Powered by Deep Web Technologies
Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

2

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

3

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

4

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

5

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

6

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

7

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

8

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" 1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

9

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" 2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

10

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

11

Table 11.3 Electricity: Components of Onsite Generation, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010; 3 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 5,666 5,414 81 171 3112 Grain and Oilseed Milling 3,494 3,491 Q 2 311221 Wet Corn Milling 3,213 3,211 0 2 31131 Sugar Manufacturing 1,382 1,319 64 0 3114 Fruit and Vegetable Preserving and Specialty Foods 336 325 Q * 3115 Dairy Products 38 36 1 1 3116 Animal Slaughtering and Processing 19 Q Q 14 312 Beverage and Tobacco Products 342 238 Q 7 3121 Beverages 308 204 Q 7 3122 Tobacco 34

12

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

13

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square...

14

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBOT NAICS Series 213112 Support Activities for Oil and Gas Operations NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY...

15

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

16

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

17

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

18

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

19

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

20

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

22

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

23

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

24

NAICS Search | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAICS Search NAICS Search NAICS Search The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying businesses. 10000 21000 22000 23000 31000 32000 33000 42000 44000 45000 48000 49000 51000 53000 54000 56000 61000 62000 81000 92000 NAICS uses six-digit codes at the most detailed level, with the first two digits representing the largest business sector, the third designating a subsector, the fourth designating the industry group, and the fifth showing the particular industry. Use the documents below, which are labeled by series, to see Department of Energy facilities that have historically procured goods/services in that

25

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

26

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

27

NAICS Codes Description:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

28

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

29

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

30

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

31

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

32

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

33

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

34

Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006; 1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing 920 54 951 7 1,919 3114 Fruit and Vegetable Preserving and Specialty Foo 9,720 1 268 13 9,976 3115 Dairy Products 10,079 0 44 0 10,123 3116 Animal Slaughtering and Processing 17,545 0 17 0 17,562 312 Beverage and Tobacco Products

35

Good-Bye, SIC - Hello, NAICS  

U.S. Energy Information Administration (EIA) Indexed Site

Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry Classification System (NAICS) of the United States, Canada, and Mexico Featured topics are: What is NAICS? Why replace the SIC system? How is NAICS better than SIC? How can data series be adjusted from SIC to NAICS? How is NAICS structured? Is there a source for more information about NAICS? What is NAICS? A new classification system has arrived for manufacturing establishments, and the Energy Information Administration (EIA) has incorporated this new

36

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

37

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

38

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

39

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

40

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

42

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

43

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

44

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

45

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

46

Metalworking Machinery Manufacturing (NAICS 3335)  

Science Conference Proceedings (OSTI)

The U.S. metalworking machinery manufacturing industry (NAICS 3335) consists of about 7,900 firms with combined annual revenues of about $29 billion. Many (75%) of these firms are small, having fewer than 20 employees. This industry consumes a large amount of electricity, with about half of their usage going to drives that are used for machine tools; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology options are available and identi...

2012-01-31T23:59:59.000Z

47

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

48

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

49

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

50

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

51

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

52

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

53

Plastic Product Manufacturing (NAICS 3261)  

Science Conference Proceedings (OSTI)

The U.S. plastics product manufacturing industry (NAICS 3261), which consists of more than 12,000 firms with combined annual revenues of about $170 billion, is one of the ten largest manufacturing industries in the country in terms of sales. A large amount of electricity is consumed by the plastics products industry, with more than half of their usage going to machine drives; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology option...

2012-01-31T23:59:59.000Z

54

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

55

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

56

Onsite Tours  

NLE Websites -- All DOE Office Websites (Extended Search)

science & research Onsite tour info (pdf) | Map of onsite tours (jpg) 1 Aqua Tour, Smart Grid House and Solar Power More info: Los Alamos Smart Grid 2 Yellow Tour, MagViz...

57

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" 4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable Distillate","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

58

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)"

59

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

60

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

62

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

63

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

64

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

65

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

66

" Row: General Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" 1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States"

67

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

68

North American Industry Classification System (NAICS) Search Tool |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related to the U.S. business economy. NAICS was developed under the auspices of the Office of Management and Budget, and adopted in 1997 to replace the Standard Industrial Classification system. Through our website, you can search for procurement opportunities using your company's NAICS code, and you can learn more about the history of purchasing for your NAICS code at the Department. Visit our Industry Information page to learn more about our procurements by

69

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" 2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat"," ",," "

70

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

71

Level: National Data; Row: Employment Sizes within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006; 4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9 10.6 4.5 1000 and Over 1,415.5 5.7 2.5 Total 1,278.4 6.9 3.1 311 FOOD Employment Size Under 50 1,266.8 8.3 3.2 50-99 1,587.4 9.3 3.6 100-249 931.9 3.6 1.5 250-499 1,313.1 6.3

72

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

73

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

74

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

75

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" 3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

76

Level: National and Regional Data; Row: Selected NAICS Codes...  

U.S. Energy Information Administration (EIA) Indexed Site

Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and...

77

NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes @ Headquarters Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341 $141,587,250.76 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 286 $2,204,687.38 541330 ENGINEERING SERVICES 245 $80,827,391.54 611430 PROFESSIONAL AND MANAGEMENT DEVELOPMENT TRAINING 216 -$1,452,480.09 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 206 $67,689,373.27 562910 REMEDIATION

78

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

79

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

80

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

sold and" "transferred out. It does not include electricity inputs from onsite" "cogeneration or generation from combustible fuels because that energy has" "already been...

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4 3114 Fruit and Vegetable Preserving and Specialty Foods 13 13 0 3115 Dairy Products 0 0 0 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products * * 0 3121 Beverages

82

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1 12.6 31131 Sugar Manufacturing 7,755.9 32.6 13.4 3114 Fruit and Vegetable Preserving and Specialty Foods 861.3 4.8 2.2 3115 Dairy Products 854.8 3.5 1.1 3116 Animal Slaughtering and Processing 442.9 3.5 1.2 312

83

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

84

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

85

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

86

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

87

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

88

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

89

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

90

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

91

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

92

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

93

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

94

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

95

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

96

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

97

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

98

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

99

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

100

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002;" 4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.1,1.4 "Value of Shipments and Receipts"

102

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

103

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

104

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6 18.2 31131 Sugar Manufacturing 6,629.2 31.3 12.2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,075.3 5.5 2.8 3115 Dairy Products 956.3 4.3 1.3 3116 Animal Slaughtering and Processing 493.8 4.4 1.6 312

105

Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 17 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 35 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 95

106

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Onsite Research Publications Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement (August 9, 2013) Comparison...

107

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE...

108

How important are NAICS and PSC to wining federal contracts? | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

important are NAICS and PSC to wining federal contracts? important are NAICS and PSC to wining federal contracts? BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Forums How important are NAICS and PSC to wining federal contracts? Submitted by Gregory James on Tue, 04/17/2012 - 12:39pm Log in to vote 3 Small business owners can improve their ability to get federal contracts if they understand the nature and use of the North American Industry Classification System (NAICS) and Product and Service Codes. The purposes of these codes are to collect, analyze and publish statistical data on economic activity in the United States, Mexico and Canada. The Federal Procurement Data System (FPDS) uses these codes to track federal procurement historyNAICS is a two through six-digit hierarchical

109

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 6.1;" 1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 3112," Grain and Oilseed Milling",8.2,5.8,5.6 311221," Wet Corn Milling",0,0,0 31131," Sugar Manufacturing",0,0,0 3114," Fruit and Vegetable Preserving and Specialty Foods ",7.3,6.7,6.2

110

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

111

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

112

Table 11.4 Electricity: Components of Onsite Generation, 2010...  

U.S. Energy Information Administration (EIA) Indexed Site

Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars)...

113

"NAICS",,"per Employee","of Value Added","of Shipments" "Code...  

U.S. Energy Information Administration (EIA) Indexed Site

Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of...

114

"NAICS",,"per Employee","of Value Added","of Shipments" "Code...  

U.S. Energy Information Administration (EIA) Indexed Site

Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of...

115

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

116

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

117

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

118

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

119

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

120

311221," Wet Corn Milling",0,0,0,0,0  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Relative Standard Errors for Table 11.1;" " Unit: Percents." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for"...

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: Onsite Research- Materials Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Performance Onsite Research Materials Performance Emerging energy-production technologies such as gasification, solid oxide fuel cells, and ultra supercritical, fluidized...

122

NETL: Onsite Research - University Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Onsite Research University Projects The National Energy Technology Laboratory (NETL) is helping to overcome a growing national problem of a diminishing number of new energy...

123

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

124

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

125

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Experimental Laboratory Solid Oxide Fuel Cell Experimental Laboratory The National Energy Technology Laboratory's Solid Oxide Fuel Cell Experimental Laboratory (SOFCEL) characterizes the performance and operation of single cells and small stacks. The laboratory is equipped with several test stands capable of evaluating solid oxide fuel cells (SOFC) at pressurized conditions and temperatures up to 1000°C. NETL's onsite researchers support the Solid State Energy Conversion Alliance (SECA) Program with advanced models and simulations that can predict detailed thermal, fluid, solid-mechanic, and electrochemical phenomena for fuel cell analysis and design. The research portfolio includes basic and applied research to assess the effects of contaminants on SOFC cell degradation and performance, and to developing durable high temperature and sulfur-tolerant anode materials. This type of research is important in order to apply SECA-developed technology to future coal-based power systems.

126

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

127

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

128

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

129

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

130

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

131

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

132

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

133

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

134

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

135

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

136

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

137

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

138

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

139

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

140

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

142

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

143

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

144

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

145

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

146

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

147

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

148

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

149

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

150

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

151

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

152

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

153

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

154

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"

155

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

156

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

157

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

158

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

159

"Table A17. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Components of Onsite Electricity Generation by Census Region," 7. Components of Onsite Electricity Generation by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," "," ","RSE" "SIC"," "," "," "," "," ","Row" "Code(a)","Industry Groups and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.4,1.2

160

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010;" 3 Electricity: Components of Onsite Generation, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",5666,5414,81,171 3112," Grain and Oilseed Milling",3494,3491,"Q",2

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

162

Table E13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.9,0.9,1.5,0....

163

Materials Science and Engineering Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory...

164

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network (OSTI)

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment.

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

165

"Table A27. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region," Components of Onsite Electricity Generation by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" ," "," "," "," " " "," "," "," ",," ","RSE" "SIC"," "," "," ",," ","Row" "Code(a)","Industry Group and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.6,1 , 20,"Food and Kindred Products",6962,6754,90,118,11.2

166

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

167

Interconnection Agreements for Onsite Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Agreements Interconnection Agreements for Onsite Generation Office of Real Property Asset Management Office of General Counsel Real Property Division Richard R. Butterworth Senior Assistant General Counsel (202) 501-4436 richard.butterworth@gsa.gov The Problem: * Most agreements require indemnity clauses - usually either by tariff or by the submission of standard contracts to PSCs * Federal Government precluded from providing indemnity by: * Anti-deficiency Act - 31 U.S.C. 665(a) * Adequacy of Appropriations Act - 41 U.S.C. 11 GSA - Utility Interconnection Agreements GSA - Utility Interconnection Agreements * Exception: Utility Contracts * GAO decision sets the foundation for exception for utility contracts - 59 Comp. Gen. 705 * But it's a narrow exception

168

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

169

On-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing On-site Housing Note: All guests wishing to stay on-site must be registered and approved in the BNL Guest Information System (GIS). Welcome to Brookhaven National Laboratory. BNL attracts more than 4,500 visiting scientists from all over the world each year to perform scientific research and work with our staff. To support our guests, there are 333 on-site housing units. These units are comprised of 66 family-style apartments, 39 efficiency apartments, 213 dormitory rooms, 13 Guest House rooms, and 2 year round private houses. Location: Hours of Operation: Research Support Building (400A), 20 Brookhaven Avenue Monday - Friday: 8:00 am to Midnight Reservations: (631) 344-2541 or 344-2551 Saturday: Closed* Fax: (631) 344-3098 Sunday: 4:00 pm to Midnight

170

" Onsite Generation from Noncombustible Renewable Energy"...  

