National Library of Energy BETA

Sample records for nameplate capacity primarily

  1. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  2. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  3. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  4. Property:PotentialEGSGeothermalCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric...

  5. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Beginning in 2001, data are for electric utility and unregulated generating plants",,,,,,"Plant Operation and Design Report."" * 1997-2005-EIA, Electric Power Annual 2008 (January ...

  6. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Broader source: Energy.gov (indexed) [DOE]

    chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ... chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ...

  7. Debt extension on small project yields real savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 MW Idaho Falls Bulb Turbine Project, nameplate capacity 27 MW DworshakClearwater Small Hydro Power, nameplate capacity 5.4 MW Rocky Brook of Mason PUD No. 1, nameplate...

  8. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  9. MHK Projects/Wave Energy AS Project 1 | Open Energy Information

    Open Energy Info (EERE)

    Project Installed Capacity (MW) 0 Device Nameplate Capacity (MW) Concept implemented in breakwater structures capacity will depend on local wave energy and length of breakwater...

  10. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  11. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  12. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  15. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  16. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2016 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 2,062,300 Valero Refining Co Texas LP

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  19. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  20. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and...

  1. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2016 | Release Date: June 22, 2016 | Next Release Date: June 23, 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators

  3. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  4. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  5. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, 1987 16,460 6,935 1,928 5,251 466 1,189 3,805 9,083 230 JAN 1, 1988 16,825 7,198

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  9. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    SciTech Connect (OSTI)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  10. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,277,500 1,245,500 32,000 1,353,000 1,318,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  12. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Report June 2016 With Data as of January 1, 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 1,150 4,200 0 7,120 40 228 0 Hunt Refining Co 0 0 15,000 0 4,200 0 7,120

  16. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic installations throughout 2014. The performance of utility-scale solar installations, those with a nameplate capacity of one megawatt (MW) or greater, is a...

  17. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  18. MHK Technologies/The B1 buoy | Open Energy Information

    Open Energy Info (EERE)

    Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the...

  19. Gaviota Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: US wind project developer that hopes to build wind farms in Santa Barbara County, California and Cook County, Oregon with nameplate capacities of up to...

  20. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy...

  1. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  2. Refinery Capacity Report - Explanatory Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration/Refinery Capacity Report 1 Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, "Annual Refinery Report," is the primary source of data in the "Refinery Capacity Report" tables. The form collects data on the consumption of purchased steam, electricity, coal, and natural gas; refinery receipts of crude oil by method of transportation; operable capacity for atmospheric crude oil distillation units and downstream

  3. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  4. Adaptive capacity and its assessment

    SciTech Connect (OSTI)

    Engle, Nathan L.

    2011-04-20

    This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

  5. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  6. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  7. EIS-0171: Pacificorp Capacity Sale

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  8. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  9. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  10. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  11. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  12. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  13. Optimizing areal capacities through understanding the limitations...

    Office of Scientific and Technical Information (OSTI)

    Title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes Increasing the areal capacity or electrode thickness in lithium ion batteries is ...

  14. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  15. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  16. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Investigation of Morphology and Hydrogen Adsorption Capacity...

    Office of Scientific and Technical Information (OSTI)

    of Morphology and Hydrogen Adsorption Capacity of Disordered Carbons Citation Details In-Document Search Title: Investigation of Morphology and Hydrogen Adsorption Capacity of ...

  18. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity ... 11:44:46 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity ...

  19. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  20. ,"Kansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Underground Storage Capacity ... 7:00:56 AM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity ...

  1. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity ... 7:00:58 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity ...

  2. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity ... 7:01:01 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity ...

  3. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  6. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  7. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  9. MHK Projects/Island 14 Bend | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 132 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0 Number of Build Out...

  10. MHK Projects/Georgetown Bend | Open Energy Information

    Open Energy Info (EERE)

    33.5735, -91.1986 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 117 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Duncan Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.3743, -91.2403 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Cow Island Bend | Open Energy Information

    Open Energy Info (EERE)

    35.0269, -90.2792 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/Wickliffe Project | Open Energy Information

    Open Energy Info (EERE)

    36.9756, -89.1193 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 29 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Turnbull Island | Open Energy Information

    Open Energy Info (EERE)

    31.0652, -91.711 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 26 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Point Menoir Project | Open Energy Information

    Open Energy Info (EERE)

    30.6436, -91.3029 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 66 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  16. MHK Projects/Fitler Bend | Open Energy Information

    Open Energy Info (EERE)

    32.8007, -91.1586 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/Kempe Bend Project | Open Energy Information

    Open Energy Info (EERE)

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Live Oak Project | Open Energy Information

    Open Energy Info (EERE)

    29.7638, -90.0278 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Saint Catherine Bend | Open Energy Information

    Open Energy Info (EERE)

    31.4111, -91.4953 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 190 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Burke Landing | Open Energy Information

    Open Energy Info (EERE)

    34.2776, -90.7836 Project Phase Phase ? Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 81 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  1. MHK Projects/South Myette Point | Open Energy Information

    Open Energy Info (EERE)

    29.8902, -91.4391 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 27 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  2. MHK Projects/Little Cypress Bend | Open Energy Information

    Open Energy Info (EERE)

    36.3482, -89.5892 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 127 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  3. MHK Projects/Krotz Springs | Open Energy Information

    Open Energy Info (EERE)

    30.5459, -91.7518 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 44 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  4. MHK Projects/Davis Island Bend | Open Energy Information

    Open Energy Info (EERE)

    32.1299, -91.0636 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 147 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  5. MHK Projects/Helena Reach Project | Open Energy Information

    Open Energy Info (EERE)

    34.5795, -90.5722 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  6. MHK Projects/Lake Chicot | Open Energy Information

    Open Energy Info (EERE)

    30.0767, -91.4738 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  7. MHK Projects/Avondale Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9301, -90.2215 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  8. MHK Projects/Kenner Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9596, -90.2868 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  9. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    Open Energy Info (EERE)

    30.7879, -91.5469 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 94 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  10. MHK Projects/Brilliant Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.0835, -90.912 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 56 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  11. MHK Projects/Remy Bend Project | Open Energy Information

    Open Energy Info (EERE)

    30.0121, -90.754 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 28 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Anconia Point Project | Open Energy Information

    Open Energy Info (EERE)

    33.2952, -91.168 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 15 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/General Hampton Project | Open Energy Information

    Open Energy Info (EERE)

    30.1019, -90.9562 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 46 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Gouldsboro Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9177, -90.0673 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 20 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  16. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect (OSTI)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  17. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  18. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  19. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  20. High current capacity electrical connector

    DOE Patents [OSTI]

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  1. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  2. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  3. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  4. Economic Dispatch of Electric Generation Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 ...

  5. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  6. Increasing the Capacity of Existing Power Lines

    SciTech Connect (OSTI)

    2013-04-01

    The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects.

  7. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  8. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  9. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  10. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  11. Increasing the Capacity of Existing Power Lines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of wind cooling on transmission lines concurrent with wind power generation, identifying additional capacity and line sag and clearance concerns to the ground, or nearby object. ...

  12. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  13. UNDP-Low Emission Capacity Building Programme | Open Energy Informatio...

    Open Energy Info (EERE)

    Capacity Building Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme AgencyCompany...

  14. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs (Redirected from Building Capacity for Innovative Policy NAMAs) Jump to: navigation, search Name Building Capacity...

  15. Climate Change Capacity Development (C3D+) | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  16. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  17. MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open...

    Open Energy Info (EERE)

    StateProvince Maine Project Country United States Project Resource Click here Current Tidal Coordinates 44.3879, -68.7998 Project Phase Phase 1 Device Nameplate Capacity (MW)...

  18. Annual Electric Generator data - EIA-860 data file

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... date, energy source, heat content, nameplate capacity, summer and winter capability, etc. 860-A (Utility) Data are compressed into a zip file that expands into xls data files and a ...

  19. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    existing plant's nameplate capacity of approximately 17.7 megawatts Developed by Terra-Gen Power and TAS Energy, the project was funded in part by a 2 million Recovery Act grant...

  20. DWEA Webinar: IRS Guidance for Small Wind Turbines

    Broader source: Energy.gov [DOE]

    The U.S. Internal Revenue Service (IRS) has issued Notice 2015-4 providing new performance and quality standards of small wind turbines – defined as having a nameplate capacity of up to 100 kW – in...

