer prevents oxidation and preserves ferromagnetism throughout the MnSb film. The interpretation of Mn L{sub 3,2} edge XMCD data is discussed.

  1. SB6.0: The 6th International meeting on Synthetic Biology, July 9-11, 2013

    SciTech Connect (OSTI)

    Kahl, Linda J.

    2015-04-23

    The Synthetic Biology conference series (SBx.0) is the preeminent academic meeting in synthetic biology. Organized by the BioBricks Foundation, the SBx.0 conference series brings together leading researchers, students, industry executives, and policy makers from around the world to share, consider, debate, and plan efforts to make biology easier to engineer. Historically held every two years, the SBx.0 conferences are held in alternating locations in the United States, Europe, and Asia to encourage global participation and collaboration so that the ramifications of synthetic biology research and development are most likely to be safe ethical, and beneficial. On 9-11 July 2013, the 6th installment of the synthetic biology conference series (SB6.0) was held on the campus of Imperial College London (http://sb6.biobricks.org). The SB6.0 conference was attended by over 700 people, and many more were able to participate via video digital conference (http://sb6.biobricks.org/digital-conference/). Over the course of three days, the SB6.0 conference agenda included plenary sessions, workshops, and poster presentations covering topics ranging from the infrastructure needs arising when “Systematic Engineering Meets Biological Complexity” and design-led considerations for “Connecting People and Technologies” to discussions on “Engineering Biology for New Materials,” “Assessing Risk and Managing Biocontainment,” and “New Directions for Energy and Sustainability.” The $10,150 grant awarded by the U.S. Department of Energy (DE-SC0010233) to the BioBricks Foundation was used to provide partial reimbursement for the travel expenses of leading researchers from the United States to speak at the SB6.0 conference. A total of $9,450 was used to reimburse U.S. speakers for actual expenses related to the SB6.0 conference, including airfare (economy or coach only), ground transportation, hotel, and registration fees. In addition, $700 of the grant was used to offset

  2. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOE Patents [OSTI]

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick Hong; Wu, Kuang Jen J.

    2007-05-29

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  3. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  4. VolmerWeber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    SciTech Connect (OSTI)

    Zhao, Yu Bertru, Nicolas; Folliot, Herv; Rohel, Tony; Mauger, Samuel J. C.; Koenraad, Paul M.

    2014-07-21

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to the surface energy changes induced by Sb atoms on surface.

  5. The Role of Anti-Phase Domains in InSb-Based Structures Grown on On-Axis and Off-Axis Ge Substrates

    SciTech Connect (OSTI)

    Debnath, M. C.; Mishima, T. D.; Santos, M. B.; Hossain, K.; Holland, O. W.

    2011-12-26

    Anti-phase domains form in InSb epilayers and InSb/Al{sub 0.20}In{sub 0.80}Sb single quantum wells when grown upon on-axis (001) Ge substrates by molecular beam epitaxy. Domain formation is partially suppressed through growth on Ge substrates with surfaces that are several degrees off the (001) or (211) axis. By using off-axis Ge substrates, room-temperature electron mobilities increased to {approx}60,000 cm{sup 2}/V-s and {approx}14,000 cm{sup 2}/V-s for a 4.0-{mu}m-thick InSb epilayer and a 25-nm InSb quantum well, respectively.

  6. Building a 21st Century Electric Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Editor's note: This article has been cross-posted from WhiteHouse.gov. As part of President Obama's initiative to make America a magnet for jobs by building a 21st century ...

  7. St. Ansgar, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. St. Ansgar is a city in Mitchell County, Iowa. It falls under Iowa's 4th congressional district.12 Registered...

  8. 1st Women-VetsinTech Hackathon @ Facebook

    Broader source: Energy.gov [DOE]

    The 1st EVER Women-VetsinTech hackathon @ Facebook will be a shortened version of the VetsinTech popular weekend event but will be action packed with goal of getting to a MVP (minimum viable...

  9. Science in St. Louis featuring Dr. Daniel Giammar | Photosynthetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel Giammar Science in St. Louis featuring Dr. Daniel Giammar The Chemistry and Engineering for Producing and Supplying Clean Drinking Water November 22, 2014 - 10:30am Brauer...

  10. City of St Marys, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesThe-City-of-St-Marys1524995041100870?refhl Outage Hotline: (785) 437-2311 References: EIA Form EIA-861 Final Data File for 2010...

  11. Texas's 31st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 31st congressional district EEStor Global Flex...

  12. DOE - Office of Legacy Management -- St Louis Airport Site Vicinity...

    Office of Legacy Management (LM)

    Louis. The properties are associated with the St. Louis Airport Site. The Manhattan Engineer District (MED), a predecessor agency of the U.S. Department of Energy (DOE), acquired ...

  13. New Jersey's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Companies in New Jersey's 1st congressional district Solatec LLC formerly Solar Aero Retrieved from "http:en.openei.orgwindex.php?titleNewJersey%27s1stcongressional...

  14. St. Paul, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. St. Paul is a city in Ramsey County, Minnesota. It falls under Minnesota's 4th congressional district.12...

  15. Science in St. Louis | Dr. Himadri Pakrasi | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Himadri Pakrasi Engineering Biology and Energy from the Sun: the future is bright for food, feed, and fuels October 13, 2015 - 7:00pm Florissant Valley Branch, St. Louis County...

  16. Science in St. Louis featuring Dr. Ursula Goodenough | Photosynthetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ursula Goodenough Science in St. Louis featuring Dr. Ursula Goodenough Developing Algae As Producers of Jet Fuel November 15, 2014 - 10:30am Brauer Hall 012, Washington University...

  17. Kentucky's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Kentucky's 1st congressional district Commonwealth AgriEnergy Four Rivers BioEnergy Retrieved from "http:en.openei.orgwindex.php?titleKentucky%27s1stcongressiona...

  18. St. Louis Launches Plan for More Sustainable Community | Department...

    Energy Savers [EERE]

    Louis Launches Plan for More Sustainable Community St. Louis Launches Plan for More Sustainable Community March 1, 2013 - 11:15am Addthis Using money from the Energy Efficiency ...

  19. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  20. St. James, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. St. James is a census-designated place in Suffolk County, New York.1 References US Census...

  1. St. James, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. St. James is a city in Phelps County, Missouri. It falls under Missouri's 8th congressional...

  2. National Academy of Sciences Reviews 21st Century Truck Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    For more than 15 years, the 21st Century Truck Partnership ... America's medium and heavy-duty vehicles to safely and ... proposed expansion of the hybrid team's scope to "lead to ...

  3. Vehicle Technologies Office: 21st Century Truck Partners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  4. 1st Quarter 2016 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity (short tons of ore per day) 2015 1st quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby EFR White Mesa LLC White Mesa ...

  5. St. Lucie County- Solar and Energy Loan Fund (SELF)

    Broader source: Energy.gov [DOE]

    St. Lucie County has partnered with local financial institutions and community leaders to establish the non-profit Solar and Energy Loan Fund (SELF), which administers a low-interest loan program. ...

  6. Indiana's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Indiana. Registered Energy Companies in Indiana's 1st congressional district Iroquois Bio Energy Co LLC Retrieved from "http:en.openei.orgwindex.php?titleIndiana%27s1stco...

  7. Electrolux: ENERGY STAR Referral (FRA256ST2)

    Broader source: Energy.gov [DOE]

    DOE referred the matter of Electrolux room air conditioner model FRA256ST2 to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.

  8. City of North St Paul, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Paul, Minnesota (Utility Company) Jump to: navigation, search Name: City of North St Paul Place: Minnesota Phone Number: 651.747.2413 or 651.747.2417 Website: www.ci.north-saint-pa...

  9. St. Paul, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. St. Paul is a town in Collin County, Texas. It falls under Texas's 4th congressional...

  10. New Mexico's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in New Mexico. US Recovery Act Smart Grid Projects in New Mexico's 1st congressional district Ktech...

  11. State Waste Discharge Permit ST-4502 Implementation Plan

    SciTech Connect (OSTI)

    BROWN, M.J.; LECLAIR, M.D.

    2000-09-27

    Plan has been developed to demonstrate compliance with regulatory requirements set forth in Permit ST-3502 and as a line management tool for use in maintaining configuration control of permit as well as documentation used to implement permit requirements.

  12. RELAP5 assessment using LSTF test data SB-CL-18

    SciTech Connect (OSTI)

    Lee, S.; Chung, B.D.; Kim, H.J.

    1993-05-01

    A 5 % cold leg break test, run SB-CL-18, conducted at the Large Scale Test Facility (LSTF) was analyzed using the RELAP5/MOD2 Cycle 36.04 and the RELAP5/MOD3 Version 5m5 codes. The test SB-CL-18 was conducted with the main objective being the investigation of the thermal-hydraulic mechanisms responsible for the early core uncovery, including the manometric effect due to an asymmetric coolant holdup in the steam generator upflow and downflow side. The present analysis, carried out with the RELAP5/MOD2 and MOD3 codes, demonstrates the code`s capability to predict, with sufficient accuracy, the main phenomena occurring in the depressurization transient, both from a qualitative and quantitative point of view. Nevertheless, several differences regarding the evolution of phenomena and affecting the timing order have been pointed out in the base calculations. The sensitivity study on the break flow and the nodalization study in the components of the steam generator U-tubes and the cross-over legs were also carried out. The RELAP5/MOD3 calculation with the nodalization change resulted in good predictions of the major thermal-hydraulic phenomena and their timing order.

  13. Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

    SciTech Connect (OSTI)

    Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; Kadlec, Emil Andrew; Kim, Jin K.; Shaner, Eric A.

    2016-01-01

    Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in the minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.

  14. Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; Kadlec, Emil Andrew; Kim, Jin K.; Shaner, Eric A.

    2016-01-01

    Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in themore » minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.« less

  15. Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties

    SciTech Connect (OSTI)

    Das, Suprem R.; Mohammad, Asaduzzaman; Janes, David B.; Akatay, Cem; Khan, Mohammad Ryyan; Alam, Muhammad A.; Maeda, Kosuke; Deacon, Russell S.; Ishibashi, Koji; Chen, Yong P.; Sands, Timothy D.

    2014-08-28

    In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420 °C in argon produced single crystalline structures along 〈311〉 directions for the branches and along 〈111〉 for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.

  16. CaMn2Sb2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; Smith, G. J.; Hassinger, J. E.; DeBeer-Schmidt, L.; Kolesnikov, A. I.; Zaliznyak, I.; Aronson, M. C.

    2015-05-22

    We present inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn2Sb2:, which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first and second neighbor exchange interactions, J1 and J2, in the Mn plane and also an exchange interaction between planes. The determined ratio J2/J1 ≈ 1/6 suggests that CaMn2Sb2: is the first example of a compound that lies very close to themore » mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the N´eel phase and two different spiral phases coexist. The magnitude of the determined exchange interactions reveal a mean field ordering temperature ≈ 4 times larger than the reported N´eel temperature TN = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less

  17. Heavy and light hole transport in nominally undoped GaSb substrates

    SciTech Connect (OSTI)

    Kala, Hemendra; Umana-Membreno, Gilberto A.; Jolley, Gregory; Akhavan, Nima Dehdashti; Antoszewski, Jaroslaw; Faraone, Lorenzo; Patrashin, Mikhail A.; Akahane, Kouichi

    2015-01-19

    In this work, we report results of a study of electronic transport in nominally undoped p-type GaSb wafers typically employed as substrate material for the epitaxial growth of InAs/GaInSb type-II superlattices. Magnetic field dependent Hall-effect measurements and high-resolution mobility spectrum analysis clearly indicate p-type conductivity due to carriers in both the heavy and light hole bands. The extracted hole concentrations indicate a thermal activation energy of 17.8 meV for the dominant native acceptor-like defects. A temperature-independent effective mass ratio of 9.0 ± 0.8 was determined from the ratio of measured heavy and light hole concentrations. Over the 56 K–300 K temperature range, the light hole mobility was found to be 4.7 ± 0.7 times higher than the heavy hole mobility. The measured room temperature mobilities for the light and heavy holes were 2550 cm{sup 2}/Vs and 520 cm{sup 2}/Vs, respectively.

  18. Structural, magnetic, and transport properties of Fe-doped CoTiSb epitaxial thin films

    SciTech Connect (OSTI)

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R.; Qin, J.

    2015-11-07

    Epitaxial intrinsic and Fe-doped CoTiSb thin films with C1{sub b} structure were grown on MgO(100) substrates by magnetron sputtering. The semiconducting-like behavior in both intrinsic and Fe-doped thin films was demonstrated by temperature dependence of longitudinal resistivity. The Fe-doped CoTiSb films with a wide range of doping concentrations can maintain semiconducting-like and magnetic properties simultaneously, while the semiconducting behavior is weakening with the increasing Fe concentration. For 21 at. % Fe-doped film, low lattice magnetic moment (around 0.65 μ{sub B}) and high resistivity (larger than 800 μΩ cm) are beneficial to its application as a magnetic electrode in spintronic devices. Anomalous Hall effect of 21 at. % Fe-doped film was also investigated and its behaviors can be treated well by recent-reported anomalous Hall scaling including the contribution of spin-phonon skew scattering.

  19. Public health assessment for St. Louis Airport, Hazelwood Interim Storage/Futura Coatings Company, St. Louis, St. Louis County, Missouri, Region 7. Cerclis No. MOD980633176. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1994-01-20

    The St. Louis Airport/Hazelwood Iterim Storage/Futura Coatings Company, a National Priorities List site, is in St. Louis County, Missouri. From 1946 to 1973, the site was used to store radioactive materials resulting from uranium processing. High levels of uranium, thorium, radium, and radon were detected in soil, groundwater, and air. The site is still being used to store radioactive materials. The Agency for Toxic Substances and Disease Registry considers the St. Louis Airport site to be an indeterminate public health hazard. Although there are emissions of radon and the presence of thorium in on-site air and off-site soils and the emission of radiation resulting from the presence of these materials is not currently considered a health hazard. At present conditions, the concentration of radon off-site is indistinguishable from background levels. However, in the past, these contaminants may have been present at levels of health concern.

