Powered by Deep Web Technologies
Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

" Row: NAICS Codes;" " Column...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving...

2

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

3

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

4

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2012 (EIA)

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

5

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

6

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

7

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

8

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2012 (EIA)

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

9

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

10

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

11

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

12

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

13

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

14

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

15

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

16

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

17

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

18

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

19

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

20

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

22

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

23

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

24

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

25

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

26

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

27

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

28

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

29

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

30

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

31

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

32

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

33

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

34

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

35

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

36

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

37

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

38

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

39

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

40

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

42

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of...

43

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

44

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

45

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

46

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

47

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

48

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

49

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

50

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

51

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

52

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

53

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel...

54

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

55

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

56

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1 12.6 31131 Sugar Manufacturing 7,755.9 32.6 13.4 3114 Fruit and Vegetable Preserving and Specialty Foods 861.3 4.8 2.2 3115 Dairy Products 854.8 3.5 1.1 3116 Animal Slaughtering and Processing 442.9 3.5 1.2 312

57

Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4 3114 Fruit and Vegetable Preserving and Specialty Foods 13 13 0 3115 Dairy Products 0 0 0 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products * * 0 3121 Beverages

58

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

59

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

60

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

62

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6 18.2 31131 Sugar Manufacturing 6,629.2 31.3 12.2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,075.3 5.5 2.8 3115 Dairy Products 956.3 4.3 1.3 3116 Animal Slaughtering and Processing 493.8 4.4 1.6 312

63

Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006; 1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing 920 54 951 7 1,919 3114 Fruit and Vegetable Preserving and Specialty Foo 9,720 1 268 13 9,976 3115 Dairy Products 10,079 0 44 0 10,123 3116 Animal Slaughtering and Processing 17,545 0 17 0 17,562 312 Beverage and Tobacco Products

64

Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 17 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 35 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 95

65

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

66

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

67

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

68

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

69

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

70

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

71

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

72

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

73

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

74

NAICS Codes Description:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

75

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

76

Level: National and Regional Data; Row: NAICS Codes, Value of...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

77

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

78

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

79

Level: National and Regional Data; Row: NAICS Codes, Value of...  

Annual Energy Outlook 2012 (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

80

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2012 (EIA)

0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

82

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" 2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

83

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" 1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

84

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" 2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat"," ",," "

85

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" 3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

86

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

87

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

88

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

89

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

90

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

91

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

92

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

93

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

94

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

95

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

96

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Establishment","Onsite","per Establishment" "Code(a)","Subsector and Industry","(million sq ft)","(counts)","(sq ft)","(counts)","(counts)" ,,"Total United...

97

" Row: NAICS Codes, Value of Shipments...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

98

" Row: NAICS Codes, Value of Shipments...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

99

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

100

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

102

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

103

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

104

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

105

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

106

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

107

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

108

NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes @ Headquarters Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341 $141,587,250.76 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 286 $2,204,687.38 541330 ENGINEERING SERVICES 245 $80,827,391.54 611430 PROFESSIONAL AND MANAGEMENT DEVELOPMENT TRAINING 216 -$1,452,480.09 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 206 $67,689,373.27 562910 REMEDIATION

109

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

110

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

111

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

112

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

113

Level: National and Regional Data; Row: Selected NAICS Codes...  

U.S. Energy Information Administration (EIA) Indexed Site

Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and...

114

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

115

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2012 (EIA)

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

116

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

117

" Row: Employment Sizes within NAICS Codes...  

U.S. Energy Information Administration (EIA) Indexed Site

establishments using the North American" "Industry Classification System (NAICS). " " (b) Employment Size categories were supplied by the" "Bureau of the Census." " NFNo...

118

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

119

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

120

Level: National Data; Row: Employment Sizes within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006; 4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9 10.6 4.5 1000 and Over 1,415.5 5.7 2.5 Total 1,278.4 6.9 3.1 311 FOOD Employment Size Under 50 1,266.8 8.3 3.2 50-99 1,587.4 9.3 3.6 100-249 931.9 3.6 1.5 250-499 1,313.1 6.3

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" 4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable Distillate","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

122

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

123

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

124

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

125

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

126

" Row: General Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" 1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States"

127

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

128

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

129

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)"

130

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

131

North American Industry Classification System (NAICS) Wood Products and Equipment Codes  

E-Print Network (OSTI)

North American Industry Classification System (NAICS) Wood Products and Equipment Codes Louisiana contains NAICS codes and associated SIC codes for wood products and wood products equipment manufacturers, lathes, and routers to shape wood. NAICS SIC Corresponding Index Entries 321912 2426 Blanks, wood (e

132

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

mines or wells." "During manufacturing processes, it is possible that the thermal energy content of" "an energy input is not completely consumed for the production of...

133

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

to other energy products" "(e.g., crude oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable RSE rowcolumn factor." " * Estimate less...

134

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

"to other energy products (e.g., crude oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable RSE rowcolumn factor." " * Estimate less...

135

"NAICS",,"per Employee","of Value Added","of Shipments" "Code...  

U.S. Energy Information Administration (EIA) Indexed Site

Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United...

136

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per...

137

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

138

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

139

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

140

NAICS Search | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAICS Search NAICS Search NAICS Search The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying businesses. 10000 21000 22000 23000 31000 32000 33000 42000 44000 45000 48000 49000 51000 53000 54000 56000 61000 62000 81000 92000 NAICS uses six-digit codes at the most detailed level, with the first two digits representing the largest business sector, the third designating a subsector, the fourth designating the industry group, and the fifth showing the particular industry. Use the documents below, which are labeled by series, to see Department of Energy facilities that have historically procured goods/services in that

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

142

North American Industry Classification System (NAICS) Search Tool |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related to the U.S. business economy. NAICS was developed under the auspices of the Office of Management and Budget, and adopted in 1997 to replace the Standard Industrial Classification system. Through our website, you can search for procurement opportunities using your company's NAICS code, and you can learn more about the history of purchasing for your NAICS code at the Department. Visit our Industry Information page to learn more about our procurements by

143

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

144

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

145

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

146

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

147

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

148

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

149

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

150

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

151

How important are NAICS and PSC to wining federal contracts? | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

important are NAICS and PSC to wining federal contracts? important are NAICS and PSC to wining federal contracts? BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Forums How important are NAICS and PSC to wining federal contracts? Submitted by Gregory James on Tue, 04/17/2012 - 12:39pm Log in to vote 3 Small business owners can improve their ability to get federal contracts if they understand the nature and use of the North American Industry Classification System (NAICS) and Product and Service Codes. The purposes of these codes are to collect, analyze and publish statistical data on economic activity in the United States, Mexico and Canada. The Federal Procurement Data System (FPDS) uses these codes to track federal procurement historyNAICS is a two through six-digit hierarchical

152

Good-Bye, SIC - Hello, NAICS  

U.S. Energy Information Administration (EIA) Indexed Site

Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry Classification System (NAICS) of the United States, Canada, and Mexico Featured topics are: What is NAICS? Why replace the SIC system? How is NAICS better than SIC? How can data series be adjusted from SIC to NAICS? How is NAICS structured? Is there a source for more information about NAICS? What is NAICS? A new classification system has arrived for manufacturing establishments, and the Energy Information Administration (EIA) has incorporated this new

153

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 8.4;" 4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--" ,"Measure and Monitor Steam Used (d)",0.8,4.1,3.3,8 ,"Dedicated Staff that Performs Insulation Inspections (e)",0.9,4.5,3.3,8.3 ,"Formal Steam Maintenance Program that Includes the Following:" ," Annual Testing of All Steam Traps",0.9,3.7,3.1,8

154

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

155

NSF Astronomy Senior Review Recommendations for NAIC: NAIC Statement and Implementation Plan  

E-Print Network (OSTI)

1 NSF Astronomy Senior Review Recommendations for NAIC: NAIC Statement and Implementation Plan for NAIC. These are: 1. Reduce NSF astronomy division support for Arecibo to $8M over the next 3 years; 2. Schedule the survey programs for 80% of the time used for astronomy on the telescope through 2010; 3

156

High pressure humidification columns: Design equations, algorithm, and computer code  

SciTech Connect

This report describes the detailed development of a computer model to simulate the humidification of an air stream in contact with a water stream in a countercurrent, packed tower, humidification column. The computer model has been developed as a user model for the Advanced System for Process Engineering (ASPEN) simulator. This was done to utilize the powerful ASPEN flash algorithms as well as to provide ease of use when using ASPEN to model systems containing humidification columns. The model can easily be modified for stand-alone use by incorporating any standard algorithm for performing flash calculations. The model was primarily developed to analyze Humid Air Turbine (HAT) power cycles; however, it can be used for any application that involves a humidifier or saturator. The solution is based on a multiple stage model of a packed column which incorporates mass and energy, balances, mass transfer and heat transfer rate expressions, the Lewis relation and a thermodynamic equilibrium model for the air-water system. The inlet air properties, inlet water properties and a measure of the mass transfer and heat transfer which occur in the column are the only required input parameters to the model. Several example problems are provided to illustrate the algorithm`s ability to generate the temperature of the water, flow rate of the water, temperature of the air, flow rate of the air and humidity of the air as a function of height in the column. The algorithm can be used to model any high-pressure air humidification column operating at pressures up to 50 atm. This discussion includes descriptions of various humidification processes, detailed derivations of the relevant expressions, and methods of incorporating these equations into a computer model for a humidification column.

Enick, R.M. [Pittsburgh Univ., PA (United States). Dept. of Chemical and Petroleum Engineering; Klara, S.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Marano, J.J. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1994-07-01T23:59:59.000Z

157

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 8.1;" 1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Participation in One or More of the Following Types of Activities",1.3,1.7,"--","--","--","--","--","--" ," Energy Audit or Assessment",0.7,2.6,3.9,4.9,6.3,16.5,12.3,6.8

158

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

159

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

160

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

162

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 6.1;" 1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 3112," Grain and Oilseed Milling",8.2,5.8,5.6 311221," Wet Corn Milling",0,0,0 31131," Sugar Manufacturing",0,0,0 3114," Fruit and Vegetable Preserving and Specialty Foods ",7.3,6.7,6.2

163

NSF Division of Astronomical Sciences Senior Review NAIC Senior Review Memo Series  

E-Print Network (OSTI)

Sciences (AST) about its planning for a "Senior Review". The purpose of the Senior Review is to enable AST of the recent Decade Review of Astronomy and Astrophysics. This AST plan to assess and reallocate its facilitiesNSF Division of Astronomical Sciences Senior Review NAIC Senior Review Memo Series Memo #1

164

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity,...

165

Table N8.3. Average Prices of Purchased Electricity, Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased...

166

Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit:...

167

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

168

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

169

table11.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net...