  1. EA-1611: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    The proposed Project would include sixty (60) General Electric (GE) 1.5 megawatt (MW) SLE wind turbines with a total Project output nameplate capacity of ninety (90) MW of...

  2. MHK Technologies/Electric Generating Wave Pipe | Open Energy...

    Open Energy Info (EERE)

    Dimensions Technology Nameplate Capacity (MW) Potential 40 500KW 5MW per unit within cluster Cluster quantity unlimited Device Testing Date Submitted 56:42.6 << Return to the MHK...

  3. MHK Projects/Fortyeight Mile Point Project | Open Energy Information

    Open Energy Info (EERE)

    Water Mississippi River Coordinates 30.0447, -90.6659 Project Phase Phase ? PermitLicense Buildout (MW) 59 Device Nameplate Capacity (MW) 40 kW Number of Build Out Units...

  4. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  5. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  6. Texas Number and Capacity of Petroleum Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Idle 58,500 105,089 373,750 0 42,000 0 1982-2016 Operable (Barrels per Stream Day) ... Downstream Charge Capacity (Barrels per Stream Day) Vacuum Distillation 2,384,900 ...

  7. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 ...

  8. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  9. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  10. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  11. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  12. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth (Redirected from UNDP-Capacity Building for Low Carbon Growth in Ukraine) Jump to: navigation, search Name UNDP-Capacity Building...

  13. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity May 2016 With Data as of March 31, 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of March 31, 2016 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  14. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for ...

  15. Design and Evaluation of Novel High Capacity Cathode Materials...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High ...

  16. Design and Evaluation of Novel High Capacity Cathode Materials...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and ...

  17. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  18. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  19. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  20. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  1. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  2. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  3. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  4. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal ...

  5. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  6. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  7. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  9. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  11. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  12. ,"West Virginia Natural Gas Underground Storage Capacity (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Capacity ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Underground Storage Capacity ...

  13. Employee-Driven Initiative Increases Treatment Capacity, Reduces...

    Office of Environmental Management (EM)

    Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands June 30, ...

  14. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs AgencyCompany Organization...

  15. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    Open Energy Info (EERE)

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  17. EC/UNDP Climate Change Capacity Building Program | Open Energy...

    Open Energy Info (EERE)

    ECUNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDPEC Climate Change Capacity Building Program AgencyCompany Organization The European Union...

  18. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    Open Energy Info (EERE)

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  19. FAO-Capacity Development on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change AgencyCompany Organization: Food and...

  20. India-Vulnerability Assessment and Enhancing Adaptive Capacities...

    Open Energy Info (EERE)

    Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

  1. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  5. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  15. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  17. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  18. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  19. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. First Steps Toward Tribal Weatherization - Human Capacity Development...

    Broader source: Energy.gov (indexed) [DOE]

    Toward Tribal Weatherization - Human Capacity Development (DE-PA36-09GO99022) 2006 All ... Weatherization Training Program Phase 1: Development of human capacity to deliver ...

  2. Yurok Tribe - Tribal Utility Project and Human Capacity Building

    Broader source: Energy.gov (indexed) [DOE]

    Study (completed June 30, 2007) 2. Human Capacity Building in Energy Efficiency and ... Facility (QF) Possible Grant Funding Human Capacity Building Project Project Team ...

  3. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2016 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2016 Total Number of Existing Fields 26 26 26 26 26 26

  4. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2016 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2016 Total Number of Existing Fields 24 24 24 24 24 24

  5. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    375,143 375,143 375,143 375,143 375,143 375,143 2002-2016 Total Working Gas Capacity 191,455 191,455 193,455 193,455 193,455 193,455 2012-2016 Total Number of Existing Fields 13 13 13 13 13 13

  6. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2016 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2016 Total Number of Existing Fields 7 7 7 7 7 7

  7. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 760,619 760,619 760,619 760,619 2002-2016 Total Working Gas Capacity 429,796 429,796 425,861 425,861 425,861 425,861 2012-2016 Total Number of Existing Fields 49 49 49 49 49 49

  8. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,509 124,509 124,509 124,509 124,509 124,509 2002-2016 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2016 Total Number of Existing Fields 3 3 3 3 3 3

  9. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2016 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  10. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,837 528,837 528,837 528,837 528,837 528,837 2002-2016 Total Working Gas Capacity 259,380 259,380 259,374 259,370 259,370 259,362 2012-2016 Total Number of Existing Fields 30 30 30 30 31 31

  11. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    11,581 111,581 111,581 111,581 111,581 111,581 2002-2016 Total Working Gas Capacity 33,592 33,592 33,592 33,592 33,592 33,592 2012-2016 Total Number of Existing Fields 21 21 21 21 21 21

  12. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2016 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2016 Total Number of Existing Fields 4 4 4 4 4 4

  13. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2016 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2016 Total Number of Existing Fields 17 17 17 17 17 17

  14. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,722 221,722 221,722 221,722 221,722 221,722 2002-2016 Total Working Gas Capacity 107,571 107,571 107,571 107,571 107,571 107,571 2012-2016 Total Number of Existing Fields 23 23 23 23 23 23

  15. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    743,067 743,067 743,067 743,067 743,067 743,067 2002-2016 Total Working Gas Capacity 453,929 453,929 453,929 453,929 454,529 454,529 2012-2016 Total Number of Existing Fields 19 19 19 19 19 19

  16. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2016 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2016 Total Number of Existing Fields 1 1 1 1 1 1

  17. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,071,630 1,071,630 1,071,630 1,071,630 1,071,630 1,071,630 2002-2016 Total Working Gas Capacity 685,726 685,726 685,726 685,726 685,726 685,726 2012-2016 Total Number of Existing Fields 44 44 44 44 44 44

  18. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    32,900 332,958 333,763 334,305 334,937 334,961 2002-2016 Total Working Gas Capacity 202,972 203,085 203,700 204,113 205,004 205,019 2012-2016 Total Number of Existing Fields 12 12 12 12 12 12

  19. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2016 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  20. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2016 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2016 Total Number of Existing Fields 5 5 5 5 5 5

  1. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  2. Tennessee Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0...

  3. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2016 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2016 Total Number of Existing Fields 9 9 9 9 9 9

  4. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 ...

  5. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2016 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  6. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2016 Total Number of Existing Fields 5 5 5 5 5 5

  7. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    601,808 601,808 601,808 601,808 601,808 601,808 2002-2016 Total Working Gas Capacity 375,496 375,496 375,496 375,496 375,496 375,496 2012-2016 Total Number of Existing Fields 14 14 14 14 14 14

  8. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2016 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2016 Total Number of Existing Fields 10 10 10 10 10 10

  9. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,100 1,004,100 1,004,100 1,004,100 1,004,100 1,004,130 2002-2016 Total Working Gas Capacity 303,613 303,613 303,613 303,613 303,613 303,613 2012-2016 Total Number of Existing Fields 28 28 28 28 28 28

  10. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2016 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  11. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    834,965 844,911 848,671 851,541 851,541 851,541 2002-2016 Total Working Gas Capacity 534,539 544,485 546,285 546,285 546,285 546,285 2012-2016 Total Number of Existing Fields 36 36 36 36 36 36

  12. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  13. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  14. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Researchers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine the sources of sediment and recommend solutions for irrigation sediment buildup management. April 3, 2012 Santa Cruz Irrigation District (SCID) Kenny Salazar, owner of Kenny Salazar Orchards, stands beside the Santa Cruz Reservoir Dam, which holds back the waters of the Santa Cruz Irrigation District. Salazar, a board

  15. Pdvsa plans to hike productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-01-13

    This paper reports that Venezuela's state oil company plans to jump its productive capacity by 117,000 b/d to 2.92 million b/d this year. Petroleos de Venezuela also projects sizable increases for oil and gas reserves and plans record spending in 1992. Meantime, Pdvsa is sounding a warning again about the Venezuelan government's excessive tax take amid debate within the company about spending priorities.

  16. Microsystems technologist workforce development capacity and challenges in Central New Mexico.

    SciTech Connect (OSTI)

    Osborn, Thor D.