U.S. Energy Information Administration (EIA) Indexed Site

" Purchases",2.1 " Transfers In",4.6 " Onsite Generation from Noncombustible Renewable Energy",2.6 " Sales and Transfers Offsite",0.3 "Coke and Breeze",0.6 "Residual Fuel...

171

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

172

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

173

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

174

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements

175

Onsite fuel cell program-- a status report  

SciTech Connect

The Onsite Fuel Cell Program is designed to produce data for the pioneering of fuel cell use. A fuel cell is an electrochemical device designed to transform the chemical energy of a hydrorich fuel, such as natural gas, into electricity. Under an Energy Service concept, onsite delivery and sale to consumers is promoted. Field test efforts are surveyed--a commercial laundry in Portland, Oregon, for example. Participating utilities in 40 kW cell field tests are mapped out. A project which will define a fuel cell power plant to meet cost requirements is underway.

Flore, V.B.; Cuttica, J.J.

1983-06-01T23:59:59.000Z

176

Table A28. Components of Onsite Electricity Generation by Census Region, Cens  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region, Census Division, and" Components of Onsite Electricity Generation by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,"Renewables" ,,,"(excluding Wood",,"RSE" " "," "," ","and"," ","Row" "Economic Characteristics(a)","Total","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.6,1.8,1.4 "Value of Shipments and Receipts" "(million dollars)" " Under 20",1098,868," W "," W ",22.3

177

Table A20. Components of Onsite Electricity Generation by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region and" Components of Onsite Electricity Generation by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,,"RSE" " "," "," "," "," ","Row" "Economic Characteristics(a)","Total","Cogeneration","Renewables","Other(b)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.2,1.3 "Value of Shipments and Receipts" "(million dollars)" " Under 20",562,349,"W","W",23 " 20-49",4127,3917,79,131,20.1 " 50-99",8581,7255,955,371,10

178

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 8.4;" 4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--" ,"Measure and Monitor Steam Used (d)",0.8,4.1,3.3,8 ,"Dedicated Staff that Performs Insulation Inspections (e)",0.9,4.5,3.3,8.3 ,"Formal Steam Maintenance Program that Includes the Following:" ," Annual Testing of All Steam Traps",0.9,3.7,3.1,8

179

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network (OSTI)

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a UV light disinfection system, and how to maintain such a system.

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

180

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

182

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 8.1;" 1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Participation in One or More of the Following Types of Activities",1.3,1.7,"--","--","--","--","--","--" ," Energy Audit or Assessment",0.7,2.6,3.9,4.9,6.3,16.5,12.3,6.8

183

Assessment of On-Site Power Opportunities in the Industrial Sector  

Science Conference Proceedings (OSTI)

The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

Bryson, T.

2001-10-08T23:59:59.000Z

184

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

185

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements Graphic of the eTraining logo Training Available Federal On-Site Renewable Power Purchase Agreements: Learn how to develop an on-site renewable Power Purchase Agreement (PPA) by taking this FEMP eTraining course. At a Glance Power purchase agreements feature a variety of benefits and considerations for Federal agencies, including: Benefits: No up-front capital costs Ability to monetize tax incentives Typically a known, long-term energy price No operations and maintenance responsibilities Minimal risk to the agency Considerations: Federal sector experience with PPAs is still growing Contract term limitations Inherent transaction costs Challenges with site access contracts and concerns On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred.

186

The Onsite Fuel Cell Cogeneration System  

E-Print Network (OSTI)

This paper describes the experiences and results of the major field test of forty-six 40kW onsite fuel cell power plants in the U.S. and Japan through 1985. The field test is a cooperative effort between the Gas Research Institute, gas and electric utility companies, private sector companies, and the U.S. Department of Energy and Department of Defense. The field test is conducted in parallel with technology development efforts sponsored by the Gas Research Institute and the U.S. Department of Energy. Operation of the field test units began in December 1983 with the initial start-up of two units at a racquetball club sponsored by the Southern California Gas Corporation. As of May 1985, over 300,000 hours of operating experience was achieved on the fleet of 40kW units. This experience has demonstrated the onsite fuel cell's superior technical specification, ease of installation, operation and maintenance, and economic benefits over conventional energy service. In addition, this effort identified operating deficiencies in the 40kW units which were either corrected through field retrofits or provided guidance to the parallel technology development efforts.

Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

1986-06-01T23:59:59.000Z

187

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Funding » On-Site Renewable Power Purchase Agreements Project Funding » On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:35pm Addthis On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer installs a renewable energy system on agency property under an agreement that the agency will purchase the power generated by the system. The agency pays for the system through these power payments over the life of the contract. After installation, the developer owns, operates, and maintains the system for the life of the contract. For more information, read the Federal Energy Mangement Program's (FEMP) introductory guide to PPAs and sample documents.

188

Sample Documents for On-Site Renewable Power Purchase Agreements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding » On-Site Renewable Power Purchase Agreements » Funding » On-Site Renewable Power Purchase Agreements » Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:37pm Addthis The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity

189

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 16, 2013 - 5:09pm Addthis An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility. As noted in the renewable energy project funding overview, PPAs provide a range of attractive benefits to Federal agencies trying to access renewable energy. These include no up-front capital costs; the ability to monetize tax incentives; typically a known, long-term energy price; no operations and maintenance (O&M) responsibilities; and minimal risk to the agency.

190

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

of S for On-Site Solar Heating -iv- List of Figures Fig. 1.penetration of on-site solar heating and cooling systems.investment in on-site solar heating cannot easily quantify

Kahn, E.

2011-01-01T23:59:59.000Z

191

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

192

On-site cogeneration for office buildings  

SciTech Connect

The purpose of this project was to investigate the feasibility of alternative means of enhancing the economic attractiveness of cogeneration for use in office buildings. One course of action designed to achieve this end involves directing the exhaust heat of a cogeneration unit through an absorption chiller to produce cooling energy. Thus, the units could be operated more continuously, particularly if thermal storage is incorporated. A second course of action for improving the economics of cogeneration in office buildings involves the sale of the excess cogenerated waste heat. A potential market for this waste heat is a district heating grid, prevalent in the downtown sections of most urban areas in the US. This project defines a realistic means to guide the integration of cogeneration and district heating. The approach adopted to achieve this end involved researching the issues surrounding the integration of on-site cogeneration in downtown commercial office buildings, and performing an energy and economic feasibility analysis for a representative building. The technical, economic and legal issues involved in this type of application were identified and addressed. The research was also intended as a first step toward implementing a pilot project to demonstrate the feasibility of office building cogeneration in San Francisco. 13 refs., 7 figs., 4 tabs.

Not Available

1985-04-01T23:59:59.000Z

193

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

194

Residential Energy Management system for optimization of on-site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the...

195

Field-portable mass spectrometers for onsite analytics: What's next?  

Science Conference Proceedings (OSTI)

The need for rapid, onsite chemical analyses is as apparent as it has ever been, especially for compounds detrimental to health or to the environment, such as toxic industrial species, explosives, chemical warfare agents, and environmental toxins. Field-po

196

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

197

Green Power Network: On-site Renewable Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Renewable Energy Systems On-site Renewable Energy Systems For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water. Wind turbines convert the kinetic energy in wind into mechanical power that runs a generator to produce electricity. Geothermal heat pumps use the constant temperature of the upper 10 feet of the Earth to heat and cool buildings. Fuel cells produce electricity from hydrogen and oxygen and can be powered by a number of sources, including renewables. Biomass power systems use biomass feedstocks such as wood waste or methane from animal waste or other sources to generate electricity. Biomass resources can also be used in direct heat and combined heat and power applications.

198

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network (OSTI)

Most energy saving schemes on industrial sites lead to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic evaluation of proposed retrofit schemes. Knowledge of marginal costs is also essential for continuous optimal operation of on-site utility systems. "APLUS" is an IBM-PC based software package developed for evaluation of marginal and incremental costs of on-site utilities. "APLUS" allows the user to configure steam/power systems using sets of predefined icons. Once a flowsheet has been configured, the program can be used to solve the heat and mass balance and to generate accurate marginal costs. An overview of the package and examples illustrating its applications are presented in this paper.

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

1988-09-01T23:59:59.000Z

199

Intruder dose pathway analysis for the onsite disposal of radioactive wastes: The ONSITE/MAXI1 computer program  

Science Conference Proceedings (OSTI)

This document summarizes initial efforts to develop human-intrusion scenarios and a modified version of the MAXI computer program for potential use by the NRC in reviewing applications for onsite radioactive waste disposal. Supplement 1 of NUREG/CR-3620 (1986) summarized modifications and improvements to the ONSITE/MAXI1 software package. This document summarizes a modified version of the ONSITE/MAXI1 computer program. This modified version of the computer program operates on a personal computer and permits the user to optionally select radiation dose conversion factors published by the International Commission on Radiological Protection (ICRP) in their Publication No. 30 (ICRP 1979-1982) in place of those published by the ICRP in their Publication No. 2 (ICRP 1959) (as implemented in the previous versions of the ONSITE/MAXI1 computer program). The pathway-to-human models used in the computer program have not been changed from those described previously. Computer listings of the ONSITE/MAXI1 computer program and supporting data bases are included in the appendices of this document.

Kennedy, W.E. Jr.; Peloquin, R.A.; Napier, B.A.; Neuder, S.M.

1987-02-01T23:59:59.000Z

200

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network (OSTI)

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available, and factors to consider when choosing a service provider.

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

On-site Housing Rates | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Rates Effective February 1, 2013 Rates for Occupancy < 30-Days Guest House* Single/Double: US $105.00/day Housekeeping service is provided on all working days. *Alternatives to the Guest House - When family-type accommodations are assigned to temporary or transient personnel, Guest House rates as set forth above will apply. The total will not exceed one months' rent for a unit occupied for 30 days or less. When such assignment is necessary due to lack of adequate Guest House accommodations, housekeeping service is provided on working days; for reservations staying seven days or less. Residence Houses Curie House: US $42.00/day Cavendish House: US $42.00/day Compton House: US $42.00/day Housekeeping service for all residence houses are provided three times per

202

GRR/Elements/18-CA-b.2 - Onsite Treatment Process | Open Energy...  

Open Energy Info (EERE)

2 - Onsite Treatment Process < GRR | Elements Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRRElements18-CA-b.2-OnsiteTreatmentProces...

203

Interim On-Site Storage of Low Level Waste: Volume 1: Licensing and Regulatory Issues  

Science Conference Proceedings (OSTI)

This report is an all-inclusive resource guide for evaluating a utility's on-site storage licensing requirements. Specifically, the report offers an extensive review of licensing and regulatory documents related to on-site storage of low level waste as well as a methodology for evaluating on-site storage licensing issues.