  20. Program Update: 1st Quarter 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1st Quarter 2010 Program Update: 1st Quarter 2010 The Program Update newsletter is produced every quarter and highlights major activities and events that occurred across the DOE complex during that period of time. Office of Legacy Management (LM) Program Update, January-March 2010 (3.56 MB) More Documents & Publications Program Update: 2nd Quarter 2010 Program Update: 3rd Quarter 2010

  1. Science in St. Louis | Dr. Benjamin Kumfer | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Benjamin Kumfer December 16, 2015 Science in St. Louis | Dr. Benjamin Kumfer An Introduction to Carbon Capture, Utilization, and Storage Original Event Info: December 8, 2015 - 7:00pm Jamestown Bluffs Branch, St. Louis County Library, 4153 N. Highway 67 Florissant, MO Join us for food, attendance prizes (including a Kindle Fire HD, tickets to area attractions, and t-shirts) and best of all...SCIENCE! For more information visit: http://pages.wustl.edu/scienceinstlouis

  2. 21st Century Truck Partnership - Roadmap and Technical White Papers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendix of Supporting Information - 21CTP-0003, December 2006 | Department of Energy - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Appendix containing supporting information to the 21st Century Partnership's Roadmap and Technical White Papers (21CTP-003). 21ctp_roadmap_appendix_2007.pdf (3.98 MB) More

  3. St. Croix Chippewa Indians of Wisconsin - Biomass Power Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio Mass Electrical Generation on Tribal Lands St. Croix Chippewa Indians of Wisconsin 2 The St. Croix Chippewa Indians of Wisconsin are located in northwestern Wisconsin. The reservation lands are scattered throughout three counties; Burnett, Polk, and Barron. The Tribal communities are located within the State of Wisconsin's logging industry districts. 3 Currently, Gaming is the Tribe's best asset to assist in improving the level of poverty prevalent on the reservation. The Tribe recognizes,

  4. ARM - VAP Product - mmcrmode1st200309091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    st200309091cloth Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027333 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : MMCRMODE1ST200309091CLOTH ARSCL: derived, MMCR Mode 1 (status mode) moments Active Dates 2003.09.27 - 2004.08.10

  5. DOE - Office of Legacy Management -- St Louis Airport Site Vicinity

    Office of Legacy Management (LM)

    Properties - 017 Site Vicinity Properties - 017 FUSRAP Considered Sites Site: St. Louis Airport Site Vicinity Properties (017) FUSRAP Active Site. More information at http://www.mvs.usace.army.mil/Home.aspx Designated Name: Berkeley, MO, Site Vicinity Properties Alternate Name: None Location: Berkeley, Missouri Evaluation Year: Added to FUSRAP by Congress in 1984 Site Operations: Contaminated by materials from St Louis Airport site Site Disposition: USACE is actively remediating the site

  6. October 2014 Natural Phenomena Hazards (NPH) Meeting- Tuesday, October 21st Session Presentations

    Broader source: Energy.gov [DOE]

    Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session

  7. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    SciTech Connect (OSTI)

    Ruppalt, Laura B. Cleveland, Erin R.; Champlain, James G.; Bennett, Brian R.; Prokes, Sharka M.

    2014-12-15

    In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD) high-k dielectric stacks with device-quality p-type GaSb(001) epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H{sub 2}/Ar plasma treatment and subsequently removed to air. High-k HfO{sub 2} and Al{sub 2}O{sub 3}/HfO{sub 2} bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS) capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H{sub 2}-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H{sub 2}-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  8. Thermoelectric device including an alloy of GeTe and AgSbTe as the P-type element

    DOE Patents [OSTI]

    Skrabek, Emanuel Andrew; Trimmer, Donald Smith

    1976-01-01

    Improved alloys suitable for thermoelectric applications and having the general formula: (AgSbTe.sub.2).sub.1.sub.-x + (GeTe).sub.x wherein x has a value of about 0.80 and 0.85, have been found to possess unexpectedly high thermoelectric properties such as efficiency index, as well as other improved physical properties.

  9. Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicles St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: St. Louis

  10. SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Pareizs, J.; Hay, M.

    2011-02-22

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides

  11. High thermoelectric performance of In, Yb, Ce multiple filled CoSb{sub 3} based skutterudite compounds

    SciTech Connect (OSTI)

    Ballikaya, Sedat; Department of Physics, University of Michigan, Ann Arbor, MI, 48109 ; Uzar, Neslihan; Yildirim, Saffettin; Salvador, James R.; Uher, Ctirad

    2012-09-15

    Filling voids with rare earth atoms is an effective way to lowering thermal conductivity which necessarily enhances thermoelectric properties of skutterudite compounds. Yb atom is one of the most effective species among the rare earth atoms for filling the voids in the skutterudite structure due to a large atomic mass, radius and it is intermediate valence state. In this work, we aim to find the best filling partners for Yb using different combinations of Ce and In as well as to optimize actual filling fraction in order to achieve high values of ZT. The traditional method of synthesis relying on melting-annealing and followed by spark plasma sintering was used to prepare all samples. The thermoelectric properties of four samples of Yb{sub 0.2}In{sub 0.2}Co{sub 4}Sb{sub 12}, Yb{sub 0.2}Ce{sub 0.15}Co{sub 4}Sb{sub 12}, Yb{sub 0.2}Ce{sub 0.15}In{sub 0.2}Co{sub 4}Sb{sub 12}, and Yb{sub 0.3}Ce{sub 0.15}In{sub 0.2}Co{sub 4}Sb{sub 12} (nominal) were examined based on the Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient. Hall coefficient and Seebeck coefficient signs confirm that all samples are n-type skutterudite compounds. Carrier density increases with the increasing Yb+Ce content. A high power factor value of 57.7 {mu}W/K{sup 2}/cm for Yb{sub 0.2}Ce{sub 0.15}Co{sub 4}Sb{sub 12} and a lower thermal conductivity value of 2.82 W/m/K for Yb{sub 0.2}Ce{sub 0.15}In{sub 0.2}Co{sub 4}Sb{sub 12} indicate that small quantities of Ce with In may be a good partner to Yb to reduce the thermal conductivity further and thus enhance the thermoelectric performance of skutterudites. The highest ZT value of 1.43 was achieved for Yb{sub 0.2}Ce{sub 0.15}In{sub 0.2}Co{sub 4}Sb{sub 12} triple-filled skutterudite at 800 K. - Graphical abstract: Thermoelectric figure of merit of Yb{sub x}In{sub y}Ce{sub z}Co{sub 4}Sb{sub 12} (0{<=}x,y,z{<=}0.18 actual) compounds versus temperature. Highlights: Black-Right-Pointing-Pointer TE properties of Yb

  12. Non-Ideal p-n junction Diode of Sb{sub x}Se{sub 1-x}(x = 0.4, 0.5, 0.6, 0.7) Thin Films

    SciTech Connect (OSTI)

    Mustafa, Falah I.; Gupta, Shikha; Goyal, N.; Tripathi, S. K.

    2011-12-12

    We have made diodes consisting of the same alloy i.e. Sb{sub x}Se{sub 1-x}(x = 0.4, 0.5, 0.6 and 0.7), but change the concentration of Sb metal from 40% to 70% atomic weight percentage. It is observed from the Hall measurements that the nature of charge carriers have changed from p- to n-type at x = 0.6 for Sb{sub x}Se{sub 1-x}. We have measured I-V characteristics of four p-n junction diodes i.e. p-Sb{sub 2}Se{sub 3}/n-Sb{sub 3}Se{sub 2}, p-Sb{sub 2}Se{sub 3}/n-Sb{sub 7}Se{sub 3}, p-SbSe/n-Sb{sub 3}Se{sub 2}, p-SbSe/n-Sb{sub 7}Se{sub 3}. From the I-V plots we have calculated the parameters as built-in voltage (V{sub bi}), forward resistance (R{sub f}), ideal factor (n), saturation current (I{sub o}), breakdown current (I{sub Bd}) and breakdown voltage (V{sub Bd}).

  13. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    SciTech Connect (OSTI)

    Shu, Michael J.; Zalden, Peter; Chen, Frank; Weems, Ben; Chatzakis, Ioannis; Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S.; Hoffmann, Matthias C.; Wuttig, Matthias; Lindenberg, Aaron M.

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  14. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  15. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.

  16. Evaluation of electron mobility in InSb quantum wells by means of percentage-impact

    SciTech Connect (OSTI)

    Mishima, T. D.; Edirisooriya, M.; Santos, M. B.

    2014-05-15

    In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Our percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature.

  17. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    SciTech Connect (OSTI)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.

    2015-01-19

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  18. Structural and optical properties of Sb{sub 2}S{sub 3} nanocrystals in glass

    SciTech Connect (OSTI)

    Mishra, Rakesh K. Kashyap, Raman Vedeshwar, A. G. Tandon, R. P.

    2014-04-24

    In this work conventional solid state precipitation method is adopted to fabricate Sb{sub 2}S{sub 3} nanocrystals in glass. The glass composition is optimized for proper host glass matrix to grow antimony trisulphide semiconductor quantum dots. The dot size is modified by heat treatment of glass samples in the temperature range from 550°C to 700°C for various time durations. Structural studies are carried out by X-ray diffraction and transmission electron microscopy and nanoparticles with size ranges from 8 nm to 70 nm are obtained. Quantum dots so grown were further characterized by optical absorption spectroscopy and a blue shift is observed for absorption edge energy that conform the quantum confinement effect.

  19. Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells

    SciTech Connect (OSTI)

    Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea

    2015-09-28

    We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.

  20. Spectroscopy and capacitance measurements of tunneling resonances in an Sb-implanted point contact.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Rahman, Rajib; Ten Eyck, Gregory A.; Eng, Kevin; Carroll, Malcolm S.; Young, Ralph Watson; Lilly, Michael Patrick; Stalford, Harold Lenn; Bishop, Nathaniel; Bielejec, Edward Salvador

    2010-08-01

    We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.

  1. Electronic and optical properties of TiCoSb under different pressures

    SciTech Connect (OSTI)

    Xu Bin; Zhang Jing; Liang Jianchu; Gao Guoying; Yi Lin

    2012-08-15

    The electronic structure and optical properties of TiCoSb are studied by the first-principles calculation. It is found that the band gaps increase with the pressure increasing. It is noted that the increase of the band gap is due to the electrons of Ti 3d and Co 3d of the valence band (VB) shifting away from the Fermi level. Our calculation indicates that TiCoSb has the large density of state near the Fermi level; moreover, the changes of the density of states near the Fermi level mainly are caused by Ti 3d and Co 3d under the different pressures. It is noted that the absorption edge increases with an increase of pressure. As pressure increases, the static dielectric constants {epsilon}{sub 1}(0) decrease. All peaks of the imaginary part of the dielectric function {epsilon}{sub 2}({omega}) move towards higher energies within increasing pressure. - Graphical abstract: The first peak positions of the absorption spectrum increase and shift the high energy with an increase of pressure. The buleshift of the absorption edge could be observed. Highlights: Black-Right-Pointing-Pointer It is noted that the increase of the band gap is due to the electrons of Ti 3d and Co 3d of VB moving away from the Fermi level. Black-Right-Pointing-Pointer It is noted that the absorption edge increases with an increase of pressure. Black-Right-Pointing-Pointer As pressure increases, the static dielectric constant {epsilon}{sub 1}(0) decreases. Black-Right-Pointing-Pointer All peaks of the imaginary part of the dielectric function {epsilon}{sub 2}({omega}) move to wards higher energies within creasing pressure.

  2. RELAP5/MOD2 assessment, OECD-LOFT small break experiment LP-SB-03

    SciTech Connect (OSTI)

    Guntay, S. )

    1990-04-01

    An analysis of the experimental results and post-test calculations using RELAP5/MOD2 carried out for OECD-LOFT small break experiment LP-SB-3 are presented. Experiment LP-SB-3 was conducted on March 5, 1984 in Loss-of-Fluid Test (LOFT) facility located at the Idaho National Engineering Laboratory (INEL). The experiment simulated a small cold leg break, with concurrent loss of high pressure injection system, and cooldown and recovery by feed and bleed of the steam generator secondary side and accumulator injection, respectively. The analysis was under taken as a part of a program at EIR aimed at developing experience in using the latest generation of best estimate Loss of Coolant Accident (LOCA) analysis computer codes, and to improve understanding of Small Break LOCA transients and as well as a part of a program aimed at assessing the RELAP5/MOD2 code. The latest available version (Cycle 33 to 36.1) of the code was used. The particular test selected for the analysis included several phenomena potentially relevant to any PWR plant operation in Switzerland. This report documents a short post-test analysis of the experiment emphasizing the results of additional analysis performed during the course of this task. RELAP5/MOD2 input model and results of the post-test calculation are documented. Included in the report are the results of a sensitivity analysis which show the predicted thermal-hydraulic response to a different input model. 7 refs., 55 figs., 2 tabs.

  3. District steam and the St. Louis steam loop

    SciTech Connect (OSTI)

    Tierney, T.M.; Sauer, H.J. Jr.

    1999-07-01

    Owned and operated by large public electric utilities, district steam systems flourished in most northern US cities in the first half of this century. Following World War II, however, district steam systems became minor and, in some cases, unprofitable portions of the utilities' operations. Consequently, public utilities ceased promoting district steam to existing and potential customers, leading to the decline of their use. In recent years, district steam systems have been revitalized by independent enterprises that have the commitment and expertise to make these systems once again reliable and cost-effective energy sources. This paper reports on one such system, The St. Louis Steam Loop. The St. Louis steam loop consists of 22 miles of insulated underground steam piping encompassing a 400-square block area in the city's downtown business district. The loop is supplied with steam by the Ashley Plant, which was built in 1904 for the St. Louis World's Fair. Due to the rising cost of oil, which has been used to fuel the Ashley Plant since 1972, and the subsequent loss of customers, many people considered the steam system a dinosaur in the jet age. In 1982, Trigen-St. Louis Energy Corporation purchased the steam system and embarked on an aggressive campaign to upgrade all aspects of the system, including valves, piping, and meters. In 1999, Trigen-St. Louis will install an ISMW state-of-the-art combustion turbine cogenerator to provide 95% of the steam to the steam loop. A primary reason for the St. Louis Steam Loop's longevity is that it has reliably supplied steam to many downtown buildings for the better part of the 20th century.

  4. Science in St. Louis | Dr. Michael Fix | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Science in St. Louis | Dr. Michael Fix March 15, 2016 Science in St. Louis | Dr. Michael Fix Monster in the Hollow - The Story of Missouri's Ozark Dinosaurs Professor Fix has been a member of UMSL's Physics faculty since 1976 and is responsible for teaching all of the Geology classes and labs that are offered through the department. He is a graduate of Washington University's department of Earth and Planetary Sciences with a focus in paleontology and stratigraphy. He was chosen by the

  5. HERO PRESENTS A DAY HIKE AT MT. ST. HELENS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HERO PRESENTS A DAY HIKE AT MT. ST. HELENS Saturday, September 10, 2016 Mt. St. Helens lost its top on May 18, 1980 (see the 'before' and 'after' pictures above). The environment has been left to respond naturally to the disturbance - and we'll see how it is doing 36 years into recovery. We'll head to Windy Ridge and walk the "sand ladder," hike towards Norway Pass, take the Meta Lake trail, and see the miner's car in person (pictured below); lots of photo opportunities!! This is a

  6. Evaluation of the St. Lucia geothermal resource: macroeconomic models

    SciTech Connect (OSTI)

    Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.

    1984-08-01

    A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.

  7. Performance Evaluation and Opportunity Assessment for St. Bernard Project

    SciTech Connect (OSTI)

    Dickson, Bruce

    2011-06-01

    This report describes efforts by IBACOS, a Building America research team, in the St. Bernard Project, a nonprofit, community-based organization whose mission is to assist Hurricane Katrina survivors to return to their homes in the New Orleans area. The report focuses on energy modeling results of two plans that the St. Bernard Project put forth as 'typical' building types and on quality issues that were observed during the field walk and best practice recommendations that could improve the energy efficiency and durability of the renovated homes.

  8. Performance Evaluation and Opportunity Assessment for St. Bernard Project

    SciTech Connect (OSTI)

    Dickson, B.

    2011-06-01

    This report describes efforts by IBACOS, a Department of Energy Building America research team, in the St. Bernard Project, a nonprofit, community-based organization whose mission is to assist Hurricane Katrina survivors return to their homes in the New Orleans area. The report focuses on energy modeling results of two plans that the St. Bernard Project put forth as 'typical' building types and on quality issues that were observed during the field walk and Best Practice recommendations that could improve the energy efficiency and durability of the renovated homes.