    2008-04-01

    Sandia National Laboratories has made major investments in microsystems-related infrastructure and research staff development over the past two decades, culminating most recently in the MESA project. These investment decisions have been made based in part upon the necessity for highly reliable, secure, and for some purposes, radiation-hardened devices and subsystems for safety and sustainability of the United States nuclear arsenal and other national security applications. SNL's microsystems development and fabrication capabilities are located almost entirely within its New Mexico site, rendering their effectiveness somewhat dependent on the depth and breadth of the local microsystems workforce. Consequently, the status and development capacity of this workforce has been seen as a key personnel readiness issue in relation to the maintenance of SNL's microsystems capabilities. For this reason SNL has supported the instantiation and development of the Southwest Center for Microsystems Education, an Advanced Technology Education center funded primarily by the National Science Foundation, in order to foster the development of local training capacity for microsystems technologists. Although the SCME and the associated Manufacturing Technology program at Central New Mexico Community College have developed an effective curriculum and graduated several highly capable microsystems technologists, the future of both the center and the degree program remain uncertain due to insufficient student enrollment. The central region of New Mexico has become home to many microsystems-oriented commercial firms. As the demands of those firms for technologists evolve, SNL may face staffing problems in the future, especially if local training capacity is lost.

  17. Implications of Model Configurations on Capacity Planning Decisions: Scenario Case Studies of the Western Interconnection and Colorado Region using the Resource Planning Model

    Broader source: Energy.gov [DOE]

    In this report, we analyze the impacts of model configuration and detail in capacity expansion models, computational tools used by utility planners looking to find the least cost option for planning the system and by researchers or policy makers attempting to understand the effects of various policy implementations. The present analysis focuses on the importance of model configurations—particularly those related to capacity credit, dispatch modeling, and transmission modeling—to the construction of scenario futures. Our analysis is primarily directed toward advanced tools used for utility planning and is focused on those impacts that are most relevant to decisions with respect to future renewable capacity deployment. To serve this purpose, we develop and employ the NREL Resource Planning Model to conduct a case study analysis that explores 12 separate capacity expansion scenarios of the Western Interconnection through 2030.

  18. Optimization of Storage vs. Compression Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100 200 300 400 500 600 700 800 900 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg) Pressure (bar) and Temperature (K) Time (Sec) Low Pressure Cascade Mid Pressure Cascade High Pressure Pressure Mass Temperature Temperature Temperature 2 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg)

  19. Is there life in other markets? BPA explores preschedule capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity 7152014 12:00 AM Tweet Page Content BPA launched a new process this spring to acquire preschedule (day-ahead) capacity from third-party suppliers. The goal was...

  20. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  1. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable ... 9:47:20 AM" "Back to Contents","Data 1: U.S. Total Shell Storage Capacity at Operable ...

  2. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Working Storage Capacity at Operable ... 9:47:30 AM" "Back to Contents","Data 1: U.S. Working Storage Capacity at Operable ...

  3. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Aromatics Production Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Asphalt and Road Oil ...

  4. Fail-Safe Designs for Large Capacity Battery Systems - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Fail-Safe Designs for Large Capacity Battery Systems United States Patent ... Design for Large Capacity Li-Ion Battery Systems Abstract: Fail-safe systems and ...

  5. Iowa Natural Gas Underground Storage Capacity (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 273,200 273,200 273,200...

  6. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  7. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations...

  8. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect (OSTI)

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  9. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis NREL Doubling Geothermal Capacity.pdf (890.69 KB) More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  10. Quasi-superactivation for the classical capacity of quantum channels

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  11. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Gross Input to Atmospheric Crude Oil Distillation Units 16,365 16,167 16,261 16,222 16,477 16,803 1985-2016 Operable Capacity (Calendar Day) 18,315 18,317 18,307 18,320 18,320 18,436 1985-2016 Operating 18,163 18,094 18,072 17,607 18,086 18,194 1985-2016 Idle 152 222 236 713 234 242 1985-2016 Operable Utilization Rate (%) 89.4 88.3 88.8 88.6 89.9 91.1 1985-2016

  12. Economic growth, carrying capacity, and the environment

    SciTech Connect (OSTI)

    Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Maeler, K.G.; Holling, C.S.; Jansson, B.O.; Levin, S.; Perrings, C.

    1995-04-28

    National and international economic policy has usually ignored the environment. In areas where the environment is beginning to impinge on policy, as in the General Agreement on Tariffs and Trade (GATT) and the North American Free Trade Agreement (NAFTA), it remains a tangential concern, and the presumption is often made that economic growth and economic liberalization (including the liberalization of international trade) are, in some sense, good for the environment. This notion has meant that economy-wide policy reforms designed to promote growth and liberalization have been encouraged with little regard to their environmental consequences, presumably on the assumption that these consequences would either take care of themselves or could be dealt with separately. In this article, we discuss the relation between economic growth and environmental quality, and the link between economic activity and the carrying capacity and resilience of the environment.

  13. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 9,225,127 9,235,132 9,228,893 9,232,305 9,232,937 9,232,991 1989-2016 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2016 Lower 48 States 9,141,535 9,151,540 9,145,301 9,148,713 9,149,345 9,149,399

  14. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  15. The NASA CSTI High Capacity Power Project

    SciTech Connect (OSTI)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  16. Vertical barriers with increased sorption capacities

    SciTech Connect (OSTI)

    Bradl, H.B.

    1997-12-31

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed {open_quotes}tailor-made{close_quotes} depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents.

  17. Development of design basis capacity for SNF project systems

    SciTech Connect (OSTI)

    Pajunen, A.L.

    1996-02-27

    An estimate of the design capacity for Spent Nuclear Fuel Project systems producing Multi-Canister Overpacks is developed based on completing fuel processing in a two year period. The design basis capacity for systems relates the desired annual processing rate to potential operating inefficiencies which may be actually experienced to project a design capacity for systems. The basis for estimating operating efficiency factors is described. Estimates of the design basis capacity were limited to systems actually producing the Multi-Canister Overpack. These systems include Fuel Retrieval, K Basin SNF Vacuum Drying, Canister Storage Building support for Staging and Storage, and Hot Vacuum conditioning. The capacity of other systems are assumed to be derived from these system capacities such that systems producing a Multi-Canister Overpack are not constrained.

  18. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  19. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity New Insights into Oxygen's Role in Lithium Battery Capacity Print Monday, 11 July 2016 00:00 Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain

  20. HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage | Department of Energy HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting ht_ucf_raissi.pdf (999.19 KB) More Documents & Publications DetecTape - A Localized Visual Detector for Hydrogen Leaks DetecTape - A Localized Visual Detector for Hydrogen Leaks Webinar

  1. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  2. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  3. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  4. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  5. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  6. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  7. Locational electricity capacity markets: Alternatives to restore the missing signals

    SciTech Connect (OSTI)

    Nieto, Amparo D.; Fraser, Hamish

    2007-03-15

    In the absence of a properly functioning electricity demand side, well-designed capacity payment mechanisms hold more promise for signaling the value of capacity than non-CPM alternatives. Locational CPMs that rely on market-based principles, such as forward capacity auctions, are superior to cost-based payments directed to specific must-run generators, as CPMs at least provide a meaningful price signal about the economic value of resources to potential investors. (author)

  8. Spain Installed Wind Capacity Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  9. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update (EIA)

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  10. Indonesia-ECN Capacity building for energy policy formulation...

    Open Energy Info (EERE)

    strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and...

  11. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Data 1","U.S. Underground Natural Gas Storage Capacity",3,"Monthly","22016","115...ngstorcapdcunusm.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  12. Design and Evaluation of Novel High Capacity Cathode Materials...

    Broader source: Energy.gov (indexed) [DOE]

    49thackeray2011o.pdf (1.66 MB) More Documents & Publications Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Layered Cathode Materials

  13. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Lithium Source For High Performance Li-ion Cells Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High...

  14. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  15. DOE Receives Responses on the Implementation of Large-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    establishing alternative test procedures for existing large-capacity residential clothes washer models and units. We received responses from several parties, which can be...

  16. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Degradation and (de)lithiation processes in the high capacity battery material LiFeBOsubscript 3 Citation Details In-Document Search Title: Degradation and ...

  17. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Development for GHG inventories and MRV in Tunisia) Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  18. GIZ-Best Practices in Capacity Building Approaches | Open Energy...