1992-06-01T23:59:59.000Z

204

ECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN  

E-Print Network (OSTI)

procedure for estimating costs for industrial, on-site, waste gasification processes. However, gen eralizingECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN K. T. Lear Associates. Inc. Manchester, Charles R Velzy Associates, Inc., Elmsford, N.Y. On-site waste gasification may well be an at tractive

Columbia University

205

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11110 11110 Newspaper Publishers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 511120 Periodical Publishers AMES LAB Lisa Rodgers (515) 294-4191 rodgers@ameslab.gov ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE

206

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23110 23110 Automobile and Other Motor Vehicle Merchant Wholesalers BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 423120 Motor Vehicle Supplies and New Parts Merchant Wholesalers

207

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31112 31112 Electrometallurgical Ferroalloy Product Manufacturing EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 331210 Iron and Steel Pipe and Tube Manufacturing from Purchased Steel EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 331221 Rolled Steel Shape Manufacturing

208

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61110 61110 Office Administrative Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov ROCKY FLATS ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

209

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31110 31110 Lessors of Residential Buildings and Dwellings CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov IDAHO LAB Stacey Francis (208) 526-8564 stacey.francis@inl.gov IDAHO OPERATIONS Maria Mitchell (208) 526-8600 mitchemm@id.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER

210

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

113110 Timber tract operations 113110 Timber tract operations BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 113310 Cutting and transporting timber BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

211

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83111 83111 Deep Sea Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 483211 Inland Water Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 484110 General Freight Trucking, Local BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER

212

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

922120 922120 Police Protection CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OAK RIDGE LAB Cassandra McGee Stu (865) 576-3560 mcgeecm@ornl.gov OAK RIDGE OPERATIONS Freda Hopper (856) 576-9430

213

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41222 41222 Boat Dealers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 441229 All Other Motor Vehicle Dealers CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com LOS ALAMOS LAB

214

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53210 53210 Office Supplies and Stationery Stores BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NEW BRUNSWICK LAB NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PRINCETON PLASMA LAB Arlene White (609) 243-2080

215

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41219 41219 Other Accounting Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671

216

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11410 11410 Business and Secretarial Schools EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 611420 Computer Training ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov

217

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

621420 621420 Outpatient Mental Health and Substance Abuse Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 621493 Freestanding Ambulatory Surgical and Emergency Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov

218

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13312 13312 Textile and Fabric Finishing (except Broadwoven Fabric) Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314991 Rope, Cordage, and Twine Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314999 All Other Miscellaneous Textile Product Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov

219

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21213 21213 Engineered Wood Member (except Truss) Manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 321920 Wood Container and Pallet manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512

220

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21119 21119 Other Electric Power Generation Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 221121 Electric Bulk Power Transmission and Control BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 221122 Electric Power Distribution BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91110 91110 Postal Service EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 492110 Couriers and Express Delivery Services EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen

222

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

Only","Other than","and","Any","from Only","Other than","and" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

223

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

than","and","Any","from Only","Other than","and","Row" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

224

Federal On-Site Renewable Power Purchasing Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable On-Site Renewable Power Purchasing Issues Tracy Logan, FEMP (202) 586-9973 tracy.logan@ee.doe.gov Chandra Shah, NREL (303) 384-7557 chandra.shah@nrel.gov Overview * OMB Memo Summary * Issue Paper Development * Termination * ESPC PPA Update CEQ/OMB Memo Summary * 8/16/11: Supporting Energy and Sustainability Goal Achievement Through Efficiency and Deployment of Clean Energy Technology * Encourages Agencies to use ESPCs and UESCs and requests Agencies report ESPCs and UESCs to FEMP * Requests review of all types of PPAs Issue Paper Development * FEMP is drafting papers on deployment issues * Purpose: to provide a central point of information * Proposed papers: interconnection, rebates & incentives, termination, others? * Please email suggested topics to Tracy & Chandra

225

On-site Housing Unit Types | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing Unit Types On-site Housing Unit Types Registration is required for all computers, wireless notebooks or other network devices used on the BNL Network. Devices that are not registered will be disconnected from the network. Apartments Apartments are available in 1, 2, 3 and 4 bedrooms. They are fully furnished and supplied with linens, kitchen utensils and cookware. Utilities are included in the rental price. *Note: These units do NOT have air conditioning. Each unit is equipped with DSL connection, satellite television and a microwave. Cisco Wireless Access Points (WAPs) connections are also available in Buildings 2-10. More Photos (PDF) Cavendish House The Cavendish house is a male dormitory consisting of 83 private single occupancy rooms equipped with air conditioning, Ethernet connection and

226

Green Power Network: On-site Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports On-site Renewable Energy Third-Party Solar Financing For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water.

227

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

228

ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE  

SciTech Connect

Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.

Watkins, R.; Loftin, B.; Hoang, D.; Maxted, M.

2012-05-30T23:59:59.000Z

229

Safety analysis report for packaging (onsite) steel drum  

SciTech Connect

This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

McCormick, W.A.

1998-09-29T23:59:59.000Z

230

Safety analysis report for packaging (onsite) sample pig transport system  

Science Conference Proceedings (OSTI)

This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

MCCOY, J.C.

1999-03-16T23:59:59.000Z

231

Develop and test fuel cell powered on-site integrated total energy systems  

DOE Green Energy (OSTI)

This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

Kaufman, A.; Werth, J.

1988-12-01T23:59:59.000Z

232

Combining Energy Efficiency Building Retrofits and Onsite Generation: An  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Energy Efficiency Building Retrofits and Onsite Generation: An Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Title Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Publication Type Conference Paper Year of Publication 2011 Authors Satchwell, Andrew, Peter H. Larsen, and Charles A. Goldman Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 2011 Publisher ACEEE Conference Location Niagara Falls, New York Abstract The U.S. energy service company (ESCO) industry is an example of a private-sector business model where energy efficiency savings are delivered to customers primarily through the use of performance-based contracts. Despite the onset of a severe economic recession, we estimate that the U.S. ESCO industry grew about 7% per year from 2006 to 2008 with annual revenues of about $4.1 billion in 2008. About 75% of industry revenues are directly related to the installation of energy efficiency measures at existing buildings in the institutional, commercial, and industrial sectors.

233

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents Sample Documents for On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on AddThis.com...

234

Feasibility studies on the use of TRUPACT-1 for on-site transportation of DOE LLW  

SciTech Connect

In this paper the authors propose using TRUPACT-I, with modifications to its storage system, to facilitate on-site transportation of US Department of Energy (DOE) low-level waste (LLW). TRUPACT-I was designed as a type-B contact-handled transuranic (CH-TRU) waste transportation system for use in Waste Isolation Pilot Plant-related operations and was subjected to the required type-B container accident tests, which it successfully passed. Thus, from a safety standpoint, TRUPACT-1 is provided with double containment, impact limitation, and fire-retardant capabilities. Furthermore, because TRUPACT-1 was developed to transport CH-TRU waste, which is characterized by a higher total activity, larger decay heat, and higher dose rate than LLW, it would be overqualified for the requirements of LLW transportation.

Hills, C.R.; Banjac, V.; Heger, A.S. (Univ. of New Mexico, Albuquerque (United States))

1993-01-01T23:59:59.000Z

235

On-site worker-risk calculations using MACCS  

Science Conference Proceedings (OSTI)

We have revised the latest version of MACCS for use with the calculation of doses and health risks to on-site workers for postulated accidents at the Rocky Flats Plant (RFP) in Colorado. The modifications fall into two areas: (1) an improved estimate of shielding offered by buildings to workers that remain indoors; and, (2) an improved treatment of building-wake effects, which affects both indoor and outdoor workers. Because the postulated accident can be anywhere on plant site, user-friendly software has been developed to create those portions of the (revised) MACCS input data files that are specific to the accident site.

Peterson, V.L.

1993-05-01T23:59:59.000Z

236

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

237

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

238

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,and J.L. Edwards, Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

239

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

240

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

242

DOE O 461.2, Onsite Packaging and Transfer of Materials of National Security Interest  

Directives, Delegations, and Requirements

The order prescribes requirements and responsibilities for identifying and mitigating undue risk of onsite transfers that are non compliant with U.S. ...

2010-11-01T23:59:59.000Z

243

Rate Structures for Customers With Onsite Generation: Practice and Innovation  

DOE Green Energy (OSTI)

Recognizing that innovation and good public policy do not always proclaim themselves, Synapse Energy Economics and the Regulatory Assistance Project, under a contract with the California Energy Commission (CEC) and the National Renewable Energy Laboratory (NREL), undertook a survey of state policies on rates for partial-requirements customers with onsite distributed generation. The survey investigated a dozen or so states. These varied in geography and the structures of their electric industries. By reviewing regulatory proceedings, tariffs, publications, and interviews, the researchers identified a number of approaches to standby and associated rates--many promising but some that are perhaps not--that deserve policymakers' attention if they are to promote the deployment of cost-effective DG in their states.

Johnston, L.; Takahashi, K.; Weston, F.; Murray, C.

2005-12-01T23:59:59.000Z

244

Development of Onsite Transportation Safety Documents for Nevada Test Site  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if equivalent safety to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfers packaging and its contents.

Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

2008-05-08T23:59:59.000Z

245

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 2: State Reports  

Science Conference Proceedings (OSTI)

This report is comprised of summaries of the status of on-site and small community wastewater systems in each state in the United States. The summaries provide an excellent general reference for further research into the status of each state's on-site wastewater systems.

2000-09-27T23:59:59.000Z

246

GRR/Elements/18-CA-c.2 - Onsite Treatment Process | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Elements/18-CA-c.2 - Onsite Treatment Process < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.2 - Onsite Treatment Process Non-RCRA waste treated on-site receives a California on-site treatment permit from the California DTSC. See Flowchart 18-CA-XX. Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-CA-c.2_-_Onsite_Treatment_Process&oldid=539943" What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

247

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

248

Case Studies of Onsite Energy Systems for Healthcare Facilities  

E-Print Network (OSTI)

This paper will present two case studies of municipal utility owned and operated combined heat and power (CHP) systems. The first of these two systems is located at a new hospital development in Austin, TX, the Dell Childrens Medical Center of Central Texas. Combining the high efficiency, low emission, 4.6 MW Solar Turbines Mercury-50 combustion turbine, a 1000 Ton Trane steam absorption chiller and an 8000 Ton-hr Thermal Energy Storage tank, this onsite energy system is designed to achieve operating efficiencies in excess of 70%, while allowing the hospital to be fully operational under grid-independent scenarios. The second system is located at a new hospital development in Gainesville, FL, the Shands Cancer Hospital Campus. Similar to the Dell project, GRUs system will serve all of the hospitals electric and thermal loads, will be interconnected with the local grid, and will allow the hospital to be fully operational under grid-independent scenarios.

Schwass, R.

2008-01-01T23:59:59.000Z

249

GRR/Section 14-OR-f - Onsite Wastewater Management | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-f - Onsite Wastewater Management GRR/Section 14-OR-f - Onsite Wastewater Management < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-f - Onsite Wastewater Management 14ORFOnsiteWastewaterManagementSepticSystems.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-071: Onsite Wastewater Treatment Systems OAR 340-073: DEQ Construction Standards Triggers None specified Click "Edit With Form" above to add content 14ORFOnsiteWastewaterManagementSepticSystems.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Over 30% of Oregonians dispose of wastewater from their homes and

250

Advances in field-portable mass spectrometers for on-site analytics  

Science Conference Proceedings (OSTI)

Learn how the combination of ambient ionization with portable mass spectroscopy can speed chemical analysis by streamlining sample preparation and throughput requirements. Advances in field-portable mass spectrometers for on-site analytics inform M

251

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalsince electric cooling loads can be offset by the absorptioncooling loads: utility purchases of electricity, on-site generation of electricity, absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

252

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

253

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

254

National Research Needs Conference Proceedings: Risk-Based Decision Making for Onsite Wastewater Treatment  

Science Conference Proceedings (OSTI)

On May 19-20, 2000, the Research Needs Conference for "Risk-Based Decision Making for Onsite Wastewater Treatment" was convened in St. Louis, Missouri. The conference, funded by the U.S. Environmental Protection Agency (EPA), was the culmination of an eighteen-month-long effort by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) to assist onsite wastewater leadership in identifying critical research gaps in the field. The five "White Papers" included in this volume of Pro...