  9. DOE - Office of Legacy Management -- St Louis Airport - MO 01

    Office of Legacy Management (LM)

    - MO 01 FUSRAP Considered Sites St. Louis Airport, MO Alternate Name(s): Airport Site St. Louis Airport Storage Site (SLAPS) Former Robertson Storage Area Robertson Airport MO.01-1 MO.01-2 Location: Brown Road, Robertson, Missouri MO.01-2 Historical Operations: Stored uranium process residues containing uranium, radium, and thorium for the MED and AEC. MO.01-2 MO.01-3 MO.01-4 Eligibility Determination: Eligible MO.01-1 MO.01-7 Radiological Survey(s): Assessment Surveys MO.01-4 MO.01-5 Site

  10. Minneapolis/St. Paul: Taking Solar to the Cities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minneapolis/St. Paul: Taking Solar to the Cities Minneapolis/St. Paul: Taking Solar to the Cities April 13, 2011 - 4:16pm Addthis An aerial view of the solar installation | courtesy of District Energy St. Paul An aerial view of the solar installation | courtesy of District Energy St. Paul April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last month, St. Paul, Minnesota unveiled the largest solar thermal project in the Upper Midwest on the roof of the St. Paul

  11. Improvement of reliability and power consumption for SnSb{sub 4} phase change film composited with Ga{sub 3}Sb{sub 7} by superlattice-like method

    SciTech Connect (OSTI)

    Hu, Yifeng; Zhai, Jiwei; Zeng, Huarong; Song, Sannian; Song, Zhitang

    2015-05-07

    Superlattice-like (SLL) SnSb{sub 4}/Ga{sub 3}Sb{sub 7} (SS/GS) thin films were investigated through in-situ film resistance measurement. The optical band gap was derived from the transmittance spectra by using a UV-visible-NIR (ultraviolet-visible-near infrared) spectrophotometer. Transmission electron microscopy was used to observe the micro-structure before and after annealing. Phase change memory cells based on the SLL [SS(3 nm)/GS(4.5 nm)]{sub 7} thin films were fabricated to test and verify the operation consumption and switching endurance. The scanning thermal microscopy was used to probe the nanoscale thermal property.

  12. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect (OSTI)

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  13. Lattice constant grading in the Al.sub.y Ga.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOE Patents [OSTI]

    Moon, Ronald L.

    1980-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5 .mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photolvoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of growing layer.

  14. Lattice constant grading in the Al.sub.y Ca.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOE Patents [OSTI]

    Moon, Ronald L.

    1981-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5.mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photovoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of the growing layer.

  15. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    SciTech Connect (OSTI)

    Li, C. Zhao, Y. F.; Fu, C. X.; Gong, Y. Y.; Chi, B. Q.; Sun, C. Q.

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  16. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect (OSTI)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  17. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    SciTech Connect (OSTI)

    Ruterana, Pierre Wang, Yi Chen, Jun Chauvat, Marie-Pierre; El Kazzi, S.; Deplanque, L.; Wallart, X.

    2014-10-06

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  18. Soft chemical synthesis of Ag{sub 3}SbS{sub 3} with efficient and recyclable visible light photocatalytic properties

    SciTech Connect (OSTI)

    Gusain, Meenakshi; Rawat, Pooja; Nagarajan, Rajamani

    2014-12-15

    Highlights: Highly crystalline Ag{sub 3}SbS{sub 3} synthesized using soft chemical approach. First time report of photocatalytic activity of Ag{sub 3}SbS{sub 3}. Ag{sub 3}SbS{sub 3} degraded the harmful organic dyes rapidly under visible radiation. Pseudo first order kinetics have been followed in these sets of reactions. Up to 90% of Methylene Blue degraded even after 4th cycle of catalyst reuse. Structure of catalyst is intact after reuse. As the catalyst is heavy, its separation after use is quite simple. - Abstract: Application of Ag{sub 3}SbS{sub 3}, obtained by soft chemical approach involving rapid reaction of air stable metalthiourea complexes in ethylene glycol medium, as visible light photocatalyst for the degradation of dye solutions was investigated. Ag{sub 3}SbS{sub 3} was confirmed by high resolution powder X-ray diffraction pattern and its no defined morphology was present in SEM images. From UVvis spectroscopy measurements, optical band gap of 1.77 eV was deduced for Ag{sub 3}SbS{sub 3}. Rapid degradation kinetics and recyclability was exhibited by Ag{sub 3}SbS{sub 3} towards Methylene Blue, Methyl Orange, Malachite Green, and Rhodamine 6G dye solutions under visible radiation. All these processes followed pseudo first order kinetics. High surface area (6.39 m{sup 2}/g), with mesopores (3.81 nm), arising from solvent mediated synthesis of Ag{sub 3}SbS{sub 3} has been correlated to its catalytic activity.

  19. 1st Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Figure 1. Uranium concentrate production in the United States, 1996 - 1st quarter 2016 pounds U 3 O 8 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000 ...

  20. Transforming Power Systems; 21st Century Power Partnership

    SciTech Connect (OSTI)

    2015-05-20

    The 21st Century Power Partnership - a multilateral effort of the Clean Energy Ministerial - serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with deep energy ef?ciency and smart grid solutions.

  1. Project Reports for St. Croix Chippewa Indians- 2003 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The St. Croix tribe's interest in sustainable economic development has led them to explore using locally available biofuel for power generation. A biofuel power project will leverage community assets and resources and provide a foundation for future sustainable development. It will also help to meet power demands and reduce dependence on imported nonrenewable energy sources.

  2. 21st International Conference on Ion Beam Analysis

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Shutthanandan, V.; Wang, Yongqiang; Vizkelethy, Gyorgy; Rout, Bibhudutta

    2014-08-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 21st International Conference on Ion Beam Analysis (IBA 2013). This conference was held in Marriott Waterfront in Seattle, Washington, USA during June 2328, 2013.

  3. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    Broader source: Energy.gov [DOE]

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE energy assessment and implementing recommendations to improve the efficiency of its steam system.

  4. Phase transitions in double perovskite Sr{sub 2}ScSbO{sub 6}: An Ab-initio study

    SciTech Connect (OSTI)

    Ray, Rajyavardhan; Kumar, Uday; Sinha, T. P.

    2014-04-24

    First Principles study of the electronic properties of recently synthesized double perovskite Sr{sub 2}ScSbO{sub 6} have been performed using density functional theory. With increasing temperature, the Sr compound undergoes three structural phase transitions at 400K, 550K and 650K approximately, leading to the following sequence of phases: P21/n ? I2/m ? I4/m ? Fm-3m. Starting from the monoclinic phase P21/n at room temperature, resulting from the Sc/Sb ordering, the electronic structure for the tetragonal I4/m at 613K and cubic Fm-3m for T?660K has been studied in terms of the density of states and band-structure. Presence of large band gap, both direct and indirect, has been reported and analyzed.

  5. Effect of antimony on the deep-level traps in GaInNAsSb thin films

    SciTech Connect (OSTI)

    Islam, Muhammad Monirul Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka; Sakurai, Takeaki; Akimoto, Katsuhiro

    2014-09-15

    Admittance spectroscopy has been performed to investigate the effect of antimony (Sb) on GaInNAs material in relation to the deep-level defects in this material. Two electron traps, E1 and E2 at an energy level 0.12 and 0.41?eV below the conduction band (E{sub C}), respectively, were found in undoped GaInNAs. Bias-voltage dependent admittance confirmed that E1 is an interface-type defect being spatially localized at the GaInNAs/GaAs interface, while E2 is a bulk-type defect located around mid-gap of GaInNAs layer. Introduction of Sb improved the material quality which was evident from the reduction of both the interface and bulk-type defects.

  6. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  7. Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases

    SciTech Connect (OSTI)

    Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.

    2015-06-01

    A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.

  8. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    DOE Patents [OSTI]

    Lapshina, Elena V.; Zhuikov, Boris L.; Srivastava, Suresh C.; Ermolaev, Stanislav V.; Togaeva, Natalia R.

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  9. Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Benjamin Varberg; Kim, Jin K.; Kadlec, Emil Andrew; Shaner, Eric A.; Haugan, Heather J.; Brown, Gail J.

    2015-09-28

    Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombinationmore » centers.« less

  10. Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

    SciTech Connect (OSTI)

    Olson, Benjamin Varberg; Kim, Jin K.; Kadlec, Emil Andrew; Shaner, Eric A.; Haugan, Heather J.; Brown, Gail J.

    2015-09-28

    Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombination centers.

  11. On the electronic properties of GaSb irradiated with reactor neutrons and its charge neutrality level

    SciTech Connect (OSTI)

    Boiko, V. M.; Brudnii, V. N.; Ermakov, V. S.; Kolin, N. G.; Korulin, A. V.

    2015-06-15

    The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 10{sup 18} cm{sup −2} are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p{sub lim} = (5−6) × 10{sup 18} cm{sup −3} and in pinning of the Fermi level at the limiting position F{sub lim} close to E{sub V} + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°C is explored.

  12. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  13. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  14. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes ...

  15. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  16. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  17. Two California Schools Win the 21st U.S. Department of Energy...

    Office of Environmental Management (EM)

    California Schools Win the 21st U.S. Department of Energy National Science Bowl Two California Schools Win the 21st U.S. Department of Energy National Science Bowl May 2, 2011 - ...

  18. Two California Schools Win the 21st U.S. Department of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two California Schools Win the 21st U.S. Department of Energy National Science Bowl Two California Schools Win the 21st U.S. Department of Energy National Science Bowl May 2, 2011...

  19. Renewable Energy Policy Network for the 21st Century (REN21)...

    Open Energy Info (EERE)

    Network for the 21st Century (REN21) Jump to: navigation, search Logo: Renewable Energy Policy Network for the 21st Century (REN21) Name: Renewable Energy Policy Network for the...

  20. Microsoft Word - DOE-ID-11-014 Missouri ST EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: Upgrade of Missouri S&T Reactor for Distance Learning - Missouri University of Science and Technology SECTION B. Project Description Missouri S&T will...

  1. Energy Transition Initiative: Island Energy Snapshot - St. Kitts & Nevis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Federation of St. Christopher (St. Kitts) and Nevis - two islands located in the Leeward Islands in the West Indies.

  2. Clean, Efficient, and Reliable Power for the 21st Century: Fact...

    Energy Savers [EERE]

    Clean, Efficient, and Reliable Power for the 21st Century: Fact Sheet Clean, Efficient, and Reliable Power for the 21st Century: Fact Sheet This fact sheet provides an overview of ...

  3. Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Preston, J. S.

    2012-11-01

    The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

  4. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Kim, T. W.; Mawst, L. J.; Kim, K.; Lee, J. J.; Kuech, T. F.; Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.

    2014-02-03

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16?K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680?ps vs. 260?ps) for the PL measurement energy of 1.24?eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  5. Synthesis of nanocrystalline thin films of gold on the surface of GaSb by swift heavy ion

    SciTech Connect (OSTI)

    Jadhav, Vidya; Dubey, S. K.; Yadav, A. D.; Singh, A.

    2013-02-05

    Thin films of gold ({approx}100 nm thick) were deposited on p-type GaSb substrates. These samples were irradiated with 100 MeV Fe{sup 7+}ions for the fluence of 1 Multiplication-Sign 10{sup 13} and 1 Multiplication-Sign 10{sup 14} ions cm{sup -2}. After irradiation, samples were characterized using AFM, UV-VIS -NIR, X-Ray Diffraction techniques. AFM studies showed the presence of clusters on the surface of GaSb. R.M.S. roughness of the sample was found to increase w.r.t ion fluence. Absorption coefficient obtained from the Ultra violet - Visible NIR (UV-VIS -NIR) spectra of the samples irradiated with various fluences compared with non irradiated GaSb. The annealing experiment showed a significant improvement in the absorption coefficient after rapid thermal annealing at temperature of 400 Degree-Sign C. X-Ray Diffraction study reveals different orientations of Au film.

  6. Enhanced thermoelectric performance and novel nanopores in AgSbTe{sub 2} prepared by melt spinning

    SciTech Connect (OSTI)

    Du, Baoli; Li, Han; Xu, Jingjing; Tang, Xinfeng; Uher, Ctirad

    2011-01-15

    We report a melt-spinning spark-plasma-sintering synthesis process of the polycrystalline p-type material composed of AgSbTe{sub 2} coarse grains and evenly formed 5-10 nm pores that occur primarily on the surface of matrix grains. The formation mechanism of nanopores and their influences on the thermoelectric properties have been studied and correlated. Microstructure analysis shows that the as-prepared sample can be regarded as a nanocomposite of matrix and in situ generated nanopores evenly coated on matrix grains. For the single-phase component and the possible energy-filter effect caused by the nanopores, the electrical transport properties are improved. Moreover, the thermal conductivity is significantly reduced by strong phonon scattering effect resulted from the nanopores. The thermoelectric performance of the as prepared sample enhances greatly and a ZT of 1.65 at 570 K is achieved, increasing{approx}200% compared with the sample prepared by traditional melt and slow-cooling method. -- Graphical abstract: Representative nanostructure of AgSbTe{sub 2} sample (a) ribbons obtained after melt spinning (b) bulk AgSbTe{sub 2} material obtained after spark plasma sintering. Display Omitted

  7. Electron interactions and Dirac fermions in graphene-Ge{sub 2}Sb{sub 2}Te{sub 5} superlattices

    SciTech Connect (OSTI)

    Sa, Baisheng; Sun, Zhimei

    2014-06-21

    Graphene based superlattices have been attracted worldwide interest due to the combined properties of the graphene Dirac cone feature and all kinds of advanced functional materials. In this work, we proposed a novel series of graphene-Ge{sub 2}Sb{sub 2}Te{sub 5} superlattices based on the density functional theory calculations. We demonstrated the stability in terms of energy and lattice dynamics for such kind of artificial materials. The analysis of the electronic structures unravels the gap opening nature at Dirac cone of the insert graphene layer. The Dirac fermions in the graphene layers are strongly affected by the electron spin orbital coupling in the Ge{sub 2}Sb{sub 2}Te{sub 5} layers. The present results show the possible application in phase-change data storage of such kind of superlattice materials, where the Ge{sub 2}Sb{sub 2}Te{sub 5} layers exhibit as the phase-change data storage media and the graphene layer works as the electrode, probe, and heat conductor.

  8. Environmental Assessment on the leasing of the Strategic Petroleum Reserve, St. James Terminal, St. James Parish, Louisiana

    SciTech Connect (OSTI)

    1995-01-01

    The US Department of Energy (DOE) proposes to lease the Strategic Petroleum Reserve`s (SPR) St. James Terminal to private industry. The St. James Terminal consists of six storage tanks, a pumping station, two maine docks and ancillary facilities. DOE believes that the St. James Terminal presents an opportunity to establish a government- industry arrangement that could more effectively use this asset to serve the nations`s oil distribution needs, reduce the operational cost of the SPR, and provide a source of revenue for the Government. DOE solicited interest in leasing its distribution facilities in a notice published March 16, 1994. In response, industry has expressed interest in leasing the St. James Terminal, as well as several DOE pipelines, to enhance the operation of its own facilities or to avoid having to construct new ones. Under such a lease, industry use would be subordinate to DOE use in the event of a national energy emergency. This Environmental Assessment describes the proposed leasing operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) OF 1969 and has issued the Finding of No Significant Impact (FONSI).