170

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

171

table10.12_02.xls  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch LPG to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

172

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

173

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

174

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

175

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

176

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

177

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

178

Northeast Artificial Intelligence Consortium (NAIC). Volume 7. Automatic photointerpretation. Final report, Sep 84-Dec 89  

SciTech Connect

The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardware architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topics for this volume are the use of expert systems for automated photo interpretation and other AI techniques to image segmentation and region identification.

Modestino, J.; Sanderson, A.

1990-12-01T23:59:59.000Z

179

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

180

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

182

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," ",," ",," "," "," ",," ",," "," "," " " "," "," ",,,," "," ",,," ",," ",," ",,"Shipments" "NAICS"," ",,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke and"," ",,"of Energy Sources"

183

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

184

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

185

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

186

Column Initialization 1 Initializing Distillation Column Models 1  

E-Print Network (OSTI)

Column Initialization 1 Initializing Distillation Column Models 1 Roger Fletcher \\Lambda with the optimisation of distillation column models by non­ linear programming are considered. The paper presents of the distillation column model. A certain limiting case of the column model is examined, that of infinite reflux

Dundee, University of

187

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

188

Never Drying Column  

Science Journals Connector (OSTI)

......Department, University of Missouri-Kansas City, Kansas City, Missouri 64110 Column chromatography...Corporation, St. Louis, Missouri Question I. Many smaller...inor- ganic gases to heavy naphthas and crude oil fractions. The variety......

Bahman Nassim

1978-11-01T23:59:59.000Z

189

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010;" 3 Electricity: Components of Onsite Generation, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",5666,5414,81,171 3112," Grain and Oilseed Milling",3494,3491,"Q",2

190

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

191

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

192

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009" August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,,"Furnace/Coke",,,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total",,"Oven Gases","Waste Gas",,"Coke","Black Liquor","Bark","Materials"

193

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

194

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

195

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010;" 5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

196

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2006;" 9 Expenditures for Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

197

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010;" 9 Expenditures for Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

198

Released: October 2009  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2006;" 5 Electricity: Sales to Utility and Nonutility Purchasers, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," " " "," ","Total of" "NAICS"," ","Sales and","Utility","Nonutility" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,,"Total United States" 311,"Food",111,86,25 3112," Grain and Oilseed Milling",72,51,21

199

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;" 5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," " " "," ","Total of" "NAICS"," ","Sales and","Utility","Nonutility" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,,"Total United States" 311,"Food",347,168,179 3112," Grain and Oilseed Milling",142,6,136

200

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

data on natural gas consumption by SIC/NAICS code (NAICSdata on natural gas consumption by SIC/NAICS code (codeNatural Gas Consumption in Chemicals Plants in California (Mcf) Category NS NAICS

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

202

When to Pollute, When to Abate? Intertemporal Permit Use in the Los Angeles NOx Market  

E-Print Network (OSTI)

by NAICS code), interest rate, wage rate, natural gas price,by NAICS code); interest rate; wage rate; natural gas price;by NAICS code); interest rate; wage rate; natural gas price;

Holland, Stephen P.; MOORE, MICHAEL R

2008-01-01T23:59:59.000Z

203

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

204

Single-Column Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

C.J. Somerville and S. F. lacobellis C.J. Somerville and S. F. lacobellis Climate Research Division Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0224 Our project is centered around a computationally efficient and economical one-dimensional (vertical) model, resembling a single column of a general circulation model (GCM) grid, applied to the experimental site of the Atmospheric Radiation Measurement (ARM) Program. The model contains a full set of modern GCM parameterizations of subgrid physical processes. To force the model, the advective terms in the budget equations are specified observationally from operational numerical weather prediction analyses. These analyses, based on four-dimensional data assimilation techniques, provide dynamically consistent wind fields and horizontal gradients

205

Harmonizing Above Code Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harmonizing "Above Code" Harmonizing "Above Code" Codes Doug Lewin Executive Director, SPEER 6 Regional Energy Efficiency Organizations SPEER Members Texas grid facing an energy crisis * No new generation coming online * Old, inefficient coal-fired plants going offline * ERCOT CEO Trip Doggett said "We are very concerned about the significant drop in the reserve margin...we will be very tight on capacity next summer and have a repeat of this year's emergency procedures and conservation appeals." Higher codes needed to relieve pressure Building Codes are forcing change * 2012 IECC 30% higher than 2006 IECC * IRC, the "weaker code," will mirror IECC in 2012 * City governments advancing local codes with

206

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

207

The Importance of the Global Health Sector in California: An Evaluation of the Economic Impact  

E-Print Network (OSTI)

NAICS Code Description Electric Power Generation, Transmission and Distribution Natural GasNAICS Code Description Electric Power Generation, Transmission and Distribution Natural Gas

Nandi, Arindam

2009-01-01T23:59:59.000Z

208

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and"," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

209

Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

210

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41222 41222 Boat Dealers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 441229 All Other Motor Vehicle Dealers CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com LOS ALAMOS LAB

211

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53210 53210 Office Supplies and Stationery Stores BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NEW BRUNSWICK LAB NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PRINCETON PLASMA LAB Arlene White (609) 243-2080

212

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41219 41219 Other Accounting Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671

213

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11410 11410 Business and Secretarial Schools EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 611420 Computer Training ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov

214

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

621420 621420 Outpatient Mental Health and Substance Abuse Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 621493 Freestanding Ambulatory Surgical and Emergency Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov

215

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13312 13312 Textile and Fabric Finishing (except Broadwoven Fabric) Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314991 Rope, Cordage, and Twine Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314999 All Other Miscellaneous Textile Product Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov

216

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21213 21213 Engineered Wood Member (except Truss) Manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 321920 Wood Container and Pallet manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512

217

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21119 21119 Other Electric Power Generation Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 221121 Electric Bulk Power Transmission and Control BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 221122 Electric Power Distribution BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

218

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91110 91110 Postal Service EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 492110 Couriers and Express Delivery Services EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen

219

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11110 11110 Newspaper Publishers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 511120 Periodical Publishers AMES LAB Lisa Rodgers (515) 294-4191 rodgers@ameslab.gov ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE

220

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23110 23110 Automobile and Other Motor Vehicle Merchant Wholesalers BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 423120 Motor Vehicle Supplies and New Parts Merchant Wholesalers

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31112 31112 Electrometallurgical Ferroalloy Product Manufacturing EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 331210 Iron and Steel Pipe and Tube Manufacturing from Purchased Steel EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 331221 Rolled Steel Shape Manufacturing

222

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61110 61110 Office Administrative Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov ROCKY FLATS ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

223

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31110 31110 Lessors of Residential Buildings and Dwellings CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov IDAHO LAB Stacey Francis (208) 526-8564 stacey.francis@inl.gov IDAHO OPERATIONS Maria Mitchell (208) 526-8600 mitchemm@id.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER

224

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

113110 Timber tract operations 113110 Timber tract operations BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 113310 Cutting and transporting timber BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

225

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83111 83111 Deep Sea Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 483211 Inland Water Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 484110 General Freight Trucking, Local BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER

226

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

922120 922120 Police Protection CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OAK RIDGE LAB Cassandra McGee Stu (865) 576-3560 mcgeecm@ornl.gov OAK RIDGE OPERATIONS Freda Hopper (856) 576-9430

227

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

228

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

229

Californias North Coast Fishing Communities Historical Perspective and Recent Trends: Regional Profile  

E-Print Network (OSTI)

with NAICS code 3117 (Seafood Production, Preparation andaround that time several seafood companies (many of whichfor NAICS sector 3117 (Seafood Production, Preparation and

Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

2011-01-01T23:59:59.000Z

230

Data Coding  

Science Journals Connector (OSTI)

Data coding is the classification of data and assignment of arepresentation for that data, or the assignment of aspecific code...

2008-01-01T23:59:59.000Z

231

Attracting "Green Industry": An Economic Development Approach for the City of Los Angeles  

E-Print Network (OSTI)

NAICS Code & Title (Unclassified) 22 Utilities 221121 Electric Bulk Power Transmission and Control 221210 Natural Gas

Laurie Kaye

2006-01-01T23:59:59.000Z

232

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network (OSTI)

relative magnitude of NAICS 22 CHP natural gas use comparedCalifornia, NAICS 22 CHP uses mostly natural gas for input,L NAICS Code OLD Pipelines Pipeline Natural Gas Pipelines,

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

233

Revised Thermal Analysis of LANL Ion Exchange Column  

SciTech Connect

This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients following an interruption of flow to the column were calculated. The transient calculations were terminated after the maximum resin bed temperature reached the Technical Standard of 60 C, which was set to prevent significant resin degradation. The LANL column differs from the FWR column in that it has a significantly smaller radius, 3.73 cm nominal versus approximately 28 cm. It follows that natural convection removes heat much more effectively from the LANL column, so that the column may reach thermal equilibrium. Consequently, the calculations for a flow interruption were extended until an approach to thermal equilibrium was observed. The LANL ion exchange process also uses a different resin than was used in the FWR column. The LANL column uses Reillex HPQ{trademark} resin, which is more resistant to attack by nitric acid than the Ionac 641{trademark} resin used in the FWR column. Heat generation from the resin oxidation reaction with nitric acid is neglected in this analysis since LANL will be treating the resin to remove the LTE prior to loading the resin in the columns. Calculations were performed using a finite difference computer code, which incorporates models for absorption and elution of plutonium and for forced and natural convection within the resin bed. Calculations for normal column operation during loading were performed using an initial temperature and a feed temperature equal to the ambient air temperature. The model for the normal flow calculations did not include natural convection within the resin bed. The no flow calculations were started with the temperature and concentration profiles at the end of the loading stage, when there would be a maximum amount of plutonium either adsorbed on the resin or in the feed solution in the column.

Laurinat, J

2006-04-11T23:59:59.000Z

234

WASTEWATER TREATMENT OVER SAND COLUMNS  

E-Print Network (OSTI)

93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France, a greater depth for desinfection purposes. KEYWORDS Wastewater treatment, Infiltration-percolation. Sand

Paris-Sud XI, Université de

235

Relative Retention Data for an Ethofat Column  

Science Journals Connector (OSTI)

......Retention Data for an Ethofat Column David P. Mowry Marathon Oil Company, Littleton, Colorado 80121 ture. RECIPROCAL...Retention Data for an Ethofat Column by David P. Mowry, Marathon 011 Company, Littleton, Colorado 80121 Relative retention......