    Open Energy Info (EERE)

    Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group AgencyCompany Organization:...

  19. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  20. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  1. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  2. Africa Adaptation Programme: Capacity Building Experiences-Improving...

    Open Energy Info (EERE)

    Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access,...

  3. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  4. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  5. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  6. U.S. Fuel Ethanol Plant Production Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Note: In previous ethanol capacity reports, EIA included data on maximum sustainable ... The collection and publication efforts for the maximum sustainable data value were ...

  7. CCAP-Data and Capacity Needs for Transportation NAMAs | Open...

    Open Energy Info (EERE)

    docsresources973TransportNAMACapacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References:...

  8. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  9. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon es019kang2011p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of...

  10. First Steps Towards Tribal Weatherization: Human Capacity Development

    Broader source: Energy.gov (indexed) [DOE]

    Towards Tribal Weatherization: Human Capacity Development October 2011 October 2011 Cook Inlet Tribal Council's Weatherization Apprenticeship October 2011 March 2010 - March 2012 ...

  11. First Steps Towards Tribal Weatherization: Human Capacity Development

    Broader source: Energy.gov (indexed) [DOE]

    Steps Towards tribal weatherization: human capacity development October 2010 - Cook Inlet Tribal Council Weatherization Apprenticeship March 2010 February 2012 Cook Inlet Tribal ...

  12. Using SiO Anodes for High Capacity, High Rate Electrodes for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion Batteries ... areal capacities and good capacity retention for application in lithium ion batteries. ...

  13. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011 Annual Progress Report for Energy Storage R&D

  14. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Broader source: Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  15. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  16. High capacity anode materials for lithium ion batteries

    DOE Patents [OSTI]

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  17. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  18. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  19. Design and Evaluation of Novel High Capacity Cathode Materials...

    Broader source: Energy.gov (indexed) [DOE]

    17johnson2011p.pdf (651.34 KB) More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells ...

  20. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","NGAEP...

  1. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 29, ... This is the sixth release of the U.S. Energy Information Administration data on fuel ...

  2. Development of high-capacity cathode materials with integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp14kang.pdf More Documents & Publications Development of High-Capacity Cathode Materials ...

  3. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  4. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3 Citation Details In-Document Search Title: Degradation and (de)lithiation processes in the ...

  5. Why Are We Talking About Capacity Markets? (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-06-01

    Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

  6. PUCT Substantive Rule 25.91 Generating Capacity Reports | Open...

    Open Energy Info (EERE)

    PUCT Substantive Rule 25.91 Generating Capacity Reports Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: PUCT Substantive...

  7. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban ...

  8. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  9. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:50:48 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" ...US8","NA1392NUS8","NA1391NUS8" "Date","U.S. Total Natural Gas Underground Storage ...

  10. Lower 48 States Total Natural Gas Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 States Total Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8,842,950 8,854,720 8,854,720 ...

  11. Geothermal Capacity Could More than Double by 2020: Pike Research

    Broader source: Energy.gov [DOE]

    Increasing global investment in geothermal power could result in a 134% increase in total geothermal capacity between 2010 and 2020, according to a report released on March 7 by Pike Research.

  12. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  13. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries...

    U.S. Energy Information Administration (EIA) Indexed Site

    as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal Cracking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal ...

  14. U.S. Number and Capacity of Petroleum Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    151,900 1982-2016 Operable (Barrels per Stream Day) 18,953,189 18,560,350 18,971,643 ... Downstream Charge Capacity (Barrels per Stream Day) Vacuum Distillation 8,650,243 ...

  15. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS

    Broader source: Energy.gov [DOE]

    Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

  16. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  17. Assess public and private sector capacity to support initiatives...

    Open Energy Info (EERE)

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  18. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

  19. Property:Geothermal/CapacityMwt | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityMwt" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  20. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  1. Working and Net Available Shell Storage Capacity as of September...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for PAD District 2 and the U.S. total have been revised to correct a processing error that caused some capacity data to be double counted in the original release of this...

  2. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. PDF icon es019kang2010o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of...

  3. High capacity stabilized complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  4. Confederated Tribes of Warm Springs - Human Capacity Building

    Broader source: Energy.gov (indexed) [DOE]

    Grant DE-PS36-06G096038 Human Capacity Building for Renewable Energy Development. Warm Spring Power and Water Enterprise Mark K. Johnson Jr. Prepared by: Warm Springs Power & Water ...

  5. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as

  6. Recommendation 223: Recommendations on Additional Waste Disposal Capacity |

    Office of Environmental Management (EM)

    Department of Energy 3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to continue planning for an additional on-site disposal facility for low-level waste and that a second facility be placed in an area already used for similar waste disposal. Recommendation 223 (51.59 KB) Response to Recommendation 223 (779.96 KB) More Documents & Publications ORSSAB Meeting -

  7. Fail-safe designs for large capacity battery systems

    DOE Patents [OSTI]

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  8. Expanded Capacity Microwave-Cleaned Diesel Particulate Filter | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic Solutions, LLC 2002_deer_nixdorf.pdf (1016.17 KB) More Documents & Publications Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Pleated Ceramic Fiber Diesel Particulate Filter Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape

  9. Los Alamos Neutron Science Center gets capacity boost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of cosmic-ray-induced neutrons in a single hour. December 2, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  10. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  11. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  12. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect (OSTI)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  13. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  14. Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Porter, K.

    2008-06-01

    This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

  15. The Capacity Value of Wind in the United States: Methods and Implementation

    SciTech Connect (OSTI)

    Milligan, Michael; Porter, Kevin

    2006-03-01

    As more wind energy capacity is added in the nation, the question of wind's capacity value is raised. This article shows how the capacity value of wind is determined, both in theory and in practice. (author)

  16. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  17. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  18. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity hydrogen storage materials Savannah River National Laboratory Contact SRNL About This Technology Plot of Number of hydrogen atoms per lithium atom vs the Mol ratio of C<sub>60</sub>:Li.&nbsp; An ratio of 1:6

  19. Unbundling the electric capacity price in a deregulated commodity market

    SciTech Connect (OSTI)

    Rose, J.; Mann, C.

    1995-12-01

    In a deregulated, unbundled market, capacity has value separate from energy. The exact price will reflect the cost of a gas-fired combustion turbine. Energy values alone will not suffice to estimate the firm price for electric power. The lack of quotable, unbundled capacity prices creates uncertainty, especially given the direction taken by the Federal Energy Regulatory Commission in its March 1995 Notice of Proposed Rulemaking on stranded investment and open-access electric transmission. What conclusions can be drawn from the current regime that might paint a picture of tomorrow`s market?

  20. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  1. On the heat capacity of Ce{sub 3}Al

    SciTech Connect (OSTI)

    Singh, Durgesh Samatham, S. Shanmukharao Venkateshwarlu, D. Gangrade, Mohan Ganesan, V.

    2014-04-24

    Electrical resistivity and heat capacity measurements on Cerium based dense Kondo compound Ce{sub 3}Al have been reported. Clear signatures of first order structural transition at 108K, followed by a Kondo minimum and coherence are clearly seen in resistivity. The structural transition is robust and is not affected by magnetic fields. Heat capacity measurements reveal an anomalous enhancement in the heavy fermion character upon magnetic fields. Vollhardt invariance in specific heat C(T.H) curves have been observed at T=3.7K and at H ≈ 6T.

  2. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 |...

    Office of Environmental Management (EM)

    Waste Management Waste Disposition 122000 Low-Level Waste Disposal Capacity Report Version 2 122000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this ...

  3. Design and Evaluation of Novel High Capacity Cathode Materials | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 17_johnson_2011_p.pdf (651.34 KB) More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source For High Performance Li-ion Cells

  4. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  5. DHC: a diurnal heat capacity program for microcomputers

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    A computer program has been developed that can predict the temperature swing in direct gain passive solar buildings. The diurnal heat capacity (DHC) program calculates the DHC for any combination of homogeneous or layered surfaces using closed-form harmonic solutions to the heat diffusion equation. The theory is described, a Basic program listing is provided, and an example solution printout is given.

  6. Mountain Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 904,787 904,787 904,787 904,787 904,787 904,787 909,887 912,887 912,887...

  7. Mountain Region Natural Gas Working Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 461,243 461,243 461,243 461,243 461,243 461,243 461,243 464,435 464,435...