2001-03-15T23:59:59.000Z

255

table9.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002; 1 Enclosed Floorspace and Number of Establishment Buildings, 2002; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite RSE NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Row Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Factors Total United States RSE Column Factors: 0 0 0 0 0 311 Food 751 15,089 102,589.2 26,438 3.0 0 311221 Wet Corn Milling 5 49 239,993.7 428 13.0 0 31131 Sugar 17 77 418,497.0 821 15.2 0

256

"RSE Table C12.1. Relative Standard Errors for Table C12.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Relative Standard Errors for Table C12.1;" 2.1. Relative Standard Errors for Table C12.1;" " Units: Percents." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" "NAICS"," ","of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite" "Code(a)","Subsector and Industry","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment" ,,"Total United States" , 311,"Food",2,0,2,1,1 311221," Wet Corn Milling",0,0,0,0,0 312,"Beverage and Tobacco Products",11,0,15,14,14

257

REPORT OF ON-SITE INSPECTION WORKSHOP-16  

SciTech Connect

The central issue addressed by this workshop was the task of making the on-site inspection (OSI) part of the Comprehensive Nuclear-Test-Ban Treaty verification system operationally ready at entry into force of the Treaty. It is recognized, and this was emphasized by the 2008 OSI Integrated Field Exercise (IFE), that it is not possible to develop every part of the OSI regime simultaneously. Therefore, it is necessary to prioritize the approach to OSI readiness. The reviews of the IFE have pointed to many elements of OSI readiness that still need development. The objective of this workshop was to provide priorities for the path forward for Working Group B to consider. Several critical areas have been identified that are related to the development of OSI readiness: (1) Technology development: Priorities are radionuclide and noble gas sampling and analysis, visual observation, multispectral/infrared imaging methods, active seismic methods and the recognition of the importance of signatures. (2) Organizational development: Priorities are health and safety, the Operations Support Centre, the Equipment Storage and Maintenance Facility, information technology data flow and communications. (3) Resources: The expertise to develop key parts of the OSI regime is not available within the current OSI Division staff. To develop these aspects of the regime will require more staff or supplements to the staff with cost-free experts or other means. Aspects of the system that could benefit from more staff include radionuclide and noble gas detection methods, data flow and communications, visual observation, multispectral/infrared methods and health and safety. As the path forward, participants of this workshop recognized a need to optimize the development of OSI priorities. The outcome of this workshop is to suggest for consideration an operational approach to OSI readiness that utilizes results of an evaluation of the relative effectiveness of OSI elements versus their relative maturity. By integrating such an assessment with considerations of integrated operational capabilities and the anticipated level of inspection team self-sufficiency and measurable milestone criteria, a set of priorities for OSI development can be developed. Once these priorities have been established, the Policy Making Organs can decide upon the milestones, strategic plan and action plan to serve as guidance for implementation by the Provisional Technical Secretariat. The suggested operational approach is as follows: (1) Assess the relative effectiveness (importance) of OSI elements versus their relative maturity; (2) Determine the anticipated level of self-sufficiency; (3) Define measurable milestone criteria; and (4) Result: Milestones for OSI readiness.

Sweeney, J J

2009-07-07T23:59:59.000Z

258

Department of Energy Voluntary Protection Program - Part IV: Onsite review handbook  

SciTech Connect

Onsite Review Handbook contains criteria to be used in evaluating the management systems required for initial or continued participation in the Department of Energy Voluntary Protection Program (DOE-VPP), verifying and calculating rates of injury experience, the Onsite Review report format, and sample questions to be used during onsite interviews. This document should be used in conjunction with the first three DOE-VPP manuals (Part I: Program Elements, Part II: Procedures Manual, and Part III: Application Guidelines). This document is intended to assist Onsite Review team members and DOE contractors in evaluating safety and health programs, and to serve as guidance for DOE-VPP participants in performing their required annual evaluation. Requests for additional information or any questions may be addressed to a DOE-VPP Coordinator in the Office of Occupational Safety and Health Policy. The term contractor used throughout this document refers to an applicant to, or a participant in, the DOE-VPP. The term subcontractor refers to any organization that is contracted by the applicant or participant to do work at the site under review. The DOE-VPP Onsite Review Criteria contained in Appendix A provide guidance for evaluating a site`s implementation of the program requirements given in Part I: Program Elements. The program requirements are in bold italicized type, followed by guidance for ensuring implementation. Part I should be consulted for a complete description of the program requirements. These criteria should be used by team members whenever possible, but are not intended to be all inclusive. Determination of adequate implementation of the DOE-VPP requirements is at the team members` discretion. Guidance for calculating recordable injury and lost workday incidence rates is contained in Appendix B. The OSHA injury/illness records review and the associated calculations should be performed by Onsite Review Team members during the pre-onsite planning visit.

NONE

1995-07-01T23:59:59.000Z

259

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 1.1, 2006;" 1 Relative Standard Errors for Table 1.1, 2006;" " Unit: Percents." " "," " " "," "," ",," "," ",," ",,," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and"," ","Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States"

260

The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power Generation Using  

E-Print Network (OSTI)

LBNL-49309 The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power .................................................................................................................1 1.1 Microgrid Concept

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GRR/Section 10 - On-Site Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 10 - On-Site Evaluation Process GRR/Section 10 - On-Site Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 10 - On-Site Evaluation Process 10SiteEvaluation.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management U S Army Corps of Engineers United States Environmental Protection Agency Fish and Wildlife Service United States Department of Defense Regulations & Policies Endangered Species Act Clean Water Act Clean Air Act Triggers None specified Click "Edit With Form" above to add content 10SiteEvaluation.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

262

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity Announcement: Opportunity announcement issued for the NREL Mesa Top photovoltaics (PV) power purchase agreement.

263

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

264

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

265

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82: University of Delaware Lewes Campus Onsite Wind Energy 82: University of Delaware Lewes Campus Onsite Wind Energy Project EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project SUMMARY The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware's Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been

266

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

267

Overview of the NETL Onsite Fuel Cell R&D Program  

DOE Green Energy (OSTI)

Onsite fuel cell R&D at the National Energy Technology Laboratory (NETL) has been ongoing since the late 1990's. The objective of the onsite program is to support development efforts of the fuel cell technology-related product lines and conduct fundamental research of advanced fuel cell technology. Of special focus is NETL's new 10-yr, multimillion dollar development program call the Solid State Energy Conversion Alliance (SECA). This program is aimed at developing low-cost mass manufactured solid oxide fuel cell technology for a wide variety of applications. In addition to SECA, there are a variety of other products/programs at NETL that can be supported by the onsite R&D group. Vision 21 is one such program and is the U. S. Department of Energy's initiative to deploy high efficiency, ultra-clean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and coproduction modules, which are integrated to meet specific power and chemical markets. In response to these program initiatives, NETL's onsite R&D group is developing significant capability and focusing current activity on the following areas: (1) High-Temperature Fuel Cell Test & Characterization; (2) Integrated Fuel Processing; (3) Fuel Cell Component and Systems Modeling; and (4) Sensors, Controls, and Instrumentation. This report discusses plans and ongoing activities in each of these areas.

Berry, David A.; Gemmen, Randall S.

2001-11-06T23:59:59.000Z

268

Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods  

SciTech Connect

A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling due to the detonation potential. Characterization of explosives-contaminated sites is particularly difficult due to the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of samples, and extracting larger samples. On-site analytical methods are essential to more economical and improved characterization. On-site methods might suffer in terms of precision and accuracy, but this is more than offset by the increased number of samples that can be run. While verification using a standard analytical procedure should be part of any quality assurance program, reducing the number of samples analyzed by the more expensive methods can result in significantly reduced costs. Often 70 to 90% of the soil samples analyzed during an explosives site investigation do not contain detectable levels of contamination. Two basic types of on-site analytical methods are in wide use for explosives in soil, calorimetric and immunoassay. Calorimetric methods generally detect broad classes of compounds such as nitroaromatics or nitramines, while immunoassay methods are more compound specific. Since TNT or RDX is usually present in explosive-contaminated soils, the use of procedures designed to detect only these or similar compounds can be very effective.

Crockett, A.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Craig, H.D. [Environmental Protection Agency, Portland, OR (United States). Oregon Operations Office; Jenkins, T.F. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Sisk, W.E. [Army Environmental Center, Aberdeen Proving Grounds, MD (United States)

1996-09-01T23:59:59.000Z

269

Dynamic provisioning in next-generation data centers with on-site power production  

Science Conference Proceedings (OSTI)

The critical need for clean and economical sources of energy is transforming data centers that are primarily energy consumers to also energy producers. We focus on minimizing the operating costs of next-generation data centers that can jointly optimize ... Keywords: data centers, dynamic provisioning, on-site power production, online algorithm

Jinlong Tu, Lian Lu, Minghua Chen, Ramesh K. Sitaraman

2013-01-01T23:59:59.000Z

270

SCR Catalyst Disposal, Recycle, and On-site Washing Options and Experience  

Science Conference Proceedings (OSTI)

As Selective Catalytic Reduction (SCR) technology becomes more widespread and the catalyst fleet ages, cost-effective and environmentally friendly approaches are need to handle the increasing volumes of spent catalyst or extend its life through simple on-site processing. This report addresses various issues related to catalyst rejuvenation, cleaning, recycling, and disposal.

2008-12-03T23:59:59.000Z

271

DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS.  

E-Print Network (OSTI)

1 DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS. V. Andersen that might be unusual compared to the daily routine. In major emergencies, the medical team is moved to the site of the emergency instead of waiting for the casualties at the casualty ward. Ensuring fast

272

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2, 2006;" 2 Relative Standard Errors for Table 1.2, 2006;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

273

RSE Table 1.2 Relative Standard Errors for Table 1.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2;" 2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

274

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network (OSTI)

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed intention to install, provides the means for obtaining lower purchased power costs. The functionality of a standby power system and its inherent value in the coming free market purchase of electrical energy are added benefits. Project feasibility, conceptual design, on-site generation facility requirements, interconnection requirements, and operation and maintenance costs will be examined. Installation costs in the range of $350 to $400 per KW and operating costs of approximately $0.06 to $0.07 per kWhr compared to purchased power rates determine the feasibility of an on-site generation system. In some cases avoided demand charges offer an opportunity for savings such that special rates are not needed for a feasible project. Depending on the manufacturer, low capital cost diesel generators are available in 1000 to 2000 KW blocks. Capacity requirements determine the number of engines required. Large capacity installations are somewhat restricted by voltage and current ratings. Some variants for multiple engine generator installations will yield greater reliability or lower costs depending on objectives. Specific requirements for basic building blocks of an on-site generation system will be examined as well as an example of a 5,500 KW installation. IEA provides an alternative to installing and operating an on-site generation system. IEA owns and operates diesel standby generation systems for customers, with responsibility for all maintenance and operation as well as associated costs. This allows customers to focus on core business, not the generation of electrical energy.