David P. Mowry

1966-11-01T23:59:59.000Z

236

Solutions diversification in a column generation algorithm  

E-Print Network (OSTI)

Solutions diversification in a column generation algorithm N. Touati a L. L´etocart a A. Nagih b a Column generation algorithms have been specially designed for solving mathemat- ical programs with a huge-based techniques. A more classical approach, known as "intensification", consists in inserting a set of columns

Létocart, Lucas

237

Process Svstems Enaineerina Instability of Distillation Columns  

E-Print Network (OSTI)

Process Svstems Enaineerina , Instability of Distillation Columns Elling W. Jacobsen and Sigurd recognized, distillation columns, operating with reflux and boilup as independent inputs, may have The dynamic behavior of distillation columns has been stud- ied quite extensively over the past decades

Skogestad, Sigurd

238

Vivapure Metal Chelate Mega spin columns  

E-Print Network (OSTI)

®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

Lebendiker, Mario

239

Decoding and optimized implementation of SECDED codes over GF(q)  

DOE Patents (OSTI)

A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

Ward, H. Lee; Ganti, Anand; Resnick, David R

2013-10-22T23:59:59.000Z

240

Decoding and optimized implementation of SECDED codes over GF(q)  

DOE Patents (OSTI)

A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

Ward, H Lee; Ganti, Anand; Resnick, David R

2014-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Code constructions and code families for nonbinary quantum stabilizer code  

E-Print Network (OSTI)

Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

Ketkar, Avanti Ulhas

2005-11-01T23:59:59.000Z

242

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

243

Table N1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

244

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

245

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

246

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

247

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

248

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"

249

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

250

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

251

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel Oil(b)","(billion",,"NGL(d)",,"(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)",,"short tons)","short tons)","(trillion Btu)"

252

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; " 2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)"

253

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

254

geo column legal.ai  

NLE Websites -- All DOE Office Websites (Extended Search)

Teapot Dome Teapot Dome Geologic Column Natrona County, Wyoming T 38 & 39 N R 78 W Period Formation L i t h o l o g y T h i c k n e s s D e p t h ( f t ) P r o d u c t i v e Quaternary Alluvium Fox Hills Sandstone Lewis Shale Niobrara Shale Carlisle Shale Mesaverde Group Morrison Mowry Shale Muddy Sandstone Thermopolis Shale Dakota Lakota Goose Egg Tensleep Amsden Madison Undifferentiated Granite Steele Shale Frontier Sundance Chugwater Group Teapot Ss "Pumpkin Buttes shale" Parkman Ss Sussex Ss Shannon Ss 1st Wall Creek 2nd Wall Creek 3rd Wall Creek Upper Lower Crow Mountain Alcova LS Red Peak Outcropping units 195 515 635 1990 2440 3840 3975 4060 4070 4340 4435 4585 4665 4685 5205 5525 5845 6005 6305 7085 3825 3595 3330 3325 3150 3085 2840 2680 0-50 600 100 50 325 470 1355 195 30 290 120 480 160 245 65 240 450 265 230 15 135 85 5 175 80 150 95 270 10 160 320 320 520

255

Department Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Department Codes Department Codes Code Organization BO Bioscience Department BU Business Development & Analysis Office DI Business Operations NC Center for Functional Nanomaterials CO Chemistry Department AD Collider Accelerator Department PA Community, Education, Government and Public Affairs CC Computational Science Center PM Condensed Matter Physics and Materials Science Department CI Counterintelligence AE Department of Energy DC Directorate - Basic Energy Sciences DK Directorate - CEGPA DE Directorate - Deputy Director for Operations DO Directorate - Director's Office DH Directorate - Environment, Safety and Health DF Directorate - Facilities and Operations DA Directorate - Global and Regional Solutions DB Directorate - Nuclear and Particle Physics DL Directorate - Photon Sciences

256

How to Calculate Molecular Column Density  

E-Print Network (OSTI)

The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...

Mangum, Jeffrey G

2015-01-01T23:59:59.000Z

257

High Performance Reach Codes  

E-Print Network (OSTI)

Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

Edelson, J.

2011-01-01T23:59:59.000Z

258

Coded Data  

Science Journals Connector (OSTI)

An individual is given anumber and all that individual's data is encoded under that number so that the individual cannot be recognized. Data are then collated, analyzed and reported on ... the code to the pers...

2008-01-01T23:59:59.000Z

259

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

260

Divided Wall Column Without the Wall  

E-Print Network (OSTI)

popularity in North America due to capital cost benefits and increasing energy conservation awareness. DWC is literally a column with a longitudinal partition inside, separating the pre-frac and the main-frac. The fixed internals, obviously, leave...

Tung, P.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

262

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

4 Percent of Establishments by Levels of Lowest Price Difference that Would" 4 Percent of Establishments by Levels of Lowest Price Difference that Would" " Cause Fuel Switching from Electricity to a Less Expensive Substitute, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Levels of Lowest Price Difference;" " Unit: Establishment Counts." ,,,"Levels of Lowest Price Difference that Would Cause a Switch from Electricity(c) " ,,,,,,,,,"Would Switch" ,,,"Would Not",,,,,"Estimate","to More" "NAICS"," ","Establishments","Switch Due","1 to 10 ","11 to 25","26 to 50","Over 50","Cannot","Expensive"

263

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

264

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

265

ARM - Evaluation Product - MFRSR-Column Intensive Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Product : MFRSR-Column Intensive Properties The MFRSR-Column Intensive Properties (CIP) value-added product (VAP) has been developed for estimating the microphysical (e.g.,...

266

PCB fluxes from the sediment to the water column following resuspension A column experiment  

E-Print Network (OSTI)

PCB fluxes from the sediment to the water column following resuspension ­ A column experiment confirmed that many French rivers and lakes sediments are contaminated by PCBi at levels ranging from 50 of cubic meters of contaminated sediments and to improve the understanding of the behavior of PCB

Paris-Sud XI, Université de

267

Current Status of High Resolution Column Technology for Gas Chromatography  

Science Journals Connector (OSTI)

......work in high-resolution gas-solid chromatography...developments in high- resolution gas chromatographic column...illary or high-resolution gas chromatography. Of these...column material is its high cost compared to glass columns...re sulting from column production, and requires deactivation......

Mary A. Kaiser; Matthew S. Klee

1986-09-01T23:59:59.000Z

268

Codes and Standards Activities  

Energy.gov (U.S. Department of Energy (DOE))

TheFuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards...

269

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

270

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

271

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

272

Mass transfer in a wetted wall column  

E-Print Network (OSTI)

and downstream calming sections. (Figure 3 ). After the liquid has transversed the length oi' the column it is disengaged from contact with the gas stream by means of a flared nossle and a collection chamber. Provision is made to measure the temperatures... internal diameter were employed. The equipment was operated so that an annular film of liquid flowed dove the column countercurrent to a stream of gas, The amount of liquid that evaporated into the gas was reassured and then used to calculate a mass...

Platt, Allison M

1950-01-01T23:59:59.000Z

273

Manufacturing Energy and Carbon Footprints Scope  

Energy.gov (U.S. Department of Energy (DOE))

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

274

The Behaviour of STeel ColumnS in fire Material -Cross-seCtional CapaCity -ColuMn BuCkling  

E-Print Network (OSTI)

The Behaviour of STeel ColumnS in fire Material - Cross-seCtional CapaCity - ColuMn BuIch december 2012 #12;#12;Structural stability and the general behaviour of steel structures can be described during a fire influence the behaviour of steel structures markedly. Significant advances have been made

Giger, Christine

275

Introduction Properties of Expander Codes  

E-Print Network (OSTI)

of Expander Codes Our Results Conclusions Background Basic Definitions LDPC Codes Expander Codes Turbo CodesIntroduction Properties of Expander Codes Our Results Conclusions Expander Codes: Constructions, Haifa 32000, Israel. Vitaly Skachek Expander Codes: Constructions and Bounds #12;Introduction Properties

Skachek, Vitaly

276

DOE Code:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

we1rbox installatiOn we1rbox installatiOn ____:....;...=.~;;....:..;=-+- DOE Code: - - !- Project Lead: Wes R1esland NEPA COMPLIANCE SURVEY J 3-24-10 1 Date: Project Information 1. Project Overview What are tne enwonmental mpacts? Contractor~~ _ _ _ _ ] 11 The purpose of this project is to prepare a pad for a 90 ton crane to get 1nto positiOn and ng up so we can 1 set our new weir box into position We will widen the existing road around 20 feet at the north end and taper our fill to about5 feet at the south end for a total of about 200 feeL and budd a near level pad for them tong up the crane on We will use the d1rt from the hill irnrnedJateiy north of the work to oe done 2. 3 4 What*s the legal location? What IS the durabon of the prOJed?

277

Usage Codes Observer code Vessel code Trip ID  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Observer code Vessel code Trip ID Permit holder name/address Permit / N MMSI No. Y / N Present? Usage Water capacity (m3): Fuel capacity: m3 / tonnes Other: Other: Kw all that apply & note types of materials for each) Capacity: Usage Incinerator: Net mensuration Y / N

278

Usage Codes Observer code Vessel code Trip ID  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Sonar Observer code Vessel code Trip ID Additional Information KHz: RPM / Other _______________Global Registry ID:MMSI No. Permit expiration (dd-mm- yy): Y / N Present? Usage contact Diver / dive equipment Usage Manufacturer Hull mounted / towed Catch Y / N Other: Y / N Y / NOther

279

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

280

Assembly procedure for column cutting platform  

SciTech Connect

This supporting document describes the assembly procedure for the Column Cutting Platform and Elevation Support. The Column Cutting Platform is a component of the 241-SY-101 Equipment Removal System. It is set up on the deck of the Strongback Trailer to provide work access to cut off the upper portion of the Mitigation Pump Assembly (MPA). The Elevation Support provides support for the front of the Storage Container with the Strongback at an inclined position. The upper portion of the MPA must be cut off to install the Containment Caps on the Storage Container. The storage Container must be maintained in an inclined position until the Containment Caps are installed to prevent any residual liquids from migrating forward in the Storage Container.

Routh, R.D.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Materialization Strategies in a Column-Oriented DBMS  

E-Print Network (OSTI)

There has been renewed interest in column-oriented database architectures in recent years. For read-mostly query workloads such as those found in data warehouse and decision support applications, ``column-stores'' have ...

Abadi, Daniel J.