  8. Pacific Region Natural Gas Working Underground Storage Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831...

  9. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  10. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  11. East Coast (PADD 1) Number and Capacity of Petroleum Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Idle 412,500 178,000 28,000 28,000 32,000 32,000 1982-2016 Operable (Barrels per Stream ... Downstream Charge Capacity (Barrels per Stream Day) Vacuum Distillation 677,900 560,400 ...

  12. HUD Community Compass Technical Assistance and Capacity Building Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Housing and Urban Development (HUD) is accepting applications for approximately $44.9 million for Community Compass, HUD's integrated technical assistance and capacity building initiative. The goal of the initiative is to equip HUD's customers with tools, skills, and knowledge to ensure effective program delivery and efficient stewardship of federal funds.

  13. COMMUNITY CAPACITY BUILDING FOR REVITALIZATION AND SUSTAINABLE REDEVELOPMENT

    SciTech Connect (OSTI)

    Downing, Melinda; Rosenthall, John; Hudson, Michelle

    2003-02-27

    Capacity building programs help poor and disadvantaged communities to improve their ability to participate in the environmental decision-making processes. They encourage citizen involvement, and provide the tools that enable them to do so. Capacity building enables communities that would otherwise be excluded to participate in the process, leading to better, and more just decisions. The Department of Energy (DOE) continues to be committed to promoting environmental justice and involving its stakeholders more directly in the planning and decision-making process for environmental cleanup. DOE's Environmental Management Program (EM) is in full support of this commitment. Through its environmental justice project, EM provides communities with the capacity to effectively contribute to a complex technical decision-making process by furnishing access to computers, the Internet, training and technical assistance. DOE's Dr. Samuel P. Massie Chairs of Excellence Program (Massie Chairs) function as technical advisors to many of these community projects. The Massie Chairs consist of nationally and internationally recognized engineers and scientists from nine Historically Black Colleges and Universities (HBCUs) and one Hispanic Serving Institution (HIS). This paper will discuss capacity building initiatives in various jurisdictions.

  14. Global scale environmental control of plant photosynthetic capacity

    SciTech Connect (OSTI)

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; Vrugt, Jasper A.; Santiago, Louis S.

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale. Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  15. Global scale environmental control of plant photosynthetic capacity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; et al

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale.more » Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.« less

  16. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect (OSTI)

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  17. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

  18. Pacific Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Pacific Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 2015 679,477 679,477 679,477 679,477 679,477 679,477 679,477 679,477 679,477 678,273 678,273 678,273 2016 678,273 678,273 678,273 678,273 678,273 678,273 - = No Data

  19. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  20. AGA Western Consuming Region Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446

  1. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,727,987 2,718,987 2,718,288 2,719,655 2,720,487 2,720,487 2016 2,720,487 2,720,487 2,720,487

  2. Planning substation capacity under the single-contingency scenario

    SciTech Connect (OSTI)

    Leung, L.C.; Khator, S.K.; Schnepp, J.C.

    1995-08-01

    Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

  3. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 2016 2,634,512 2,644,516

  4. KCNSC expands manufacturing capacity to support mission | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) KCNSC expands manufacturing capacity to support mission Tuesday, August 2, 2016 - 11:39am On hand to open the new manufacturing space were, from left, NNSA Associate Administrator for Safety, Infrastructure and Operations Jim McConnell; Mark Holecek, manager of NNSA's Kansas City Field Office; and NNSA Director of Infrastructure Operations & Modernization Robert Haldeman. The Kansas City National Security Campus celebrated another facility milestone on

  5. Hybrid heat capacity-moving slab solid-state laser

    SciTech Connect (OSTI)

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  6. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  7. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests

  8. Polaractivation for classical zero-error capacity of qudit channels

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We introduce a new phenomenon for zero-error transmission of classical information over quantum channels that initially were not able for zero-error classical communication. The effect is called polaractivation, and the result is similar to the superactivation effect. We use the Choi-Jamiolkowski isomorphism and the Schmidt-theorem to prove the polaractivation of classical zero-error capacity and define the polaractivator channel coding scheme.

  9. New Study Shows Solar Manufacturing Costs Not Driven Primarily...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsidies for PV manufacturing in China account for that country's dominance in PV ... The study's findings also suggest that the current advantages of China-based manufacturers ...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Capacity Additions, Retirements and Changes by Energy Source, 2014 (Count, Megawatts) Generator Additions Generator Retirements Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1 106.2 52.0 52.0 53 5,083.4 4,489.7 4,552.3 Petroleum 28 62.2 62.0 62.0 55 1,261.0 1,018.6 1,120.0 Natural Gas 92 9,275.2 8,300.8 8,849.5 87 4,184.5 3,834.4 3,918.8

  11. Retraying and revamp double big LPG fractionators's capacity

    SciTech Connect (OSTI)

    Sasson, R. , Friendswood, TX ); Pate, R. )

    1993-08-02

    Enterprise operates two LPG fractionation units at Mont Belvieu: the Seminole unit and the West Texas unit. In 1985, Nye Engineering Inc., Friendswood, Texas, designed improvements to expand the Seminole plant from 60,000 b/d of C[sub 2] + feed to 90,000 b/d. The primary modifications made to increase the West Texas plant's capacity and reduce fuel consumption were the following: retraying the deethanizer and depropanizer columns with new High Capacity Nye Trays. Lowering the pressure in the de-ethanizer and depropanizer to improve the separating efficiency of the columns. Replacing the debutanizer with a high-pressure column that rejects its condensing heat as reboil for the de-ethanizer. Adjusting the feed temperature to balance the load in the top and bottom of the depropanizer column to prevent premature flooding in one section of the tower. Installing convection heaters to recover existing stack gas heat into the process. In conjunction with the capacity expansion, there was a strong incentive to improve the fuel efficiency of the unit. The modifications are described.

  12. Damping capacity measurements for characterization of degradation in advanced materials

    SciTech Connect (OSTI)

    Mantena, R.; Gibson, R.F.; Place, T.A.

    1986-01-01

    This paper describes the application of damping capacity measurements for characterization of degradation in advanced materials. A recently developed impulse-frequency response technique was used to obtain damping capacity measurements on crossplied E-glass/epoxy laminates which had been subjected to four-point bending and cantilever bending to produce matrix cracking in the transverse plies. The size and location of the damage zone were correlated with changes in damping. With the expected introduction of Rapidly Solidified Alloys (RSA) as effective alternatives to conventional materials, the applicability of damping capacity measurements as a nondestructive means of evaluating degradation in these materials was also studied. A conventional A710 structural steel having three different microstructures was used for developing the methodology to be used later on RSA specimens. It is shown that damping is more sensitive to matrix cracking than stiffness is in E-glass/epoxy composite specimens. In the case of A710 steel, the damping changes at low strain, though significant, do not correlate with the mechanical property data. Damping data at high strains does correlate with the mechanical property data, however.

  13. A global scale mechanistic model of the photosynthetic capacity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; et al

    2015-08-10

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture,moreelectron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.less

  14. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques

  15. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Broader source: Energy.gov (indexed) [DOE]

    increasing amounts of variable renewable energy (RE), identifies emerging ... As a result, limits to RE penetration are primarily economic, driven by factors that ...

