National Library of Energy BETA

Sample records for naics total acetylene

  1. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business opportunities » Top NAICS Codes Top NAICS Codes Below is a current listing of the top NAICS codes by volume and dollar value Contact Small Business Office 505-667-4419 Email Top Ten NAICS Codes Volume 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing 334111 Electronic Computer Manufacturing 325120 Industrial Gas Manufacturing 334112 Computer Storage Device Manufacturing 334519 Other Measuring and Controlling Device Manufacturing 334515 Instrument

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " ... " QWithheld because Relative Standard Error is greater than 50 percent." " ...

  3. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...rature","Processes","RSE" "NAICS"," ",,"Technology",,,..."Row" ... that reported this" "cogeneration technology in use anytime in 1998." " NFNo ...

  4. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  6. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  7. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data; " " Row: NAICS Codes;" " Column: Floorspace and ... "Code(a)","Subsector and Industry","(million sq ... because Relative Standard Error is greater than 50 ...

  8. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Selected Subsectors and ... that reported this" "cogeneration technology in use anytime in 2010." " (e) This ...

  9. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and ...

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  11. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ...

  12. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  4. Good-Bye, SIC - Hello, NAICS

    U.S. Energy Information Administration (EIA) Indexed Site

    you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry...

  5. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  6. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  12. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  13. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  14. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Reasons that Made Electricity Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million kWh. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Electricity Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Electricity Fuel Use Another Fuel the Products

  15. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  16. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million short tons. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Coal Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Coal Fuel Use Another Fuel the Products Fuel

  17. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  18. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341

  19. Level: National Data; Row: General Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.1 Number of Establishments by Participation in General Energy-Management Activities, 2010; Level: National Data; Row: General Energy-Management Activities within NAICS Codes; Column: Participation and Source of Assistance; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) In-house Utility/Energy Suppler Product/Service Provider Federal Program State/Local Program Don't Know Total United States 311 -

  20. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  1. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  2. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  3. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  4. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  5. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  6. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  7. Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7

  10. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  11. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  12. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  13. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  14. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6

  15. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  16. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  17. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  18. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  19. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping

  20. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590

  1. "NAICS Code(a)","Energy-Management Activity","No Participation...

    U.S. Energy Information Administration (EIA) Indexed Site

    8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No ... MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals ...

  2. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  3. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Foundries (NAICS 3315) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 173 34 Steam Distribution Losses 0 8 Nonprocess Energy 59 Electricity Generation Steam Generation 173 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 19 77 38 Generation and Transmission Losses Generation and Transmission Losses 0 76 96 95 2 97 114 0 2 0.0 6.6 6.6 1.8 7.2 1.9 9 2.6 9.2 0.6 Fuel Total Primary Energy, 2010 Total

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    15 * 8 * * * 0 0 0 * 325193 Ethyl Alcohol 80 3 60 0 1 * * 2 0 1 325199 Other Basic ... 4 * 2 0 0 0 0 0 0 * 325193 Ethyl Alcohol * 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  5. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    2,566 0 592 0 0 0 0 0 0 0 325193 Ethyl Alcohol 2,717 116 2,002 53 61 0 39 0 0 37 325199 ... 178 0 178 0 0 0 0 0 0 0 325193 Ethyl Alcohol 1 0 1 0 0 0 0 0 0 0 325199 Other Basic ...

  6. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 0 0 0 325193 Ethyl Alcohol 855 442 97 0 407 198 0 0 0 325199 Other ... 0 0 0 0 0 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  7. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    18 12 6 0 12 11 0 0 0 0 325193 Ethyl Alcohol 11 6 4 * 5 0 1 0 0 0 325199 Other Basic ... * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  8. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol 10 8 2 0 8 0 0 0 0 * 325199 Other Basic ... * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol 1 0 1 0 0 0 0 0 0 0 325199 Other Basic ...

  9. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    U.S. Energy Information Administration (EIA) Indexed Site

    93 85 8 0 0 85 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 0 325199 Other Basic ... 0 0 0 0 0 0 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  10. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Alumina and Aluminum (NAICS 3313) Process Energy Electricity and Steam Generation Losses Process Losses 3 Nonprocess Losses 456 105 Steam Distribution Losses 3 7 Nonprocess Energy 99 Electricity Generation Steam Generation 456 5 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 198 116 Generation and Transmission Losses Generation and Transmission Losses 2 234 214 207 13 220 351 7 10 0.4 20.3 20.8 4.2 24.0 1.3 26 5.3 26.1 0.4 Fuel Total

  11. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Cement (NAICS 327310) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 307 101 Steam Distribution Losses 1 3 Nonprocess Energy 214 Electricity Generation Steam Generation 307 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 6 237 31 Generation and Transmission Losses Generation and Transmission Losses 0 62 243 240 5 245 93 0 4 0.0 5.4 5.4 18.5 23.5 0.6 25 19.1 24.6 0.2 Fuel Total Primary Energy, 2010

  12. Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Fabricated Metals (NAICS 332) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 557 90 Steam Distribution Losses 4 35 Nonprocess Energy 174 Electricity Generation Steam Generation 557 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 80 211 127 Generation and Transmission Losses Generation and Transmission Losses 0 255 291 275 26 301 382 1 20 0.0 22.2 22.2 5.6 22.4 7.7 32 9.3 31.5 2.3 Fuel Total Primary

  13. Manufacturing Energy and Carbon Footprint - Sector: Machinery (NAICS 333), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Machinery (NAICS 333) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 288 37 Steam Distribution Losses 1 27 Nonprocess Energy 77 Electricity Generation Steam Generation 288 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 67 78 70 Generation and Transmission Losses Generation and Transmission Losses 0 141 144 139 8 147 211 1 7 0.0 12.2 12.3 1.8 8.9 6.9 16 4.2 16.4 2.0 Fuel Total Primary Energy, 2010

  14. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Textiles (NAICS 313-316) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 242 47 Steam Distribution Losses 6 12 Nonprocess Energy 59 Electricity Generation Steam Generation 242 6 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 26 84 58 Generation and Transmission Losses Generation and Transmission Losses 2 117 111 91 32 123 175 8 27 0.5 10.1 10.7 1.4 9.1 3.1 14 3.7 14.3 0.3 Fuel Total Primary Energy,

  15. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), January 2014 (MECS 2010)

    Energy Savers [EERE]

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) PDF icon steel_footprint_2012.pdf More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

    Iron and Steel (NAICS 3311, 3312) Process Energy Electricity and Steam Generation Losses Process Losses 49

  16. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  17. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United ... raw" "Natural Gas Liquids '(NGL).'" " (g) 'Other' includes net steam (the sum of ...

  18. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , ... raw" "Natural Gas Liquids '(NGL).'" " (g) 'Other' includes all other energy that was ...

  19. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , ... raw" "Natural Gas Liquids '(NGL).'" " (g) 'Other' includes net steam (the sum of ...

  20. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)","Factors" ,,"Total ... raw" "Natural Gas Liquids '(NGL).'" " (g) 'Other' includes net steam (the sum of ...