  9. SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT In the hot Florida climate, poor insulation or inefficient equipment can have a large impact on homeowners' energy use. Because the state has some of the highest energy consumption per capita and fairly high electricity rates, summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure

  10. Appendix of Supporting Information for the 21st Century Truck Technology Partnership

    SciTech Connect (OSTI)

    2009-01-18

    Appendix contains supporting information to the 21st Century Truck Partnership's Roadmap and Technical White Papers (21CTP-003)

  11. Urban League of St. Louis Ramps Up Weatherization Production and Hiring

    Broader source: Energy.gov [DOE]

    Why some residents in St. Louis are doing a double take when looking at the savings on their energy bills.

  12. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; Mukhopadhyay, Saikat; Sun, Jifeng

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionicmore » and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  13. The magnetic structure of EuCu2Sb2

    SciTech Connect (OSTI)

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mssbauer spectroscopy. The room temperature 151Eu isomer shift of 12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) ?B which is the full free-ion moment expected for the Eu2+ ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.

  14. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; et al

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (Hmore » K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int« less

  15. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect (OSTI)

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  16. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    SciTech Connect (OSTI)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; Cao, Huibo; Lumsden, Mark D; Christianson, Andrew D

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int

  17. The magnetic structure of EuCu2Sb2

    SciTech Connect (OSTI)

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.

  18. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector

    SciTech Connect (OSTI)

    Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou; Nguyen, Jean; Hoglund, Linda; Fisher, Anita M.; Keo, Sam. A.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2015-12-28

    In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation. This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.

  19. CHARACTERIZATION OF VITRIFIED SAVANNAH RIVER SITE SB4 WASTE SURROGATE PRODUCED IN COLD CRUCIBLE

    SciTech Connect (OSTI)

    Marra, J

    2008-08-05

    Savannah River Site (SRS) sludge batch 4 (SB4) waste surrogate with high aluminum and iron content was vitrified with commercially available Frit 503-R4 (8 wt.% Li{sub 2}O, 16 wt.% B2O3, 76 wt.% SiO{sub 2}) by cold crucible inductive melting using lab- (56 mm inner diameter), bench- (236 mm) and large-scale (418 mm) cold crucible. The waste loading ranged between 40 and 60 wt.%. The vitrified products obtained in the lab-scale cold crucible were nearly amorphous with traces of unreacted quartz in the product with 40 wt.% waste loading and traces of spinel phase in the product with 50 wt.% waste loading. The glassy products obtained in the bench-scale cold crucible are composed of major vitreous and minor iron-rich spinel phase whose content at {approx}60 wt.% waste loading may achieve {approx}10 vol.%. The vitrified waste obtained in the large-scale cold crucible was also composed of major vitreous and minor spinel structure phases. No nepheline phase has been found. Average degree of crystallinity was estimated to be {approx}12 vol.%. Anionic motif of the glass network is built from rather short metasilicate chains and boron-oxygen constituent based on boron-oxygen triangular units.

  20. Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

    SciTech Connect (OSTI)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-02-15

    CuSbS{sub 2} and Cu{sub 3}BiS{sub 3} are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new 'Time-Temperature-Reaction' (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS{sub 2} to appear is substantially lower than for Cu{sub 3}BiS{sub 3}, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation. - Graphical Abstract: Example of 3D plot showing the equilibrium pressure surfaces of species potentially escaping from chalcogenide films as a function of temperature and sulfur partial pressure. Bi{sub (g)}, Bi{sub 2(g)}, and BiS{sub (g)} are the gaseous species in equilibrium with solid Bi{sub 2}S{sub 3(s)} considered in this specific example. The pressure threshold plane corresponds to the pressure limit above which the elemental losses from 1 {mu}m thick films exceeds 10% of the original content per cm{sup 2} area of film and dm{sup 3} capacity of sulfurization furnace under static atmosphere conditions. The sulfurization temperature/sulfur partial pressure boundaries required to minimise the elemental losses below a given value can be easily read from the 2D projection of the

  1. SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-07-28

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and

  2. SLUDGE BATCH 6 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB6 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-05-21

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Six (SB6) for processing in the Defense Waste Processing Facility (DWPF). The SB6 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB5. The radionuclide concentrations were measured or estimated in the Tank 51 SB6 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry (HTF-51-09-110) taken on October 8, 2009. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of the Liquid Waste Organization it was then modified by eight washes, nine decants, an addition of Pu from Canyon Tank 16.3, and an addition of NaNO{sub 2}. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB6 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2009-0014. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task II.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB6 will be taken and transferred

  3. Investigation of single-layer/multilayer self-assembled InAs quantum dots on GaAs{sub 1-x}Sb{sub x}/GaAs composite substrates

    SciTech Connect (OSTI)

    Tang, Dinghao; Kim, Yeongho Faleev, Nikolai; Honsberg, Christiana B.; Smith, David J.

    2015-09-07

    The structure-performance properties of single-layered and multi-layered InAs/GaAs{sub 1−x}Sb{sub x} quantum dot (QD) system, grown by molecular beam epitaxy on GaAs (001) substrates, have been investigated as a function of Sb concentration. Electron microscopy observations showed no significant crystalline defects for the single-layered InAs QDs (Sb 20%). X-ray diffraction analysis revealed that the increase of Sb concentration from 7.3% to 10.2% for the multi-layered QDs increased the strain relaxation from 0% to ∼23% and the dislocation density of GaAsSb layers went up to 3.6 × 10{sup 9 }cm{sup −2}. The peak energy of QD luminescence was red-shifted with increasing Sb concentration due to reduced strain inside QDs. Moreover, the carrier lifetime of the QDs was highly improved from 1.7 to 36.7 ns due to weak hole confinement as the Sb concentration was increased from 7.3% to 10.2%. These structures should be highly promising as the basis for photovoltaic solar-cell applications. Finally, the increased Sb concentration increased the thermal activation energy of electrons confined in the QDs from 163.7 to 206.8 meV, which was indicative of the improved thermal stability with Sb concentration.

  4. From thermoelectric bulk to nanomaterials: Current progress for Bi 2 Te 3 and CoSb 3: From thermoelectric bulk to nanomaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peranio, N.; Eibl, O.; Bäßler, S.; Nielsch, K.; Klobes, B.; Hermann, R. P.; Daniel, M.; Albrecht, M.; Görlitz, H.; Pacheco, V.; et al

    2015-10-29

    We synthesized Bi2Te3 and CoSb3 based nanomaterials and their thermoelectric, structural, and vibrational properties analyzed to assess and reduce ZT-limiting mechanisms. The same preparation and/or characterization methods were applied in the different materials systems. Single-crystalline, ternary p-type Bi15Sb29Te56, and n-type Bi38Te55Se7 nanowires with power factors comparable to nanostructured bulkmaterialswere prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix. p-type Sb2Te3, n-type Bi2Te3, and n-type CoSb3 thin films were grown at room temperature using molecular beam epitaxy and were subsequently annealed at elevated temperatures. It yielded polycrystalline, single phase thin films with optimized charge carrier densities. In CoSb3 thin filmsmore » the speed of sound could be reduced by filling the cage structure with Yb and alloying with Fe yielded p-type material. Bi2(Te0.91Se0.09)3/SiC and (Bi0.26Sb0.74)2Te3/SiC nanocomposites with low thermal conductivities and ZT values larger than 1 were prepared by spark plasma sintering. Nanostructure, texture, chemical composition, as well as electronic and phononic excitations were investigated by X-ray diffraction, nuclear resonance scattering, inelastic neutron scattering, M ossbauer spectroscopy, and transmission electron microscopy. Furthermore, for Bi2Te3 materials, ab-initio calculations together with equilibrium and non-equilibrium molecular dynamics simulations for point defects yielded their formation energies and their effect on lattice thermal conductivity, respectively. Current advances in thermoelectric Bi2Te3 and CoSb3 based nanomaterials are summarized. Advanced synthesis and characterization methods and theoreticalmodelingwere combined to assess and reduce ZT-limiting mechanisms in these materials.« less

  5. St. Paul Parking Ramp Serves as a Model for Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy St. Paul Parking Ramp Serves as a Model for Sustainability St. Paul Parking Ramp Serves as a Model for Sustainability April 17, 2014 - 1:33pm Addthis Upgrades such as new energy efficient lighting have helped slash energy use at the RiverCentre parking ramp in St. Paul, Minnesota by 50%. | Photo courtesy of City of St. Paul Upgrades such as new energy efficient lighting have helped slash energy use at the RiverCentre parking ramp in St. Paul, Minnesota by 50%. | Photo courtesy of City

  6. Clean, Efficient, and Reliable Power for the 21st Century

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Efficient, and Reliable Power for the 21st Century Fuel cells offer a highly effcient and fuel- fexible technology that cleanly produces power and heat with low or zero emissions. Using renewably produced fuels such as hydrogen fuel cells can reduce our nation's dependence on imported oil, leading to a secure energy future for America. With a multitude of end-uses-such as distributed power for backup, primary, and combined heat-and-power systems; automobiles, buses, forklifts and other

  7. DOE pollution prevention in the 21st century

    SciTech Connect (OSTI)

    1996-10-01

    This document presents abstracts of the topics covered in the DOE Pollution Prevention in the 21st Century conference held July 9-11, 1996. These topics include: model facilities; Federal/NEPA/stake- holders; microchemistry; solvents and reduction; education and outreach; return on investments; energy management; decontamination and decommissioning; planning and regulations; environmental restoration; recycling; affirmative procurement in the executive branch; construction and demolition; materials exchange; and ISO 2000.

  8. Annual Energy Outlook 2014 1st Coal Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    1 st Coal Working Group Coal and Uranium Analysis Team July 22, 2013| Washington, D.C. Topics for discussion * Recoding to AIMMS; otherwise, no changes to Coal Market Module (CMM) structure or equations from AEO2013 * Legislation and regulations * Retirements and additions * Pollution control retrofits * Coal productivity trends * Projected consumption (CTL), production, exports, and prices * Side cases 2 Coal and Uranium Analysis Team Washington, DC, July 22, 2013 Key results for the AEO2013

  9. Annual Energy Outlook 2017 1st Coal Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    7 1 st Coal Working Group Coal and Uranium Analysis Team August 31, 2016| Washington, D.C. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE AS AEO2017 MODELING ASSUMPTIONS AND INPUTS ARE SUBJECT TO CHANGE. Agenda Coal and Uranium Analysis Team August 31, 2016 | Washington, D.C. 2 * EIA ongoing activities * Modeling focus for AEO2017 * Review of AEO2016 results * General Modeling Assumptions - Focus on productivity and other factors affecting price - Feedback from CWG

  10. Microsoft Word - S06528_1st qtr 2010.doc

    Office of Legacy Management (LM)

    10 July 2010 LMS/RFS/S06528 This page intentionally left blank LMS/RFS/S06528 U.S. Department of Energy Office of Legacy Management Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities First Quarter Calendar Year 2010 July 2010 This page intentionally left blank U.S. Department of Energy Quarterly Report of Site Surveillance and Maintenance Activities-1st Quarter CY 2010 July 2010 Doc. No. S06528 Page i Contents

  11. Program Update: 1st Quarter 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Program Update: 1st Quarter 2013 Inside this Update: Abandoned Uranium Mines Report to Congress: LM Wants Your Input; LM Discusses Management of LTS&M Records; LM Launches New Website Under energy.gov; Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima Dai-ichi Incident; Completion of the CERCLA Natural Resource Damage Process at the Rocky Flats Site; Environmental Justice Activities; Mound Museum Volunteers: Preserving a Laboratory's Legacy; DOE Evaluates

  12. Microsoft Word - FY15 1st Quarter Transportation Report (Final)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    335 1 st QUARTER TRANSPORTATION REPORT FY2015 Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS) February 2015 United States Department of Energy National Nuclear Security Administration Nevada Field Office Las Vegas, Nevada Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government

  13. 2010 1st Annual CEFRC Conference - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 0 1st Annual CEFRC Conference First Annual Conference, CEFRC Sept 23-24, 2010, Princeton, NJ SESSION CHAIRS: Wade Sisk, Department of Energy Chung K. Law, Combustion Energy Frontier Research Center (CEFRC) Announcements Overview of CEFRC Chemistry: Theory Multi-reference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion Emily A. Carter, Princeton University Computation of Accurate Thermochemical and Rate Parameters for Complex Combustion

  14. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect (OSTI)

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  15. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8?nm equivalent oxide thickness

    SciTech Connect (OSTI)

    Barth, Michael; Datta, Suman; Bruce Rayner, G.; McDonnell, Stephen; Wallace, Robert M.; Bennett, Brian R.; Engel-Herbert, Roman

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structures with a low equivalent oxide thickness of 0.8?nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.

  16. Femtosecond laser-induced crystallization of amorphous Sb{sub 2}Te{sub 3} film and coherent phonon spectroscopy characterization and optical injection of electron spins

    SciTech Connect (OSTI)

    Li Simian; Huang Huan; Wang Yang; Wu Yiqun; Gan Fuxi; Zhu Weiling; Wang Wenfang; Chen Ke; Yao Daoxin; Lai Tianshu

    2011-09-01

    A femtosecond laser-irradiated crystallizing technique is tried to convert amorphous Sb{sub 2}Te{sub 3} film into crystalline film. Sensitive coherent phonon spectroscopy (CPS) is used to monitor the crystallization of amorphous Sb{sub 2}Te{sub 3} film at the original irradiation site. The CPS reveals that the vibration strength of two phonon modes that correspond to the characteristic phonon modes (A{sub 1g}{sup 1} and E{sub g}) of crystalline Sb{sub 2}Te{sub 3} enhances with increasing laser irradiation fluence (LIF), showing the rise of the degree of crystallization with LIF and that femtosecond laser irradiation is a good post-treatment technique. Time-resolved circularly polarized pump-probe spectroscopy is used to investigate electron spin relaxation dynamics of the laser-induced crystallized Sb{sub 2}Te{sub 3} film. Spin relaxation process indeed is observed, confirming the theoretical predictions on the validity of spin-dependent optical transition selection rule and the feasibility of transient spin-grating-based optical detection scheme of spin-plasmon collective modes in Sb{sub 2}Te{sub 3}-like topological insulators.

  17. Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2012-09-10

    The structural properties and band offset determination of p-channel staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterostructure tunnel field-effect transistor (TFET) grown by molecular beam epitaxy (MBE) were investigated. High resolution x-ray diffraction revealed that the active layers are strained with respect to 'virtual substrate.' Dynamic secondary ion mass spectrometry confirmed an abrupt junction profile at the In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterointerface and minimal level of intermixing between As and Sb atoms. The valence band offset of 0.37 {+-} 0.05 eV was extracted from x-ray photoelectron spectroscopy. A staggered band lineup was confirmed at the heterointerface with an effective tunneling barrier height of 0.13 eV. Thus, MBE-grown staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} TFET structures are a promising p-channel option to provide critical guidance for the future design of mixed As/Sb type-II based complementary logic and low power devices.

  18. Ab initio density functional theory investigation of the structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases

    SciTech Connect (OSTI)

    Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam

    2013-11-15

    A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchangecorrelation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the ??N direction; while in the cubic phase there is a direct-gap at the ? point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. It is found that the hexagonal phase is an indirect gap semiconductor. Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the ? point in the cubic phase. By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.