Charles, D.

1996-04-01T23:59:59.000Z

275

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

276

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

277

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

278

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

279

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

280

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technical Conference on the Criteria for Designation of NIETCs: On-Site Final Attendee List  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ON-SITE FINAL ATTENDEE LIST ON-SITE FINAL ATTENDEE LIST Poonum Agrawal U.S. Department of Energy Email: poonum.agrawal@hq.doe.gov Parveen Baig Iowa Utilities Board Email: parveen.baig@iub.state.ia.us Derek Bandera Reliant Energy, Inc. Email: dbandera@reliant.com Diane Barney New York Dept. of Public Service Email: diane_barney@dps.state.ny.us Joel Bearden Cargill Power Markets, LLC Email: joel_bearden@cargill.com Michael Bednarz US Department of Energy - Midwest Regional Office Email: michael.bednarz@ee.doe.gov Mark Bennett Electric Power Supply Association Email: mbennett@epsa.org Bradley Bentley Sempra Energy Utility Email: bbentley@semprautilities.com Heather Bergman The Keystone Center Email: hbergman@keystone.org Ricky Bittle Arkansas Electric Cooperative

282

Residential Energy Management system for optimization of on-site generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the individual movements towards Net Zero Energy Homes (NZEH) and the SmartGrid converge on residential buildings, three major challenges need to be addressed: Flatten the highly peaked electric load profile of low energy homes Provide easy integration of energy efficiency into existing homes Provide builders and consumers with visibility into building operation, and ease of management. A Home Energy Management System (HEMS) owned by the consumer, capable of two way communications with Utility DR/SmartGrid/AMI is required to resolve these challenges. The HEMS will need to increase energy efficiency of building operations, provide consumers feedback and

283

Optimal selection of on-site generation with combined heat andpower applications  

SciTech Connect

While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

2004-11-30T23:59:59.000Z

284

ALTERNATIVES OF MACCS2 IN LANL DISPERSION ANALYSIS FOR ONSITE AND OFFSITE DOSES  

Science Conference Proceedings (OSTI)

In modeling atmospheric dispersion to determine accidental release of radiological material, one of the common statistical analysis tools used at Los Alamos National Laboratory (LANL) is MELCOR Accident Consequence Code System, Version 2 (MACCS2). MACCS2, however, has some limitations and shortfalls for both onsite and offsite applications. Alternative computer codes, which could provide more realistic calculations, are being investigated for use at LANL. In the Yucca Mountain Project (YMP), the suitability of MACCS2 for the calculation of onsite worker doses was a concern; therefore, ARCON96 was chosen to replace MACCS2. YMP's use of ARCON96 provided results which clearly demonstrated the program's merit for onsite worker safety analyses in a wide range of complex configurations and scenarios. For offsite public exposures, the conservatism of MACCS2 on the treatment of turbulence phenomena at LANL is examined in this paper. The results show a factor of at least two conservatism in calculated public doses. The new EPA air quality model, AERMOD, which implements advanced meteorological turbulence calculations, is a good candidate for LANL applications to provide more confidence in the accuracy of offsite public dose projections.

Wang, John HC [Los Alamos National Laboratory

2012-05-01T23:59:59.000Z

285

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

DOE Green Energy (OSTI)

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

286

A business case for on-site generation: The BD biosciences pharmingen project  

SciTech Connect

Deregulation is haltingly changing the United States electricity markets. The resulting uncertainty and/or rising energy costs can be hedged by generating electricity on-site and other benefits, such as use of otherwise wasted heat, can be captured. The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited relatively small-scale generators ({ge} 1 MW) into the electricity market. The advent of efficient and reliable small scale and renewable equipment has spurred an industry that has, in recent years, made even smaller (business scale) electricity generation an economically viable option for some consumers. On-site energy capture and/or conversion, known as distributed energy resources (DER), offers consumers many benefits, such as economic savings and price predictability, improved reliability, control over power quality, and emissions reductions. Despite these benefits, DER adoption can be a daunting move to a customer accustomed to simply paying a monthly utility bill. San Diego is in many ways an attractive location for DER development: It has high electricity prices typical of California and a moderate climate i.e. energy loads are consistent throughout the year. Additionally, the price shock to San Diego Gas and Electric (SDG&E) customers during the summer of 2000 has interested many in alternatives to electricity price vulnerability. This report examines the business case for DER at the San Diego biotechnology supply company, BD Biosciences Pharmingen, which considered DER for a building with 200-300 kW base-load, much of which accommodates the refrigerators required to maintain chemicals. Because of the Mediterranean climate of the San Diego area and the high rate of air changes required due to on-site use of chemicals, modest space heating is required throughout the year. Employees work in the building during normal weekday business hours, and daily peak loads are typically about 500 kW.

Firestone, Ryan; Creighton, Charles; Bailey, Owen; Marnay, Chris; Stadler, Michael

2003-09-01T23:59:59.000Z

287

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

288

Transfer Cask Assembly Onsite Transfer of K-Basin Fuel at Hanford  

DOE Green Energy (OSTI)

Packaging Technology, Inc. was awarded a contract for the design and fabrication of a unique 18.5-ton transportation system to be used on-site at Hanford, WA. Unique aspects include rectangular cask geometry, solid 7 inch-thick stainless steel construction, hinged lid with remotely operable quick release locking mechanism. The lid maintains shielding and material confinement integrity after hypothetical accident conditions, and is equipped with a hydrogen venting system. This paper presents how the project requirements were translated into a successful design, and includes a brief discussion of a confirmation test program.

BRUBAKER, M.L.

2002-07-01T23:59:59.000Z

289

On-site demonstration procedure for solid-state fluorescent ballast  

SciTech Connect

The report was presented to plant engineers and managers who were involved in an on-site demonstration of EETech solid-state ballasts for two 40-watt T12 fluorescent lamps. The report includes a brief review of the operating principles of solid-state fluorescent ballasts and the status of development achieved during the LBL program. The remainder of the test describes the techniques of managing and instrumenting a test area for assessing the performance of solid-state fluorescent ballasts at an occupied site.

Verderber, R.; Morse, O.

1980-09-01T23:59:59.000Z

290

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

291

Customer adoption of small-scale on-site power generation  

Science Conference Proceedings (OSTI)

The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-04-01T23:59:59.000Z

292

An accurate system for onsite calibration of electronic transformers with digital output  

Science Conference Proceedings (OSTI)

Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

Zhi Zhang; Li Hongbin [CEEE of HuaZhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074 (China)

2012-06-15T23:59:59.000Z

293

ENERGY STAR Using On-site Renewable Energy as the Next Step to Improving Energy Performance and Reducing Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ON-SITE RENEWABLE ENERGY AS THE NEXT STEP ON-SITE RENEWABLE ENERGY AS THE NEXT STEP TO IMPROVING ENERGY PERFORMANCE AND REDUCING EMISSIONS jcpenney has a corporate energy management strategy that includes using energy efficient technologies in its stores and encouraging energy conservation. As part of this strategy, the company also investigated generating electricity through on-site renewable energy. jcpenney is a partner in the U.S. Environmental Protection Agency (EPA) ENERGY STAR Commercial Buildings Program, and has been tracking building energy use since 2006 using EPA's free benchmarking tool, Portfolio Manager. Portfolio Manager provides a 1-100 energy performance score similar to a "miles-per-gallon" metric for vehicle fuel efficiency. Those buildings that achieve an ENERGY STAR score

294

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

8 8 Number of Construction Employees and Total Employees for Select Building Envolope Industries (Thousand Employees) Poured Concrete Foundation and Structure Contractors (NAICS 238110) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Masonry Contractors (NAICS 238140) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Roofing Contractors (NAICS 238160) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Drywall and Insulation Contractors (NAICS 238310) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Painting and Wall Covering Contractors (NAICS 238320) -Total Employment -Construction/Extraction Occupations

295

RSE Table 10.12 Relative Standard Errors for Table 10.12  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and...

296

INADVERTENT INTRUDER ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

An On-Site Alternative is being evaluated as part of the Remedial Investigation and Feasibility Study (RI/FS) process for evaluation of alternatives for the disposal of waste generated from decontamination and decommissioning (D&D) at Portsmouth. The On-Site Alternative involves construction of an On-Site Waste Disposal Facility (OSWDF). An inadvertent intruder analysis must be conducted for the OSWDF. The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Therefore, after active institutional control ceases, certain exposure scenarios are assumed to be precluded only by the physical state of the disposal facility, i.e., the integrity of the engineered barriers used in facility construction or the thickness of clean material above the waste. Passive institutional controls, such as permanent marker systems at the disposal site and public records of prior land use, also could prevent inadvertent intrusion after active institutional control ceases, but the efficacy of passive institutional controls is not assumed in this analysis. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr.

Smith, F.; Phifer, M.

2013-09-30T23:59:59.000Z

297

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

298

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

299

Fractional domain walls from on-site softening in dipolar bosons  

E-Print Network (OSTI)

We study dipolar bosons in a 1D optical lattice and identify a region in parameter space---strong coupling but relatively weak on-site repulsion---hosting a series of stable charge-density-wave (CDW) states whose low-energy excitations, built from "fractional domain walls," have remarkable similarities to those of non-Abelian fractional quantum Hall states. Here, a conventional domain wall between translated CDW's may be split by inserting strings of degenerate, but inequivalent, CDW states. Outside these insulating regions, we find numerous supersolids as well as a superfluid regime. The mentioned phases should be accessible experimentally and, in particular, the fractional domain walls can be created in the ground state using single-site addressing, i.e., by locally changing the chemical potential.

Emma Wikberg; Jonas Larson; Emil J. Bergholtz; Anders Karlhede

2011-09-15T23:59:59.000Z

300

Utility investment in on-site solar: risk and return analysis for capitalization and financing  

DOE Green Energy (OSTI)

A set of financial strategies designed to accelerate the penetration of on-site solar heating and cooling systems are studied. The approach of portfolio theory or the capital asset pricing model (CAPM) is used. The major features of the CAPM is summarized including a survey of those applications which are most relevant to the analysis. These include utility return on equity calculations and project evaluation techniques. How to apply empirical results is discussed based on CAPM methods. In particular, applications to the capitalization variant of the utility investment strategy and the financing variant are distinguished. Subsidization rationales are also discussed. Empirical results to date are summarized, including estimation problems for the various risk measures. The general problem of financial risk assessment for energy technologies is reviewed. (MHR)

Kahn, E.; Schutz, S.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

table11.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002; 3 Electricity: Components of Onsite Generation, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood RSE NAICS Total Onsite and Row Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Factors Total United States RSE Column Factors: 0.9 0.8 1.1 1.3 311 Food 5,622 5,375 0 247 12.5 311221 Wet Corn Milling 2,755 2,717 0 38 2.6 31131 Sugar 1,126 1,077 0 48 1 311421 Fruit and Vegetable Canning 388 W 0 W 1 312 Beverage and Tobacco Products W W * 1 1.6 3121 Beverages W W * * 3.8 3122 Tobacco W W 0 1 1 313 Textile Mills W 138 W W 11.9 314 Textile Product Mills 55 49 Q * 2.1

302

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

303

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

304

311221," Wet Corn Milling",0,0,"X",0  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 11.3;" 3 Relative Standard Errors for Table 11.3;" " Unit: Percents." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",2.8,1.1,86.8,37.8 3112," Grain and Oilseed Milling",0.7,0.7,"X",0 311221," Wet Corn Milling",0,0,"X",0 31131," Sugar Manufacturing",0,0,"X",0 3114," Fruit and Vegetable Preserving and Specialty Foods ",1.2,1.2,"X",44.1

305

"RSE Table N13.1. Relative Standard Errors for Table N13.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N13.1;" 1. Relative Standard Errors for Table N13.1;" " Unit: Percents." " "," " " "," ",,,,"Sales and","Net Demand" "NAICS"," ",,,"Total Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" , 311,"Food",1,1,1,8,1 311221," Wet Corn Milling",0,0,0,0,0 312,"Beverage and Tobacco Products",4,0,1,0,4 313,"Textile Mills",2,8,7,0,2 313210," Broadwoven Fabric Mills",3,0,22,0,3 314,"Textile Product Mills",11,73,8,90,11

306

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

307

A C. elegans-based foam for rapid on-site detection of residual live virus.  