  16. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee, Ahmad Pesaran Kandler Smith kandler.smith@nrel.gov Source: A123 Source: GM NATIONAL RENEWABLE ENERGY LABORATORY Challenges for Large LIB Systems 2 * Li-ion batteries are flammable, require expensive manufacturing to reduce defects * Small-cell protection devices do not work for large systems * Difficult to detect

  17. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  18. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped storage","Los Angeles

  19. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  20. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",426.4 4,"Delaware City Plant","Other

  1. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3540 4,"Manatee","Petroleum","Florida Power &

  2. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",299.7 4,"Evander Andrews Power Complex","Natural gas","Idaho Power

  3. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Nine Mile Point","Natural gas","Entergy Louisiana LLC",2083.3 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.9 3,"Big Cajun 2","Coal","Louisiana Generating LLC",1743 4,"Brame Energy Center","Petroleum","Cleco Power

  4. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","Talen Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  5. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1830 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1784.3 3,"Seminole (OK)","Natural gas","Oklahoma Gas & Electric Co",1506.5 4,"Muskogee","Coal","Oklahoma Gas &

  6. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  7. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 2,"Hunter","Coal","PacifiCorp",1361 3,"Lake Side Power Plant","Natural gas","PacifiCorp",1176 4,"Huntington","Coal","PacifiCorp",909 5,"Currant

  8. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North Anna","Nuclear","Virginia Electric & Power Co",1893 3,"Possum Point","Natural gas","Virginia Electric & Power Co",1733 4,"Surry","Nuclear","Virginia Electric

  9. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  10. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  11. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban Zhuangchun Wu Anne Dillon National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 2 Outline  What is the technology  Why it is better than other technologies  How far away from market  Technical details  Market analysis National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 3

  12. Next Update: November 2016 Geographic Area Capacity In-Service

    U.S. Energy Information Administration (EIA) Indexed Site

    Geographic Area Capacity In-Service Data Year NERC Region Type Operating (kV) Design (kV) Rating (MVa) Month/Year From Terminal To Terminal Length (Miles) Type Company Code Company Name Organizational Type Ownership (Percent) Project Name Level of Certainty Primary Driver 1 Primary Driver 2 2014 FRCC AC 200-299 115 460 1/2016 SUB 4 230.00 SUB 7 230.00 3.8 OH 18445 of Tallahassee M 100% 0.00 - SUB 7 230.00 Under Constructio Reliability 2014 FRCC AC 100-120 115 232 12/2016 Sub 14 115 Sub 7 115 6.0

  13. Expansion fractionation capacity of the LPG-ULE plant

    SciTech Connect (OSTI)

    Morin, L.M.C.

    1999-07-01

    The Western Division of PDVSA has among other facilities a NGL Fractionation Complex located onshore in Ul'e. The complex consists of three plants, the first and second older plants, LPG-1 and LPG-2, which fractionate the NGL to produce propane, a butane mix and natural gasoline. The third plant, LPG-3, fractionates the butane mix from the LPG-1 and 2 plants to produce iso and normal butane. Several optimization projects already in progress will increase the NGL production to 12,200 b/d. For this reason it was decided to conduct a study of the existing fractionation facilities and utilities systems to determine their capacities. This evaluation revealed that some of the fractionation towers would have some limitations in the processing of the expected additional production. The study recommended an option to increase the capacity of the fractionation towers by lowering their operating pressure, in order to take advantage of relative volatility increase between the key components, which allows easier separation, as well as reducing the heat duty required. The completed study also determined that this option is more economically convenient than the replacement of the existing fractionation towers.

  14. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  15. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  16. The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States

    Broader source: Energy.gov [DOE]

    This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

  17. U.S. Geothermal Energy Capacity Grew 6% in 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Capacity Grew 6% in 2009 U.S. Geothermal Energy Capacity Grew 6% in 2009 February 10, 2010 - 3:02pm Addthis Photo of a Geothermal photo plant. Geothermal energy ...

  18. GE to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers GE to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers GE urges the...

  19. Insights into capacity loss mechanisms in Li-ion all-solid-state...

    Office of Scientific and Technical Information (OSTI)

    Insights into capacity loss mechanisms in Li-ion all-solid-state batteries with Al anodes Citation Details In-Document Search Title: Insights into capacity loss mechanisms in...

  20. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOE Patents [OSTI]

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  1. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  2. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  3. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    Charateristics",,,,,,"Photovoltaic",,,,,,,,,,,,,,,"Wind",,,,,,,,,,,,,,,"Other",,,,,,,,,,,,,,,"All Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity

  4. LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washers | Department of Energy to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE requested the views of interested parties concerning implementation of an alternative test procedure for large-capacity clothes washer models,

  5. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  6. High capacity adsorption media and method of producing

    DOE Patents [OSTI]

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  7. High capacity adsorption media and method of producing

    DOE Patents [OSTI]

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  8. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  9. Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study.

    SciTech Connect (OSTI)

    Rubinstein, Francis; Xiaolei, Li; Watson, David S.

    2010-12-03

    The objective of this Feasibility Study was to identify the potential of dimmable lighting for providing regulation capacity and contingency reserves if massively-deployed throughout the State. We found that one half of the total electric lighting load in the California commercial sector is bottled up in larger buildings that are greater an 50,000 square feet. Retrofitting large California buildings with dimmable lighting to enable fast DR lighting would require an investment of about $1.8 billion and a"fleet" of about 56 million dimming ballasts. By upgrading the existing installed base of lighting and controls (primarily in large commercial facilities) a substantial amount of ancillary services could be provided. Though not widely deployed, today's state-of-the art lighting systems, control systems and communication networks could be used for this application. The same lighting control equipment that is appropriate for fast DR is also appropriate for achieving energy efficiency with lighting on a daily basis. Thus fast DR can leverage the capabilities that are provided by a conventional dimming lighting control system. If dimmable lighting were massively deployed throughout large California buildings (because mandated by law, for example) dimmable lighting could realistically supply 380 MW of non-spinning reserve, 47percent of the total non-spinning reserves needed in 2007.

  10. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Denholm, Paul; Speer, Bethany; Miller, Mackay

    2015-04-23

    In the United States and elsewhere, renewable energy (RE) generation supplies an increasingly large percentage of annual demand, including nine U.S. states where wind comprised over 10% of in-state generation in 2013. This white paper summarizes the challenges to integrating increasing amounts of variable RE, identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying concept—economic carrying capacity—that can provide a framework for evaluating actions to accommodate higher penetrations of RE. There is growing recognition that while technical challenges to variable RE integration are real, they can generally be addressed via a variety of solutions that vary in implementation cost. As a result, limits to RE penetration are primarily economic, driven by factors that include transmission and the flexibility of the power grid to balance supply and demand. This limit can be expressed as economic carrying capacity, or the point at which variable RE is no longer economically competitive or desirable to the system or society.

  11. Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode

    SciTech Connect (OSTI)

    Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

    2012-07-01

    Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

  12. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    SciTech Connect (OSTI)

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of

  13. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  14. An estimate of chinook salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.; Dauble, Dennis D.; Geist, David R.

    2004-02-01

    Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specific segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.

  15. First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System

    SciTech Connect (OSTI)

    Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

    2011-07-28

    Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

  16. Development of a high capacity longwall conveyor. Final technical report

    SciTech Connect (OSTI)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  17. The use of filtered bags to increase waste payload capacity

    SciTech Connect (OSTI)

    Dustin, D.F.; Thorp, D.T.; Rivera, M.A.

    1998-03-03

    For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials.

  18. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  19. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast United States - November 2013 | Department of Energy Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand

  20. NREL Releases Estimate of National Offshore Wind Energy Potential - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Releases Estimate of National Offshore Wind Energy Potential September 10, 2010 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announces the release of a new report that assesses the electricity generating potential of offshore wind resources in the United States. According to the Assessment of Offshore Wind Energy Resources for the United States, 4,150 gigawatts of potential wind turbine nameplate capacity (maximum turbine capacity) from offshore

  1. California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

  2. New Optical Fiber Network Being Installed at Lab to Expand Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Fiber Network Being Installed at Lab to Expand Capacity Speed of New Optical Fiber Network Being Installed New Optical Fiber Network Being Installed at Lab to Expand ...

  3. 1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

  4. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Broader source: Energy.gov [DOE]

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while...

  5. Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets

    Broader source: Energy.gov [DOE]

    Provides information for energy efficiency programs on the opportunities and challenges associated with participating in forward capacity markets and reliability pricing models as potential revenue streams.

  6. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  7. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect (OSTI)

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  8. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  9. Comparison of Capacity Value Methods for Photovoltaics in the Western United States

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2012-07-01

    This report compares different capacity value estimation techniques applied to solar photovoltaics (PV). It compares more robust data and computationally intense reliability-based capacity valuation techniques to simpler approximation techniques at 14 different locations in the western United States. The capacity values at these locations are computed while holding the underlying power system characteristics fixed. This allows the effect of differences in solar availability patterns on the capacity value of PV to be directly ascertained, without differences in the power system confounding the results. Finally, it examines the effects of different PV configurations, including varying the orientation of a fixed-axis system and installing single- and double-axis tracking systems, on the capacity value. The capacity value estimations are done over an eight-year running from 1998 to 2005, and both long-term average capacity values and interannual capacity value differences (due to interannual differences in solar resource availability) are estimated. Overall, under the assumptions used in the analysis, we find that some approximation techniques can yield similar results to reliability-based methods such as effective load carrying capability.