  19. Structural, electronic and optical properties of La{sub x}Sc{sub 1-x}Sb alloys

    SciTech Connect (OSTI)

    Ghezali, M.

    2015-03-30

    We present calculations of the structural, electronic and optic properties of LaxSc1-xSb ternary alloys for 0≤x≤1, by using the first principle full potential linear muffin-tin orbital (FPLMTO) method based on the local density approximation (LDA). the lattice constant, bulk modulus, electronic band structures, density of state and optical properties such as dielectric functions, refractive index and extinction coefficient are calculated and discussed for (x=0.25, 0.5 and 0.75). Our results agree well with the available data in the literature.

  20. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    SciTech Connect (OSTI)

    Spirin, K. E. Krishtopenko, S. S.; Sadofyev, Yu. G.; Drachenko, O.; Helm, M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  1. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    SciTech Connect (OSTI)

    Gies, S.; Kruska, C.; Berger, C.; Hens, P.; Fuchs, C.; Rosemann, N. W.; Veletas, J.; Stolz, W.; Koch, S. W.; Heimbrodt, W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  2. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    SciTech Connect (OSTI)

    Kang, Nam Lyong

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  3. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    SciTech Connect (OSTI)

    Ji, Hai-Ming; Liang, Baolai Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  4. Growth and transport properties of epitaxial lattice matched half Heusler CoTiSb/InAlAs/InP(001) heterostructures

    SciTech Connect (OSTI)

    Kawasaki, Jason K.; Johansson, Linda I. M.; Schultz, Brian D.; Palmstrm, Chris J.

    2014-01-13

    We demonstrate the integration of the lattice matched single crystal epitaxial Half Heusler compound CoTiSb with In{sub 0.52}Al{sub 0.48}As/InP(001) heterostructures using molecular beam epitaxy. CoTiSb belongs to the subset of Half Heusler compounds that is expected to be semiconducting, despite being composed entirely of metallic constituents. The lattice matching and epitaxial alignment of the CoTiSb films were confirmed by reflection high energy electron diffraction and X-ray diffraction. Temperature dependent transport measurements indicate semiconducting-like behavior, with a room temperature Hall mobility of 530 cm{sup 2}/Vs and background Hall carrier density of 9.0??10{sup 17}?cm{sup ?3}, which is comparable to n-Si with similar carrier density. Below 100?K, the films show a large negative magnetoresistance, and possible origins of this negative magnetoresistance are discussed.

  5. Influence of Sn on the thermoelectric properties of (Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals

    SciTech Connect (OSTI)

    Kulbachinskii, V.A.; Kytin, V.G.; Kudryashov, A.A.; Lunin, R.A.

    2012-09-15

    The influence of tin on the thermoelectric properties of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals (x=0; 0.25; 0.5) has been investigated. The temperature dependence of the Seebeck coefficient S, the electrical conductivity {sigma}, the heat conductivity k and the thermoelectric figure of merit of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals were measured in the temperature range 7-300 K. By an increase the Sn content, the hole concentration increases in p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3}. The heat conductivity k of the p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3} crystals decreases due to the Sn doping, while the electrical conductivity {sigma} increases in the temperature interval about 200Sb{sub 1-x}){sub 2}Te{sub 3} single crystals (x=0; 0.25; 0.5) has been investigated. Temperature dependence of Seebeck coefficient S, electrical conductivity {sigma}, thermal conductivity k and figure of merit of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals were measured in the temperature range 7-300 K. Electrical conductivity increases in the temperature interval 150KSb{sub 1-x}){sub 2}Te{sub 3} as shown in figure. By increasing the Sn content, the hole concentration increases in p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3}. The thermal conductivity k of the p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3} crystals decreases due to Sn doping. The Seebeck coefficient S for all compositions is positive and decreases due

  6. Anisotropic magnetization and transport properties of RAgSb{sub 2} (R=Y, La-Nd, Sm, Gd-Tm)

    SciTech Connect (OSTI)

    Myers, Kenneth D.

    1999-11-08

    This study of the RAgSb{sub 2} series of compounds arose as part of an investigation of rare earth intermetallic compounds containing antimony with the rare earth in a position with tetragonal point symmetry. Materials with the rare earth in a position with tetragonal point symmetry frequently manifest strong anisotropies and rich complexity in the magnetic properties, and yet are simple enough to analyze. Antimony containing intermetallic compounds commonly possess low carrier densities and have only recently been the subject of study. Large single grain crystals were grown of the RAgSb{sub 2} (R=Y, La-Nd, Sm, Gd-Tm) series of compounds out of a high temperature solution. This method of crystal growth, commonly known as flux growth is a versatile method which takes advantage of the decreasing solubility of the target compound with decreasing temperature. Overall, the results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb{sub 2} approaching one gram. However, the sample yield diminishes as the rare earth elements become smaller and heavier. Consequently, no crystals could be grown with R=Yb or Lu. Furthermore, EuAgSb{sub 2} could not be synthesized, likely due to the divalency of the Eu ion. For most of the RAgSb{sub 2} compounds, strong magnetic anisotropies are created by the crystal electric field splitting of the Hund's rule ground state. This splitting confines the local moments to lie in the basal plane (easy plane) for the majority of the members of the series. Exceptions to this include ErAgSb{sub 2} and TmAgSb{sub 2}, which have moments along the c-axis (easy axis) and CeAgSb{sub 2}, which at intermediate temperatures has an easy plane, but exchange coupling at low temperatures is anisotropic with an easy axis. Additional anisotropy is also observed within the basal plane of DyAgSb{sub 2}, where the moments are restricted to align along one of the {l_angle}110{r_angle} axes. Most of the RAgSb{sub 2} compounds

  7. Annual Energy Outlook 2015 1st Coal Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    1 st Coal Working Group Coal and Uranium Analysis Team July 30, 2014 | Washington, D.C. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE AS AEO2015 MODELING ASSUMPTIONS AND INPUTS ARE SUBJECT TO CHANGE. Changes in release cycles for EIA's AEO and IEO 2 * To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information Administration is revising the schedule and approach for production of the

  8. Microsoft Word - S07730_1st Qtr

    Office of Legacy Management (LM)

    First Quarter Calendar Year 2011 July 2011 LMS/RFS/S07730 This page intentionally left blank LMS/RFS/S07730 U.S. Department of Energy Office of Legacy Management Rocky Flats Site, Colorado Quarterly Report of Site Surveillance and Maintenance Activities First Quarter Calendar Year 2011 July 2011 This page intentionally left blank U.S. Department of Energy Quarterly Report of Site Surveillance and Maintenance Activities-1st Quarter CY 2011 July 2011 Doc. No. S07730 Page i Contents Abbreviations

  9. Mexico and the 21st Century Power Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    The 21st Century Power Partnership's program in Mexico (21CPP Mexico) is one initiative of the Clean Energy Ministerial, carried out in cooperation with government and local stakeholders, drawing upon an international community of power system expertise. The overall goal of this program is to support Mexico's power system transformation by accelerating the transition to a reliable, financially robust, and low-carbon system. 21CPP Mexico activities focus on achieving positive outcomes for all participants, especially addressing critical questions and challenges facing policymakers, regulators, and system operators. In support of this goal, 21CPP Mexico taps into deep networks of expertise and professional connections.

  10. LICENSE HISTORY MO.8 Petrolite Corporation, St. Louis

    Office of Legacy Management (LM)

    LICENSE HISTORY MO.8 Petrolite Corporation, St. Louis 07,16/93 l See attached Document and Pile Sumnary for MO.8 l License History: l 24-10452-01, 30-051175, 08/13/79. Loose H-3, I-131, P-32. l 24-10452-1, 10/30/64. K66 R. R. Annand et al Multiple. . 70-621, 12-15-61, SNM license for 0.5 kg. of U-235, 93% enriched as a fuel loading and star-up ~curce for Webster Groves, Missouri reactor. l Discussion: Historical documents for this site are limited. The only information available on work done

  11. Effect of ultrasound on the growth striation and electrical properties of Ga{sub 0.03}In{sub 0.97}Sb single crystals

    SciTech Connect (OSTI)

    Kozhemyakin, G. N. Zolkina, L. V.; Rom, M. A.

    2008-12-15

    The growth striation of impurity segregation and electrical properties of Ga{sub 0.03}In{sub 0.97}Sb single crystals grown by the Czochralski method in an ultrasonic field have been investigated. It is established that ultrasonic irradiation of the melt during growth significantly decreases the growth striation (in particular, it eliminates striations spaced at a distance of more than 14 {mu}m). The Ga{sub 0.03}In{sub 0.97}Sb single crystals grown in an ultrasonic field had a higher charge-carrier mobility and thermoelectric power in comparison with the single crystals grown without ultrasound.

  12. Frit Development Efforts for Sludge Batch 4 (SB4): Model-Based Assessments

    SciTech Connect (OSTI)

    Peeler, D. K.; Edwards, T. B.

    2005-03-05

    The model-based assessments of nominal Sludge Batch 4 (SB4) compositions suggest that a viable frit candidate does not appear to be a limiting factor as the Closure Business Unit (CBU) considers various tank blending options and/or washing strategies. This statement is based solely on the projected operating windows derived from model predictions and does not include assessments of SO{sub 4} solubility or melt rate issues. The viable frit candidates covered a range of Na{sub 2}O concentrations (from 8% to 13%--including Frit 418 and Frit 320) using a ''sliding Na{sub 2}O scale'' concept (i.e., 1% increase in Na{sub 2}O being balanced by a 1% reduction in SiO{sub 2}) which effectively balances the alkali content of the incoming sludge with that in the frit to maintain and/or increase the projected operating window size while potentially leading to improved melt rate and/or waste loadings. This strategy or approach allows alternative tank blending strategies and/or different washing scenarios to be considered and accounted for in an effective manner without wholesale changes to the frit composition. In terms of projected operating windows, in general, the sludge/frit systems evaluated resulted in waste loading intervals from 25 to the mid-40%'s or even the mid-50%'s. The results suggest that a single frit could be selected for use with all 20 options which indicates some degree of frit robustness with respect to sludge compositional variation. In fact, use of Frit 418 or Frit 320 (the ''cornerstone'' frits given previous processing experience in the Defense Waste Processing Facility (DWPF)) are plausible for most (if not all) options being considered. However, the frit selection process also needs to consider potential processing issues such as melt rate. Based on historical trends between melt rate and total alkali content, one may elect to use the frit with the highest alkali content that still yields an acceptable operating window. However, other constraints may

  13. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.

    2015-12-07

    Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less

  14. Anomalous temperature-dependent Young's modulus of a cast LAST (Pb-Sb-Ag-Te) thermoelectric material

    SciTech Connect (OSTI)

    Ren, Fei; Case, Eldon D; Timm, Edward J; Lara-Curzio, Edgar; Trejo, Rosa M

    2010-01-01

    Thermomechanical characterization is important to material evaluation and device design in the development of thermoelectric technology. In this study, we utilize the resonant ultrasound spectroscopy (RUS) technique to examine the elastic behavior of a cast LAST (Pb Sb Ag Te) material with a composition of Ag0.86Pb19Sb1.0Te20 between room temperature and 823 K. The temperature-dependent Young s modulus exhibits a monotonically decreasing trend with increasing temperature. However, an abnormal slope change in the Young s modulus temperature curve around 500 K is observed. In addition, hysteresis between heating and cooling data in the temperature range of 450 550 K is observed, which appears to be dependent on the heating/cooling rate during the RUS experiments such that the hysteresis disappears when the heating/cooling rate was decreased from 5 to 2 K min 1. In this study we propose an order disorder transition model for the anomalous temperature-dependent Young s modulus behavior observed in this study.

  15. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    SciTech Connect (OSTI)

    Bissig, B. Jäger, T.; Tiwari, A. N.; Romanyuk, Y. E.; Ding, L.

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1} which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

  16. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    SciTech Connect (OSTI)

    Duong, Anh Tuan; Rhim, S. H. Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  17. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-01

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M?,? edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [?L = 2.8(1)?B/Pu] and spin moments [?S = ?2.0(1)?B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of ?Lz? and ?Sz? are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. Finally, we demonstrate that a split M? as well as a narrow M? XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  18. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  19. CaMn2Sb2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    SciTech Connect (OSTI)

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; Smith, G. J.; Hassinger, J. E.; DeBeer-Schmidt, L.; Kolesnikov, A. I.; Zaliznyak, I.; Aronson, M. C.

    2015-05-22

    We present inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn2Sb2:, which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first and second neighbor exchange interactions, J1 and J2, in the Mn plane and also an exchange interaction between planes. The determined ratio J2/J1 ≈ 1/6 suggests that CaMn2Sb2: is the first example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the N´eel phase and two different spiral phases coexist. The magnitude of the determined exchange interactions reveal a mean field ordering temperature ≈ 4 times larger than the reported N´eel temperature TN = 85 K, suggesting significant frustration arising from proximity to the tricritical point.

  20. 21st Century jobs initiative - building the foundations for a 21st Century economy. Final main report

    SciTech Connect (OSTI)

    1995-11-01

    The 21st Century Jobs Initiative has been launched in the context of new realities in Washington, D.C., rapid restructuring of the US economy and accelerating changes in the makeup of the East Tennessee economy driven by these and other external economic forces. Continuing downward pressure on Federal budgets for programs that support three key institutions in the region - DOE`s Oak Ridge complex, the Tennessee Valley Authority and research programs of the University of Tennessee - are especially threatening to the region. With a large part of its economy dependent on Federal spending, the area is at risk of troublesome impacts that could ripple out from the Oak Ridge and Knoxville home of these institutions throughout the entire 15-county {open_quotes}Resource Valley.{close_quotes} As these economic forces play out in the region`s economy, important questions arise. How will East Tennessee {open_quotes}earn its living{close_quotes} in the future if the Federal government role in the economy shrinks? What kind of new industries will be formed to replace those at risk due to Federal cutbacks and economic restructuring? Where will the jobs come from for the next generation of job seekers? These are among the questions driving the 21st Century Jobs Initiative, an action-oriented program designed and implemented by local leaders in response to the economic challenges facing East Tennessee. Fortunately, the region`s economy is strong today. Unemployment is at near record lows in most counties. Moreover, leaders are increasingly aware of the threats on the horizon and are already moving to action. And the impacts from the forces at work on the economy will probably come slowly, over the next decade or so. Based on economic research and input from local leaders knowledgeable about the economy, the 21st Century Jobs Initiative has set forth a strategic economic development plan for the region.