Science Conference Proceedings (OSTI)

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

2012-02-01T23:59:59.000Z

308

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

309

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

Science Conference Proceedings (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

310

The Energy Resource Center: On-Site Technical Assistance and Training Programs for Texas School Districts  

E-Print Network (OSTI)

Created by the 68th Session of the Texas Legislature, the Energy Resource Center for Texas Schools (ERC) is the primary source of facility management services for Texas School districts. The purpose of the ERC is to assist school districts in controlling a major operational expense -- the cost of energy -- through tailoring and implementing services to meet "real world" needs. On-site services available from the ERC range from basic training in analyzing utility bills, tracking energy consumption and costs, and evaluating school energy performance to providing professional technical assistance in identifying and implementing lower cost energy investments. A design assistance program now available from the Center provides energy evaluations at crucial steps in the design process of new facilities to insure that energy-conscious strategies are considered by the architectural firm under contract. Audiences targeted for ERC services include board members, superintendents, directors of maintenance, plant operators, business managers, and energy managers. Assistance provided through workshop settings includes instruction in setting up board-directed energy programs and the sponsoring of network meetings for school energy managers in several areas of the state. Communication is maintained with school energy contacts through the ERC's bimonthly newsletter, Texas School Energy Notes, which is sent to all school districts in the state.

Roberts, M.; Sanders, M.

1988-01-01T23:59:59.000Z

311

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

312

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

313

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

314

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

315

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

316

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

'2010 Manufacturing Energy Consumption" "Survey,' and Office of Petroleum and Biofuels Statistics, Form EIA-810," "Monthly Refinery Report' for 2010." "Released: July 2013...

317

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

'2010 Manufacturing Energy" "Consumption Survey,' and Office of Petroleum and Biofuels Statistics," "Form EIA-810, 'Monthly Refinery Report' for 2010." "Released: July 2013...

318

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

l","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Fact...

319

" Row: NAICS Codes; Column: Energy-Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

3314," Nonferrous Metals, except Aluminum",2522.1,5.7,2 331419," Primary Smelting and Refining of Nonferrous Metals, except Copper and Aluminum",8897.6,18.1,9.2 3315,"...

320

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1,"*","*",5,"*",4,"*",23 327420," Gypsum",85,1845,"*","*",74,"*",0,0,2 327993," Mineral Wool",50,3978,0,"*",33,"*",0,"*","*" 331,"Primary Metals",1910,133236,3,1,610,1,17,9,133...

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

and",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","...

322

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

sidual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural...

323

Identifying Technology Flows and Spillovers Through NAICS ...  

Science Conference Proceedings (OSTI)

... Refrigeration LNG for Vehicular Fuel ... 2 Storage Battery Manufacturing 2 ... 1 Military Armored Vehicle, Tank, and Tank Component Manufacturing 2 ...

2006-05-04T23:59:59.000Z

324

Nuclear Maintenance Applications Center: Guide for the Performance of OnSite and Vendor Shop Inspections of Electric Motors  

Science Conference Proceedings (OSTI)

The power industry is experiencing a loss of expertise as its workforce ages. Compounding the problem is that many plants find that there is limited time to train new workers. Periodically, station and corporate motor specialists are asked to perform inspections of on-site motors to maintain a level of equipment reliability or to perform inspections for customers at vendor motor shops. This report should prove valuable during visual inspections of electric motors.

2008-12-19T23:59:59.000Z

325

Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory  

SciTech Connect

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

Smith, R.J.

1998-03-31T23:59:59.000Z

326

Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory  

Science Conference Proceedings (OSTI)

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

Adkins, H.E.

1996-10-29T23:59:59.000Z

327

Buildings Energy Data Book: 5.9 On-Site Power  

Buildings Energy Data Book (EERE)

Mover Northeast South Midwest West Total Combustion Turbine Reciprocating Engine Fuel Cell Microturbine BoilerSteam Turbine Other Total Source(s): 1,238 783 1,326 1,008 4,355...

328

Buildings Energy Data Book: 5.9 On-Site Power  

Buildings Energy Data Book (EERE)

4 Installed Combined Heat and Power Capacity as of 2011, Selected Building Type and Census Region (MW) South West Total Total Source(s): 1,238 783 1,326 1,008 4,355 Energy and...

329

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

330

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

331

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 1: Assessment of Short-Term Opportunities and Long-Run Pot ential  

Science Conference Proceedings (OSTI)

On-site septic systems have traditionally been considered a temporary solution on the way to sewering. However, the elimination of federal grants for sewers and wastewater treatment plants has brought a new awareness of the high costs and the sometimes adverse environmental consequences of centralized point discharges. At the same time, advances in on-site technologies, including such systems as low-flow water conservation, watertight septic tanks with screens, sand filtration, disinfection, remote monit...

2000-09-27T23:59:59.000Z

332

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

333

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

334

RSE Table N1.1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" 1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

335

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

336

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

337

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

338

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

339

Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections  

Science Conference Proceedings (OSTI)

The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI. Finally, an appendix provides detail describing the magnitude and spatial extent of the surface shock expected from an underground nuclear explosion. If there is a seismic event or other data to suggest there has been a nuclear explosion in violation of the CTBT, an OSI may be conducted to determine whether a nuclear explosion has occurred and to gather information which may be useful in identifying the party responsible for conducting the explosion. The OSI must be conducted in the area where the event that triggered the inspection request occurred, and the inspected area must not exceed 1,000 square kilometers, or be more than 50 km on aside (CTBT Protocol, Part II, Paragraphs 2 and 3). One of the guiding principles for an inspection is that it be effective, minimally intrusive, timely, and cost-effective [Hawkins, Feb 1998]. In that context, MSIR is one of several technologies that can be used during an aircraft overflight to identify ground regions of high interest in a timely and cost-effective manner. This allows for an optimized inspection on the ground. The primary purpose for MSIR is to identify artifacts and anomalies that might be associated with a nuclear explosion, and to use the location of those artifacts and anomalies to reduce the search area that must be inspected from the ground. The MSIR measurements can have additional utility. The multi-spectral measurements of the ground can be used for terrain classification, which can aid in geological characterization of the Inspected Area. In conditions of where light smoke or haze is present, long-wave infrared imaging can provide better imaging of the ground than is possible with standard visible imagery.

Henderson, J R

2010-10-26T23:59:59.000Z

340

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

342

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

343

Customer adoption of small-scale on-site power generation  

E-Print Network (OSTI)

applied in some cases 6 Standby charge in $/kW/month thatDER investment cost, total standby charges, and minus the50Turnkey HighNatG LowNatG Standby C. IntRate k 290 W 280

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-01-01T23:59:59.000Z

344

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

345

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

346

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

347

Project RU LlSON COPY ON-SITE RADIOLOGICAL PROGRAMS DURING REENTRY DISILLING THROUGH PRODUCTION TESTING  

Office of Legacy Management (LM)

RU LlSON RU LlSON COPY ON-SITE RADIOLOGICAL PROGRAMS DURING REENTRY DISILLING THROUGH PRODUCTION TESTING FINAL REPOAT EBERLlNE INSTRUMENT CORPORATION Santa Fe, New Mexico Date Published - December 1973 PREPARED FOR THE U. S. ATOMIC ENERGY COMMISSION N E V A D A OPERATIONS OFFICE UNDER CONTRACT NO. AT(26-11-294 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Project RULISON ON-S1l'E RADIOLOGICAL PROGRAMS D U R I N G R E E N T R Y D R I L L I N G THROUGH PRODUCTION TESTING \ F I N A L REPORT EBERLINE INSTRUMENT CORPORATION . Santa Fe, New Mexico 1 Date Published - December 1973 NEVADA OPERATIONS OFFICE . UNDER CONTRACT NO. AT(26-11-294 NOTICE ~~~~ This report was prepared as an account of work sponsored by the United

348

A Discussion of Procedures and Equipment for the Comprehensive Test Ban Treaty On-Site Inspection Environmental Sampling and Analysis  

SciTech Connect

This paper is intended to serve as a scientific basis to start discussions of the available environmental sampling techniques and equipment that have been used in the past that could be considered for use within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspections (OSI). This work contains information on the techniques, equipment, costs, and some operational procedures associated with environmental sampling that have actually been used in the past by the United States for the detection of nuclear explosions. This paper also includes a discussion of issues, recommendations, and questions needing further study within the context of the sampling and analysis of aquatic materials, atmospheric gases, atmospheric particulates, vegetation, sediments and soils, fauna, and drill-back materials.

Wogman, Ned A.; Milbrath, Brian D.; Payne, Rosara F.; Seifert, Carolyn E.; Friese, Judah I.; Miley, Harry S.; Bowyer, Ted W.; Hanlen, Richard C.; Onishi, Yasuo; Hayes, James C.; Wigmosta, Mark S.

2011-02-01T23:59:59.000Z

349

Wackenhut Services, Incorporated: Report from the DOE Voluntary Protection Program onsite review, August 10--14, 1998  

SciTech Connect

This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team`s findings from the five-day onsite evaluation of Wackenhut Services, Inc. (WSI) at Savannah River Site (SRS), conducted August 10-14, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five DOE-VPP tenets. The Team determined that WSI has met in varying degrees, all the tenets of the DOE-VPP. In every case, WSI programs and procedures exceed the level or degree necessary for compliance with existing standards, DOE Orders, and guidelines. In addition, WSI has systematically integrated their occupational safety and health (OSH) program into management and work practices at all levels. WSI`s efforts toward implementing the five major DOE-VPP tenets are summarized.

1999-05-01T23:59:59.000Z

350

Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty  

E-Print Network (OSTI)

On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,{\\alpha})37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

C. E. Aalseth; A. R. Day; D. A. Haas; E. W. Hoppe; B. J. Hyronimus; M. E. Keillor; E. K. Mace; J. L. Orrell; A. Seifert; V. T. Woods

2010-08-04T23:59:59.000Z

351

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

352

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

353

Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

354

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

355

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

356

Evaluation of fracturing results in deviated wellbores through on-site measurements  

SciTech Connect

Four adjacent oil wells in the Kuparuk River oil field, with deviated angles of 6{sup 0}5', 24{sup 0}6', 27{sup 0} and 36{sup 0}7' from the vertical at the perforations, were analyzed with prefracturing tests. The total fluid volume for these tests varied from 645 to 840 bbl(103 to 134 m/sup 3/) of either clean lease oil or water-based fracturing fluid at low to intermediate rates (up to 15bbl/min(2.4m/sup 3/)). These wells were subsequently fractured with proppant-laden fluid. A series of instantaneous shut-in pressures (ISIO's) was obtained for each well. ISIP's and fracturing pressures decreased with time in two of the four wells with a relatively high friction pressure at the end of the pumping. A radially propagating fracture from a point source of pressure explains this decreasing pressure with time. The elasticity theory predicts that a fracture in a deviated, cased wellbore should intersect the wellbore at one location. Only when the deviated wellbore azimuth is near that of the fracture orientation does the fracture sweep the entire perforated zone. This observation of the fracture orientation relative to the wellbore azimuth based on the pressure analysis is enhanced further by postfracture temperature surveys. It appears that only a relatively small volume of proppant could be displaced in a deviated wellbore. The degree of deviation, however, did not appear to be a major concern in the treatment of size.