  1. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" ... See also" "Footnote 'i'." " (h) 'Shipments of Energy Sources Produced Onsite' are those ...

  2. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors" ,,"Total United States" ,"RSE ... raw" "Natural Gas Liquids '(NGL).'" " (g) 'Other' includes net steam (the sum of ...

  3. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...921,2916,1599,24,86,859 331111," Iron and Steel Mills",348,347,9,145,300,134,14,21,152 ... total inputs of energy)" "for the production of heat, power, and electricity ...

  4. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...99,1873,39,118,1341,3.6 331111," Iron and Steel Mills",771,771,5,274,448,157,21,19,159,4.2 ... total inputs of energy)" "for the production of heat, power, and electricity ...

  5. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  6. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  10. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  13. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  14. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  16. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  17. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  18. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  20. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  1. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 10.17 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from LPG to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent

  2. Thermal Conversion of Methane to Acetylene Final Report

    SciTech Connect (OSTI)

    Fincke, J.R.; Anderson, R.P.; Hyde, T.; Wright, R.; Bewley, R.; Haggard, D.C.; Swank, W.D.

    2000-01-31

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  3. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS...

    Broader source: Energy.gov (indexed) [DOE]

    Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy Use (TBtu ... Total Onsite 0 3 1 Fuel Type % of Total Natural Gas 95% Coke and Breeze 1% Distillate and ...

  4. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Energy Use (TBtu Trillion British Thermal Units) All Energy Electricity Steam Fuel Losses Total Onsite 0 3 1 Fuel Type % of Total Coal 69% Petroleum Coke ...

  5. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  6. High pressure chemistry of substituted acetylenes

    SciTech Connect (OSTI)

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  7. The reaction of acetylene with hydroxyl radicals.

    SciTech Connect (OSTI)

    Klippenstein, Stephen J.; Senosiain, Juan P.; Miller, James A.

    2005-02-01

    The potential energy surface for the reaction between OH and acetylene has been calculated using the RQCISD(T) method and extrapolated to the complete basis-set limit. Rate coefficients were determined for a wide range of temperatures and pressures, based on this surface and the solution of the one-dimensional and two-dimensional master equations. With a small adjustment to the association energy barrier (1.1 kcal/mol), agreement with experiments is good, considering the discrepancies in such data. The rate coefficient for direct hydrogen abstraction is significantly smaller than that commonly used in combustion models. Also in contrast to previous models, ketene + H is found to be the main product at normal combustion conditions. At low temperatures and high pressures, stabilization of the C{sub 2}H{sub 2}OH adduct is the dominant process. Rate coefficient expressions for use in modeling are provided.

  8. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  9. Manufacturing Energy and Carbon Footprint - Sector: Chemicals (NAICS 325), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Chemicals (NAICS 325) Process Energy Electricity and Steam Generation Losses Process Losses 381 Nonprocess Losses 4,252 871 Steam Distribution Losses 247 86 Nonprocess Energy 2,447 Electricity Generation Steam Generation 4,252 324 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 229 2,364 450 Generation and Transmission Losses Generation and Transmission Losses 126 905 2,594 1,745 1,476 3,221 1,355 450 1,095 28.5 78.6 107.2 52.4 145.9 15.4 252

  10. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Food and Beverage (NAICS 311, 312) Process Energy Electricity and Steam Generation Losses Process Losses 128 Nonprocess Losses 1,836 455 Steam Distribution Losses 104 72 Nonprocess Energy 919 Electricity Generation Steam Generation 1,836 41 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 178 835 285 Generation and Transmission Losses Generation and Transmission Losses 16 574 1,014 620 625 1,245 860 57 497 3.6 50.0 53.6 13.5 55.8 13.7 109 55.5

  11. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Forest Products (NAICS 321, 322) Process Energy Electricity and Steam Generation Losses Process Losses 530 Nonprocess Losses 3,152 1,016 Steam Distribution Losses 287 87 Nonprocess Energy 2,135 Electricity Generation Steam Generation 3,152 186 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 224 1,538 252 Generation and Transmission Losses Generation and Transmission Losses 72 507 1,762 656 1,917 2,573 759 258 1,393 16.4 45.1 61.5 10.6 64.2 9.2

  12. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Glass and Glass Products (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 294 100 Steam Distribution Losses 0 7 Nonprocess Energy 149 Electricity Generation Steam Generation 294 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 180 48 Generation and Transmission Losses Generation and Transmission Losses 0 97 196 195 2 197 145 0 1 0.0 8.4 8.4 7.3 14.3 1.7 16 7.7 16.1 0.4 Fuel

  13. Manufacturing Energy and Carbon Footprint - Sector: Petroleum Refining (NAICS 324110), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Petroleum Refining (NAICS 324110) Process Energy Electricity and Steam Generation Losses Process Losses 234 Nonprocess Losses 3,542 689 Steam Distribution Losses 150 22 Nonprocess Energy 2,873 Electricity Generation Steam Generation 3,542 150 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 59 2,734 153 Generation and Transmission Losses Generation and Transmission Losses 58 308 2,793 2,285 891 3,176 461 208 657 13.2 26.7 40.0 139.2 176.3 3.2

  14. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Plastics and Rubber Products (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 12 Nonprocess Losses 586 72 Steam Distribution Losses 8 28 Nonprocess Energy 115 Electricity Generation Steam Generation 586 1 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 64 187 156 Generation and Transmission Losses Generation and Transmission Losses 1 314 251 218 54 272 470 2 42 0.1 27.3 27.4 1.9 23.5 7.0 34 6.4 33.8 1.3 Fuel

  15. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  16. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  17. The hydrogenation of acetylene catalyzed by palladium: Hydrogen pressure dependence

    SciTech Connect (OSTI)

    Molero, H.; Bartlett, B.F.; Tysoe, W.T.

    1999-01-01

    The kinetics of acetylene hydrogenation catalyzed by a clean palladium foil at high pressures are measured and yield an activation energy of 9.6 {+-} 0.1 kcal/mol when using hydrogen. The rate exhibits a deuterium isotope effect such that the reaction activation energy is 9.0 {+-} 0.2 kcal/mol for reaction with deuterium. The hydrogen pressure reaction order is 1.04 {+-} 0.02 at 300 K with an acetylene pressure of 100 Torr and the acetylene order is {minus}0.66 at 300 K and with a hydrogen pressure of 100 Torr. These reaction kinetics closely mimic those of supported model catalysts. In addition, it is found that the rate of benzene formation is accelerated by the addition of hydrogen to the reaction mixture. This is rationalized by proposing that hydrogen enhances the coverage of acetylene under catalytic conditions. This notion can be used to successfully calculate the hydrogen pressure dependence for acetylene hydrogenation as a function of temperature, a value which varies between {approximately}1.05 and 1.3 as the temperature changes from 300 to 380 K. Possible origins for this effect are discussed.