2006-11-27T23:59:59.000Z

282

Cross flow cyclonic flotation column for coal and minerals beneficiation  

DOE Patents (OSTI)

An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

Lai, Ralph W. (Upper St. Clair, PA); Patton, Robert A. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

283

Model Predictive Control of a Kaibel Distillation Column  

E-Print Network (OSTI)

Model Predictive Control of a Kaibel Distillation Column Martin Kvernland Ivar Halvorsen Sigurd (e-mail: skoge@ntnu.no) Abstract: This is a simulation study on controlling a Kaibel distillation column with model predictive control (MPC). A Kaibel distillation column has several advantages compared

Skogestad, Sigurd

284

Active constraint regions for optimal operation of distillation columns  

E-Print Network (OSTI)

Active constraint regions for optimal operation of distillation columns Magnus G. Jacobsen the control structure of distillation columns, with optimal operation in mind, it is important to know how for distillation columns change with variations in energy cost and feed flow rate. The production of the most

Skogestad, Sigurd

285

Codes 101 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101 Codes 101 This course covers basic knowledge of energy codes and standards, the development processes of each, historical timelines, adoption, implementation, and enforcement of energy codes and standards, and voluntary energy efficiency programs. Most sections have links that provide additional details on that section's topic as well as additional resources for more information. Begin Learning! Estimated Length: 1-2 hours CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Self-paced, online Building Type: Commercial Residential Focus: Adoption Code Development Compliance Code Version: ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Model Energy Code (MEC) Target Audience: Advocate Architect/Designer Builder

286

Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column  

SciTech Connect

Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

2014-01-15T23:59:59.000Z

287

table11.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of RSE NAICS Sales and Utility Nonutility Row Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Factors Total United States RSE Column Factors: 1 0.9 1 311 Food 708 380 328 31 311221 Wet Corn Milling 248 W W 20.1 31131 Sugar 8 8 0 1 311421 Fruit and Vegetable Canning 28 W W 1 312 Beverage and Tobacco Products W W W 1 3121 Beverages W W W 1 3122 Tobacco W W 0 1 313 Textile Mills W W W 1.8 314 Textile Product Mills 0 0 0 0 315 Apparel 0 0 0 0 316 Leather and Allied Products

288

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

289

table7.10_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources RSE NAICS Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than Row Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Factors Total United States RSE Column Factors: 0.9 1 1.3 1 1.4

290

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

291

table8.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002 1 Number of Establishments by Participation in Energy-Management Activity, 2002 Level: National Data; Row: Energy-Management Activities within NAICS Codes; Column: Participation and Source of Financial Support for Activity; Unit: Establishment Counts. RSE NAICS Row Code(a) Energy-Management Activity No Participation Participation(b) In-house Other Don't Know Factors Total United States RSE Column Factors: 0.9 1.4 0.9 0.9 1 311 - 339 ALL MANUFACTURING INDUSTRIES Participation in One or More of the Following Types of Activities 120,362 80,348 -- -- -- 1 Energy Audits 165,216 35,494 14,845 15,890 4,760 2.3 Direct Electricity Load Control 171,940 28,770 13,652 9,986 5,132 2.5 Special Rate Schedule (c)

292

table9.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002; 1 Enclosed Floorspace and Number of Establishment Buildings, 2002; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite RSE NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Row Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Factors Total United States RSE Column Factors: 0 0 0 0 0 311 Food 751 15,089 102,589.2 26,438 3.0 0 311221 Wet Corn Milling 5 49 239,993.7 428 13.0 0 31131 Sugar 17 77 418,497.0 821 15.2 0

293

table5.3_02  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002; 3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.4 1 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use

294

Procurement and Property Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Definition of a Small Business (NAICS codes) Definition of a Small Business (NAICS codes) and Small Business Types Small Business & NAICS codes A small business, including its affiliates, is one that is independently owned and operated, not dominant in the field of operation in which it is bidding on government contracts, and qualified as a small business under the criteria in 13 CFR part 121, and NAICS size standards. The North American Industrial Classification System or NAICS codes determine whether a business is considered small by their industry code. These codes pertain to the size of the firm and not the value of the procurement. The standards are set by either the number of employees or by the average annual sales over a three-year period. Click here to look up your NAICS code. Click here to look up the size standard for that NAICS Code.

295

Design and Operability of an Energy Integrated Distillation Column  

Science Journals Connector (OSTI)

Abstract Operability issues are investigated on an energy integrated distillation column. The distillation column separates a nearly binary mixture. The energy integration is achieved using an indirect heat pump between the column condenser and the reboiler. The design aim of the integrated is system to enable operation of the distillation column over its entire operating window, through manipulation of the heatpump variables. An additional aim is to provide the operator with a set of standard distillation column actuators, for controlling the distillation column as a conventional distillation column. This secondary aim is attempted achieved, through selection of the control structure of the heat pump. Both simulation and experimental results illustrate areas within the possible operating window where potential operability problems remain dependent upon the selected control configuration. A very large part of the totally possible operating window may be covered by using just one heat pump control structure. However multivariable control avoids singularity of the multiloop structure.

Torben Mnsted Schmidt; Arne Koggersbl; Sten Bay Jrgensen

1992-01-01T23:59:59.000Z

296

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2010;" 2 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" ,,,,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

297

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2006;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

298

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

299

Table N8.2. Average Prices of Purchased Energy Sources, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Purchased Energy Sources, 1998;" 2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

300

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 7.1 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2002;" Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

302

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 Average Prices of Purchased Energy Sources, 2010;" 7.1 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

303

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

304

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2006;" 2 Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

305

Table 7.2 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002;" 2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

306

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

307

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

308

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2006;" Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

309

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

310

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam" " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

311

Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers  

SciTech Connect

The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

Keller, A.; Jacobs, H.R.; Boehm, R.F.

1980-12-01T23:59:59.000Z

312

IMPROVED PRUNING IN COLUMN GENERATION OF A VEHICLE ROUTING PROBLEM  

E-Print Network (OSTI)

column generation, shadow price model 1. Introduction The German automobile club ADAC (Allgemeiner Deutscher Automobil- Club) maintains a heterogeneous fleet of service vehicles in order to assist people

Krumke, Sven O.

313

Design of Earthquake Resistant Bridges Using Rocking Columns  

E-Print Network (OSTI)

Self-Compacting Concrete being2.2.2 Self-Compacting Concrete . . . . . 2.3 Bridge ColumnsBRIDGE CONSTRUCTION Self-Compacting Concrete The mechanical

Barthes, Clement Benjamin

2012-01-01T23:59:59.000Z

314

The Two-Column Aerosol Project Definitions TCAP Educational  

NLE Websites -- All DOE Office Websites (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

315

Performance-Based Reliability Analysis and Code Calibration for RC Column Subject to Vehicle Collision  

E-Print Network (OSTI)

Infrastructure and transportation facilities have increased rapidly over the years. The progress has been accompanied by an increasing number of vehicle collisions with structures. This type of collision might lead to the damage, and often...

Sharma, Hrishikesh

2012-07-16T23:59:59.000Z

316

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

317

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

318

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

319

Coding AuthentiCity  

E-Print Network (OSTI)

This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

Mercier, Rachel Havens

2008-01-01T23:59:59.000Z

320

Introduction to Algebraic Codes  

E-Print Network (OSTI)

for health care. These self-correcting codes that occur in nature might be better than all of. our coding theory based on algebra or algebraic geometry. It is a myth

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Book Review Column1 by William Gasarch  

E-Print Network (OSTI)

The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: gasarch@cs.umd.edu In this column we review the following books. 1. Excellence Without a Soul: How a Great University Forgot Education by Harry Lewis. Review

Gasarch, William Ian

322

The Book Review Column1 by William Gasarch  

E-Print Network (OSTI)

The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: gasarch@cs.umd.edu In this column we review the following books. 1. Symbolic Asymptotics by John R. Shackell. Review by James C. Beaumont. Given two functions f

Gasarch, William Ian

323

THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN  

SciTech Connect

Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below 100 C. In addition, the calculation results demonstrate that the cooling tube system external to an air-filled column is not highly effective at reducing the maximum temperature, but the baseline design using a central cooling tube inside the column provides sufficient cooling to maintain the maximum temperature near the assumed safety limit.

Lee, S.; King, W.

2009-12-30T23:59:59.000Z

324

HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS  

SciTech Connect

In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of {approx}130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum temperature with either ion exchange material. Sensitivity calculations for the RF resin porosity, the ambient external column temperature, and the cooling system configuration were performed under the baseline conditions to assess the impact of these parameters on the maximum temperatures. It is noted that the cooling mechanism at the column boundary (forced versus natural convection) and the cooling system configuration significantly impact the maximum temperatures. The analysis results provide quantitative information associated with process temperature control requirements and management of the SCIX column.

Lee, S

2007-10-17T23:59:59.000Z

325

Sustainable Acquisition Coding System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

326

GENII Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a...

327

Code of Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

328

Code Red 2 kills off Code Red 1  

E-Print Network (OSTI)

#12;#12;Code Red 2 kills off Code Red 1 Code Red 2 settles into weekly pattern Nimda enters the ecosystem Code Red 2 dies off as programmed CR 1 returns thanks to bad clocks #12;Code Red 2 dies off as programmed Nimda hums along, slowly cleaned up With its predator gone, Code Red 1 comes back, still

Paxson, Vern

329

Code loops in both parities  

Science Journals Connector (OSTI)

We present equivalent definitions of code loops in any characteristic p?0. The most natural definition is via combinatorial polarization, but we also show how to realize code loops by linear codes and as a class of symplectic conjugacy ... Keywords: Characteristic form, Code loop, Combinatorial polarization, Conjugacy closed loop, Doubly even code, Even code loop, Kronecker product, Moufang loop, Odd code loop, Self-orthogonal code, Small Frattini loop, Symmetric associator, Symplectic loop

Ale Drpal; Petr Vojt?chovsk

2010-06-01T23:59:59.000Z

330

SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES  

SciTech Connect

PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

Flach, G.

2014-10-28T23:59:59.000Z

331

MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN  

SciTech Connect

The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particles hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

Lee, S.

2014-06-24T23:59:59.000Z

332

Improved direct and indirect systems of columns for ternary distillation  

SciTech Connect

Separation of a ternary mixture into almost pure components is discussed. Systems of distillation columns, with higher thermodynamic efficiency, are developed from a direct sequence (or indirect sequence) of distillation columns by allowing for two interconnecting streams of the same composition and different enthalpy. This increases the reversibility of distillation in the second column, which results in replacing a portion of the high-temperature boiling duty with a lower-temperature heat in the direct split case. For the indirect split case, the improvement allows a portion of the low-temperature condensing duty to be replaced with a higher-temperature condensation.