  10. The effect of the windmill`s parameters on the capacity factor

    SciTech Connect (OSTI)

    Salameh, Z.M.; Safari, I.

    1995-12-01

    In this paper a methodology to study the effect of the windmill`s parameters on the capacity factor is presented. The study is based on finding the capacity factors (CF) of the identically rated available windmills. This is done by using long term wind speed data recorded at different hours of the day for many years. This data is then used to generate mean wind speeds for a typical day in a month. Probability density functions for the mean wind speeds for the different hours of the day are generated and used to calculate the capacity factors for the windmills taking into account the manufacturer`s parameters of the windmills. The study shows that although the windmills have the same rating they have different capacity factors. The windmill with the highest average capacity factor for the specific site is to be recommended.

  11. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

  12. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  13. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect (OSTI)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  14. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  15. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  16. Damping capacity measurements of degradation in advanced materials. [Rapidly solidified alloys

    SciTech Connect (OSTI)

    Mantena, R.; Gibson, R.F.; Place, T.A.

    1986-04-01

    This paper describes the application of damping capacity measurements for characterization of degradation in advanced materials. A recently developed impulse-frequency response technique was used to obtain damping capacity measurements on crossplied E-glass/epoxy laminates that had been subjected to four-point bending and cantilever bending to produce matrix cracking in the transverse plies. The size and location of the damage zone were correlated with changes to damping. With the expected introduction of Rapidly Solidified Alloys (RSA) as effective alternatives to conventional materials, the applicability of damping capacity measurements as a non destructive means of evaluating degradation in these materials was also studied. 17 references, 15 figures.

  17. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 - Dataset | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Excel file and dataset for Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 fotw#937_web.xlsx (17.8 KB) More Documents &

  18. Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Sold Increased from 2014 to 2015 | Department of Energy Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 SUBSCRIBE to the Fact of the Week The number of battery packs sold for plug-in electric vehicles (PEV) declined by 3.4% from 2014 to 2015. However, the total battery capacity for all PEVs sold between

  19. DOE Solicits Views on the Implementation of Large-Capacity Clothes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE's test procedure for clothes washer models with clothes container capacities in excess of 3.8 cubic feet. In 2006, the Department first granted an interim waiver to...

  20. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements

    SciTech Connect (OSTI)

    Bommier, C; Luo, W; Gao, WY; Greaney, A; Ma, SQ; Ji, X

    2014-09-01

    We report an inverse relationship between measurable porosity values and reversible capacity from sucrose-derived hard carbon as an anode for sodium-ion batteries (SIBs). Materials with low measureable pore volumes and surface areas obtained through N-2 sorption yield higher reversible capacities. Conversely, increasing measurable porosity and specific surface area leads to sharp decreases in reversible capacity. Utilizing a low porosity material, we thus are able to obtain a reversible capacity of 335 mAh g(-1). These findings suggest that sodium-ion storage is highly dependent on the absence of pores detectable through N-2 sorption in sucrose-derived carbon. (C) 2014 Elsevier Ltd. All rights reserved.

  1. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  2. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  3. GE to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    GE urges the department engage in rulmaking to amend the clothes washer test procedure to reflect efficiency standards of large-capacity residential clothes washer machines. GE also urges the DOE...

  4. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  5. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Progress of ...

  6. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  7. EIA Energy Efficiency-Table 3c. Capacity Adjusted Value of Production...

    Gasoline and Diesel Fuel Update (EIA)

    c Page Last Modified: May 2010 Table 3c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS...

  8. EIA Energy Efficiency-Table 4c. Capacity Adjusted Value of Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    c Page Last Modified: May 2010 Table 4c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS...

  9. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation es009jang2011o.pdf (764.62 KB) More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress ...

  10. Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

    Broader source: Energy.gov (indexed) [DOE]

    0kumta.pdf (1.9 MB) More Documents & Publications Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nanoscale ...

  11. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  12. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  13. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    Li-ion batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ electron microscopy into capacity loss mechanisms in Li-ion batteries with Al ...

  14. Hard carbon nanoparticles as high-capacity, high-stability anodic...

    Office of Scientific and Technical Information (OSTI)

    for Na-ion batteries Citation Details In-Document Search Title: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries Hard carbon ...

  15. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ electron microscopy into capacity loss mechanisms in all-solid-state Li-ion batteries ...

  16. 17 NMAC 9.592 - Location of Large Capacity Plants and Transmission...

    Open Energy Info (EERE)

    NMAC 9.592 - Location of Large Capacity Plants and Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 17...

  17. Graphene-based Electrode Leads to Highest Capacity Lithium-Air...

    Office of Science (SC) Website

    Graphene-based Electrode Leads to Highest Capacity Lithium-Air Batteries New approach to ... The Impact This study developed a new self-assembly approach to obtain 3-dimensional (3D) ...

  18. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  19. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  20. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy issued enforcement guidance on the application of recently granted waivers for large-capacity clothes washers and announced steps to improve the waiver process – and...

  1. Electrolux to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    Letter from Electrolux to Department of Energy General Counsel; Re:Request for Comment on Large Capacity Clothes Washers Electrolux sumitted comments on re-testing, re-certification, and re-rating...

  2. DOE Receives Responses on the Implementation of Large-Capacity Clothes Washer Waivers

    Broader source: Energy.gov [DOE]

    The Department last week invited interested parties to submit views on the proper application of waivers establishing alternative test procedures for existing large-capacity residential clothes...

  3. DOE Solicits Views on the Implementation of Large-Capacity Clothes Washer Waivers

    Broader source: Energy.gov [DOE]

    The Department of Energy has recently granted several requests for waivers establishing an alternative test procedure for certain large-capacity residential clothes washer models.  We have now...

  4. Fail-Safe Design for Large Capacity Li-Ion Battery Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Find More Like This Return to Search Fail-Safe Design for Large Capacity Li-Ion Battery Systems National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Fail Safe Design for Large Capacity Lithium-ion Batteries.pdf (2,324 KB) Technology Marketing Summary Lithium-ion batteries (LIBs) are a promising candidate for energy storage of electric drive vehicles due to their high power and energy density. The total electric

  5. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  6. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable Renewable Energy | Department of Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy This report summarizes the challenges to integrating increasing amounts of variable renewable energy (RE), identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying

  7. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  8. Process for modifying the metal ion sorption capacity of a medium

    DOE Patents [OSTI]

    Lundquist, Susan H. (White Bear Township, MN)

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  9. Want to Put an End to Capacity Markets? Think Real-Time Pricing

    SciTech Connect (OSTI)

    Reeder, Mark

    2006-07-15

    The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

  10. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  11. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  12. Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014

  13. Transmission capacity reservations implemented through a spot market with transmission congestion contracts

    SciTech Connect (OSTI)

    Harvey, S.M.; Hogan, W.W.; Pope, S.L.

    1996-11-01

    The capacity reservation open access transmission tariff proposed by the FERC is entirely compatible with a competitive bulk power market. Using a point-to-point reservation approach that does not depend on tracking actual flows, capacity rights trading could be coordinated through the system operator. The capacity reservations would be fully tradeable and would fully support the competitive market. Open access to the transmission grid is a necessary support of a competitive market in electricity generation and supply. A key ingredient of open access is a system of capacity allocations for use of the transmission grid. A unique characteristic of electricity transmission is seen in the difficulty of defining transmission rights and matching these rights in a meaningful way to the actual use of the system. The old procedures from the era of vertically integrated utilities will not suffice for the new world of unbundling and competition. Strong network interactions coupled with user flexibility and choice require a new system of transmission capacity definition, reservation and use. The Federal Energy Regulatory Commission has described a system of point-to-point transmission capacity reservations under the Capacity Reservation Open Access Transmission Tariffs (CRT) proposal. The issues addressed under the proposed CRT are important. In the long run, the CRT could be more important than Order 888, and it offers the key ingredients for the future of a competitive electricity market. However, the FERC faces a significant challenge in developing and explaining the CRT ideas. The CRT proposal has been widely read as a narrow, literal prescription requiring seemingly impossible explicit, decentralized trading of physical transmission rights whose ownership and configuration would have to be rearranged constantly to match the dynamic use of the electric system. Viewed from this narrow perspective, the CRT would present, a host of practical difficulties.