  18. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  19. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect (OSTI)

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  20. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  1. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    SciTech Connect (OSTI)

    Andrew Michael Chubb

    2003-12-12

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  2. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect (OSTI)

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13.7 eV is discussed in terms of an exciton transfer mechanism.

  3. Table 7.1 Average Prices of Purchased Energy Sources, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar

  4. table7.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Bituminous and Coal Subbituminous Coal Petroleum NAICS TOTAL Acetylene Breeze Total Anthracite Coal Lignite Coke Coke Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (gallons) Total United States RSE Column Factors: 1.1 2.1 0.6 1 0.6

  5. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst

    SciTech Connect (OSTI)

    Larsson, M.; Jansson, J.; Asplund, S.

    1996-09-01

    In selective hydrogenation of acetylene in excess ethylene, considerable amounts of coke or {open_quotes}green oils{close_quotes} are formed and accumulate on the catalyst. A fraction of the acetylene undergoes oligomerization reactions producing C{sub 4}`s and larger hydrocarbons. Compounds larger than C{sub 8} are retained on the catalysts surface or as a condensed phase in the pore system. The reaction mechanism is largely unknown but several authors have postulated that oligomerization occurs through dissociatively adsorbed acetylene (2), i.e., C{sub 2}H(ads) and C{sub 2}(ads). In this paper a novel method of studying the coke formation on a catalyst is introduced. Deuterium is incorporated in the coke during hydrogenation of acetylene, and during temperature-programmed oxidation (TPO) experiments the deuterium content is analyzed. The objective is to shed some light on the mechanism for oligomer formation in this system. The catalyst, Pd/{alpha}-Al{sub 2}O{sub 3}, was prepared by the impregnation of {alpha}-alumina (Sued-Chemie) with a solution of Pd(NO{sub 3}){sub 2} in 30% HNO{sub 3}. 8 refs., 4 figs.

  6. Mechanistic aspects of [Rh(nbd)CI][sub 2]initiated oligomerization of new acetylenic monomers

    SciTech Connect (OSTI)

    Densmore, C.G. (Crystal G); Rasmussen, P.G. (Paul G.)

    2004-01-01

    Although a number of papers report the use of rhodium-based initiators, very little has been said about the mechanism of acetylene polymerizations. Kishimoto and coworkers recently proposed an insertion mechanism for the rhodium-initiated polymerization of phenylacetylenes. The initiator consisted of the tetracoordinate rhodium complex, Rh(C{triple_bond}CC{sub 6}H{sub 5})(nbd)(PPh{sub 3}) with 4-(dimethylamino)-pyidine. The product was found to be stereoregular poly(phenylacety1ene) with a cis-transoidal backbone microstructure. Gorman and coworkers found palladium and nickel-based catalysts to be successful in the polymerization of cyanoacetylene. Zhan and Yang addressed the polymerization mechanism of acetylenes using palladium and nickel acetylide catalysts. They propose that the initial activation step, and also the rate-determining step, involve coordination of a nickel or palladium acetylide catalyst with an acetylene. Based on NMR and elemental analysis, we propose a more complete mechanistic picture of acetylene polymerizations, especially those with electron-withdrawing substituents.

  7. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    U.S. Energy Information Administration (EIA) Indexed Site

    Receipts" ,"(million dollars)" ," Under 20",3,3,3 ," 20-49",5,5,4 ," 50-99",6,5,4 ," 100-249",5,5,4 ," 250-499",7,9,7 ," 500 and Over",3,2,2 ,"Total",2,2,2 311,"FOOD" ,"Value of ...

  8. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    U.S. Energy Information Administration (EIA) Indexed Site

    dollars)" ," Under 20",2.3,2.3,2.1 ," 20-49",4.9,4.9,4.2 ," 50-99",5.8,5.8,5.2 ," 100-249",6.2,6.2,5.2 ," 250-499",8.1,8,7.1 ," 500 and Over",4.2,3,2.7 ,"Total",1.9,2,1.8 ...

  9. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect (OSTI)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  10. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  11. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect (OSTI)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ?37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup ?1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup ?1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  12. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    SciTech Connect (OSTI)

    Bao, W.; Cao, Q.; Lv, Y.; Chang, L.

    2008-07-01

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

  13. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect (OSTI)

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  14. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... and Refining of Nonferrous Metals, except Copper and Aluminum",10,83,158312.4,704,11.4 ... and Refining of Nonferrous Metals, except Copper and Aluminum",0,0,0,0,0 3315," ...

  15. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; ...W","W",0,26,4,22,0,"W",0,"W",0 325182," Carbon Black ",24,24,0,0,24,8,16,0,0,0,0,0 ...

  16. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; ...",29,6,"W","W",5,"W","W",0,0.9 325182," Carbon Black ",22,22,0,0,22,15,7,0,0,0,0,0,1.1 ...

  17. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste ...

  18. " Row: NAICS Codes;" " Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste ...

  19. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or ...

  20. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste ...

  1. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  2. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  3. table7.2_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Bituminous and NAICS Coal Subbituminous Coal Petroleum Code(a) Subsector and Industry TOTAL Acetylene Breeze Total Anthracite Coal Lignite Coke Coke Total United States RSE Column Factors: 1.1 2.1 0.6 0.9 0.6 0.9 1.4 0.7 0.9 311 Food 6.42 113.78 0 1.46 W 1.46 0 5.18 0 311221 Wet Corn Milling 3.11 106.84 0 1.32 0 1.32 0 0

  4. DOE/ET/23002-T9 L 4 / POLY ACETYLENE, (CH)x, AS AN EMERGING MATERIAL FOR SOLAR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y DOE/ET/23002-T9 L 4 / POLY ACETYLENE, (CH)x, AS AN EMERGING MATERIAL FOR SOLAR CELL APPLICATIONS Final Technical Report, March 19,1979-March 18,1980 By A. J. Heeger A. G. MacDiarmid Junes, 1980 Work Performed Under Contract No. AC04-79ET23002 University of Pennsylvania Philadelphia, Pennsylvania MASe U.S. Departmertt of Energy Solar Energy mSTHieWTOWOFTHIS DOCUM€W IS UMLIM1TC9 DISCLAIMER "This book was prepared as an account of work sponsored by an agency of the United States

  5. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene

    SciTech Connect (OSTI)

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Madhab, Das; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-01-01

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C{sub 2}H{sub 2} and C{sub 2}H{sub 4}. The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4}.

  6. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End ...

  7. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  8. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...tes",3443,0,"W",0,"W",0.9 325193," Ethyl Alcohol ",1309,0,521,32,1798,5 325199," Other ...diates",205,0,0,0,205,0.5 325193," Ethyl Alcohol ","*",0,0,0,"*",0.5 325199," Other Basic ...

  9. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...mediates",2673,0,0,0,2673 325193," Ethyl Alcohol ",7359,0,485,4,7840 325199," Other Basic ...ermediates",160,0,0,0,160 325193," Ethyl Alcohol ",72,0,0,4,69 325199," Other Basic ...