Agrawal, R.; Fidkowski, Z.T. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [Air Products and Chemicals, Inc., Allentown, PA (United States)

1998-04-01T23:59:59.000Z

333

table7.8_02  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Establishment Counts. Electricity Components Natural Gas Components Steam Components Electricity Electricity Natural Gas Natural Gas Steam Steam from Only from Both from Only from Both from Only from Both Electricity Sources Local Utility Any Natural Gas Sources Local Utility Steam Sources Local Utility RSE NAICS Any from Only Other than and Natural from Only Other than and Any from Only Other than and Row Code(a) Subsector and Industry Electricity(b) Local Utility(c) Local Utility(d)

334

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

335

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

336

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

337

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635 692 3,391 1,675 3112 Grain and Oilseed Milling 932 850 82 673 261 311221 Wet Corn Milling 352 331 21 296 103 31131 Sugar Manufacturing 105 87 18 87 39 3114 Fruit and Vegetable Preserving and Specialty Foods 698

338

Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 347 168 179 3112 Grain and Oilseed Milling 142 6 136 311221 Wet Corn Milling 14 4 10 31131 Sugar Manufacturing 109 88 21 3114 Fruit and Vegetable Preserving and Specialty Foods 66 66 0 3115 Dairy Products 22 0 22 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products 1 1 * 3121 Beverages 1 1 * 3122 Tobacco 0 0 0 313 Textile Mills

339

Table 11.3 Electricity: Components of Onsite Generation, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010; 3 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 5,666 5,414 81 171 3112 Grain and Oilseed Milling 3,494 3,491 Q 2 311221 Wet Corn Milling 3,213 3,211 0 2 31131 Sugar Manufacturing 1,382 1,319 64 0 3114 Fruit and Vegetable Preserving and Specialty Foods 336 325 Q * 3115 Dairy Products 38 36 1 1 3116 Animal Slaughtering and Processing 19 Q Q 14 312 Beverage and Tobacco Products 342 238 Q 7 3121 Beverages 308 204 Q 7 3122 Tobacco 34

340

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

342

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

343

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

344

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

345

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

346

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009 August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 * 311221 Wet Corn Milling 5 0 * 0 0 4 0 31131 Sugar Manufacturing 1 0 0 0 0 1 0 3114 Fruit and Vegetable Preserving and Specialty Food Q 0 * 0 0 0 Q 3115 Dairy Product * 0 * 0 0 0 0 3116 Animal Slaughtering and Processing 1 0 1 0 0 * * 312 Beverage and Tobacco Products

347

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

348

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

349

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing * 0 * * 0 0 0 * 312 Beverage and Tobacco Products * 0 * 0 * 0 0 0 3121 Beverages * 0 * 0 0 0 0 0 3122 Tobacco * 0 0 0 * 0 0 0 313 Textile Mills 0 0

350

table7.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Row Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft)

351

table7.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Row Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

352

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

353

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

354

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

355

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

356

Mechanical code comparator  

DOE Patents (OSTI)

A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

357

ARM - Field Campaign - Summer Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSummer Single Column Model IOP govCampaignsSummer Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer Single Column Model IOP 1997.06.18 - 1997.07.18 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive IOP Server Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data sets, see below. Summary During the IOP, 1180 sondes were launched, with 4 missing data due to weather related problems and 24 terminating before 10,000 m (10 km). Description The Summer 1997 SCM IOP was scheduled with the SGP97 Campaign. With additional NASA funding, the IOP was extended so that the total IOP covered

358

ARM - Field Campaign - Winter Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWinter Single Column Model IOP govCampaignsWinter Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter Single Column Model IOP 1999.01.19 - 1999.02.08 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive under IOPs/UAV. Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data sets, see below. Description A second winter SCM IOP was conducted (1/19 - 2/8/99) to provide additional sampling of winter weather conditions. This was the first SCM IOP where AERIs and ceilometers were installed at the boundary facilities to give retrievals of temperature and moisture to supplement the sounding data. A

359

ARM - Publications: Science Team Meeting Documents: Ensemble Single Column  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Hume, Timothy Bureau of Meteorology Research Centre Jakob, Christian BMRC Single column models (SCMs) are useful tools for the evaluation of parameterisations of radiative and moist processes used in general circulation models. Most SCM studies to date have concentrated on regions where there is a sufficiently dense observational network to derive the required forcing data, such as the Southern Great Plains. This poster describes an ensemble single column modelling (ESCM) approach, where an ensemble of SCM forcing data sets are derived from numerical weather prediction (NWP) analyses. The technique is applied to SCM runs at the Manus Island and Nauru ARM sites in the Tropical Western Pacific (TWP). It

360

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

362

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

363

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

364

Operating Parameters in the Column Flotation of Alabama Oil Shale  

Science Journals Connector (OSTI)

A factionally designed experiment performed in a one meter column flotation cell identified the important factors affecting the flotation of eastern oil shales. These initial tests were performed in a...

C. W. Schultz; John B. Bates

1990-01-01T23:59:59.000Z

365

New developments in the primal-dual column generation technique  

E-Print Network (OSTI)

Jan 24, 2011 ... problem (CSP), the vehicle routing problem with time windows (VRPTW), and the .... Actually, any column with a negative reduced cost can be added to the RMP. ...... OBOE: the Oracle Based Optimization Engine, 2010.

2011-01-24T23:59:59.000Z

366

ARM - Field Campaign - Summer Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Summer Single Column Model IOP 1999.07.12 - 1999.07.22 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

367

ARM - Field Campaign - Spring Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Spring Single Column Model IOP 1999.03.01 - 1999.03.22 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from...

368

ARM - Field Campaign - Spring 1995 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Spring 1995 Single Column Model IOP 1995.04.01 - 1995.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

369

ARM - Field Campaign - Summer 1995 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Summer 1995 Single Column Model IOP 1995.07.01 - 1995.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

370

Treatments of Inhomogeneous Clouds in a GCM Column Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

version of the three- dimensional (3D) CRM described in detail by Khairoutdinov and Randall (2003) into each grid column of a realistic GCM, the NCAR Community Atmosphere Model...

371

ARM - Field Campaign - Fall 1994 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Fall 1994 Single Column Model IOP 1994.10.01 - 1994.10.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

372

Practical Application of Distillation Column Energy Control Systems  

E-Print Network (OSTI)

Closed loop computer control of an ethylene column has been shown to save $350/day in improved ethylene recovery and $150/day in reduced energy consumption. These savings are achieved through material balance optimization and energy balance...

Matthews, S. A.

1980-01-01T23:59:59.000Z

373

METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS  

SciTech Connect

The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

2007-06-27T23:59:59.000Z

374

High speed electrical power takeoff for oscillating water columns  

E-Print Network (OSTI)

This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

Hodgins, Neil

2010-01-01T23:59:59.000Z

375

Optimization Online - Simultaneous Column-and-Row Generation ...  

E-Print Network (OSTI)

Nov 14, 2010 ... Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale...

Ibrahim Muter

2010-11-14T23:59:59.000Z

376

Building Codes Resources  

Energy.gov (U.S. Department of Energy (DOE))

Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations.

377

Tokamak Systems Code  

SciTech Connect

The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

1985-03-01T23:59:59.000Z

378

Codes and Standards  

Energy.gov (U.S. Department of Energy (DOE))

Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

379

E-Print Network 3.0 - azeotropic distillation columns Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

closed (total reflux) operation of the conventional batch distillation column with a condenser... in closed middle vessel batch distillation column (solid ... Source: Skogestad,...

380

11. CONTRACT ID CODE  

NLE Websites -- All DOE Office Websites (Extended Search)

1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY CODE SA. AMENDMENT OF SOLICITATION NO.

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PETSc: Docs: Code Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Management Code Management Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation SAWs Changes Bug Reporting Code Management FAQ License Linear Solver Table Applications/Publications Miscellaneous External Software Developers Site In this file we list some of the techniques that may be used to increase one's efficiency when developing PETSc application codes. We have learned to use these techniques ourselves, and they have improved our efficiency tremendously. Editing and Compiling The biggest time sink in code development is generally the cycle of EDIT-COMPILE-LINK-RUN. We often see users working in a single window with a cycle such as: Edit a file with emacs. Exit emacs. Run make and see some error messages. Start emacs and try to fix the errors; often starting emacs hides

382

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

383

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

384

Single Column Model Simulations of Cloud Sensitivity to Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Column Model Simulations Single-Column Model Simulations of Cloud Sensitivity to Forcing A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. B. Wolf National Aeronautics and Space Administration SGT, Inc., Goddard Institute for Space Studies New York, New York Introduction The Atmospheric Radiation Measurement (ARM) Program single-column modeling (SCM) framework has to date used several fairly brief intensive observing periods (IOPs) to evaluate the performance of climate model parameterizations. With only a few weather events in each IOP, it is difficult to separate errors associated with the instantaneous dynamical forcing from errors in parameterization. It is also impossible to determine whether model errors are systematic and climatically significant. This

385

the Fractional Flotation of Flotation Column Particles Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancing Selectivity and Recovery in Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles Opportunity Although research is currently inactive on the patented technology "Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles," the technology is available for licensing from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Disclosed in this patent is a method of particle separation from a feed stream comprised of particles of varying hydrophobicity by injecting the feed stream directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. The current invention allows the height of the feed stream injection and the reflux ratio to be

386

ARM - Field Campaign - Summer 1994 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSummer 1994 Single Column Model IOP govCampaignsSummer 1994 Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer 1994 Single Column Model IOP 1994.07.01 - 1994.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

387

ARM - Field Campaign - Winter 1994 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWinter 1994 Single Column Model IOP govCampaignsWinter 1994 Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter 1994 Single Column Model IOP 1994.01.01 - 1994.01.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

388

ARM - Field Campaign - Fall 1995 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Column Model IOP Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1995 Single Column Model IOP 1995.09.01 - 1995.10.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

389

The Monte Carlo Independent Column Approximation Model Intercomparison  

NLE Websites -- All DOE Office Websites (Extended Search)

The Monte Carlo Independent Column Approximation Model Intercomparison The Monte Carlo Independent Column Approximation Model Intercomparison Project (McMIP) Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Li, Jiangnan Canadian Center for Climate Modelling Stephens, Graeme Colorado State University Vaillancourt, Paul Environment Canada Oreopoulos, Lazaros JCET/UMBC and NASA/GSFC Siebesma, Pier KNMI Los, Alexander KNMI Clothiaux, Eugene The Pennsylvania State University Randall, David Colorado State University Iacono, Michael Atmospheric & Environmental Research, Inc. Category: Radiation The Monte Carlo Independent Column Approximation (McICA) method for

390

Compiling Codes on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Compiling Codes Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention is that programs are compiled on the login nodes and executed on the compute nodes. Because the compute nodes and login nodes have different operating systems, binaries created for compute nodes may not run on the login node. The wrappers mentioned above guarantee that

391

Code of Ethics  

Science Journals Connector (OSTI)

Acode of ethics clarifies the ethical principles that are followed in aspecific field. In this context we refer to the , formally adopted by the American Public Health Association in 2002. It is the first b...

2008-01-01T23:59:59.000Z

392

ANNOUNCEMENT: ZIP Code Information.  