  14. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    SciTech Connect (OSTI)

    Bhattacharya, C.

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  15. EIA-423 and Schedule 2 of EIA-923

    U.S. Energy Information Administration (EIA) Indexed Site

    Historic Form EIA-423 & FERC-423 Detailed Data Beginning in 2008, data on monthly deliveries of fossil fuels to both utility and nonutility generating facilities are collected on Schedule 2 of the newer Form EIA-923 -- See EIA-923 detailed data Schedule 2. Survey form EIA-423 collected monthly nonutility fuel receipts and fuel quality files on plants with a fossil-fueled nameplate generating capacity of 50 or more megawatts. Detailed data are provided here on monthly deliveries of fossil

  16. Monthly Performance Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Monthly Electric Generator Inventory (based on Form EIA-860M as a supplement to Form EIA-860) Release Date: August 24, 2016 Next Release Date: September 2016 The monthly survey Form EIA-860M, ‘Monthly Update to Annual Electric Generator Report’ supplements the annual survey form EIA-860 data with monthly information that monitors the current status of existing and proposed generating units at electric power plants with 1 megawatt or greater of combined nameplate capacity. EIA

  17. EA-2016: Willow Creek Wind Farm; Butte County, South Dakota | Department of

    Energy Savers [EERE]

    Energy 2016: Willow Creek Wind Farm; Butte County, South Dakota EA-2016: Willow Creek Wind Farm; Butte County, South Dakota SUMMARY DOE's Western Area Power Administration is preparing an EA that analyzes the potential environmental impacts of the proposed Willow Creek Wind Energy Facility in Butte County, South Dakota. The EA reviews the potential environmental impacts of constructing, operating, and maintaining a 103-megawatt (MW) nameplate capacity wind power generating facility

  18. Monthly Electric Generator data - EIA-860M data file

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Monthly Electric Generator Inventory (based on Form EIA-860M as a supplement to Form EIA-860) Release Date: August 24, 2016 Next Release Date: September 2016 The monthly survey Form EIA-860M, ‘Monthly Update to Annual Electric Generator Report’ supplements the annual survey form EIA-860 data with monthly information that monitors the current status of existing and proposed generating units at electric power plants with 1 megawatt or greater of combined nameplate capacity. EIA

  19. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Broader source: Energy.gov (indexed) [DOE]

    Future Trends | Department of Energy Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes

  20. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information Myriant Succinic Acid BioRefinery DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Mark Shmorhun, Principal Investigator March 25, 2015 2 Goal Statement * Renewable Succinic Acid Production * A high value bio based chemical derived from renewable feedstocks * Validate proposed technology at a demonstration plant located in Lake Providence, LA. * Nameplate Capacity: 30 million lbs/year 3 Myriant's Succinic Acid BioRefinery (MySAB) Lake

  1. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  3. Capacity Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    THIS TIME ITS DIFFERENT; REALLY? MUSTAFA MOHATAREM Chief Economist, Public Policy Center Global Economics and Trade 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 CHARTING THE ENERGY STORY THROUGH 'THE ECONOMIST' COVERS Brent (USD Per Barrel) Global Economics and Trade Global Economics and Trade THE KEY THEME HERE IS THAT Demand Response Reduced Consumption of Oil, Reduced Vehicle Miles Traveled (VMT), Search for

  4. Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty

    SciTech Connect (OSTI)

    Fleten, Stein-Erik; Maribu, Karl Magnus

    2004-11-28

    This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

  5. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  6. Capacity utilization and fuel consumption in the electric power industry, 1970-1981

    SciTech Connect (OSTI)

    Lewis, E.W.

    1982-07-01

    This report updates the 1980 Energy Information Administration (EIA) publication entitled Trends in the Capacity Utilization and Fuel Consumption of Electric Utility Powerplants, 1970-1978, DOE/EIA-184/32. The analysis covers the period from 1970 through 1981, and examines trends during the period prior to the 1973 Arab oil embargo (1970-1973), after the embargo (1974-1977), and during the immediate past (1978-1981). The report also addresses other factors affecting the electric utility industry since the oil embargo: the reduction in foreign oil supplies as a result of the 1979 Iranian crisis, the 1977 drought in the western United States, the 1978 coal strike by the United Mine Workers Union, and the shutdown of nuclear plants in response to the accident at Three Mile Island. Annual data on electric utility generating capacity, net generation, and fuel consumption are provided to identify changes in patterns of power plant capacity utilization and dispatching.

  7. Expansion capacity of an SX unit in uranium process pilot tests

    SciTech Connect (OSTI)

    Courtaud, B.; Auger, F.; Morel, P.

    2008-07-01

    The rising price of uranium has led uranium producers to increase their plant capacity. The new project proposed to increase capacity is based on processing low-grade uranium by heap leaching. It is necessary to modify the plant, particularly the solvent extraction unit, to handle the increased flow. The goal of our study is to determine the minimal changes necessary to process the whole flow. Several stages have been carried out (i) thermodynamic modelling of the solvent extraction process to determine the capacities of the SX plant and the impact of the modification and (ii) pilot tests at the plant of the different configurations proposed by modelling. This paper presents results of the pilot tests performed at the plant. (authors)

  8. Heat capacities of solid polymers (The Advanced THermal Analysis System, ATHAS)

    SciTech Connect (OSTI)

    Wunderlich, B.

    1990-01-01

    The thermal properties of solid, linear macromolecules are accessible through heat capacity measurements from about 10 K to the glass transition. By measuring and collecting data on over 150 polymers, a data bank was established and used as a base for detailed correlation with an approximate frequency spectrum for the polymers. Besides assessment of the entropy at zero kelvin of disordered polymers, this heat capacity knowledge has helped in the elucidation of partial phase transitions and conformationally disordered crystal phases. A link has also been established to measurements of mobility through solid state nuclear magnetic resonance. Most recently heat capacity measurements have been linked to full dynamic simulations of crystal segments of 1900 chain atoms. Questions of disorder and anharmonicity can thus be analyzed. The work is summarized as the Advanced Thermal Analysis System, ATHAS. 27 refs., 26 figs.

  9. Using Weather Data to Improve Capacity of Existing Power Lines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Using Weather Data to Improve Capacity of Existing Power Lines Using Weather Data to Improve Capacity of Existing Power Lines May 11, 2016 - 6:01pm Addthis When it comes to increasing the efficiency of 160,000 miles of U.S. high-voltage transmission lines, the answer might be blowing in the wind. In fact, when the wind blows just the right way on a high-voltage line, the line cools enough to safely increase the amount of current between 10% and 40%. Photo of two utility poles on

  10. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ky2m.xls"

  11. ,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290la2m.xls"

  12. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290md2m.xls"

  13. ,"Michigan Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mi2m.xls"

  14. ,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ms2m.xls"

  15. ,"Missouri Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mo2m.xls"

  16. ,"Montana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290mt2m.xls"

  17. ,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ne2m.xls"

  18. ,"Ohio Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290oh2m.xls"

  19. ,"Oregon Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290or2m.xls"

  20. ,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290pa2m.xls"

  1. ,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290tn2m.xls"

  2. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ut2m.xls"

  3. ,"Washington Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290wa2m.xls"

  4. ,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290wy2m.xls"

  5. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290al2m.xls"

  6. ,"Alaska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ar2m.xls"

  8. ,"California Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ca2m.xls"

  9. ,"Colorado Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290co2m.xls"

  10. ,"Illinois Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290il2m.xls"

  11. ,"Indiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290in2m.xls"

  12. ,"Iowa Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ia2m.xls"

  13. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    SciTech Connect (OSTI)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  14. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of

  15. U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Depleted Fields Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 335 2000's 336 351 340 318 320 320 322 326 324 331 2010's 331 329 330 332 333 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  16. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  17. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working Gas

  18. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  19. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working

  20. Capacity Value: Evaluation of WECC Rule of Thumb; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael; Ibanez, Eduardo

    2015-06-09

    This presentation compares loss of load expectation and wind and solar capacity values to the rules of thumb used in the Western Interconnection planning and provides alternative recommendations to the modeling efforts of the Western Electricity Coordinating Council's Transmission Expansion Planning Policy Committee.