  10. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...mediates",2566,0,0,0,2566 325193," Ethyl Alcohol ",2715,2,427,0,3143 325199," Other Basic ...ermediates",178,0,0,0,178 325193," Ethyl Alcohol ",1,0,0,0,1 325199," Other Basic Organic ...

  11. Prediction of the energy dependence of molecular fragmentation cross sections for collisions of swift protons with ethane and acetylene

    SciTech Connect (OSTI)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Deumens, Erik; Oehrn, Yngve

    2005-04-01

    We report the energy-dependent fragmentation cross sections for several of the more likely fragmentation channels for protons with up to 10 keV impact energy colliding with acetylene and ethane. We find that the predominant channels are those which involve the dissociation of a carbon-hydrogen bond, and we find that the cross sections for these channels are maximum in the low-projectile-energy region. The cross sections for fragmentation involving dissociation of a C-C bond are an order of magnitude smaller and peak at somewhat higher projectile energy. Although there are no experimental values with which to compare, it appears that selection of projectile energy can be used to influence branching ratios in proton-hydrocarbon collisions and, by implication, in other ion-molecule and atom-molecule collisions.

  12. Buildings Energy Data Book: 1.3 Value of Construction and Research

    Buildings Energy Data Book [EERE]

    8 Number of Construction Employees and Total Employees for Select Building Envolope Industries (Thousand Employees) Poured Concrete Foundation and Structure Contractors (NAICS 238110) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Masonry Contractors (NAICS 238140) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Roofing Contractors (NAICS 238160) -Total Employment -Construction/Extraction Occupations

  13. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. Buildings Energy Data Book: 1.3 Value of Construction and Research

    Buildings Energy Data Book [EERE]

    9 Number of Construction Employees and Total Employees for Select Building Equipment Industries (Thousand Employees) Electrical Contractors and Other Wiring Installation Contractors (NAICS 238210) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Plumbing, Heating, and Air-Conditioning Contractors (NAICS 238220) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Other Building Equipment Contractors (NAICS 238290)

  15. Numerical analysis of the effect of acetylene and benzene addition to low-pressure benzene-rich flat flames on polycyclic aromatic hydrocarbon formation

    SciTech Connect (OSTI)

    Kunioshi, Nilson; Komori, Seisaku; Fukutani, Seishiro

    2006-10-15

    A modification of the CHEMKIN II package has been proposed for modeling addition of an arbitrary species at an arbitrary temperature to an arbitrary distance from the burner along a flat flame. The modified program was applied to the problem of addition of acetylene or benzene to different positions of a 40-Torr, {phi}=2.4 benzene/O{sub 2}/40%-N{sub 2} premixed flame to reach final equivalence ratios of {phi}=2.5 and 2.681. The results obtained showed that acetylene addition to early positions of the flame led to significant increase in pyrene production rates, but pyrene concentrations were lower in the flames with acetylene addition in both the {phi}=2.5 and 2.681 cases. Addition of benzene to the flame did not alter pyrene production rates in either the {phi}=2.5 or 2.681 cases; however, for {phi}=2.5, pyrene concentrations increased with benzene addition, while for {phi}=2.681, pyrene contents decreased in comparison to the correspondent flames with no addition. Acetylene addition led to a significant increase in pyrene production rates, but the pyrene levels dropped due to increase in the flow velocity. Pyrene production rates were not sensitive to benzene addition, but pyrene contents increased with benzene addition when the flow velocity decreased. These results show that PAH concentration changes accompanying species addition to flames should be interpreted carefully, because an increase or decrease in the content of a PAH species does not necessarily reflect an effect on its formation rate or mechanism. (author)

  16. Selective Hydrogenation of Acetylene in the Presence of Ethylene on K+ -beta-Zeolite Supported Pd and PdAg Catalysts

    SciTech Connect (OSTI)

    Huang,W.; Pyrz, W.; Lobo, R.; Chen, J.

    2007-01-01

    The selective hydrogenation of acetylene in the presence of ethylene has been studied on K+ exchanged {beta}-zeolite supported Pd and PdAg catalysts. Results from batch reactor studies with Fourier transform infrared spectroscopy (FTIR) have shown that the K+-{beta}-zeolite support is more selective than the Al2O3 or Na+-{beta}-zeolite supports toward the hydrogenation of acetylene. The rate and equilibrium constants for Pd/K+-{beta}-zeolite and PdAg/K+-{beta}-zeolite were determined using a Langmuir-Hinshelwood model. The selectivity of the PdAg bimetallic catalyst is twice of that of the Pd catalyst. Results from flow reactor studies show that the PdAg/K+-{beta}-zeolite catalyst has higher selectivity but lower activity toward acetylene hydrogenation than the Pd/K+-{beta}-zeolite catalyst. The selectivity to the undesirable ethane by-product is inhibited on the bimetallic catalyst. Extended X-ray absorption fine structure (EXAFS) studies and transmission electron microscope (TEM) analysis confirm the formation of Pd-Ag bimetallic bonds in the PdAg/K+-{beta}-zeolite catalyst.

  17. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect (OSTI)

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  18. MECS 2006- Plastics

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Plastics (NAICS 326) Sector with Total Energy Input, October 2012 (MECS 2006)

  19. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  20. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  4. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  7. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  8. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  9. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  11. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  12. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  13. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  14. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  15. Hydrogenation of Acetylene-Ethylene Mixtures over Pd and Pd-Ag Alloys: First-Principles Based Kinetic Monte Carlo Simulations

    SciTech Connect (OSTI)

    Mei, Donghai; Neurock, Matthew; Smith, C Michael

    2009-10-22

    The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene and the dehydrogenation ethylidene to ethylidyne. This is consistent with experimental results which suggest only the predominant hydrogenation path involving the sequential addition of hydrogen to form vinyl and ethylene exists over the Pd-Ag alloys. Ag enhances the desorption of ethylene and hydrogen from the surface thus limiting their ability to undergo subsequent reactions. The simulated apparent activation barriers were calculated to be 32-44 kJ/mol on Pd(111) and 26-31 kJ/mol on Pd-Ag/Pd(111) respectively. The reaction was found to be essentially first order in hydrogen over Pd(111) and Pd-Ag/Pd(111) surfaces. The results reveal that increases in the hydrogen partial pressure increase the activity but decrease ethylene selectivity over both Pd and Pd-Ag/Pd(111) surfaces. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  17. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    325222," Noncellulosic Organic Fibers",6,0,"W","W",0,0,0,4,0.8 325311," ... "a raw material input; and waste materials, such as wastepaper and packing" "materials. ...

  18. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... old and the new basis in bridge tables that allow comparisons" "between the two systems. ... (onsite) mines or wells." "During manufacturing processes, it is possible that the ...

  19. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    old and the new basis in bridge tables that allow comparisons" "between the two systems. ... Division, Form EIA-846, '1998 Manufacturing" "Energy Consumption Survey,' and ...

  20. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Division, Form EIA-846, '1998 Manufacturing" "Energy Consumption Survey,' and ... old and the new basis in bridge tables that allow comparisons" "between the two systems. ...