Science Journals Connector (OSTI)

THE U. S. Post Office Department has announced that the use of ZIP Codes will be mandatory on all domestic addresses for subscriptions and other mailings by 1 January 1967. Accordingly, the American Institute of Physics has established a procedure for obtaining the necessary information. You are requested to follow this procedure exactly.First, do not submit a change of address request consisting merely of the addition of your ZIP Code. Second, if your address changes in any other way, do include the ZIP Code of the new address. Third, and most important, be sure to furnish your ZIP Code in accordance with instructions included with all renewal invoices and renewal orders which have been sent out by the AIP.Failure to conform to this procedure may result in delays.

1965-09-27T23:59:59.000Z

393

Quantum error control codes  

E-Print Network (OSTI)

QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Abdelhamid Awad Aly Ahmed, Sala

2008-10-10T23:59:59.000Z

394

Joint design of multi-resolution codes and intra / inter- layer network coding  

E-Print Network (OSTI)

In this thesis, we study the joint design of multi-resolution (MR) coding and network coding. The three step coding process consists of MR source coding, layer coding and multi-stream coding. The source coding considers ...

Wang, Tong, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

395

A new model for solvent extraction in columns  

SciTech Connect

A new model was developed for analyzing solvent extraction processes carried out in columns. Each column is treated as a series of well-defined equilibrium stages where the backmixing (other-phase carryover) between stages can be large. By including all mass transfer effects in the backmixing value, the same number of stages can be used for all extracted components no matter what their distribution coefficients. This greatly simplifies the calculations required when modeling multicomponent solvent extraction processes. Initial testing shows the new model to be better than either the Height of an Equivalent Theoretical Plate (HETP) or the Height of a Transfer Unit (HTU) method.

Leonard, R.A.; Regalbuto, M.C.; Chamberlain, D.B.; Vandegrift, G.F.

1989-12-08T23:59:59.000Z

396

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

397

Nested Quantum Error Correction Codes  

E-Print Network (OSTI)

The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

2009-09-28T23:59:59.000Z

398

Notice Type: Presolicitation  

E-Print Network (OSTI)

NAICS Code: 332 -- Fabricated Metal Product Manufacturing/332322 -- Sheet Metal Work Manufacturing Storage Container. (Microsoft IE required). Additional specifications and opening and closing dates

399

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;"...

400

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

" Level: National Data and Regional...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

402

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

NAICS Code Sub-Sector Pulp mills Paper (except newsprint) mills Newsprint mills Paperboard mills Total % of Total Total Black Liquor Natural Gas

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

403

Behavior of the Mass Transfer Zone in a Biosorption Column  

E-Print Network (OSTI)

that Sargassum seaweed has a high efficiency for biosorption removal of toxic heavy metals (11). The biomass in a flow-through fixed-bed column. Copper has been chosen as a typical toxic heavy metal with simple is a process whereby certain types of inactive, dead biomass may bind and concentrate heavy metals from aqueous

Volesky, Bohumil

404

Assessment of solution uncertainties in single-column modeling frameworks  

SciTech Connect

Single-column models (SCMs) have been extensively promoted in recent years as an effective means to develop and test physical parameterizations targeted for more complex three-dimensional climate models. Although there are some clear advantages associated with single-column modeling, there are also some significant disadvantages, including the absence of large-scale feedbacks. Basic limitations of an SCM framework can make it difficult to interpret solutions, and at times contribute to rather striking failures to identify even first-order sensitivities as they would be observed in a global climate simulation. This manuscript will focus on one of the basic experimental approaches currently exploited by the single-column modeling community, with an emphasis on establishing the inherent uncertainties in the numerical solutions. The analysis will employ the standard physics package from the NCAR CCM3 and will illustrate the nature of solution uncertainties that arise from nonlinearities in parameterized physics. The results of this study suggest the need to make use of an ensemble methodology when conducting single-column modeling investigations.

Hack, J.J.; Pedretti, J.A.

2000-01-15T23:59:59.000Z

405

Plastic Hinging Behavior of Reinforced Concrete Bridge Columns  

E-Print Network (OSTI)

of the seismic performance of four-span large-scale bridge systems at the University of Nevada Reno that details deformations in column hinging regions during response to strong shaking events. In order to evaluate the plastic hinging regions, a photogrammetric...

Firat Alemdar, Zeynep

2010-04-27T23:59:59.000Z

406

Novel Column Heater for Fast Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......expected advantage of radial heating with the coaxial heater...with other "coated" heating elements, differences...Louisiana light crude oil; 3 m 0.1 mm phenyl...expansion coefficient, and price imposed substantial practical...existing standard column heating technology. Thus, chromatographic......

E.U. Ehrmann; H.P. Dharmasena; K. Carney; E.B. Overton

1996-12-01T23:59:59.000Z

407

Virus Transport in Saturated and Unsaturated Sand Columns  

Science Journals Connector (OSTI)

...demonstrated in bubble column experiments...pH and ionic strength, and various...application of sewage sludges. Appl. Environ...z-potential of gas bubbles. J. Colloid...the role of the gas-water interface...pH and ionic strength (IS). The...

S. Torkzaban; S. M. Hassanizadeh; J. F. Schijven; H. A. M. de Bruin; A. M. de Roda Husman

408

COMPRESSION OF A PLASMA COLUMN OF INFINITE ELECTROCONDUCTIVITY SITUATED  

E-Print Network (OSTI)

45 COMPRESSION OF A PLASMA COLUMN OF INFINITE ELECTROCONDUCTIVITY SITUATED IN AN EXTERNAL AXIAL velocity, ion temperature, electron temperature and plasma density is analysed. The experimental results [1. Amongst the dissipative processes we are primarily concerned here with the electron heat conductivity

Boyer, Edmond

409

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment  

E-Print Network (OSTI)

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment Tingyue Gu* and Mei used in bioconversions to produce biological products as well as in wastewater treatment such as solvent removal from wastewater streams. In this work, a rate model is proposed to simulate this kind

Gu, Tingyue

410

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

Bernard A. Toseland

2000-12-31T23:59:59.000Z

411

Alabama | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

412

Washington | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

413

Building Energy Codes Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Building energy codes have been in place for over 20 years. Today's codes are providing energy savings of more than 30% compared to the codes of a decade ago. They're also saving consumers an estimated $5 billion annually as of 2012. Since 1992, building codes have saved about 300 million tons of carbon cumulatively. Read the fact sheet below to learn more about the Building Technologies Office's Building Energy Codes program.

414

Coding for Cooperative Communications  

E-Print Network (OSTI)

develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c... modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeat- accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel...

Uppal, Momin Ayub

2011-10-21T23:59:59.000Z

415

Usage Codes Vessel name  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Vessel name Int'l radio call sign (IRCS) Generator Other: Max hoisting Sonar Power (Kw) KHz: KHz: VMS Usage Y / N GPS: Internal / external KHz: KHz: Ratio Accuracy (m Incinerator: Burned on board: Net sensors Hull mounted / towed Wired / wireless Y / N Y / N Usage Manufacturer

416

Usage Codes Additional Information  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Additional Information Winches (on deck) Electronics RPM: Max hoistingPresent? Usage Model Ratio Accuracy (m) Type: Electric / Hydraulic / Other _________________ KHz: GPS: Internal Other: Y / N Other: Y / N Y / NOther: Hydrophone Burned on board: Net sensors Usage Manufacturer High

417

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

418

Nebraska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

419

Summary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Summary The impact of energy codes on our future is apparent. From environmental and resource conservation to national security, energy concerns, and our economic challenges, energy codes will continue to be a key component of a sound public policy. For further information on building energy code adoption, compliance, and enforcement, review the ACE toolkits Adoption Compliance Enforcement Popular Links ACE Learning Series ACE Overview Top 10 Reasons for Energy Codes Development of Energy Codes Adoption of Energy Codes Compliance with Energy Codes Enforcement of Energy Codes Going Beyond Code Summary Acronyms and Abbreviations Toolkit Definitions Adoption Toolkit Compliance Toolkit Enforcement Toolkit Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, January 31, 2013 - 15:19

420

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Automated two column generator systems for medical radionuclides  

Science Journals Connector (OSTI)

This work describes automated chromatographic methods for the separation of medically useful radionuclides from source material containing their parent radionuclides. The separation techniques employ two chromatographic columns to ensure high chemical and radiochemical purity of the product radionuclide. The separations were performed using an automated system, the automated radionuclide separator (ARS2), consisting of syringe pumps and multiport valves controlled through a computer interface. Generator systems for 68Ga, 99mTc, 188Re and 213Bi will be described.

Daniel R. McAlister; E. Philip Horwitz

2009-01-01T23:59:59.000Z

422

Determination of plate efficiencies for conventional distillation columns  

E-Print Network (OSTI)

DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COIUMNS A Thesis By Thomas Raymond Harris Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1962 Ma)or Sub)ect t Chemical Engineering DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COLUMNS A Thesis Thomas Raymond Harris Approred as to style and content bye Chairman of ommittee Head...

Harris, Thomas Raymond

2012-06-07T23:59:59.000Z

423

Nano and viscoelastic Beck's column on elastic foundation  

E-Print Network (OSTI)

Beck's type column on Winkler type foundation is the subject of the present analysis. Instead of the Bernoulli-Euler model describing the rod, two generalized models will be adopted: Eringen non-local model corresponding to nano-rods and viscoelastic model of fractional Kelvin-Voigt type. The analysis shows that for nano-rod, the Herrmann-Smith paradox holds while for viscoelastic rod it does not.

Atanackovic, Teodor M; Zorica, Dusan

2014-01-01T23:59:59.000Z

424

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

425

Compliance with Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance with Energy Codes Compliance with Energy Codes Energy code compliance must be achieved to realize the considerable benefits inherent in energy codes. BECP supports successful compliance by making no-cost compliance tools, REScheck(tm) and COMcheck(tm), and other resources widely available to everyone. BECP has also developed several resources to help states uniformly assess the rate of compliance with their energy codes for residential and commercial buildings. It is important to note that regardless of the level of enforcement, as a law the building owner/developer is ultimately responsible to comply with the energy code. Compliance will be increased if the adopting agency prepares the building construction community to comply with the energy code and provides resources to code officials to enforce it.

426

Buckling propagation failure in semi-submersible platform columns  

Science Journals Connector (OSTI)

abstract The present paper aims at studying the behavior of stiffened panels from a column segment of a new generation of semi-submersible platforms up to the peak compressive load and in the post-buckling condition. Previous studies have demonstrated a strong influence of the mode and magnitude of initial geometric imperfections, as well as boundary conditions, on the structure's axial load capacity. Numericalexperimental correlation study for small-scale models was performed to define the proper numerical model to be used in more complex numerical simulations of the failure behavior of full-scale column structures. The stiffened panels were assessed to identify the buckling onset in a specific plate and its interaction with longitudinal and transversal stiffeners during the progressive column failure. Measurements of the geometric imperfection distribution of full-scale stiffened panels were collected during construction to better understand the buckling mechanism. Initial geometric imperfections were measured by means of laser-based equipment including a portable measuring system that uses laser technology with sub-millimeter accuracy.