  1. FONSI and Final EA, NREL Experiments -- Joyce St. Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FONSI and Final EA, NREL Experiments -- Joyce St. Facility FONSI and Final EA, NREL Experiments -- Joyce St. Facility June 1992 Final Environmental Assessment for the Relocation of National Renewable Energy Laboratory Research Experiments - Joyce St. Facility (DOE/EA-0619). FONSI and Final EA (2.4 MB) More Documents & Publications CX-009144: Categorical Exclusion Determination EA-1914: Final Site-Wide Environmental Assessment EA-1968: Final Site-Wide

  2. America's Competitiveness Depends on a 21st Century Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy America's Competitiveness Depends on a 21st Century Grid America's Competitiveness Depends on a 21st Century Grid May 30, 2012 - 12:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What are the key facts? America's continued global competiveness in the 21st century will be significantly affected by whether we can efficiently produce and distribute electricity to our businesses and consumers, seamlessly integrating new technologies and new sources of power. Most of

  3. 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rulemakings - Implementation Report: Energy Conservation Standards Activities | Department of Energy st Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities This document is the 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings -

  4. 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21CTP-0003, December 2006 | Department of Energy Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report on specific technology goals that will reduce fuel usage and emissions while increasing heavy vehicle safety. 21ctp_roadmap_2007.pdf (1.7 MB) More Documents & Publications Roadmap and Technical White Papers for 21st Century Truck Partnership The 21st Century

  5. Transforming Epidemiology for 21st Century Medicine and Public Health

    SciTech Connect (OSTI)

    Khoury, Muin J; Lam, Tram Kim; Ioannidis, John; Hartge, Patricia; Spitz, Margaret R.; Buring, Julie E.; Chanock, Stephen J.; Tourassi, Georgia; Zauber, Ann; Schully, Sheri D

    2013-01-01

    n 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving toward more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and accelerate translation; (iii) expanding cohort studies to collect exposure, clinical, and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating big data science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy, and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology, in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits.

  6. EAC Presentation on the Policy Framework for a 21st Century Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EAC Presentation on the Policy Framework for a 21st Century Grid: Enabling our Secure Energy Future (July 12, 2011) Presentation by Assistant Secretary Patricia Hoffman of the ...

  7. EECBG Success Story: St. Louis Launches Plan for More Sustainable Community

    Broader source: Energy.gov [DOE]

    St. Louis -- regarded as the Gateway to the West -- is also becoming the gateway to sustainability for the state of Missouri. Learn more.

  8. Argonne OutLoud: Renewing Our Grid - Power for the 21st Century (Sept. 19,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013) | Argonne National Laboratory Renewing Our Grid - Power for the 21st Century (Sept. 19, 2013) Share Guenter Conzelmann

  9. Looking Ahead - Biofuels, H2, & Vehicles: 21st Industry Growth Forum

    SciTech Connect (OSTI)

    Gardner, D.

    2008-10-28

    This presentation on the future of biofuels, hydrogen, and hybrid vehicles was presented at NREL's 21st Industry Growth Forum in Denver, Colorado, on October 28, 2008.

  10. St Lawrence Energy Corp formerly known as UroMed Corporation...

    Open Energy Info (EERE)

    Corp. (OTC: SLAW) is a Delaware company focused on the energy sector, including renewable energy and chemical transportation. References: St. Lawrence Energy Corp (formerly known...

  11. 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    This document is the 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by ...

  12. Roadmap and Technical White Papers for 21st Century Truck Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roadmap document for 21st Century Truck Partnership developed to pursue detailed goals for engine systems, heavy-duty hybrids, parasitic losses, idle reduction, and safety,

  13. GaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics

    SciTech Connect (OSTI)

    Utrilla, A. D.; Ulloa, J. M. Guzman, A.; Hierro, A.

    2014-07-28

    The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.

  14. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; Watkins, Thomas R.; Morelli, Donald T.

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe)1-x(Sb2Te3)x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge4SbTe5, a single phase compound just off of the (GeTe)1-x(Sb2Te3)x tie-line, that forms in a stable rocksalt crystal structure atmore » room temperature. We find that stoichiometric and undoped Ge4SbTe5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  15. Confirmatory Survey Report for Area B1S/B2S at the Chevron Mining Washington Remediation Project, Washington, PA

    SciTech Connect (OSTI)

    W. C. Adams

    2007-11-20

    During the period of October 2 and 3, 2007, the Oak Ridge Institute for Science and Education (ORISE) performed confirmatory radiological survey activities which included gamma surface scans within Area B1S/B2S and the collection of soil samples from these areas.

  16. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    SciTech Connect (OSTI)

    Kasanaboina, Pavan Kumar; Ahmad, Estiak; Li, Jia; Iyer, Shanthi; Reynolds, C. Lewis; Liu, Yang

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  17. Analytical electron microscopy investigation of elemental composition and bonding structure at the Sb-doped Ni-fully-silicide/SiO{sub 2} interface

    SciTech Connect (OSTI)

    Kawasaki, Naohiko; Sugiyama, Naoyuki; Otsuka, Yuji; Hashimoto, Hideki; Kurata, Hiroki; Isoda, Seiji

    2011-03-15

    It is very important to control the elemental composition and bonding structure at the gate electrode/gate dielectrics interface in metal-oxide-semiconductor transistor devices because this determines the threshold voltage of the gate electrode. In this study, we investigated the structure at the interface between the antimony (Sb)-doped nickel-fully-silicide gate electrode and SiO{sub 2} dielectrics by employing high-spatial resolution techniques such as energy dispersive x-ray spectroscopy and electron energy-loss spectroscopy using a scanning transmission electron microscope. In one region, we found a thin nickel layer at the NiSi/SiO{sub 2} interface originating from the migration of native oxide at the face of the poly-silicon. In another region, a Sb pileup was detected at the NiSi/SiO{sub 2} interface where the Ni L{sub 3}-edge spectrum showed Ni-Sb bonding, then it was suggested that Sb atoms exist at the bottom of NiSi, substituting for Si atoms in NiSi.

  18. Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2013-01-14

    The experimental study of the valence band offset ({Delta}E{sub v}) of a mixed As/Sb type-II staggered gap GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a {Delta}E{sub v} of 0.39 {+-} 0.05 eV at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. The conduction band offset was calculated to be {approx}0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications.

  19. High-Temperature Thermoelectric Properties of the Solid–Solution Zintl Phase Eu11Cd6Sb12–xAsx (x < 3)

    SciTech Connect (OSTI)

    Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J; Snyder, G Jeffrey; Kauzlarich, Susan M

    2014-02-11

    Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid–solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12–xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ~3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78–0.49 W/mK for x = 0; 0.72–0.53 W/mK for x = 1; and 0.70–0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 μ V/K) but also high electrical resistivity (6.8 to 12.8 mΩ·cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12–xAsx are interpreted in discussion with the As site substitution.

  20. From thermoelectric bulk to nanomaterials: Current progress for Bi 2 Te 3 and CoSb 3: From thermoelectric bulk to nanomaterials

    SciTech Connect (OSTI)

    Peranio, N.; Eibl, O.; Bäßler, S.; Nielsch, K.; Klobes, B.; Hermann, R. P.; Daniel, M.; Albrecht, M.; Görlitz, H.; Pacheco, V.; Bedoya-Martínez, N.; Hashibon, A.; Elsässer, C.

    2015-10-29

    We synthesized Bi2Te3 and CoSb3 based nanomaterials and their thermoelectric, structural, and vibrational properties analyzed to assess and reduce ZT-limiting mechanisms. The same preparation and/or characterization methods were applied in the different materials systems. Single-crystalline, ternary p-type Bi15Sb29Te56, and n-type Bi38Te55Se7 nanowires with power factors comparable to nanostructured bulkmaterialswere prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix. p-type Sb2Te3, n-type Bi2Te3, and n-type CoSb3 thin films were grown at room temperature using molecular beam epitaxy and were subsequently annealed at elevated temperatures. It yielded polycrystalline, single phase thin films with optimized charge carrier densities. In CoSb3 thin films the speed of sound could be reduced by filling the cage structure with Yb and alloying with Fe yielded p-type material. Bi2(Te0.91Se0.09)3/SiC and (Bi0.26Sb0.74)2Te3/SiC nanocomposites with low thermal conductivities and ZT values larger than 1 were prepared by spark plasma sintering. Nanostructure, texture, chemical composition, as well as electronic and phononic excitations were investigated by X-ray diffraction, nuclear resonance scattering, inelastic neutron scattering, M ossbauer spectroscopy, and transmission electron microscopy. Furthermore, for Bi2Te3 materials, ab-initio calculations together with equilibrium and non-equilibrium molecular dynamics simulations for point defects yielded their formation energies and their effect on lattice thermal conductivity, respectively. Current advances in thermoelectric Bi2Te3 and CoSb3 based nanomaterials are

  1. Observation and modeling of polycrystalline grain formation in Ge{sub 2}Sb{sub 2}Te{sub 5}

    SciTech Connect (OSTI)

    Burr, Geoffrey W.; Tchoulfian, Pierre; Topuria, Teya; Nyffeler, Clemens; Virwani, Kumar; Padilla, Alvaro; Shelby, Robert M.; Eskandari, Mona; Jackson, Bryan; Lee, Bong-Sub

    2012-05-15

    The relationship between the polycrystalline nature of phase change materials (such as Ge{sub 2}Sb{sub 2}Te{sub 5}) and the intermediate resistance states of phase change memory (PCM) devices has not been widely studied. A full understanding of such states will require knowledge of how polycrystalline grains form, how they interact with each other at various temperatures, and how the differing electrical (and thermal) characteristics within the grains and at their boundaries combine through percolation to produce the externally observed electrical (and thermal) characteristics of a PCM device. We address the first of these tasks (and introduce a vehicle for the second) by studying the formation of fcc polycrystalline grains from the as-deposited amorphous state in undoped Ge{sub 2}Sb{sub 2}Te{sub 5}. We perform ex situ transmission electron microscopy membrane experiments and then match these observations against numerical simulation. Ramped-anneal experiments show that the temperature ramp-rate strongly influences the median grain size. By truncating such ramped-anneal experiments at various peak temperatures, we convincingly demonstrate that the temperature range over which these grains are established is quite narrow. Subsequent annealing at elevated temperature appears to change these established distributions of grain sizes only slightly. Our numerical simulator--which models nuclei formation through classical nucleation theory and then tracks the subsequent time- and temperature-dependent growth of these grains--can match these experimental observations of initial grain distributions and crystallization temperature both qualitatively and quantitatively. These simulations show that the particular narrow temperature range over which crystallization occurs shifts as a function of temperature ramp-rate, which allows us to quantify the lower portions of the time-temperature-transformation map for Ge{sub 2}Sb{sub 2}Te{sub 5}. Future experiments and extensions of

  2. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    SciTech Connect (OSTI)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-05-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity{emdash}below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, {Delta}C, is found to have a maximum in {Delta}C/T vs T at 10 K, below which {Delta}C/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient {gamma} in the gapped state increases by {approximately}4mJ/molK{sup 2}. The maximum in {Delta}C/T vs T is observed in all fields, which shifts to lower temperatures {approximately}1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, {Delta}C/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6{percent}) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in {Delta}C/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than {approximately}3.5T which suggests reduction in the gap. {copyright} {ital 1997} {ital The American Physical Society}

  3. St. Louis FUSRAP-A Strategy for Success

    SciTech Connect (OSTI)

    Lyerla, M.; Fox, B.; Chinnock, J.; Haase, A.; Wojinski, S.; Bretz, M.; Cotner, S.; Dellorco, L.; Mueller, D.; Roberts, S.; Overmohle, D.

    2002-02-27

    In October 1997, Congress transferred the Formerly Utilized Sites Remedial Action Program (FUSRAP) from the Department of Energy (DOE) to the United States Army Corps of Engineers (USACE). FUSRAP addresses contamination generated by activities of the Manhattan Engineering District and the Atomic Energy Commission during the 1940's and 50's in support of the nation's nuclear weapons development program. The USACE Operation Order for FUSRAP gave responsibility for remediation of five sites in Missouri and Illinois to the USACESt. Louis District. The principal site is the St. Louis Airport Site (SLAPS), which involves the removal, transportation, disposal, and restoration of approximately 28 acres and 245,000 bank cubic yards (bcy) of contaminated soils. This paper will focus on the progress and achievements in removal action efficiencies of the SLAPS team. This team consists primarily of the USACE and Stone & Webster, Incorporated.

  4. Quench tank in-leakage diagnosis at St. Lucie

    SciTech Connect (OSTI)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-12-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power & Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis.

  5. Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital

    Broader source: Energy.gov [DOE]

    The U.S. DOE conducts demonstration projects documenting the performance of LED luminaires relative to conventional technologies to increase market adoption of energy-efficient LED systems and to stimulate ongoing product development. These demonstration projects evaluate various aspects of lighting design, purchase, installation, and operation, and they assess the impacts LED technology might have on building owners and users.The prior reports featured NGL-recognized LED downlight luminaires in projects that were either new construction (Hilton Columbus Downtown) or a major renovation (Alston & Bird, LLC). But purchasing and installing new luminaires is not always feasible for existing buildings. For this report, the DOE evaluated the use of LED replacement lamps in the existing CFL downlights at St. Anthony Hospital in Gig Harbor, WA.

  6. Results of mobile gamma scanning activities in St. Louis, Missouri

    SciTech Connect (OSTI)

    Rodriguez, R E; Witt, D A; Cottrell, W D; Carrier, R F

    1991-06-01

    From 1942 through approximately 1966, the Mallinckrodt Chemical Works operated four plants in St. Louis, Missouri, for the Manhattan Engineer District and the Atomic Energy Commission. A variety of production processes using uranium- and radium-bearing ore materials were performed at the plants. It is the policy of the DOE to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Mallinckrodt properties have been previously investigated to determine the extent of on-site radiological contamination. At the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a survey in May 1990, of public roadways and suspected haul routes between the Mallinckrodt plant and storage sites in St. Louis to ensure that no residual radioactive materials were conveyed off-site. A mobile gamma scanning van with an on-board computer system was used to identify possible anomalies. Suspect areas are those displaying measurements deviating from gamma exposure rates identified as typical for radiologically unenhanced areas in the vicinity of the areas of interest. The instrumentation highlighted three anomaly locations each of which measured less than 1m{sup 2} in size. None of the slightly elevated radiation levels originated from material associated with former AEC-related processing operations in the area. The anomalies resulted from elevated concentrations of radionuclides present in phosphate fertilizers, increased thorium in road-base gravel, and emanations from the radioactive storage site near the Latty Avenue airport. 9 refs., 3 figs.

  7. Smart Grid Week: R&D Projects Paving the Way to the 21st Century...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Week: R&D Projects Paving the Way to the 21st Century Grid Smart Grid Week: R&D Projects Paving the Way to the 21st Century Grid June 4, 2013 - 10:50am Q&A What do you...

  8. Design assumptions and bases for small D-T-fueled Sperical Tokamak (ST) fusion core

    SciTech Connect (OSTI)

    Peng, Y.K.M.; Galambos, J.D.; Fogarty, P.J.

    1996-12-31

    Recent progress in defining the assumptions and clarifying the bases for a small D-T-fueled ST fusion core are presented. The paper covers several issues in the physics of ST plasmas, the technology of neutral beam injection, the engineering design configuration, and the center leg material under intense neutron irradiation. This progress was driven by the exciting data from pioneering ST experiments, a heightened interest in proof-of-principle experiments at the MA level in plasma current, and the initiation of the first conceptual design study of the small ST fusion core. The needs recently identified for a restructured fusion energy sciences program have provided a timely impetus for examining the subject of this paper. Our results, though preliminary in nature, strengthen the case for the potential realism and attractiveness of the ST approach.

  9. Measurement and modeling of infrared nonlinear absorption coefficients and laser-induced damage thresholds in Ge and GaSb

    SciTech Connect (OSTI)

    Wagner, T. J.; Bohn, M. J.; Coutu, R. A. Jr.; Gonzalez, L. P.; Murray, J. M.; Guha, S.; Schepler, K. L.