  1. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Products",5,0,0,"W",0,5,"W",5 3312," Steel Products from Purchased ... and raw" "material inputs for the production of nonenergy products (i.e., asphalt, ...

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...457344,1,2,96,2,"*","--",12.7 ," Electro-Chemical Processes","--",87200,"--","--","--","--...,31301,0,"*",7,"*",0,"--",1.2 ," Electro-Chemical Processes","--",57,"--","--","--","--","...

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",1560,5,13,99,7,7,"--",12.9 ," Electro-Chemical Processes","--",298,"--","--","--","--",... *",8," *",0,"--",1.2 ," Electro-Chemical Processes","--"," *","--","--","--","--"...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ive",551318,1,2,96,2,"*",11.3 ," Electro-Chemical Processes",103615,"--","--","--","--","-...rive",35070,0,"*",7,"*",0,1.2 ," Electro-Chemical Processes",72,"--","--","--","--","--",1 ...

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1731,2,24,129,2,56 ," Electro-Chemical Processes",255,"--","--","--","--","--" ... Drive",121,"*",3,11,"*",0 ," Electro-Chemical Processes","*","--","--","--","--","--" ...

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",507223,"*",4,126,"*",3 ," Electro-Chemical Processes",74825,"--","--","--","--","--... Drive",35339,"*","*",10,"*",0 ," Electro-Chemical Processes",113,"--","--","--","--","--" ...

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e",511864,"*",3,106,1,"*",4.8 ," Electro-Chemical Processes",86360,"--","--","--","--","--... Drive",36479,0,1,13,"*",0,11 ," Electro-Chemical Processes","Q","--","--","--","--","--",...

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1454,"*",28,120,3,1 ," Electro-Chemical Processes",263,"--","--","--","--","--" ... Drive",124,"*","*",4,"*","*" ," Electro-Chemical Processes",1,"--","--","--","--","--" ," ...

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...7998,"*",3,106,1,"*","--",4.8 ," Electro-Chemical Processes","--",71045,"--","--","--","--...-",32187,0,1,13,"*",0,"--",11 ," Electro-Chemical Processes","--","Q","--","--","--","--",...

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",1441,2,24,129,2,56,"--" ," Electro-Chemical Processes","--",206,"--","--","--","--",...,"--",110,"*",3,11,"*",0,"--" ," Electro-Chemical Processes","--","*","--","--","--","--",...

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",347224,"*",5,116,1,"*","--" ," Electro-Chemical Processes","--",55414,"--","--","--","--...,32764,"*","*",4,"*","*","--" ," Electro-Chemical Processes","--",158,"--","--","--","--",...

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1746,2,16,109,4,5,4.8 ," Electro-Chemical Processes",295,"--","--","--","--","--",... Drive",124,0,3,13,"*",0,11 ," Electro-Chemical Processes","*","--","--","--","--","--",...

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1881,5,13,99,7,7,11.5 ," Electro-Chemical Processes",354,"--","--","--","--","--",... *",8," *",0,1.2 ," Electro-Chemical Processes","*","--","--","--","--","--",...

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",422408,"*",4,126,"*",3,"--" ," Electro-Chemical Processes","--",60323,"--","--","--","--...",32259,"*","*",10,"*",0,"--" ," Electro-Chemical Processes","--",112,"--","--","--","--",...

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",1426,2,16,109,4,5,"--",4.8 ," Electro-Chemical Processes","--",242,"--","--","--","--",..."--",110,0,3,13,"*",0,"--",11 ," Electro-Chemical Processes","--","*","--","--","--","--",...

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",1185,"*",28,120,3,1,"--" ," Electro-Chemical Processes","--",189,"--","--","--","--",...-",112,"*","*",4,"*","*","--" ," Electro-Chemical Processes","--",1,"--","--","--","--","-...

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",426121,"*",5,116,1,"*" ," Electro-Chemical Processes",77146,"--","--","--","--","--...rive",36373,"*","*",4,"*","*" ," Electro-Chemical Processes",159,"--","--","--","--","--" ...

  18. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " ... of a purchase or transfer and consumed onsite for the" "production of heat and power. ...

  19. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " ... of a purchase or transfer and consumed onsite for the" "production of heat and power. ...

  20. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",562.6,4.7,2.4 ," 50-99",673.1,5.1,2.4 ," 100-249",1072.799927,6.459656809,2.981380066 ," ...

  1. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",395.7,4.3,2.3,3.6 ," 50-99",663.4,6.8,3.3,5 ," 100-249",905.8,7.9,3.8,3.6 ," 250-499",1407.1,11.1,5....

  2. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",507.3,6.7,3.4,2.6 ," 50-99",561.6,6.7,3.2,3 ," 100-249",913.6,9.2,4.4,2 ," ...

  3. " Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",625.5,3.3,1.7 ," 50-99",882.3,5.8,2.5 ," 100-249",1114.9,5.8,2.5 ," 250-499",2250.4,8,3.7 ," ...

  4. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",0.7,0.7,1.1,1.5,0.9,1.5,0.8,1,1.2 , 311,"Food",1044,213,14,16,568,5,129,2,97,1.2 ...0.9,0.9,1.2,1.8,1.1,2.1,0.4,0.4,1.3 , 311,"Food",78,20,3,"W",47,"*","W",0,4,4.9 311221," ...

  5. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"RSE Column Factors:",1.1,1,0.9 , 311,"Food",767.8,5.9,2.4,1 311221," Wet Corn ... ,"RSE Column Factors:",1,1,0.9 , 311,"Food",481.4,3.1,1.4,3.6 311221," Wet Corn ...

  6. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... and raw" "material inputs for the production of nonenergy products (i.e., asphalt, waxes," "lubricants, and solvents) and feedstock consumption at adjoining petrochemical" ...

  7. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced" "onsite from input materials not classified as energy. Examples of the latter" "are hydrogen produced from the electrolysis of brine; the output of captive" "(onsite) ...

  8. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced" "onsite from input materials not classified as energy. Examples of the latter" "are hydrogen produced from the electrolysis of brine; the output of captive" "(onsite) ...

  9. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced onsite from input materials not classified as energy." "Examples of the latter are hydrogen produced from the electrolysis of brine; " " the output of captive (onsite) ...

  10. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...mediates",12763.7,8.8,5.1 325193," Ethyl Alcohol ",28213.9,23.7,13.6 325199," Other Basic ...ermediates",11015.9,5,4.5 325193," Ethyl Alcohol ",169.7,0.2,0.1 325199," Other Basic ...

  11. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","*","*",0,"*",0,0,0,0,0 325193," Ethyl Alcohol ","*","*","*","*","*","*","*","*",0,"*" ...","*",0,"*",0,0,0,0,0,0,0 325193," Ethyl Alcohol ","*",0,"*",0,0,0,0,0,0,0 325199," Other ...