Tiago P. Estefen; Segen F. Estefen

2012-01-01T23:59:59.000Z

427

Experimental and Analytical Studies on Old Reinforced Concrete Buildings with Seismically Vulnerable Beam-Column Joints  

E-Print Network (OSTI)

column axial load was controlled to follow the pre-definedThe column axial loads were controlled to follow Equation (The lateral load pattern is selected as follows, F i = ? i W

PARK, SANGJOON

2010-01-01T23:59:59.000Z

428

Automated metal-free multiple-column nanoLC for improved phosphopeptid...  

NLE Websites -- All DOE Office Websites (Extended Search)

metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput. Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis...

429

Application of a Plantwide Control Design Procedure to a Distillation Column with Heat Pump  

E-Print Network (OSTI)

(Larsson & Skogestad 2001) to a distillation column heat-integrated by using a heatpump. Top-down analysis) and apply it to a distillation column with heatpump. Plantwide control design should start by formulating

Skogestad, Sigurd

430

Adaptive code generators for tree coding of speech  

E-Print Network (OSTI)

Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The best predictor designed...

Dong, Hui

1998-01-01T23:59:59.000Z

431

SIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES  

E-Print Network (OSTI)

vehicle 1811 - Motor Vehicle Other 1812 - Aircraft 1813 - Motor Vehicle (Natural Gas conversion -Passengers Cars 1814 - Motor Vehicles - Natural Gas Conversion-other 1820 - Boats 1841- Software > 100kSIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES: Capital Objects Codes That Do

Hofmann, Hans A.

432

Methane Hydrates Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

433

Minnesota | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

434

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

435

Michigan | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan Michigan Last updated on 2013-06-03 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information 2009 Commercial MI Uniform Energy Code Rules Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Michigan (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/09/2011 Adoption Date 11/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Michigan DOE Determination Letter, May 31, 2013 Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 2009 Residential MI Uniform Energy Code Rules Approved Compliance Tools Can use REScheck

436

Nevada Energy Code for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

437

Network coding for anonymous broadcast  

E-Print Network (OSTI)

This thesis explores the use of network coding for anonymous broadcast. Network coding, the technique of transmitting or storing mixtures of messages rather than individual messages, can provide anonymity with its mixing ...

Sergeev, Ivan A

2013-01-01T23:59:59.000Z

438

Matlab-Kinect Interface Code  

E-Print Network (OSTI)

This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

Kowalski, Kevin

2012-06-01T23:59:59.000Z

439

Code of Practice Research Degrees  

E-Print Network (OSTI)

........................................................................ 15 Section Ten: FacilitiesCode of Practice For Research Degrees 2014/15 #12;2 Contents Section One: Preface ­ the purpose of the Code........................................................ 3 Section Two: Context

Evans, Paul

440

Georgia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Robust LT codes with alternating feedback  

Science Journals Connector (OSTI)

In this paper, we propose robust LT codes with alternating feedback (LT-AF codes), which lightly utilize the feedback channel and surpass the performance of existing LT codes with feedback. In LT-AF codes, we consider a loss prone feedback channel for ... Keywords: Erasure channel, Feedback channel, Forward error correction codes, LT codes, Rateless codes

Ali Talari, Nazanin Rahnavard

2014-08-01T23:59:59.000Z

442

What's coming in 2012 codes  

E-Print Network (OSTI)

Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

Lacey, E

2011-01-01T23:59:59.000Z

443

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column  

E-Print Network (OSTI)

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column distillation columns have been explored in many papers, very few papers have dealt with closed-loop control. Most of these control papers consider reactive distillation columns in which there is only one product

Al-Arfaj, Muhammad A.

444

A globally convergent method for finding all steady-state solutions of distillation columns  

E-Print Network (OSTI)

A globally convergent method for finding all steady-state solutions of distillation columns Ali distillation column with 7 steady-states show the robustness of the method. No published software known to the steady-state model of distillation columns as it returns the original system as a single large block

Neumaier, Arnold

445

Charge Collection Measurements in single-type column 3D Sensors  

E-Print Network (OSTI)

Charge Collection Measurements in single-type column 3D Sensors M. Scaringella*, A. Polyakov, and H sensors. In particular, 3D detectors with columns of both n-and p-doping are considered to be especially-substrate [5]. The principle of the single-type column 3D sensors is shown in Fig. 1. Their advantages over

California at Santa Cruz, University of

446

Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography  

E-Print Network (OSTI)

SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

Lebendiker, Mario

447

Comparative Study of Plasma Anodization of Silicon in a Column of a dc Glow Discharge  

Science Journals Connector (OSTI)

A comparative study of plasma anodization of silicon in the column of a dc oxygen glow discharge is presented. Quantitative results for growth rates of silicon dioxide in the negative glow Faraday dark space positive column and the anode fall are given. It is observed that the growth rate is higher in the positive column than the other regions of the discharge.

M. A. Copeland; R. Pappu

1971-01-01T23:59:59.000Z

448

2009 Solar Decathlon Building Code  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING CODE Last Updated: September 29, 2008 2009 Solar Decathlon Building Code i September 29, 2008 Contents Section 1. Introduction ............................................................................................................................................................. 1 Section 2. Adopted Codes ........................................................................................................................................................ 1 Section 3. Building Planning and Construction .............................................................................................................. 1 3-1. Fire Protection and Prevention ................................................................................................................................. 1

449

Rotationally invariant multilevel block codes  

E-Print Network (OSTI)

The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

Kulandaivelu, Anita

2012-06-07T23:59:59.000Z

450

MATH 406/806 Introduction to Coding Theory  

E-Print Network (OSTI)

, convolutional codes, turbo codes, expander codes, low-density parity-check (LDPC) codes. References: R.M. Roth

Offin, Dan

451

Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor  

E-Print Network (OSTI)

Spatial distribution of isoprene emissions from North America derived from formaldehyde column isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent distribution of OMI HCHO columns follows that of isoprene emission; anthropogenic hydrocarbon emissions

Chance, Kelly

452

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

453

Cal. Wat. Code 13376 | Open Energy Information  

Open Energy Info (EERE)

Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code 13376...

454

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

455

Energy Codes at a Glance  

SciTech Connect

Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energys Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

Cole, Pamala C.; Richman, Eric E.

2008-09-01T23:59:59.000Z

456

Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding  

E-Print Network (OSTI)

to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

Yang, Yang

2005-11-01T23:59:59.000Z

457

Pennsylvania | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Pennsylvania Pennsylvania Last updated on 2013-11-05 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Pennsylvania (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 12/31/2009 Adoption Date 12/10/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Pennsylvania DOE Determination Letter, May 31, 2013 Pennsylvania State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current residential code is the 2009 IECC, 2009 IRC, Chapter 11, and/or PA-Alt. Adherence to Pennsylvania's Alternative Residential Energy Provisions 2009 is an acceptable means of demonstrating compliance with the energy conservation code requirements of the Uniform Construction Code.

458

Ohio | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Ohio Last updated on 2013-10-21 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Ohio's commercial code is the 2009 IECC with a direct reference to ASHRAE 90.1-07. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Ohio (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 11/01/2011 Adoption Date 03/07/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Ohio DOE Determination Letter, May 31, 2013 Ohio State Certification of Commercila and Residential Building Energy Codes Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Effective January 1, 2013 the residential code in Ohio is based on Chapter 11 of the 2009 IRC. It includes the 2009 IECC and state-specific alternative compliance paths. The 2013 Residential Code of Ohio (RCO) contains amendments to allow compliance to be demonstrated in three ways: (1) 2009 IECC; or (2) RCO Sections 1101 through 1104; or RCO Section 1105 ("The Ohio Homebuilder's Association Alternative Energy Code Option").

459

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

460

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2006;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" ,,,,"Electricity",,,"Natural Gas",,,"Steam" ,,,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" ,,"Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

462

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" ,,,,"Electricity",,,"Natural Gas",,,"Steam" ,,,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" ,,"Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

463

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 10.23;" 3 Relative Standard Errors for Table 10.23;" " Unit: Percents." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","LPG Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","as a Fuel","LPG Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

464

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 10.22;" 2 Relative Standard Errors for Table 10.22;" " Unit: Percents." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","as a Fuel","Coal Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

465

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

466

Top 10 Reasons for Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Top 10 Reasons for Energy Codes Top 10 Reasons for Energy Codes The projected energy savings attributable to energy codes translates into an estimated cumulative savings of 800 million metric tons of carbon dioxide by 2030-that's equivalent to removing 145 million vehicles from our nation's roadways. Here are the top 10 reasons for adopting and implementing energy codes. Today's global energy, economic, and environmental challenges necessitate a U.S. strategy identifying a suite of energy-efficiency-related initiatives that is implemented by the building industry and relevant stakeholders. Energy codes are a core component of that strategy and, in addition, have an impact on other strategies to improve our built environment. Energy Codes... SAVE money and help reduce needless consumption of energy to heat,

467

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

468

Cost efficiency estimations and the equity returns for the US public solar energy firms in 19902008  

Science Journals Connector (OSTI)

......USA on foreign sources of oil and natural gas. The USA has some of the richest...Industry Classi- fication System (NAICS) codes.2 To be included in the...between the mean coefficients 2 US NAICS codes selected are: 221119, 221119......

Chris Kuo

2011-10-01T23:59:59.000Z

469

Arkansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

470

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

471

Chapter 28 - Perceptual Audio Coding  

Science Journals Connector (OSTI)

Abstract Audio Coding has proliferated as a mainstream enabling digital technology for all types of applications that provide audio and multimedia to consumers using transmission or storage channels with limited capacity. Since its infancies in the eighties and early nineties, the technology behind low bitrate audio coding has developed rapidly until today. Nonetheless, the technology generations seen to date follow several common themes, including the use of time/frequency-domain processing, redundancy reduction (entropy coding), and irrelevancy removal through the pronounced exploitation of perceptual effects. The latter aspect is of paramount importance to the understanding and the performance of the coding systems and has gained more and more in importance over time. Starting from basic principles, this article provides an overview of methods for low bitrate perceptual audio coding and its evolution over time along with some related coding standards (e.g., mp3) and typical applications.

Jrgen Herre; Sascha Disch

2014-01-01T23:59:59.000Z

472

SEAMOPT - Stirling engine optimization code  

SciTech Connect

Experience is described with use of a fast-running Stirling engine optimization code developed at Argonne intended for public release. Stirling engine modeling is provided by the SEAM1 thermodynamic code. An interface was written to combine SEAM1 with a general optimization code and assess maximum component stress levels. Thus full engine thermodynamic and structural simulation is done during the optimization process. Several examples of the use of this code to optimize the GPU-3 engine are described. In one case efficiency was improved by over 25%.