    2010-10-15

    Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 {mu}m for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 {mu}m and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al{sub 2}O{sub 3} anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond pulses, respectively.

  10. Characteristics of GaAsSb single quantum well lasers emitting near 1.3 {micro}m

    SciTech Connect (OSTI)

    SPAHN,OLGA B.; KLEM,JOHN F.

    2000-02-17

    The authors report data on GaAsSb single quantum well lasers grown on GaAs substrates. Room temperature pulsed emission at 1.275 {micro}m in a 1,250 {micro}m-long device has been observed. Minimum threshold current densities of 535 A/cm{sup 2} were measured in 2000 {micro}m long lasers. The authors also measured internal losses of 2--5 cm{sup {minus}1}, internal quantum efficiencies of 30-38% and characteristic temperature T{sub 0} of 67--77 C. From these parameters a gain constant G{sub 0} of 1,660 cm{sup {minus}1} and a transparency current density J{sub tr} of 134 A/cm{sup 2} were calculated. The results indicate the potential for fabricating 1.3 {micro}m VCSELs from these materials.

  11. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    SciTech Connect (OSTI)

    Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao -Yu; Liu, Shi; Zhang, Yong -Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-18

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 202 ns, with a vertical diffusivity of 2.78 x 10–2 cm2/s. We also report on the device's optical response characteristics at 78 K.

  12. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    SciTech Connect (OSTI)

    Zuo, Daniel Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao-Yu; Liu, Shi; Zhang, Yong-Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-16

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 × 10{sup −2} cm{sup 2}/s. We also report on the device's optical response characteristics at 78 K.

  13. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao -Yu; Liu, Shi; Zhang, Yong -Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-18

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 202 ns, with a vertical diffusivity of 2.78 x 10–2 cm2/s. Wemore » also report on the device's optical response characteristics at 78 K.« less

  14. Atomic intermixing and interface roughness in short-period InAs/GaSb superlattices for infrared photodetectors

    SciTech Connect (OSTI)

    Ashuach, Y.; Lakin, E.; Kaufmann, Y.; Saguy, C.; Zolotoyabko, E.

    2014-09-28

    A set of advanced characterization methods, including high-resolution X-ray diffraction (measurements and simulations), cross-sectional scanning tunneling microscopy, and high-angle annular dark-field scanning transmission electron microscopy is applied to quantify the interface roughness and atomic intermixing (in both cation and anion sub-lattices) in short period (6–7 nm) InAs/GaSb superlattices intended for mid-wavelength (M) and long-wavelength (L) infrared detectors. The undesired atomic intermixing and interface roughness in the L-samples were found to be considerably lower than in the M-samples. In all specimens, anion intermixing is much higher than that in the cation sub-lattice. Possible origins of these findings are discussed.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  16. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect (OSTI)

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  17. Two new ternary lanthanide antimony chalcogenides: Yb{sub 4}Sb{sub 2}S{sub 11.25} and Tm{sub 4}Sb{sub 2}Se{sub 11.68} containing chalcogenide Q{sup 2-} and dichalcogenide (Q{sub 2}){sup 2-} anions

    SciTech Connect (OSTI)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2012-03-15

    Dark red and dark brown crystals of Yb{sub 4}Sb{sub 2}S{sub 11.25} and Tm{sub 8}Sb{sub 4}Se{sub 11.68}, respectively, were obtained from the reaction of the elements in Sb{sub 2}Q{sub 3} (Q=S, Se) fluxes. Both non-stoichiometric compounds are orthorhombic and crystallize in the same space group Pnnm, with two formula units per unit cell (a=12.446(2), b=5.341(1), c=12.058(2) for sulfide and a=13.126(2), b=5.623(1), c=12.499(2) for the selenide). Their crystal structures are dominated by lanthanide-chalcogenide polyhedra (CN=7 and 8), which share corners, edges, triangular- and square-faces to form a three-dimensional framework embedding antinomy cations. The latter are coordinated by three sulfide anions with 5(1+2+2) secondary contacts forming basically infinite chains running along [0 1 0]. The chalcogens in both compounds form chalcogenide Q{sup 2-} and dichalcogenide (Q{sub 2}){sup 2-} anionic units. The optical analysis made on those compounds shows that both are semiconductors with band gap of 1.71 and 1.22 eV for Yb{sub 4}Sb{sub 2}S{sub 11.25} and Tm{sub 4}Sb{sub 2}Se{sub 11.75,} respectively. - Graphical Abstract: The crystal structure of Yb{sub 4}Sb{sub 2}S{sub 11} viewed along the [0 1 0]. Highlights: Black-Right-Pointing-Pointer Lanthanide chalcogenides. Black-Right-Pointing-Pointer Semiconductors. Black-Right-Pointing-Pointer Tunnel structures. Black-Right-Pointing-Pointer Lone-pair effects.

  18. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  20. Improved Thermoelectric Performance of p-type Skutterudite YbxFe4-yPtySb12 (0.8 x 1, y = 1 and 0.5)

    SciTech Connect (OSTI)

    Cho, Jung Y; Ye, Zuxin; Tessema, Misle; Salvador, James R.; Waldo, Richard; Yang, Jiong; Zhang, Weiqing; Yang, Jihui; Cai, Wei; Wang, Hsin

    2013-01-01

    Thermoelectric performance of p-type skutterudites currently lags that of the corresponding n-type materials and improvement of this important class of materials have become the focus of considerable research effort world-wide. Recent calculations find promising band structural features in p-type skutterudite materials of the type AeFe3NiSb12 ( Ae = Ca, Sr, or Ba) which could potentially lead to excellent thermoelectric properties. Recent work on the Yb- filled analog of the these formulations (YbFe3NiSb12) however finds that the onset of intrinsic conduction at lower than expected temperatures deteriorates the performance above 500 K leading to poor performance in the temperature range of interest for automotive waste heat recovery applications. We therefore seek a way to increase the band gap in order to find a way to minimize the deleterious effects of intrinsic conduction. Here we present ab initio band structure calculations and the synthesis and thermoelectric properties of YbxFe4-yPtySb12 (0.8 x 1, y = 1 and 0.5). Ab initio calculations find that the band gap increases for YbFe3PtSb12 as compared to the Ni-containing analog, though no such increase in the band gap energy was found for as compared to YbFe3.5Ni0.5Sb12. The y = 1 samples shows a characteristic transition to intrinsic conduction with a decrease in the Seebeck coefficient at temperatures above 700 K. The increased carrier concentration in y = 0.5 virtually eliminates any evidence of intrinsic conduction and the Seebeck coefficients for these samples increase monotonically up to 750 K, resulting in power factors approaching 27 W/cm K2 at 750 K. These power factors combined with low thermal conductivity result in a ZT = 0.9 at 750 K for Yb0.95Fe3.5Pt0.5Sb12.

  1. Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al{sub 2}O{sub 3} on GaSb(100)

    SciTech Connect (OSTI)

    Zhernokletov, Dmitry M.; Dong, Hong; Brennan, Barry; Kim, Jiyoung; Wallace, Robert M.; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge

    2013-11-15

    In-situ monochromatic x-ray photoelectron spectroscopy, low energy electron diffraction, ion scattering spectroscopy, and transmission electron microscopy are used to examine the GaSb(100) surfaces grown by molecular beam epitaxy after thermal desorption of a protective As or Sb layer and subsequent atomic layer deposition (ALD) of Al{sub 2}O{sub 3}. An antimony protective layer is found to be more favorable compared to an arsenic capping layer as it prevents As alloys from forming with the GaSb substrate. The evolution of oxide free GaSb/Al{sub 2}O{sub 3} interface is investigated by “half-cycle” ALD reactions of trimethyl aluminum and deionized water.

  2. Civilian Power from Space in the Early 21st Century

    SciTech Connect (OSTI)

    Hyde, R; Ishikawa, M; Wood, L

    2003-06-01

    If power beamed from space is to be become widely used on Earth in the first half of the 21St century, several thus-far-persistent impediments must be obviated, including threshold effects and problematic aspects of cost, availability, reliability, hazards and environmental impacts. We sketch a generally-applicable route to doing so, noting key enabling technologies and practical features. Likely-essential features of any successful strategy include vigorous, systematic leveraging of all intrinsic features of space-derived power, e.g., addressing marginal, high-value-added markets for electric power in space- and time-agile manners to conveniently provide power-upon-demand, and incrementally ''wedging'' into ever-larger markets with ever more cost-efficient generations and scales of technology. We suggest that no prudent strategic plan will rely upon large-scale, long-term public subsidies--fiscal, regulatory, etc.--with their attendant ''sovereign risks'' and interminable delays, and that plan-essential governmental support likely will be limited to early feasibility demonstrations, provision of threshold technologies and a rational, competition-neutral licensing environment. If salient realities are uniformly respected and accessible technologies are intelligently leveraged, electricity derived from space-sourced power-beams may come into significant civilian use during the latter part of the first quarter of this century, and may become widely used by the half-century point.

  3. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  4. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect (OSTI)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  5. Uranium characterization at the St. Louis Airport Site

    SciTech Connect (OSTI)

    Schilk, A.J.; Hubbard, C.W.; Bowyer, T.W.; Reiman, R.T.

    1995-05-01

    In support of the Department of Energy/Office of Technology Development`s Expedited Site Characterization (ESC) project (coordinated by Ames Laboratory), the Pacific Northwest Laboratory demonstrated two complementary technologies at the St. Louis Airport (SLAP) site that have been designed and optimized for the rapid, in situ quantification of radionuclide contamination in surface soils. The sensors are optimized for the detection of high-energy beta particles or gamma rays emitted from the decay of specific radionuclides of interest. These technologies were demonstrated by measuring the beta and gamma fluxes at several locations within the SLAP site. Measurements were converted to average contamination levels, using detector calibrations performed with spiked samples (beta) or sealed sources (gamma). Additionally, subsurface activity levels were derived from discrete soil samples (provided by the ESC field crew) via gamma-ray spectrometry in a controlled laboratory setting. Since the beta and gamma sensor technologies are intrinsically sensitive to different types of radiation and activity distributions (i.e., surface and shallow subsurface, respectively), the data obtained from the two detectors provide complementary information about the distribution of the contamination. The results reported here suggest that a number of locations within the SLAP site have elevated levels of {sup 211}U, and the differences between the beta and gamma activities indicate that the contamination is largely located near the surface of the soil.

  6. St. Regis Mohawk Tribe Paves the Way to a Sustainable Future; Kicks Off

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Solar Initiative | Department of Energy St. Regis Mohawk Tribe Paves the Way to a Sustainable Future; Kicks Off Community Solar Initiative St. Regis Mohawk Tribe Paves the Way to a Sustainable Future; Kicks Off Community Solar Initiative June 12, 2015 - 1:51pm Addthis Six photovoltaic arrays generate 32 kilowatts of energy to power 20 units at the Akwesasne Housing Authority’s (AHA) Sunrise Acres housing complex on the St. Regis Mohawk Reservation. Pictured from left to right

  7. 21st Annual Department of Energy National Science Bowl April 30 - May 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1st Annual Department of Energy National Science Bowl April 30 - May 2 21st Annual Department of Energy National Science Bowl April 30 - May 2 April 25, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy (DOE) Secretary Steven Chu announced today that on April 30 through May 2 the DOE will host 69 high school and 41 middle school teams to compete for championship titles at the 21st annual National Science Bowl competition in Washington, D.C. The 110

  8. Clean, Efficient, and Reliable Power for the 21st Century: Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Clean, Efficient, and Reliable Power for the 21st Century: Fact Sheet Clean, Efficient, and Reliable Power for the 21st Century: Fact Sheet This fact sheet provides an overview of the U.S. Department of Energy's Fuel Cell Technologies Office. Clean, Efficient, and Reliable Power for the 21st Century (1.19 MB) More Documents & Publications QER - Comment of Honda Motor Co., Inc. State of the States: Fuel Cells in America 2012 2010 Hydrogen and Fuel Cell Global

  9. Spectral behavior of the optical constants in the visible/near infrared of GeSbSe chalcogenide thin films grown at glancing angle

    SciTech Connect (OSTI)

    Martin-Palma, R. J.; Ryan, Joseph V.; Pantano, C. G.

    2007-04-23

    GeSbSe chalcogenide thin films were deposited using glancing angle deposition onto transparent glass substrates for the determination of the spectral behavior of the optical constants (index of refraction n and extinction coefficient k) in the visible and near infrared ranges (400-2500 nm) as a function of the deposition angle. Computational simulations based on the matrix method were employed to determine the values of the optical constants of the different films from the experimental reflectance and transmittance spectra. A significant dependence of the overall optical behavior on the deposition angle is found. Furthermore, the band gap of the GeSbSe thin films was calculated. The accurate determination of the optical constants of films grown at glancing angle will enable the development of sculptured thin film fiber-optic chemical sensors and biosensors.

  10. Explosive boiling of Ge{sub 35}Sb{sub 10}S{sub 55} glass induced by a CW laser

    SciTech Connect (OSTI)

    Knotek, P.; Tichy, L.

    2013-09-01

    Graphical abstract: - Highlights: Interaction of the CW 785 nm laser with chalcogenide GeSbS glass. First demonstration of the explosive boiling induced by CW laser in glass. Different processes as photo-induced oxidation, expansion, and viscosity-flow observed. Applied diagnostics SEM, DHM, AFM, force spectroscopy, and micro-Raman spectroscopy. Damage threshold determined at 1.2 10{sup 24}s{sup ?1} cm{sup ?3} of absorbed photons. - Abstract: The response of bulk Ge{sub 35}Sb{sub 10}S{sub 55} glass to illumination by a continuous wave (CW) laser, sub-band-gap photons, was studied specifically with an atomic force microscopy including a force spectroscopy, with a digital holographic microscopy and with a scanning electron microscopy. Depending on the number of photons absorbed, photo-expansion, photo-oxidation and explosive boiling were observed.

  11. Characterizing the Effects of Etch-induced Material Modification on the Crystallization Properties of Nitron Doped Ge2Sb2Te5

    SciTech Connect (OSTI)

    J Washington; E Joseph; S Raoux; J Jordan-Sweet; D Miller; H Cheng; A Schrott; C Chen; R Dasaka; et. al.

    2011-12-31

    The chemical and structural effects of processing on the crystallization of nitrogen doped Ge{sub 2}Sb{sub 2}Te{sub 5} is examined via x-ray photoelectron spectroscopy (XPS), x-ray absorption spectroscopy (XAS), time resolved laser reflectivity, and time resolved x-ray diffraction (XRD). Time resolved laser reflectivity and XRD show that exposure to various etch and ash chemistries significantly reduces the crystallization speed while the transition temperature from the rocksalt to the hexagonal phase is increased. XPS and XAS attribute this to the selective removal and oxidization of N, Ge, Sb, and Te, thus altering the local bonding environment to the detriment of device performance.

  12. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    SciTech Connect (OSTI)

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  13. Neutron diffraction and thermoelectric properties of indium filled In x Co 4 Sb 12 ( x=0.05, 0.2) and indium cerium filled Ce 0.05 In 0.1 Co 4 Sb 12 skutterudites: Neutron diffraction and thermoelectric properties of In/Ce skutterudites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sesselmann, Andreas; Klobes, Benedikt; Dasgupta, Titas; Gourdon, Olivier; Hermann, Raphael; Mueller, Eckhard

    2015-09-25

    The thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions InxCo4Sb12 (x= 0.05, 0.2) and Ce0.05In0.1Co4Sb12 as a function of temperature (12- 300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Our results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that a considerable amount of indium is lost duringmore » synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. The double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass in our experiment. Finally, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.« less

  14. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.01.2??m due to increased charge carrier's localization

    SciTech Connect (OSTI)

    Kryzhkov, D. I. Yablonsky, A. N.; Morozov, S. V.; Aleshkin, V. Ya.; Krasilnik, Z. F.; Zvonkov, B. N.; Vikhrova, O. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2??m) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiative recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.