  12. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...73,"*","*",22,"W",0,0,"W" 325193," Ethyl Alcohol ",317,7359,0,"*",251,"*",1,0,7 325199," ...","*","*","W","*",0,0,"*" 325193," Ethyl Alcohol ","W",72,0,"*","W","*",0,0,0 325199," ...

  13. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ates",11541.3,36.8,12.6,1 325193," Ethyl Alcohol ",26688.9,65.4,24.4,8.4 325199," Other ...ediates",4378.2,8.9,4.1,1 325193," Ethyl Alcohol ",2378.4,7.3,1.6,1 325199," Other Basic ...

  14. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...673,"*","*",22,"*",0,0,17 325193," Ethyl Alcohol ",307,7359,0,"*",245,"*",1,0,4 325199," ...160,"*","*",5,"*",0,0,"*" 325193," Ethyl Alcohol ",2,72,0,"*",2,"*",0,0,0 325199," Other ...

  15. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...566,,0,"*",15,,"*",0,0,12 325193," Ethyl Alcohol ",111,,2717,,0,"*",80,,"*",1,0,1 325199," ...,,178,,0,"*",4,,"*",0,0,1 325193," Ethyl Alcohol ","*",,1,,0,0,"*",,"*",0,0,0 325199," ...

  16. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",37,"*",0,0,18,0.9 325193," Ethyl Alcohol ",60,4,0,"*",30,"*",19,0,7,5.6 325199," ..."W","*",4,"*",0,0,"W",0.9 325193," Ethyl Alcohol ","*","*",0,0,"*",0,0,0,"*",1 325199," ...

  17. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2566,0,"*",15,"*","*",0,8 325193," Ethyl Alcohol ",114,2715,0,"*",80,"*",1,0,2 325199," ...5,178,0,"*",4,"*",0,0,"*" 325193," Ethyl Alcohol ","*",1,0,0,"*","*",0,0,0 325199," Other ...

  18. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",36,"*",0,0,18,0.9 325193," Ethyl Alcohol ",60,1309,0,"*",29,"*",1,0,7,5.6 325199," ..."W","*",4,"*",0,0,"W",0.9 325193," Ethyl Alcohol ","*","*",0,0,"*",0,0,0,"*",1 325199," ...

  19. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2673,0,2673,0,0,0,0,0,0,0 325193," Ethyl Alcohol ",7359,17,7247,16,1,0,0,0,0,0 325199," ...",160,0,160,0,0,0,0,0,0,0 325193," Ethyl Alcohol ",72,0,72,0,0,0,0,0,0,0 325199," Other ...

  20. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ediates",17409.4,15.6,8.5 325193," Ethyl Alcohol ",40003.6,57.9,15.6 325199," Other Basic ...mediates",14844.6,8.4,7.4 325193," Ethyl Alcohol ",17143.8,42.9,10.2 325199," Other Basic ...

  1. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",42,5,"*",0,25,0.9 325193," Ethyl Alcohol ",61,1309,0,"*",29,"*",1,0,7,5.6 325199," ...","*","W","*",0,0,"*",0.8 325193," Ethyl Alcohol ","*","*",0,0,"*",0,0,0,"*",0.9 325199," ...

  2. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...22,"*",21,0,"*",0,0,0,0,0 325193," Ethyl Alcohol ",245,7,232,0,1,0,1,4,0,4 325199," Other ...ates",5,0,5,0,0,0,0,0,0,0 325193," Ethyl Alcohol ",2,0,2,0,0,0,0,0,0,0 325199," Other ...

  3. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...673,"*","*",22,"*",0,0,18 325193," Ethyl Alcohol ",307,7392,0,"*",245,"*",1,0,4 325199," ...160,"*","*",5,"*",0,0,"*" 325193," Ethyl Alcohol ",2,69,0,"*",2,"*",0,0,0 325199," Other ...

  4. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",36,"*",0,0,23,0.9 325193," Ethyl Alcohol ",60,"W",0,"*",29,"*",1,0,"W",5.7 ...","*","W","*",0,0,"W",0.9 325193," Ethyl Alcohol ","*","W",0,0,"*",0,0,0,"W",1 325199," ...

  5. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",37,"*",0,0,23,0.9 325193," Ethyl Alcohol ",60,"W",0,"*",30,"*",19,0,"W",5.7 ...","*","W","*",0,0,"W",0.9 325193," Ethyl Alcohol ","*","W",0,0,"*",0,0,0,"W",1.1 325199," ...

  6. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,9,,0,"*",16,,"*",,0,0,12 325193," Ethyl Alcohol ",111,,9,,0,"*",82,,"*",,19,0,1 325199," ...6,,1,,0,"*",4,,"*",,0,0,1 325193," Ethyl Alcohol ","*",,"*",,0,0,"*",,"*",,0,0,0 325199," ...

  7. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...6,,"*","*",15,,"*",0,0,12 325193," Ethyl Alcohol ",110,,2717,,0,"*",80,,"*",1,0,"*" ...,,178,,0,"*",4,,"*",0,0,1 325193," Ethyl Alcohol ","*",,1,,0,0,"*",,"*",0,0,0 325199," ...

  8. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,52,9,2,"*",22,"*",0,0,18 325193," Ethyl Alcohol ",307,25,0,"*",252,"*",25,0,4 325199," ...",7,1,1,"*",5,"*",0,0,"*" 325193," Ethyl Alcohol ",2,"*",0,"*",2,"*",0,0,0 325199," Other ...

  9. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...9,9,"*","*",22,"*",0,0,17 325193," Ethyl Alcohol ",307,25,0,"*",252,"*",25,0,4 325199," ...6,1,"*","*",5,"*",0,0,"*" 325193," Ethyl Alcohol ",2,"*",0,"*",2,"*",0,0,0 325199," Other ...

  10. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,9,,1,"*",16,,"*",,0,0,12 325193," Ethyl Alcohol ",110,,9,,0,"*",82,,"*",,19,0,"*" ...6,,1,,0,"*",4,,"*",,0,0,1 325193," Ethyl Alcohol ","*",,"*",,0,0,"*",,"*",,0,0,0 325199," ...

  11. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."*","*",0,"*","*",0,0,0,0 325193," Ethyl Alcohol ",0,0,0,0,0,0,0,0,0,0 325199," Other ..."*","*",0,0,"*",0,0,0,0,0 325193," Ethyl Alcohol ",0,0,0,0,0,0,0,0,0,0 325199," Other ...

  12. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  13. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  15. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  16. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  17. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  18. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  19. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  20. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  1. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  2. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  3. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  4. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  5. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  6. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  7. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  8. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  9. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  10. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  11. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  12. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  13. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  14. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  15. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  16. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  17. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  18. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  19. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  20. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  1. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  2. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  3. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  4. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  5. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  6. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  7. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  8. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  9. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  10. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  11. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  14. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  15. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  16. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  17. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  18. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  19. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  20. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  1. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  2. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  3. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  4. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  15. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  16. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  17. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  18. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  19. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  20. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  1. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  2. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals;" " Row: NAICS Codes, Value of Shipments and ... "Code(a)","Subsector and Industry","Consumed(c)","Switchabl... because Relative Standard Error is greater than 50 ...