Heames, T.J.; Daley, J.G.

1984-01-01T23:59:59.000Z

473

BPA Hotline & Codes of Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotline & Codes of Conduct Pages default Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

474

FOUNDATION REVENUE OBJECT CODES LSU Foundation Revenue Object Codes  

E-Print Network (OSTI)

FOUNDATION REVENUE OBJECT CODES 4 page 1 LSU Foundation Revenue Object Codes 0F00 Foundation - Balance Forward 0F01 Foundation - Other Contributions 0F02 Foundation - State of Louisiana 0F03 Foundation - Corporate Contributions 0F04 Foundation - Corporate Match Contributions 0F05 Foundation - Individual

Harms, Kyle E.

475

Kinetic azeotropy and design of reactive distillation columns  

SciTech Connect

The reactive fixed points in the distillation maps of a reactive distillation column (RDC) with kinetically controlled reactions are identified and their role in deciding the design feasibility has been elucidated. The fixed points at which both reaction and distillation vectors have zero magnitudes correspond to the equilibrium fixed point. It is known that the relative positions of these points for the rectifying and stripping sections determine the value of the minimum reflux ratio. However, apart from these fixed points, there are certain fixed points in the distillation map at which, though the reaction and distillation vectors have nonzero magnitudes, they nullify the effects of each other. These points correspond to the kinetic fixed points and have a special significance. Their positions have direct influence on the feasible product composition. A simple example of an ideal ternary system undergoing a reaction 2B {longleftrightarrow} A + c has been illustrated to show the importance of kinetic azeotropy in the design aspects of RDC.

Mahajani, S.M. [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering] [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering

1999-01-01T23:59:59.000Z

476

Transient simulation for large scale flow in bubble columns  

Science Journals Connector (OSTI)

Abstract The transient simulation of large scale bubbly flow in bubble columns using the unsteady Reynolds averaged Navier Stokes (URANS) equations is investigated in the present paper. An extensive set of bubble forces is used with different models for the bubble induced turbulence. Criteria are given to assess the independence of the simulation time and the time step length. Using these criteria it is shown that a simulation time, time step length and mesh independent solution can be obtained for complex bubbly flows using URANS equations under certain requirements. With the obtained setup the contribution of the resolved turbulence to the total turbulence and the influence of the bubble induced turbulence modeling on the resolved turbulence is investigated. Further, it is pointed out that the virtual mass force is not negligible. The simulations are compared to data from the literature at two different superficial velocities, which cover monodisperse and polydisperse bubbly flows.

T. Ziegenhein; R. Rzehak; D. Lucas

2015-01-01T23:59:59.000Z

477

Bureau of Construction Codes - 2009 Michigan Uniform Energy Code - Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

These rules take effect March 9, 2011 (By authority conferred on the director of the department of energy, labor, and economic growth by section 4 of 1972 PA 230, MCL 125.1504, and Executive Reorganization Order Nos. 2003-1 and 2008-20, MCL 445.2011 and MCL 445.2025) R 408.31087, R 408.31088, R 408.31089, and R 408.31090 of the Michigan Administrative Code are amended and R 408.31087a is added to the code as follows: PART 10a MICHIGAN UNIFORM ENERGY CODE R 408.31087 Applicable code. Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2009 edition, section 501.1 and the ASHRAE

478

Heat transfer to a horizontal cylinder in a shallow bubble column  

Science Journals Connector (OSTI)

Abstract Heat transfer coefficient correlations for tall bubble columns are unable to predict heat transfer in shallow bubble columns, which have unique geometry and fluid dynamics. In this work, the heat transfer coefficient is measured on the surface of a horizontal cylinder immersed in a shallow airwater bubble column. Superficial velocity, liquid depth, and cylinder height and horizontal position with respect to the sparger orifices are varied. The heat transfer coefficient is found to increase with height until reaching a critical height, and a dimensionless, semi-theoretical correlation is developed that incorporates superficial velocity, liquid properties, and height. Additionally, the more minor effects of flow regime, column region, and bubble impact are discussed. Notably, the heat transfer coefficient can be as high in the region of bubble coalescence as in the bulk of the column, but only if bubbles impact the cylinder. The correlation and discussion provide a framework for modeling and designing shallow, coil-cooled bubble columns.

Emily W. Tow; John H. Lienhard V

2014-01-01T23:59:59.000Z

479

Improving the Performance of a Two-Shell Column with Advanced Control  

E-Print Network (OSTI)

column has yielded stable operation with reduced utility consumption and increased capacity. Prior to the application of advanced controls this column was a plant capacity limit and composition control was very difficult. The advanced controls now... allow composition to be controlled within 15% of setpoint at both ends of the column. specific energy consumption has been reduced significantly, yielding higher potential capacity. The control strategies implemented include analyzer composition...

Morrison, T. A.; Laflamme, D.

480

Louisiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Louisiana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 07/20/2011 Adoption Date 07/20/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Louisiana DOE Determination Letter, May 31, 2013 Louisiana State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IRC Amendments / Additional State Code Information Louisiana's current residential code is the 2006 IRC with direct reference to the 2006 IECC. All AC duct insulation is R6 instead of R8 and to include Section R301.2.1.1 of the 2003 edition of the IRC in lieu of Section R301.2.1.1 of the 2006 edition.

Note: This page contains sample records for the topic "naics codes column" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LFSC - Linac Feedback Simulation Code  

SciTech Connect

The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

Ivanov, Valentin; /Fermilab

2008-05-01T23:59:59.000Z

482

on education Code of Ethics  

E-Print Network (OSTI)

the forum Abroad on education Code of Ethics for Education Abroad #12;The Forum on Education Abroad Code of Ethics for Education Abroad Contents Page Section I Preamble 2 Section II Ethical Principles for Education Abroad 3 Section III Ethical Guidelines: Examples of Ethical Best 6 Practices for Education Abroad

Illinois at Chicago, University of

483

Secure Symmetrical Multilevel Diversity Coding  

E-Print Network (OSTI)

Secure symmetrical multilevel diversity coding (S-SMDC) is a source coding problem, where a total of L - N discrete memoryless sources (S1,...,S_L-N) are to be encoded by a total of L encoders. This thesis considers a natural generalization of SMDC...

Li, Shuo

2012-07-16T23:59:59.000Z

484

Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Column Ion Exchange Technology at Small Column Ion Exchange Technology at Savannah River Site U.S. Department of Energy Office of Environmental Management Office of Technology Innovation and Development Technology Readiness Assessment Report November 2011 U.S. DOE-EM Office of Technology Innovation and Development November 11, 2011 Small Column Ion Exchange Program Technology Readiness Assessment Page 2 of 112 This page intentionally left blank November 11, 2011 U.S. DOE-EM Office of Technology Innovation and Development Small Column Ion Exchange Program Technology Readiness Assessment Page 3 of 112 APPROVALS ________________________ _ Harry D. Harmon Date

485

Automation of Column-based Radiochemical Separations: A Comparison of Fluidic, Robotic, and Hybrid Architectures  

SciTech Connect

Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on setting up samples and columns in parallel, and using disposable components so that no sample contacts any surface that any other sample has contacted. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL column bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions four rows of six vials below the columns. The samples are delivered to the columns via a manual 3-port valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is simpler and faster in performing anion exchange procedures for the recovery and purification of plutonium from samples.

Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Ozanich, Richard M.; Owsley, Stanley L.

2011-09-26T23:59:59.000Z

486

Development of a Fuzzy Logic Controller for a Distillation Column using Rockwell Software .  

E-Print Network (OSTI)

??In this thesis, an alternative control method based on Fuzzy Inference System (FIS) is proposed to keep the product composition of a distillation column constant. (more)

Nizami, Muhammad

2011-01-01T23:59:59.000Z

487

Integrated Silica-Bead Separation Column for On-Chip LC-ESI  

E-Print Network (OSTI)

area as a 58m ID capillary. ESI nozzle freestandingESI voltage is on, Cross Section Dimension Equivalent Column ID

He, Qing; Xie, Jun; Tai, Yu-Chong; Miao, Yunan; Lee, Terry D

2004-01-01T23:59:59.000Z

488

E-Print Network 3.0 - activated carbon columns Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

- School of Physics, University of Sydney Collection: Materials Science ; Physics 6 United States Department of Summary: column is non-zero only in the year of harvest, 2015....

489

E-Print Network 3.0 - absorbing column densities Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

John - National Radio Astronomy Observatory Collection: Physics 3 Characteristics and energy balance of a plasma column sustained by a surface wave Summary: density distribution...

490

E-Print Network 3.0 - anaerobic aquifer column Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Explorit Topic List Advanced Search Sample search results for: anaerobic aquifer column Page: << < 1 2 3 4 5 > >> 1 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic...

491

A new warmstarting strategy for the primal-dual column generation ...  

E-Print Network (OSTI)

Jun 24, 2012 ... Abstract: This paper presents a new warmstarting technique in the context of a primal-dual column generation method applied to solve a...

Jacek Gondzio

2012-06-24T23:59:59.000Z

492

Tennessee | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

493

ALOHA Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALOHA Code ALOHA Code ALOHA Code Central Registry Toolbox Code Version(s): V5.2.3 Code Owner: National Oceanic and Atmospheric Administration (NOAA) Description: The Arial Locations of Hazardous Atmospheres (ALOHA) is atmospheric dispersion model maintained by the Hazardous Materials Division of National Oceanic and Atmospheric Administration (NOAA). ALOHA is one of three separate, integrated software applications in the Computer-Aided Management of Emergency Operations (CAMEO) suite. While the other two software applications: Cameo is primarily a database application and Marplot is the mapping application. ALOHA is used primarily for the evaluations of the consequences of atmospheric releases of chemical species. In addition to safety analysis applications in the Department of Energy (DOE) Complex, ALOHA is applied

494

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

495

GENII Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENII Code GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radio nuclides released into the environment. The GENII System includes capabilities for calculating radiation doses following postulated chronic and acute releases. Version 2.10 is currently being evaluated for inclusion in the Central Registry. For more information on GENII to: http://radiologicalsciences.pnl.gov/resources/hardware.asp The GENII code-specific guidance report has been issued identifying applicable regimes in accident analysis, default inputs, and special

496

Massachusetts | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Massachusetts Last updated on 2013-11-04 Current News The BBRS voted to adopt the 2012 IECC and ASHRAE 90.1-2010 on July 9, 2013. They will be phased in over an extended concurrency period, and is expected to become the sole effective baseline energy code on July 1, 2014. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 13.0 Energy Conservation- 2009 IECC Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Massachusetts (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 01/01/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes

497

Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

498

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

499

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

500

Business Models for Code Compliance | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the