  15. Record figure of merit values of highly stoichiometric Sb2Te3 porous bulk synthesized from tailor-made molecular precursors in ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Stefan; Schulz, Stephan; Schaumann, Julian; Mudring, Anja; Stötzel, Julia; Maculewicz, Franziska; Schierning, Gabi

    2015-08-06

    We report on the synthesis of Sb2Te3 nanoparticles with record-high figure of merit values of up to 1.5. The central thermoelectric parameters, electrical conductivity, thermal conductivity and Seebeck coefficient, were independently optimized. Critical influence of porosity for the fabrication of highly efficient thermoelectric materials is firstly demonstrated, giving a strong guidance for the optimization of other thermoelectric materials.

  16. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5

    SciTech Connect (OSTI)

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; Watkins, Thomas R.; Morelli, Donald T.

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe)1-x(Sb2Te3)x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge4SbTe5, a single phase compound just off of the (GeTe)1-x(Sb2Te3)x tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge4SbTe5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.

  17. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    SciTech Connect (OSTI)

    Piskunov, Yu. V. Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  18. SLUDGE BATCH 7 (SB7) WASHING DEMONSTRATION TO DETERMINE SULFATE/OXALATE REMOVAL EFFICIENCY AND SETTLING BEHAVIOR

    SciTech Connect (OSTI)

    Reboul, S.; Click, D.; Lambert, D.

    2010-12-10

    To support Sludge Batch 7 (SB7) washing, a demonstration of the proposed Tank Farm washing operation was performed utilizing a real-waste test slurry generated from Tank 4, 7, and 12 samples. The purpose of the demonstration was twofold: (1) to determine the settling time requirements and washing strategy needed to bring the SB7 slurry to the desired endpoint; and (2) to determine the impact of washing on the chemical and physical characteristics of the sludge, particularly those of sulfur content, oxalate content, and rheology. Seven wash cycles were conducted over a four month period to reduce the supernatant sodium concentration to approximately one molar. The long washing duration was due to the slow settling of the sludge and the limited compaction. Approximately 90% of the sulfur was removed through washing, and the vast majority of the sulfur was determined to be soluble from the start. In contrast, only about half of the oxalate was removed through washing, as most of the oxalate was initially insoluble and did not partition to the liquid phase until the latter washes. The final sulfur concentration was 0.45 wt% of the total solids, and the final oxalate concentration was 9,900 mg/kg slurry. More oxalate could have been removed through additional washing, although the washing would have reduced the supernatant sodium concentration.The yield stress of the final washed sludge (35 Pa) was an order of magnitude higher than that of the unwashed sludge ({approx}4 Pa) and was deemed potentially problematic. The high yield stress was related to the significant increase in insoluble solids that occurred ({approx}8 wt% to {approx}18 wt%) as soluble solids and water were removed from the slurry. Reduction of the insoluble solids concentration to {approx}14 wt% was needed to reduce the yield stress to an acceptable level. However, depending on the manner that the insoluble solids adjustment was performed, the final sodium concentration and extent of oxalate removal

  19. Our Hidden Past: 1st Mission | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Hidden Past: 1st Mission The mp4 video format is not supported by this browser. Download video Captions: On Time: 6:04 min. It was the biggest secret in the biggest war in ...

  20. Roadmap and technical white papers for the 21st century truck partnership

    SciTech Connect (OSTI)

    None, None

    2006-12-01

    21st Century Truck Partnership will support the development and implementation of technologies that will cut fuel use and emissions and enhance safety, affordability, and performance of trucks and buses.

  1. Town Hall Meeting October 1st, 2012 | OpenEI Community

    Open Energy Info (EERE)

    Town Hall Meeting October 1st, 2012 Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2017) Super contributor 19 September, 2012 - 13:40 OpenEI Town...

  2. Creating the Clean Energy Jobs of the 21st Century | Department...

    Energy Savers [EERE]

    Fact Sheet on clean energy jobs in Nevada Creating the Clean Energy Jobs of the 21st Century (127.41 KB) More Documents & Publications Nevada Recovery Act State Memo Expansion of ...

  3. EECBG Success Story: St. Paul Parking Ramp Serves as a Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paul Parking Ramp Serves as a Model for Sustainability EECBG Success Story: St. Paul Parking Ramp Serves as a Model for Sustainability April 17, 2014 - 2:10pm Addthis Upgrades such ...

  4. Feasibiltiy of Power and Particle Handling in an ST-FNSF and...

    Office of Scientific and Technical Information (OSTI)

    Feasibiltiy of Power and Particle Handling in an ST-FNSF and the Effects of Divertor Geometry Citation Details In-Document Search Title: Feasibiltiy of Power and Particle Handling...

  5. A Model For The Sulphur Springs Geothermal Field St Lucia | Open...

    Open Energy Info (EERE)

    The Sulphur Springs Geothermal Field St Lucia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For The Sulphur Springs Geothermal Field...

  6. Optical absorption and intrinsic recombination in relaxed and strained InAs{sub 1–x}Sb{sub x} alloys for mid-wavelength infrared application

    SciTech Connect (OSTI)

    Wen, Hanqing; Bellotti, Enrico

    2015-11-30

    The intrinsic carrier recombination lifetime in relaxed and strained InAs{sub 1−x}Sb{sub x} alloys is investigated using the full-band Green's function theory. By computing the phonon-perturbed electron self-energy of the system, both direct and phonon-assisted indirect Auger and radiative processes are studied as functions of antimony molar fractions, lattice temperatures and applied in-plane biaxial strains. To improve the overall accuracy of the calculation, an empirical pseudopotential band structure for the alloy is also fitted to the measured band extrema and effective masses under different biaxial strains. A set of effective screened potentials valid for all the needed antimony fractions x and biaxial strains ϵ, therefore, is obtained and applied to the calculation. The results showed reduced total Auger recombination rates and enhanced radiative recombination rates in InAsSb alloys at room temperature when a compressive strain is applied. Furthermore, the study on the widely employed mid-wavelength infrared detector material, InAs{sub 0.91}Sb{sub 0.09}, strained by an InAs substrate, demonstrated that much longer minority carrier lifetime can be achieved compared to that in the lattice-matched situation when the lattice temperature is above 200 K.

  7. Ambient CdCl{sub 2} treatment on CdS buffer layer for improved performance of Sb{sub 2}Se{sub 3} thin film photovoltaics

    SciTech Connect (OSTI)

    Wang, Liang; Luo, Miao; Qin, Sikai; Liu, Xinsheng; Chen, Jie; Yang, Bo; Leng, Meiying; Xue, Ding-Jiang; Zhou, Ying; Gao, Liang; Song, Haisheng; Tang, Jiang

    2015-10-05

    Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment on CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.

  8. Electroforming of Bi(1-x)Sb(x) nanowires for high-efficiency micro-thermoelectric cooling devices on a chip.

    SciTech Connect (OSTI)

    Overmyer, Donald L.; Webb, Edmund Blackburn, III; Siegal, Michael P.; Yelton, William Graham

    2006-11-01

    Active cooling of electronic systems for space-based and terrestrial National Security missions has demanded use of Stirling, reverse-Brayton, closed Joule-Thompson, pulse tube and more elaborate refrigeration cycles. Such cryocoolers are large systems that are expensive, demand large powers, often contain moving parts and are difficult to integrate with electronic systems. On-chip, solid-state, active cooling would greatly enhance the capabilities of future systems by reducing the size, cost and inefficiencies compared to existing solutions. We proposed to develop the technology for a thermoelectric cooler capable of reaching 77K by replacing bulk thermoelectric materials with arrays of Bi{sub 1-x}Sb{sub x} nanowires. Furthermore, the Sandia-developed technique we will use to produce the oriented nanowires occurs at room temperature and can be applied directly to a silicon substrate. Key obstacles include (1) optimizing the Bi{sub 1-x}Sb{sub x} alloy composition for thermoelectric properties; (2) increasing wire aspect ratios to 3000:1; and (3) increasing the array density to {ge} 10{sup 9} wires/cm{sup 2}. The primary objective of this LDRD was to fabricate and test the thermoelectric properties of arrays of Bi{sub 1-x}Sb{sub x} nanowires. With this proof-of-concept data under our belts we are positioned to engage National Security systems customers to invest in the integration of on-chip thermoelectric coolers for future missions.

  9. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs/In(As,Sb) Type-II Superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aytac, Y.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.; Flatté, M. E.; Boggess, T. F.

    2016-05-24

    A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entiremore » set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.« less

  10. Inductively coupled plasma-reactive ion etching of InSb using CH{sub 4}/H{sub 2}/Ar plasma

    SciTech Connect (OSTI)

    Zhang Guodong; Sun Weiguo; Xu Shuli; Zhao Hongyan; Su Hongyi; Wang Haizhen

    2009-07-15

    InSb is an important material for optoelectronic devices. Most InSb devices are currently wet etched, and the etching geometries are limited due to the isotropic nature of wet etching. Inductively coupled plasma (ICP)-reactive ion etching (RIE) is a more desirable alternative because it offers a means of producing small anisotropic structures especially needed in large format infrared focal plane arrays. This work describes the novel use of ICP-RIE for fabricating InSb mesas with CH{sub 4}/H{sub 2}/Ar plasma and presents the influences of the process parameters on the etch rate and surface morphology. The parameters investigated include bias radio frequency power (50-250 W), %CH{sub 4} in H{sub 2} (10-50), argon (Ar) partial pressure (0-0.3 Pa with total pressure of 1.0 Pa), and total pressure (0.35-4 Pa). With the process parameters optimized in this investigated ranges, good etching results have been achieved with etch rates up to 80 nm/min, and etch features with sidewall angles of about 80 degree sign , the etched surface is as smooth as before the RIE process.

  11. TODAY: Secretary Chu, Secretary LaHood, Colorado Governor Hickenlooper, St.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paul Mayor Coleman, Tucson Mayor Walkup to Discuss Success of DOE's Clean Cities Program | Department of Energy Chu, Secretary LaHood, Colorado Governor Hickenlooper, St. Paul Mayor Coleman, Tucson Mayor Walkup to Discuss Success of DOE's Clean Cities Program TODAY: Secretary Chu, Secretary LaHood, Colorado Governor Hickenlooper, St. Paul Mayor Coleman, Tucson Mayor Walkup to Discuss Success of DOE's Clean Cities Program April 19, 2011 - 12:00am Addthis WASHINGTON - Today, April, 19, 2011,

  12. U.S. Department of Energy Welcomes the United Kingdom as 21st Member of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership | Department of Energy Welcomes the United Kingdom as 21st Member of the Global Nuclear Energy Partnership U.S. Department of Energy Welcomes the United Kingdom as 21st Member of the Global Nuclear Energy Partnership January 26, 2008 - 11:29am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today welcomed the United Kingdom (UK) as the Global Nuclear Energy Partnership's (GNEP) twenty-first partner. GNEP, a voluntary international partnership,

  13. Senior Professional (SL/ST) Performance Cycle - Aggregate Results FY 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Senior Professional (SL/ST) Performance Cycle - Aggregate Results FY 2013 Senior Professional (SL/ST) Performance Cycle - Aggregate Results FY 2013 The memorandum releases the FY 2013 aggregate results for DOE's Senior Professional members and provides a summary of past results. As a brief summary: DOE had 27% of its Senior Professional members rated Outstanding. All Senior Professional members received a performance bonus and with an average bonus of $1,585.

  14. How Synchrophasors are Bringing the Grid into the 21st Century | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Synchrophasors are Bringing the Grid into the 21st Century How Synchrophasors are Bringing the Grid into the 21st Century April 16, 2014 - 12:10pm Addthis Power lines carry electricity across Washington State. | Photo courtesy of the Energy Department. Power lines carry electricity across Washington State. | Photo courtesy of the Energy Department. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What is a

  15. LANL gets young women involved in math and science at 31st Expanding Your

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Horizons Conference April 6 31st Expanding Your Horizons Conference LANL gets young women involved in math and science at 31st Expanding Your Horizons Conference April 6 The young women will participate in hands-on activities in such fields as astronomy, robotics, forensics, chemistry, and earth science. March 4, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  16. A POLICY FRAMEWORK FOR THE 21st CENTURY GRID: Enabling Our Secure Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy A POLICY FRAMEWORK FOR THE 21st CENTURY GRID: Enabling Our Secure Energy Future A POLICY FRAMEWORK FOR THE 21st CENTURY GRID: Enabling Our Secure Energy Future This policy framework focuses on the deployment of information and communications technologies in the electricity sector. As they are developed and deployed, these smart grid technologies and applications will bring new capabilities to utilities and their customers. In tandem with the development and

  17. St. Lucie County, Florida, Summary of Reported Data From July 1, 2010 … September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    St. Lucie County, Florida, Summary of Reported Data From July 1, 2010 - September 30, 2013 Better Buildings Neighborhood Program Report Produced By: U.S. Department of Energy June 2014 ST. LUCIE COUNTY, FLORIDA, SUMMARY OF REPORTED DATA ACKNOWLEDGMENTS This document presents a summary of data reported by an organization awarded federal financial assistance (e.g., grants, cooperative agreements) through the U.S. Department of Energy's ( DOE's) Better Buildings Neighborhood Program (BBNP) from

  18. DOE - Office of Legacy Management -- St Louis University - MO 0-02

    Office of Legacy Management (LM)

    University - MO 0-02 FUSRAP Considered Sites Site: ST. LOUIS UNIVERSITY (MO.0-02) Eliminated from consideration under FUSRAP - As of 1987 the facility operated under an NRC license Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.0-02-1 Evaluation Year: 1987 MO.0-02-1 Site Operations: Performed research activities involving small quantities of radioactive materials in a controlled environment. MO.0-02-1 Site Disposition: Eliminated - No Authority - Potential

  19. Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices

    SciTech Connect (OSTI)

    Aytac, Y. Flatté, M. E.; Boggess, T. F.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.

    2015-09-28

    Temperature-dependent measurements of carrier recombination rates using a time-resolved optical pump-probe technique are reported for mid-wave infrared InAs/InAs{sub 1−x}Sb{sub x} type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K band-gap of ∼235 ± 10 meV was achieved for five unintentionally and four intentionally doped T2SLs. Carrier lifetimes were determined by fitting lifetime models based on Shockley-Read-Hall (SRH), radiative, and Auger recombination processes to the temperature and excess carrier density dependent data. The minority carrier (MC), radiative, and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness for the unintentionally doped T2SLs. The MC lifetime is limited by SRH processes at temperatures below 200 K in the unintentionally doped T2SLs. The extracted SRH defect energy levels were found to be near mid-bandgap. Also, it is observed that the MC lifetime is limited by Auger recombination in the intentionally doped T2SLs with doping levels greater than n ∼ 10{sup 16} cm{sup −3}.

  20. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    SciTech Connect (OSTI)

    Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.