  3. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals;" " Row: NAICS Codes, Value of Shipments and ... "Code(a)","Subsector and Industry","Receipts(c)","Switchabl... because Relative Standard Error is greater than 50 ...

  4. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  5. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" ...

  6. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  7. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment ...

  8. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " ...

  9. " Level: National Data and Regional...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment ...

  10. Table N11.4. Expenditures for Purchased Electricity, Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, ...

  11. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  12. nemsoverview_928.vp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122-2123) Blast...

  13. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  14. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. Total 7,281 4,217 5,941 6,842 9,010 5,030 1936-2016 PAD District 1 4,571 2,206 2,952 3,174 3,127 2,664 1981-2016 Connecticut 1995-2015 Delaware 678 85 1995-2015 Florida 351 299 932 836 858 649 1995-2016 Georgia 120 295 210 262 1995-2016 Maine 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,575 400 1,131 1,712 1,283 843 1995-2016 New York 1,475 998 350 322 234 824 1995-2016 North Carolina

  15. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  16. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex [Rh (dppb)]{sup +} (dppb: 1,4-bis(diphenylphosphino)butane)

    SciTech Connect (OSTI)

    Reineri, F.; Aime, S.; Gobetto, R.; Nervi, C.

    2014-03-07

    This study deals with the parahydrogenation of the symmetric substrate acetylene dicarboxylic acid catalyzed by a Rh(I) complex bearing the chelating diphosphine dppb (1,4-bis(diphenylphosphino)butane). The two magnetically equivalent protons of the product yield a hyperpolarized emission signal in the {sup 1}H-NMR spectrum. Their polarization intensity varies upon changing the reaction solvent from methanol to acetone. A detailed analysis of the hydrogenation pathway is carried out by means of density functional theory calculations to assess the structure of hydrogenation intermediates and their stability in the two solvents. The observed polarization effects have been accounted on the basis of the obtained structures. Insights into the lifetime of a short-lived reaction intermediate are also obtained.

  17. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  18. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  19. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  5. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  11. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  12. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  13. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Movements: - Industrial: Dry Production: Vehicle ... due to independent rounding. Prices are in nominal dollars. ... Annual Consumption per Consumer (thousand cubic feet) ...

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    from Electric Power to Industrial for years 2002 through ... Totals may not add due to independent rounding. Prices are ... Annual Consumption per Consumer (thousand cubic feet) ...

  5. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  6. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  7. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  8. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  9. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,351479...

  10. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  11. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  12. Food and Beverage Sector (NAICS 311 and 312) Combustion Emissions...

    Office of Environmental Management (EM)

    Within the plant boundary, food and beverage companies have control over facility energy consumption. Outside the plant boundary, where energy is generated by or provided by ...

  13. "NAICS Code(a)","Energy-Management Activity","No Participation...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,0.3,5.7,13.7,7.6,16.1,21.3,12.8,31.5 311,"FOOD" ,"Participation in One or More of the ... are consultation, demonstrations, engineering design, and analysis." " (k) Two ...

  14. Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical products are critical components of consumer goods and are found in everything ... The amount of energy that entered chemical plants in 2006 was about 3.2 quads, or 71% of ...

  15. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    2,566 0 0 0 2,566 325193 Ethyl Alcohol 2,715 2 427 0 3,143 325199 Other Basic ... Intermediates 178 0 0 0 178 325193 Ethyl Alcohol 1 0 0 0 1 325199 Other Basic Organic ...

  16. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol * * * * * * 0 0 0 0 325199 Other Basic ... * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol * 0 * 0 0 0 0 0 0 0 325199 Other Basic ...

  17. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    * * * 0 * 0 0 0 0 0 325193 Ethyl Alcohol * * * * * * * * 0 * 325199 Other Basic ... * 0 * 0 0 0 0 0 0 0 325193 Ethyl Alcohol * 0 * 0 0 0 0 0 0 0 325199 Other Basic ...

  18. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 0 0 0 325193 Ethyl Alcohol 1 * 1 0 * 0 0 0 0 325199 Other Basic ... 0 0 0 0 0 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  19. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2,673 0 2,673 0 0 0 0 0 0 0 325193 Ethyl Alcohol 7,359 17 7,247 16 1 0 0 0 0 0 325199 ... 160 0 160 0 0 0 0 0 0 0 325193 Ethyl Alcohol 72 0 72 0 0 0 0 0 0 0 325199 Other Basic ...

  20. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    22 * 21 0 * 0 0 0 0 0 325193 Ethyl Alcohol 245 7 232 0 1 0 1 4 0 4 325199 Other ... 5 0 5 0 0 0 0 0 0 0 325193 Ethyl Alcohol 2 0 2 0 0 0 0 0 0 0 325199 Other Basic ...

  1. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    17,409.4 15.6 8.5 325193 Ethyl Alcohol 40,003.6 57.9 15.6 325199 Other Basic ... 14,844.6 8.4 7.4 325193 Ethyl Alcohol 17,143.8 42.9 10.2 325199 Other Basic ...

  2. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Intermediates 0 0 0 0 325193 Ethyl Alcohol 427 389 0 38 325199 Other Basic Organic ... and Intermediates 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 325199 Other Basic Organic ...

  3. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    * * * 0 * * 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 0 325199 Other Basic ... * * 0 0 * 0 0 0 0 0 325193 Ethyl Alcohol 0 0 0 0 0 0 0 0 0 0 325199 Other Basic ...

  4. Level: National and Regional Data; Row: NAICS Codes; Column:...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Intermediates 0 0 0 325193 Ethyl Alcohol 0 0 0 325199 Other Basic Organic ... and Intermediates 0 0 0 325193 Ethyl Alcohol 0 0 0 325199 Other Basic Organic ...

  5. Level: National Data; Row: NAICS Codes; Column: Usage within...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Oxy - Fuel Firing Computer Control of Building Wide Evironment(c) Computer Control of Processes or Major Energy- Using Equipment(d) Waste Heat Recovery Adjustable - Speed Motors ...

  6. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  7. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals may not add due to independent rounding. Prices are ... 250,994 253,127 Industrial 9,332 9,088 8,833 8,497 8,156 Average Annual Consumption per Consumer (thousand cubic ...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not add due to independent rounding. Prices ... 34,078 34,283 34,339 Industrial 102 94 97 95 92 Average Annual Consumption per Consumer (thousand cubic feet) ...

  10. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  11. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  12. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  13. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004629.1...

  14. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. ... 2,314 764 719 180 4,046 Supplemental Gas Supplies 732 701 660 642 635 Balancing Item ...

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. ... 3,762 7,315 10,303 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 65,897 -19,970 ...

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. ... 473 526 484 626 1,359 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -6,645 3,976 ...

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. ... 35 108 71 124 185 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,393 -3,726 ...