Kim, C.M. (Halliburton Services, Duncan, OK (USA)); Champion, J.H. (Arco Alaska Inc. (US)); Cooper, G.D. (Guydon Software Services (US))

1989-08-01T23:59:59.000Z

357

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

358

On the role of external combustion engines for on-site power generation  

SciTech Connect

Stationary external combustion engines are prime movers that have potential for becoming viable power generation machines in both the residential/commercial and industrial sectors. These large engines are being developed with the capability to employ alternative and/or non-scarce fuels. Energy sources under consideration include coal, coal derived liquids and gases, low-grade petroleum residues, biomass, and municipal wastes. Advantages of external combustion engines relative to conventional prime movers are: greater fuel efficiency, reduced environmental impacts (noise and emissions), and a high degree of fuel flexibility. External combustion engines include steam turbines, Stirling cycle engines, and externally-fired Brayton gas turbines. Among the various applications for external combustion engines are: total energy plants, ICES, industrial cogeneration, small municipal generating plants, and pumping stations. It is not necessary for all the heat supplied an external combustion engine to come from a single source. Various non-coal sources that can be used either independently or integrated with others to supply heat to external combustion engines include solar energy, municipal wastes, biomass, and geothermal. Stirling engine based systems are described. The development of the Stirling engine is briefly discussed. (MCW)

Holtz, R.E.; Uherka, K.L.

1979-01-01T23:59:59.000Z

359

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

360

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

362

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

363

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

364

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

365

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

366

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

367

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

368

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

369

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

370

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

371

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

372

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

373

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

374

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

375

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

376

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

377

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

378

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

379

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

380

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

382

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

383

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

384

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

385

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

386

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

387

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

388

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

389

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

390

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

391

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

392

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

393

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

394

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

395

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

396

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

397

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

398

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

399

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

400

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

402

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

403

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

404

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

405

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

406

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

407

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

408

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

409

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

410

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

411

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

412

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

413

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

414

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

415

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

416

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

417

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

418

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

419

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

420

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

422

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

423

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

424

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

425

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

426

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

427

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

428

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

429

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

430

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

431

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

432

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

433

Benchmarking of RESRAD-OFFSITE : transition from RESRAD (onsite) toRESRAD-OFFSITE and comparison of the RESRAD-OFFSITE predictions with peercodes.  

SciTech Connect

The main purpose of this report is to document the benchmarking results and verification of the RESRAD-OFFSITE code as part of the quality assurance requirements of the RESRAD development program. This documentation will enable the U.S. Department of Energy (DOE) and its contractors, and the U.S. Nuclear Regulatory Commission (NRC) and its licensees and other stakeholders to use the quality-assured version of the code to perform dose analysis in a risk-informed and technically defensible manner to demonstrate compliance with the NRC's License Termination Rule, Title 10, Part 20, Subpart E, of the Code of Federal Regulations (10 CFR Part 20, Subpart E); DOE's 10 CFR Part 834, Order 5400.5, ''Radiation Protection of the Public and the Environment''; and other Federal and State regulatory requirements as appropriate. The other purpose of this report is to document the differences and similarities between the RESRAD (onsite) and RESRAD-OFFSITE codes so that users (dose analysts and risk assessors) can make a smooth transition from use of the RESRAD (onsite) code to use of the RESRAD-OFFSITE code for performing both onsite and offsite dose analyses. The evolution of the RESRAD-OFFSITE code from the RESRAD (onsite) code is described in Chapter 1 to help the dose analyst and risk assessor make a smooth conceptual transition from the use of one code to that of the other. Chapter 2 provides a comparison of the predictions of RESRAD (onsite) and RESRAD-OFFSITE for an onsite exposure scenario. Chapter 3 documents the results of benchmarking RESRAD-OFFSITE's atmospheric transport and dispersion submodel against the U.S. Environmental Protection Agency's (EPA's) CAP88-PC (Clean Air Act Assessment Package-1988) and ISCLT3 (Industrial Source Complex-Long Term) models. Chapter 4 documents the comparison results of the predictions of the RESRAD-OFFSITE code and its submodels with the predictions of peer models. This report was prepared by Argonne National Laboratory's (Argonne's) Environmental Science Division. This work is jointly sponsored by the NRC's Office of Nuclear Regulatory Research and DOE's Office of Environment, Safety and Health and Office of Environmental Management. The approaches and or methods described in this report are provided for information only. Use of product or trade names is for identification purposes only and does not constitute endorsement either by DOE, the NRC, or Argonne.

Yu, C.; Gnanapragasam, E.; Cheng, J.-J.; Biwer, B.

2006-05-22T23:59:59.000Z

434

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

435

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

436

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

437

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;"...

438

,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.7;" " Unit: Percents." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

439

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

440

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems  

E-Print Network (OSTI)

1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

American Society for Testing and Materials. Philadelphia

1987-01-01T23:59:59.000Z

442

Visual Sample Plan (VSP) Statistical Software as Related to the CTBTOs On-Site Inspection Procedure  

SciTech Connect

In the event of a potential nuclear weapons test the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is commissioned to conduct an on-site investigation (OSI) of the suspected test site in an effort to find confirmatory evidence of the nuclear test. The OSI activities include collecting air, surface soil, and underground samples to search for indications of a nuclear weapons test - these indicators include radionuclides and radioactive isotopes Ar and Xe. This report investigates the capability of the Visual Sample Plan (VSP) software to contribute to the sampling activities of the CTBTO during an OSI. VSP is a statistical sampling design software, constructed under data quality objectives, which has been adapted for environmental remediation and contamination detection problems for the EPA, US Army, DoD and DHS among others. This report provides discussion of a number of VSP sample designs, which may be pertinent to the work undertaken during an OSI. Examples and descriptions of such designs include hot spot sampling, combined random and judgment sampling, multiple increment sampling, radiological transect surveying, and a brief description of other potentially applicable sampling methods. Further, this work highlights a potential need for the use of statistically based sample designs in OSI activities. The use of such designs may enable canvassing a sample area without full sampling, provide a measure of confidence that radionuclides are not present, and allow investigators to refocus resources in other areas of concern.

Pulsipher, Trenton C.; Walsh, Stephen J.; Pulsipher, Brent A.; Milbrath, Brian D.

2010-09-01T23:59:59.000Z

443

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

444

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

445

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

446

Interim On-Site Storage of Low-Level Waste: Volume 3, Part 2: User's Manual and Lotus Spreadsheet for Estimating LLW Volumes and Act ivities  

Science Conference Proceedings (OSTI)

This volume of the "Interim On-Site Storage" report series supplements Volume 3, Part 1, "Waste Volume Projections and Data Management." Because that volume includes an extensive methodology and a number of worksheets requiring many calculations, users requested a computer program for easily storing, managing, and manipulating applicable data. Volume 3, Part 2 consists of a user's manual and a Lotus spreadsheet macro to meet this utility need.

1993-11-01T23:59:59.000Z

447

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

448

The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report  

SciTech Connect

The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

Carrigan, C.R.

1994-03-01T23:59:59.000Z

449

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

450

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Computer Clusters High-Performance Computer Clusters High-performance computing infrastructure and partnerships with regional science consortiums allow NETL scientists to determine a wide range of physical and chemical properties – from nanoscale molecular studies to the feasibility of commercial-scale power plants. Computer modeling provides answers where actual experimental data would be difficult and costly to obtain. For example, computer models simulating a proposed coal-based transport gasifier plant are helping to address scale-up design and performance issues before the plant becomes operational. Computational chemistry analysis allows for the screening of specific materials for specific purposes, such as future hydrogen production. Three computer clusters (256-CPU, 232-CPU and 128-CPU) at NETL compare to supercomputers listed in the top 500 in the world.

451

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Reciprocating Engine Laboratory Reciprocating Engine Laboratory NETL's reciprocating engine laboratory focuses on research to enable high efficiency, cleaner burning engines for America 's future. Some of the laboratory's activities are development of laser spark ignition systems, hydrogen engine operation, partial oxidation engine operation, and diesel engine particulate studies. Researchers in NETL's Office of Science and Engineering Research investigate end-use applications for hydrogen fuel in reciprocating engines, as well as gas turbines and fuel cell technologies in support of DOE's goal to develop strategies for reduced carbon emissions. The use of hydrogen in reciprocating engines also offers the potential for substantial reductions in NO x emissions and provides a platform for power generation from future coal-derived hydrogen fuels.

452

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Manometric Sorption Test Facility Manometric Sorption Test Facility One of today's pressing issues associated with fossil fuel consumption is how to curb greenhouse gas emissions, chiefly CO2. NETL research focuses on ways to capture CO2 from power plant fuel streams and flue stack emissions, and safely store (or sequester) it into geological formations such as coal bed strata , natural gas fields, or saline formations. NETL's Manometric Sorption Test Facility aids these efforts by applying elevated temperature (from 55ºC to 300ºC) and pressure (up to 3,000 psig) to coal samples. Under these conditions, researchers study changes to the CO2 or other fluids being absorbed or adsorbed by the sample, all with a precision of 0.1 psi. In this manner, the sorbent capacity of a particular coal sample can be calculated and its usefulness for future carbon sequestration can be gauged.

453

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal By-Products Laboratories Coal By-Products Laboratories As part of NETL's focus on clean fossil power systems, the Coal By-products Laboratories are dedicated to resolving environmental issues associated with residues and by-products from coal combustion. These facilities provide valuable data about Coal Utilization By-products (CUB) from both conventional and advanced power plants. Data from these laboratories are able to show improvements inherent in new combustion technologies compared to conventional plants, with respect to the nature of combustion residues and CUBs. Under current practice, power plant operators collect residues and safely dispose of them or recover them for sale and re-use. Developing more effective procedures for using and disposing of these materials requires accurate information on the potential for these materials to leach into soil after disposal, and the chemical and physical characteristics of the residues. The data NETL has collected through this research has provided important science that supports regulatory decisions related to CUB.

454

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanics and Flow Laboratory Geomechanics and Flow Laboratory NETL's Geomechanics and Flow Laboratory is a multi-functional, state-of-the-art facility that performs a wide spectrum of geological studies and provides an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not limited to: long term (months or even years) exposure of geological samples to specific conditions (for example, CO2 saturation of samples at elevated pressure and temperature); and the study of various geomechanical properties and behavior of fluids in the samples, including fluid-solid and fluid-fluid physical and chemical interactions. The laboratory has a wide range of tools and instruments to ensure a complete cycle of scientific studies: from preparation of representative samples, through the preliminary measurements of basic properties, to the advanced investigation of the processes of interest under simulated subsurface conditions.

455

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Spectroscopy Laboratory Laser Spectroscopy Laboratory Laser Spectroscopy Laboratory NETL's Laser Spectroscopy Laboratory uses optical diagnostic techniques to improve combustion processes including those for advanced gas turbine engines. Highly efficient combustion of fossil fuels is essential to achieving clean power generation, a national strategic goal. Since many power plants use gas turbines to generate electricity, the next generation of gas turbines must be capable of satisfying increasingly stringent emissions requirements. In addition, properties of natural gas vary based on geographical location, and fuel supplies may be piped to a facility from a number of locations. Therefore, the engine must be able to compensate for variations in fuel properties that would otherwise cause it to produce excessively high levels of regulated emissions. The use of laser diagnostics is an excellent mechanism to study fluid mechanics and combustion processes in place, while avoiding unwanted disturbances to the system being studied. Researchers seek to isolate particular phenomena that contribute to fluctuations in heat release, by studying combustion flows in simplified systems that are smaller than commercial-sized units but that have similar combustion processes and characteristics.

456

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Combustion Laboratory Fundamental Combustion Laboratory To help meet a national strategic commitment to clean power generation, NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants. At NETL, combustion science research is helping to provide the basis for a new generation of advanced fossil fuel conversion technologies that are needed to meet future demands for efficient, clean, and cost-effective energy production. Combustion science researchers are able to study fundamental combustion processes and properties at a laboratory scale, using advanced laser-based systems. Researchers also use a natural gas combustion apparatus that has been adapted to study a variety of fuel types and power systems. Taking this fundamental research the next step, researchers find that, when applied to reciprocating engines, laser-induced spark ignition can achieve leaner air/fuel running conditions by significantly lowering combustion temperatures, which reduces the amount of pollutants produced such as NOx.

457

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Autoclave Test Facility Autoclave Test Facility To help meet a national strategic commitment to clean power generation, NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants. Environmental and geosciences researchers perform laboratory-scale studies of solid, liquid, and gaseous flows and their interactions. These studies may be performed, for example, to determine the suitability of flue gases for capture and storage (sequestration) in industrial wastes after release from coal fired power plants. NETL has available a wide range of analytical and diagnostic instrumentation to support these studies. Half-liter and one-liter continuously stirred autoclave reactors are ideal for investigations involving gas/liquid or gas/slurry interactions, and are equipped with CO2, SO2, and flue gas feed lines. Each of these units is manufactured by Progressive Equipment Corporation and has a pressure rating of 6,000 psig @ 650ºF. The one-liter reactor is equipped with a high-pressure pH meter capable of measurement at pressures of up to 900 psi, and is configured with an in-situ pH meter. A simplified schematic representation of the one-liter reactor apparatus is shown below.

458

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Separation Facilities Hydrogen Separation Facilities NETL is working to help produce and deliver hydrogen from fossil fuels including coal in commercially applicable, environmentally acceptable ways. To achieve this strategic national goal, advanced hydrogen separation technologies are needed to supply tomorrow's energy and transportation systems with affordable hydrogen fuel. NETL's Hydrogen Separation Group investigates, evaluates, and develops hydrogen separation membranes and materials. Researchers are focused on developing stable and robust membranes that are suitable for the rapid, selective removal of hydrogen from mixed gas streams. These membranes also must be resistant to chemical impurities such as sulfur, an abundant component of coal and a key feedstock for producing hydrogen.

459

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory NETL's research, development, and demonstration initiatives are leading to improved operations of coal-based power systems, and future power supplies that are environmentally clean and economically affordable. One method NETL researchers are using is advanced computational and experimental research, which is helping to develop novel technologies, including transport gasifiers, circulating fluidized-bed combustors, and hot gas desulfurization. Enhanced computational capabilities are leading to major improvements in power plant efficiency, and therefore to reduced emissions. Transport gasifier and MFIX showing particle trajectories and oxygen concentration. MFIX simulations complement testing and development at the DOE demonstration Power System Development Facility (PSDF) in Wilsonville, Alabama (shown above). Coal and recycled materials feed into the lower mixing zone of the plant's circulating fluidized-bed. The validated simulation model is currently being used to design a commercial-scale unit.

460

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent and Catalyst Preparation Facilities Sorbent and Catalyst Preparation Facilities NETL researchers are seeking technical solutions to pressing problems related to fossil fuel extraction, processing, and utilization. To this end, laboratory-scale facilities are used to prepare, test, and analyze sorbents and catalysts used in fixed-, moving-, and fluid-bed reactors — three types of reactors often used in advanced fossil-fueled power plants. Equipment in these facilities is also available for standard American Society for Testing and Materials (ASTM) attrition tests, crush measurements, and particle size analysis to confirm the suitability of the sorbents and catalysts for their intended applications. NETL researchers use these facilities in conjunction with facilities for sorbent/catalyst bench-scale testing and for in-situ (in-place) reaction studies. In 2000, NETL received an R&D 100 Award for its RSV-1 Regenerable Desulfurization Sorbent. The process for preparation of this sorbent has been patented, licensed, and published.

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Division - The Hybrid Performance Facility Energy System Dynamics Division - The Hybrid Performance Facility The Hybrid Performance Facility — called the Hyper facility — is now fully operational at the Department of Energy's National Energy Technology Laboratory (NETL). This one-of-a-kind facility, developed by NETL's Office of Science and Technology, will be used to develop control strategies for the reliable operation of fuel cell/turbine hybrids. - NETL's Fuel Cell/Turbine Hybrid Facility - The Hyper facility allows assessment of dynamic control and performance issues in fuel cell/turbine hybrid systems. Combined systems of turbines and fuel cells are expected to meet power efficiency targets that will help eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for

462

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Device Scale Modeling Device Scale Modeling Device Scale Modeling (DSM) at NETL is helping to overcome technical barriers associated with developing next-generation fossil energy technologies and processes. This research facility uses state-of-the-art, high-speed computing resources to verify computational fluid dynamics (CFD) models used to study coal gasifiers, gas turbine combustors, solid oxide fuel cell (SOFC) systems, and liquefied natural gas plumes, as well as mercury capture technologies. DSM research is helping to move advanced visualization and high-performance computing models from researchers' computer screens to actual laboratory experiments and pilot testing. The DSM group develops models that can be integrated into a wide range of simulation technology, including Advanced Process Engineering Co-Simulator (APECS) and Multiphase Flow with Interphase eXchanges (MFIX). These simulators are enabling researchers to model and understand the behavior of individual components within advanced power generation systems.

463

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid-Bed Gasifier/Modular Gas Cleanup Rig Fluid-Bed Gasifier/Modular Gas Cleanup Rig NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants including FutureGen. One of the promising technologies NETL is pursuing is advanced fluidized-bed combustion (FBC). Pressurized FBC (PFBC) systems use a mixture of burning coal, a sorbent such as limestone or dolomite, and jets of air to produce a high-pressure gas stream at temperatures that can drive a gas turbine. Steam generated from the heat in the fluidized bed may be sent to a steam turbine, creating a highly efficient combined-cycle system. Removing and recovering particulates and contaminants from the gas and steam are accomplished in treatment vessels once combustion has occurred. PFBC may also play a role in hydrogen fuel production.

464

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Pressure Combustion Facility High-Pressure Combustion Facility NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the fuel test capabilities needed to evaluate new high-pressure, high-temperature hydrogen turbine combustion concepts that will be required in order to meet national goals for the FutureGen initiative. FutureGen-type power systems will require gas turbine combustion systems capable of burning hydrogen or hydrogen-rich fuels with high efficiency and with low nitrogen oxide (NOx) emissions of 2 parts per million by volume (ppmv) or less. NETL's researchers are developing alternative methods, sensors, and control capabilities necessary to reach stable combustion under demanding conditions and thereby meet these emissions targets.

465

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

ensures optimal power plant performance by matching physical properties and reaction rates in both types of models. APECS is playing a key role in the design of FutureGen, an...

466

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

in freshwater and saltwater environments. Understanding the physical, chemical, and thermodynamic characteristics of CO2 in such environments is necessary in order to develop...

467

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

of Methane to Higher Hydrocarbons, U.S. Patent No. 5177294, Jan. 1993. Licenses: Sud Chemie, Inc. (formerly United Catalysts, Inc. UCI) - A license was signed with UCI to...

468

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

phase Cold vapor atomic absorption spectrophotometer analyzes spent sorbent Operating temperature: ambient to 750F For more information, contact Evan Granite Evan Granite in Lab...

469

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to cutting edge technologies, including CO2 storage and energy-efficient fossil fuel utilization. It operates in conjunction with facilities for sorbentcatalyst bench-scale...

470

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

technique also has been shown effective in enhancing oil recovery and displacing coal bed methane. The CT Scanner Laboratory provides imaging data that can be used for computer...

471

On-Site Services  

Science Conference Proceedings (OSTI)

... the Boulder Laboratories Employees Association ... a variety of health services including emergency ... emergency ambulance service; administration of ...

2010-12-21T23:59:59.000Z

472

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

tomorrow's systems to perform with near-zero emissions. Highly efficient combustion of fossil fuels is essential to achieving clean power generation, a national strategic goal....

473

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

using analytical instruments to study in-situ (in-place) reactions of solid and gaseous fossil fuels such as coal and coal derivatives. These studies are important to developing...

474

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

and military applications. Researchers can evaluate alternative solid oxide fuel cell (SOFC) technologies with respect to energy output and efficiency. A range of system-level...

475

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

There, scientists investigate theoretical and fundamental phenomena in support of fossil fuel program requirements and advanced technology development. Researchers use these...

476

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

used to demonstrate visualization capabilities at conferences. The system consists of a passive stereo screen that is six-feet wide and four-feet high. The screen and frame are...

477

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

478

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

479

Table A13. Total Consumption of Offsite-Produced Energy for...  

U.S. Energy Information Administration (EIA) Indexed Site

of energy originally produced offsite," "acquired as a result of a purchase or transfer and consumed onsite for the" "production of heat and power. This definition is...

480

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

Note: This page contains sample records for the topic "naics total onsite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

482

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

483

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

484

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

485

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

486

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

487

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

488

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

489

table1.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE NAICS Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 230 13 19 582 5 184 1 89 0 6.8 311221 Wet Corn Milling 217 23 * * 61 * 121 0 11 0 1.1 31131 Sugar 112 2 2 1 22 * 37 1 46 0 0.9 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 0 11 312 Beverage and Tobacco Products 105 26 2 2 46 1 17 0 11

490

Table 11.1 Electricity: Components of Net Demand, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010; 1.1 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 75,652 21 5,666 347 80,993 3112 Grain and Oilseed Milling 16,620 0 3,494 142 19,972 311221 Wet Corn Milling 7,481 0 3,213 14 10,680 31131 Sugar Manufacturing 1,264 0 1,382 109 2,537 3114 Fruit and Vegetable Preserving and Specialty Foods 9,258 0 336 66 9,528 3115 Dairy Products 9,585 2 38 22 9,602 3116 Animal Slaughtering and Processing 20,121 15 19 0 20,155 312 Beverage and Tobacco Products

491

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q 126 0 47 * 311221 Wet Corn Milling 215 25 * * 53 * 110 0 26 0 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 0 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 0 3115 Dairy Products 105 33 2 2 67

492

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

Gasoline and Diesel Fuel Update (EIA)

0 W 0 0 0 0 W 327410 Lime 4 0 W 0 4 0 0 W 327420 Gypsum 0 0 0 0 0 0 0 0 327993 Mineral Wool 9 0 W W 4 0 0 W 331 Primary Metals 299 W 5 59 64 35 30 153 331111 Iron and Steel Mills...

493

Microsoft Word - QA NAICS Code 15Jan09  

NLE Websites -- All DOE Office Websites (Extended Search)

provides a general description of the services as follows: "The personnel security program work involves numerous and varied personnel security access authorization...

494

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

495

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

496

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

497

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

498

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

499

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

500

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...