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. ... 92 87 100 89 138 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -2,885 -12,890 ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. ... 76 96 66 131 128 Supplemental Gas Supplies 1 0 * * 6 Balancing Item 3,249 7,362 ...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. ... 1,844 980 2,403 2,701 Supplemental Gas Supplies 2 1 0 0 1 Balancing Item -1,989 -7,914 ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. ... 4,404 3,278 5,208 6,218 Supplemental Gas Supplies 457 392 139 255 530 Balancing Item ...

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. ... 698 436 457 645 879 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,269 1,045 ...

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. ... 0 LNG Storage 0 0 0 0 0 Supplemental Gas Supplies 1 2 3 3 5 Balancing Item -453 -1,711 ...

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. ... 195 154 146 210 211 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 17,590 4,622 ...

  6. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  7. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  8. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  9. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  10. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  11. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  12. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  13. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  14. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  15. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  16. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  17. Syntheses and studies of acetylenic polymers

    SciTech Connect (OSTI)

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity ({sigma} = 10{sup {minus}3} S/cm) after doping with AsF{sub 5}. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 {times} 10{sup 3} to 5.3 {times} 10{sup 3}. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  18. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  19. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  20. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  1. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  2. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  3. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  4. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  5. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  6. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  7. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  8. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  9. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  10. Total Crude Oil and Petroleum Products Imports by Processing...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum ...

  11. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  12. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  13. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  16. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  17. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  18. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  19. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  20. MEDEX Plus | Department of Energy

    Energy Savers [EERE]

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

    Alumina and Aluminum MECS 2006 - Alumina and Aluminum

  1. Released: June 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Lowest Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2006; Level: National Data; Row: NAICS Codes; Column: Levels of Lowest Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total

  2. Released: June 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Percent of Establishments by Levels of Lowest Price Difference that Would Cause Fuel Switching from LPG to a Less Expensive Substitute, 2006; Level: National Data; Row: NAICS Codes; Column: Levels of Lowest Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total

  3. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,"Coke" ,,,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze" "NAICS",,"Total","Fuel Oil","Fuel

  4. MECS 2006 - Iron and Steel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Iron and Steel More Documents & Publications Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006

  5. table6.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars)

  6. table7.7_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total

  7. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  11. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  13. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  14. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  17. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by ... PM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Net Receipts by ...

  1. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  2. Scaling properties of proton-nucleus total reaction cross sections

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy; Kohama, Akihisa

    2010-05-15

    We study the scaling properties of proton-nucleus total reaction cross sections for stable nuclei and propose an approximate expression in proportion to Z{sup 2/3}sigma{sub pp}{sup total}+N{sup 2/3}sigma{sub pn}{sup total}. Based on this expression, we can derive a relation that enables us to predict a total reaction cross section for any stable nucleus within 10% uncertainty at most, using the empirical value of the total reaction cross section of a given nucleus.

  3. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  4. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  5. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  6. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  7. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  8. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  9. Table A19. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Total Electricity Demand by Census Region and" " Economic Characteristics of ...ansfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)",...

  10. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  11. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  12. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  13. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  14. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  15. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas Offshore ...

  16. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More ...

  17. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  18. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151983" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  19. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  20. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  1. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  2. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  3. ,"Conventional Gasoline Sales to End Users, Total Refiner Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151994" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  4. Office of Energy Efficiency and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Top Ten - FY 2013 Action Obligations for WOSBs by NAICS Codes (Oct. 1, 2012 - March 3, 2013) NAICS Code NAICS Description Action Obligation 1 541511 Custom Computer Programming ...

  5. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  6. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  7. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  8. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Broader source: Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  9. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  10. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  11. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  12. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Product Area 2010 2011 2012 2013 2014 2015 View History Total 710,413 -- -- -- -- -- 1982-2015 Crude Oil 180,846 -- -- -- -- -- 1985-2015 Liquefied Petroleum Gases 33,842 -- -- -- ...

  13. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  14. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  15. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  16. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  17. Gathering total items count for pagination | OpenEI Community

    Open Energy Info (EERE)

    Gathering total items count for pagination Home > Groups > Utility Rate Hi I'm using the following base link plus some restrictions to sector, utility, and locations to poll for...

  18. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:54:24 PM" "Back to Contents","Data 1: U.S. Total Crude Oil and Products Imports" ...-NVM1","MTTIMUSVQ1","MTTIMUSYE1" "Date","U.S. Imports of Crude Oil and Petroleum Products ...

  19. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  20. Estimation of Anisotoropy from Total Cross Section and Optical Model

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and Optical Model Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-03 OSTI Identifier: 1082234 Report Number(s): LA-UR-13-24025 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Working Party

  1. Determination of ferrous and total iron in refractory spinels (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Determination of ferrous and total iron in refractory spinels Citation Details In-Document Search Title: Determination of ferrous and total iron in refractory spinels Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of

  2. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  3. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  5. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  6. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  7. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Total",11681,21576,70668,"W",21384,80123,"W",315,0,9.3 "Employment Size" " Under 50",1824,6108,928,"W",5936,928,"Q","Q",0,37.1 " 50-99","W",2450,6052,573,"W",6052,"W","W",0,20.7 ...

  8. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  9. Device for measuring the total concentration of oxygen in gases

    DOE Patents [OSTI]

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  10. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  11. Levelized Cost of Electricity and Levelized Avoided Cost of Electricity Methodology Supplement

    Gasoline and Diesel Fuel Update (EIA)

    32,080 134,757 130,374 133,976 134,320 127,472 1980

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93

  12. table10.10_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. RSE NAICS Total Not Electricity Natural Distillate Residual Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Factors Total United States RSE Column Factors: 1.4 1.1 1.5 0.7 1.1 0.8 1.2 1.5 0.5 311 Food 8,290 1,689

  13. table10.12_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Distillate Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Factors Total United States RSE Column Factors: 1 1 1 1.1 0.8 0.9 0.5 4.3 0 0.5 311 Food

  14. table10.2_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke RSE NAICS Total Not Electricity Distillate Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 0.8 1 0.9 1.6 1 1 1.1 1.1 0.5 1.3 311

  15. table10.4_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Distillate and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.9 1.4 1.9 0.6 1.5 0.6 0.6 0.9 0 0.7 311

  16. table10.6_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Capability to Switch Electricity to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke RSE NAICS Total Not Natural Distillate Residual and Row Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Factors Total United States RSE Column Factors: 0.9 1.4 0.9 1.6 1.7 0.6 0.8 1.7 0.5 0.9 311 Food

  17. table10.8_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.7 1.6 1.7 0.9 1.5 0.6 0.7 1.7 0.3 0.8

  18. table5.2_02

    U.S. Energy Information Administration (EIA) Indexed Site

    End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE NAICS Net Residual and Natural LPG and (excluding Coal Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.3 1 NF TOTAL FUEL CONSUMPTION 16,273 2,840

  19. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  20. Rhode Island Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Rhode Island Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 117,707 130,751 118,001 2000's 88,419 95,607 87,805 78,456 72,609 80,764 77,204 87,972 89,256 92,743 2010's 94,110 100,455 95,476 85,537 88,673 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: