National Library of Energy BETA

Sample records for naics codes beginning

  1. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  2. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Historical Procurement Information Historical Procurement Information - by Location

  3. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," ","

  4. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal

  6. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  7. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  8. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  9. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  10. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  12. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    Gasoline and Diesel Fuel Update (EIA)

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  13. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  6. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  7. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  3. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  4. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  5. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and

  6. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  7. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  8. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row"

  9. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  10. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," "

  13. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," ","

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural

  1. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    Gasoline and Diesel Fuel Update (EIA)

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  2. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    0 Reasons that Made Electricity Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million kWh. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Electricity Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Electricity Fuel Use Another Fuel the Products

  3. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  4. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    2 Reasons that Made Coal Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million short tons. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Coal Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Coal Fuel Use Another Fuel the Products Fuel

  5. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  6. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed Milling * * * * * * * 0

  7. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed Milling * * * * * * 0 *

  8. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  9. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" "

  10. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2010;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  11. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date NAICS Code April - June 2014 January - March 2014

  12. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 NAICS Code June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June

  13. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Natural Gas(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  17. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  18. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  19. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual"

  20. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  3. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  4. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  5. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total Establishments"," ","Not","Electricity","Natural","Distillate","Residual"

  6. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  7. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS","

  8. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  9. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  10. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  11. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments ","

  13. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  14. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  15. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  16. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  17. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  18. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  19. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  20. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 618 165 379 8 109 12 1 38 0 10 3112 Grain and Oilseed Milling 115

  1. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  2. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 73,551 1,887 55,824 711 823 0 111 45 0 205 3112 Grain and Oilseed Milling

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  4. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  5. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  6. Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments

    Gasoline and Diesel Fuel Update (EIA)

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    Gasoline and Diesel Fuel Update (EIA)

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7

  9. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 10.17 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from LPG to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent

  10. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  11. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  12. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  13. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  14. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 8 2 7 * 1 * * * * 3112 Grain and Oilseed Milling 6 1 4 0 1 * 0 * * 311221 Wet Corn

  15. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 563 139 416 12 72 26 4 35 * 13 3112 Grain and Oilseed Milling

  16. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2 1 1 * 1 * 0 0 0 * 3112 Grain and Oilseed Milling * * * 0 * * 0 0

  17. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 75,673 2,403 70,987 666 1,658 Q 406 Q Q 141 3112 Grain and Oilseed

  18. Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;

    Gasoline and Diesel Fuel Update (EIA)

    1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing

  19. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6

  20. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1

  1. Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;

    Gasoline and Diesel Fuel Update (EIA)

    3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit

  2. Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4

  3. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  4. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million

  5. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","No Steam Used" ,,"Total United States" "

  6. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," ","

  7. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  8. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  9. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " "Next MECS will be fielded in 2015" "Table 6.1 Consumption Ratios of Fuel, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments"

  10. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590

  11. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Selected Subsectors and Industry Establishments(b) In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know Total United States 311 Food 13,271 1,849 10,454 968

  12. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  13. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  17. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of

  18. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," ","Any "," "," "," "," "," "," "," "," ",," " " "," ","Combustible",,,,,,,,"RSE"

  19. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  20. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  1. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  2. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  3. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    Gasoline and Diesel Fuel Update (EIA)

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  4. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  5. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  6. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  7. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  8. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  9. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of...

  10. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer

  11. " Row: NAICS Codes;" " Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Industry","Establishments(b)","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In ...

  12. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--"

  13. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarte...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... PUBLISHERS 8 1,742,744.89 524292 THIRD PARTY ADMINISTRATION OF INSURANCE AND PENSION ... BUSINESS, PROFESSIONAL, LABOR, AND POLITICAL ORGANIZATIONS) 1 3,240.00 333319 OTHER ...

  14. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Energy Consumption Survey.'" X-Input-Content-Type: applicationvnd.ms-excel X-Translator-Status: translating "Table N13.1. Electricity: Components of Net Demand,...

  15. Good-Bye, SIC - Hello, NAICS

    U.S. Energy Information Administration (EIA) Indexed Site

    you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry...

  16. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING

  17. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  18. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",69090,"*",1,297,1,"*" ," Facility Lighting",51946,"--","--","--","--","--" ," Other ... (g)",6192,"*","*",32,"*","*" ," Facility Lighting",6082,"--","--","--","--","--" ," Other ...

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",236,"Q",4,306,4,3 ," Facility Lighting",177,"--","--","--","--","--" ," Other ... (g)",21,"*","Q",33,"*","*" ," Facility Lighting",21,"--","--","--","--","--" ," Other ...

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...)","--",265,4,4,378,5,2,"--" ," Facility Lighting","--",198,"--","--","--","--","--","--" ...--",21,"*","*",30,1,"*","--" ," Facility Lighting","--",18,"--","--","--","--","--","--" ...

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",77768,1,1,367,1,"*","--" ," Facility Lighting","--",58013,"--","--","--","--","--","--...6036,"*","*",29,"*","*","--" ," Facility Lighting","--",5291,"--","--","--","--","--","--" ...

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",83480,1,1,367,1,"*" ," Facility Lighting",62902,"--","--","--","--","--" ," Other ... (g)",6217,"*","*",29,"*","*" ," Facility Lighting",5472,"--","--","--","--","--" ," Other ...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",84678,1,1,392,1,"*",5.7 ," Facility Lighting",66630,"--","--","--","--","--",1 ," ...,5402,"*","*",26,"*","*",2.2 ," Facility Lighting",4785,"--","--","--","--","--",1 ," ...

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",64945,"*",1,297,1,"*","--" ," Facility Lighting","--",48453,"--","--","--","--","--","--...5949,"*","*",32,"*","*","--" ," Facility Lighting","--",5809,"--","--","--","--","--","--" ...

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",81980,1,1,406,1,"*",6.6 ," Facility Lighting",62019,"--","--","--","--","--",1.1 ," ...5037,"*","*",36,"*","*",11.3 ," Facility Lighting",4826,"--","--","--","--","--",1.3 ," ...

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...79355,1,1,392,1,"*","--",5.7 ," Facility Lighting","--",61966,"--","--","--","--","--","--...,"*","*",26,"*","*","--",2.2 ," Facility Lighting","--",4492,"--","--","--","--","--","--"...

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",280,3,5,417,5,5,6.6 ," Facility Lighting",212,"--","--","--","--","--",1.1 ," ...g)",17,"*","*",37,1,"*",11.3 ," Facility Lighting",16,"--","--","--","--","--",1.3 ," ...

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",289,4,6,403,4,4,5.7 ," Facility Lighting",227,"--","--","--","--","--",1 ," Other ... (f)",18,1,1,26," *"," *",2.2 ," Facility Lighting",16,"--","--","--","--","--",1 ," Other ...

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",222,"Q",4,306,4,3,"--" ," Facility Lighting","--",165,"--","--","--","--","--","--" ...",20,"*","Q",33,"*","*","--" ," Facility Lighting","--",20,"--","--","--","--","--","--" ...

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",271,4,6,403,4,4,"--",5.7 ," Facility Lighting","--",211,"--","--","--","--","--","--",... *"," *","--",2.2 ," Facility Lighting","--",15,"--","--","--","--","--","--",1 ...

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",262,3,5,417,5,5,"--",6.6 ," Facility Lighting","--",196,"--","--","--","--","--","--",...6,"*","*",37,1,"*","--",11.3 ," Facility Lighting","--",15,"--","--","--","--","--","--",1...

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",285,4,4,378,5,2 ," Facility Lighting",215,"--","--","--","--","--" ," Other ... (g)",21,"*","*",30,1,"*" ," Facility Lighting",19,"--","--","--","--","--" ," Other ...

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...76840,1,1,406,1,"*","--",6.6 ," Facility Lighting","--",57460,"--","--","--","--","--","--..."*","*",36,"*","*","--",11.3 ," Facility Lighting","--",4526,"--","--","--","--","--","--"...

  15. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... energy consumption quantities should be minimal due to the relatively much " "higher ... energy consumption quantities should be minimal due to the relatively much " "higher ...

  16. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  17. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (d) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (e) ...

  18. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (d) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (e) ...

  19. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (e) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (f) ...

  20. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors" ... marketing subsidiaries of utilities." " (f) Examples of Liquefied Petroleum Gases ...

  1. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE ... raw" "Natural Gas Liquids '(NGL).'" " (f) 'Other' includes energy that respondents ...

  2. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  3. Product Service Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents & Publications NAICS Codes @ Headquarters Federal Reporting Recipient Information Federal Reporting Recipient Information

  4. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS

    Office of Environmental Management (EM)

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) PDF icon steel_footprint_2012.pdf More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... within 324. Their influence on energy consumption quantities should be minimal due to the relatively much higher energy intensities of correctly classified petroleum refineries. ...

  6. "NAICS",,"per Employee","of Value Added","of Shipments"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States"

  7. Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.3 FOREST PRODUCTS SECTOR (NAICS 321 AND 322) 2.3.1. Overview of the Forest Products Manufacturing Sector The forest products sector produces thousands of products from renewable raw materials (wood) that are essential for communication, packaging, consumer goods, and construction. The sector is divided into two major categories: Wood Product Manufacturing (NAICS 321) and Paper Manufacturing (NAICS 322). These industries are

  8. Beyond Beginning Balances Presentation

    National Nuclear Security Administration (NNSA)

    Beyond Beginning Balances Peter Dessaules DOE/SO-62 Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop January 13, 2004 January 13, 2004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, Georgia Atlanta, Georgia Beginning Foreign Obligation Beginning Foreign Obligation Balances Balances * Why are they important? - United States Agreements for Cooperation hold Treaty status. - These Agreements require periodic reporting to the foreign countries. -

  9. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value"...

  10. A NEW ERA BEGINS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEW ERA BEGINS uest RESEARCH NEWS FROM PPPL Summer 2015 ENERGY U.S. DEPARTMENT OF From the Princeton University Vice President for PPPL From the Director of PPPL W elcome to the new issue of Quest, the annual research magazine that highlights major achievements at the Princeton Plasma Physics Laboratory over the past year. These achievements reflect the superb scientific and engineering capabilities of the Laboratory, which Princeton is honored to manage for the U.S. Department of Energy. As

  11. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  12. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  13. Food and Beverage Sector (NAICS 311 and 312) Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.5 FOOD AND BEVERAGE SECTOR (NAICS 311 AND 312) 2.5.1. Overview of the Food and Beverage Manufacturing Sector The food and beverage sector is an integral component of the U.S. economy, transforming livestock and agricultural products into intermediate and final food and beverage products. Food and beverage is one of the largest manufacturing sectors, resulting in considerable consumer expenditures for food and beverage

  14. Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    39 2.2 CHEMICALS SECTOR (NAICS 325) 2.2.1. Overview of the Chemicals Manufacturing Sector The chemicals manufacturing sector is an integral component of the U.S. economy, converting raw materials such as petroleum, natural gas, minerals, coal, air, and water into more than 70,000 diverse products. Chemical products are critical components of consumer goods and are found in everything from automobiles to plastics to electronics. This sector creates its diverse output from raw materials of two

  15. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 466 162 Steam Distribution Losses 4 12 Nonprocess Energy 267 Electricity Generation Steam Generation 466 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 30 292 63 Generation and Transmission Losses Generation and Transmission Losses 0 136 Onsite Generation 321 306 24 330 199 0 19 0.0 12.0 12.0 1.5 1.5 12.1 22.8 2.0 26 14.3 26.3 0.6 Fuel Total Energy

  16. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 16 Nonprocess Losses 729 89 Steam Distribution Losses 13 36 Nonprocess Energy 154 Electricity Generation Steam Generation 729 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 84 223 182 Generation and Transmission Losses Generation and Transmission Losses 0 393 Onsite Generation 307 255 81 336 575 0 65 0.0 34.8 34.8 5.1 4.9 2.3 28.9 9.7 44 8.9 43.7 1.7 Fuel Total Energy Total

  17. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  18. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Alumina and Aluminum (NAICS 3313) Process Energy Electricity and Steam Generation Losses Process Losses 3 Nonprocess Losses 456 105 Steam Distribution Losses 3 7 Nonprocess Energy 99 Electricity Generation Steam Generation 456 5 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 198 116 Generation and Transmission Losses Generation and Transmission Losses 2 234 214 207 13 220 351 7 10 0.4 20.3 20.8 4.2 24.0 1.3 26 5.3 26.1 0.4 Fuel Total

  19. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Cement (NAICS 327310) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 307 101 Steam Distribution Losses 1 3 Nonprocess Energy 214 Electricity Generation Steam Generation 307 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 6 237 31 Generation and Transmission Losses Generation and Transmission Losses 0 62 243 240 5 245 93 0 4 0.0 5.4 5.4 18.5 23.5 0.6 25 19.1 24.6 0.2 Fuel Total Primary Energy, 2010

  20. Manufacturing Energy and Carbon Footprint - Sector: Chemicals (NAICS 325), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Chemicals (NAICS 325) Process Energy Electricity and Steam Generation Losses Process Losses 381 Nonprocess Losses 4,252 871 Steam Distribution Losses 247 86 Nonprocess Energy 2,447 Electricity Generation Steam Generation 4,252 324 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 229 2,364 450 Generation and Transmission Losses Generation and Transmission Losses 126 905 2,594 1,745 1,476 3,221 1,355 450 1,095 28.5 78.6 107.2 52.4 145.9 15.4 252

  1. Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Fabricated Metals (NAICS 332) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 557 90 Steam Distribution Losses 4 35 Nonprocess Energy 174 Electricity Generation Steam Generation 557 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 80 211 127 Generation and Transmission Losses Generation and Transmission Losses 0 255 291 275 26 301 382 1 20 0.0 22.2 22.2 5.6 22.4 7.7 32 9.3 31.5 2.3 Fuel Total Primary

  2. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Food and Beverage (NAICS 311, 312) Process Energy Electricity and Steam Generation Losses Process Losses 128 Nonprocess Losses 1,836 455 Steam Distribution Losses 104 72 Nonprocess Energy 919 Electricity Generation Steam Generation 1,836 41 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 178 835 285 Generation and Transmission Losses Generation and Transmission Losses 16 574 1,014 620 625 1,245 860 57 497 3.6 50.0 53.6 13.5 55.8 13.7 109 55.5

  3. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Forest Products (NAICS 321, 322) Process Energy Electricity and Steam Generation Losses Process Losses 530 Nonprocess Losses 3,152 1,016 Steam Distribution Losses 287 87 Nonprocess Energy 2,135 Electricity Generation Steam Generation 3,152 186 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 224 1,538 252 Generation and Transmission Losses Generation and Transmission Losses 72 507 1,762 656 1,917 2,573 759 258 1,393 16.4 45.1 61.5 10.6 64.2 9.2

  4. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Foundries (NAICS 3315) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 173 34 Steam Distribution Losses 0 8 Nonprocess Energy 59 Electricity Generation Steam Generation 173 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 19 77 38 Generation and Transmission Losses Generation and Transmission Losses 0 76 96 95 2 97 114 0 2 0.0 6.6 6.6 1.8 7.2 1.9 9 2.6 9.2 0.6 Fuel Total Primary Energy, 2010 Total

  5. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Glass and Glass Products (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 294 100 Steam Distribution Losses 0 7 Nonprocess Energy 149 Electricity Generation Steam Generation 294 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 16 180 48 Generation and Transmission Losses Generation and Transmission Losses 0 97 196 195 2 197 145 0 1 0.0 8.4 8.4 7.3 14.3 1.7 16 7.7 16.1 0.4 Fuel

  6. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Iron and Steel (NAICS 3311, 3312) Process Energy Electricity and Steam Generation Losses Process Losses 49 Nonprocess Losses 1,463 404 Steam Distribution Losses 34 37 Nonprocess Energy 846 Electricity Generation Steam Generation 1,463 8 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 96 877 201 Generation and Transmission Losses Generation and Transmission Losses 3 404 973 830 226 1,056 605 12 177 0.7 35.1 35.9 17.7 50.1 4.8 58 22.0 57.9 1.4

  7. Manufacturing Energy and Carbon Footprint - Sector: Machinery (NAICS 333), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Machinery (NAICS 333) Process Energy Electricity and Steam Generation Losses Process Losses 1 Nonprocess Losses 288 37 Steam Distribution Losses 1 27 Nonprocess Energy 77 Electricity Generation Steam Generation 288 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 67 78 70 Generation and Transmission Losses Generation and Transmission Losses 0 141 144 139 8 147 211 1 7 0.0 12.2 12.3 1.8 8.9 6.9 16 4.2 16.4 2.0 Fuel Total Primary Energy, 2010

  8. Manufacturing Energy and Carbon Footprint - Sector: Petroleum Refining (NAICS 324110), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Petroleum Refining (NAICS 324110) Process Energy Electricity and Steam Generation Losses Process Losses 234 Nonprocess Losses 3,542 689 Steam Distribution Losses 150 22 Nonprocess Energy 2,873 Electricity Generation Steam Generation 3,542 150 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 59 2,734 153 Generation and Transmission Losses Generation and Transmission Losses 58 308 2,793 2,285 891 3,176 461 208 657 13.2 26.7 40.0 139.2 176.3 3.2

  9. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Plastics and Rubber Products (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 12 Nonprocess Losses 586 72 Steam Distribution Losses 8 28 Nonprocess Energy 115 Electricity Generation Steam Generation 586 1 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 64 187 156 Generation and Transmission Losses Generation and Transmission Losses 1 314 251 218 54 272 470 2 42 0.1 27.3 27.4 1.9 23.5 7.0 34 6.4 33.8 1.3 Fuel

  10. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Textiles (NAICS 313-316) Process Energy Electricity and Steam Generation Losses Process Losses 6 Nonprocess Losses 242 47 Steam Distribution Losses 6 12 Nonprocess Energy 59 Electricity Generation Steam Generation 242 6 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 26 84 58 Generation and Transmission Losses Generation and Transmission Losses 2 117 111 91 32 123 175 8 27 0.5 10.1 10.7 1.4 9.1 3.1 14 3.7 14.3 0.3 Fuel Total Primary Energy,

  11. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  12. Construction Begins | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Begins Construction Begins Workers drill down to bedrock for the pouring of Y-12 building footers as construction begins in 1942

  13. Big Things from Small Beginnings

    Broader source: Energy.gov [DOE]

    Slide Presentation given by D. Bullen on behalf of Peter S. Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board; prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. How seemingly unimportant situations can lead to significant, undesirable events.

  14. Operations start and shipments begin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations start and shipments begin Y-12's formal operational start date of record is January 27, 1944. George Robinson, in The Oak Ridge Story, tells us that on that date, "a select group of Manhattan [Engineer] District personnel and officials of Stone and Webster and the Tennessee Eastman Corporation...witnessed the epochal first 'run' of uranium 235 on a mass basis by the electromagnetic method." Even this first successful production run had its share of frustrating problems.

  15. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  16. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  17. DNA Duplication Revealed in New Beginnings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeing where the cells begin helps researchers stop rapid replication, a hallmark of many cancer cells. In the beginning . . . but how do you begin? That question has long ...

  18. Video Games - Did They Begin at Brookhaven

    Office of Scientific and Technical Information (OSTI)

    Video Games – Did They Begin at Brookhaven? Additional Web Pages The following account, written in 1981, tells how a Department of Energy research and development program led to the pioneering development of video games. William Higinbotham William Higinbotham First Pong, now Space Invaders, next Star Castle – video games have mesmerized children of at all ages across the country and around the world. Where did it all begin? Possibly at Brookhaven National Laboratory. In 1958, William

  19. Laboratory begins environmental sampling in townsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory begins environmental sampling Laboratory begins environmental sampling in townsite Environmental assessment of areas that have been or could have been affected by Laboratory operations from the days of the Manhattan Project to the early 1970s. September 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources,

  20. Electric Power Monthly … December 2010 Data issue

    Gasoline and Diesel Fuel Update (EIA)

    ... (NAICS code 2212); and construction (NAICS code 23). ... power, space heating, vessel bunkering, and various ... The steam used to drive the turbine is produced in a boiler ...

  1. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  2. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  3. Research Begins at CEBAF | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Begins at CEBAF The Continuous Electron Beam Accelerator Facility, the newest national research laboratory, successfully began conducting experiments this week. One hundred scientists from across the globe are collaborating with CEBAF to conduct the first in a series of experiments that are expected to lead to a solution to the ancient puzzle of the fundamental structure of matter. The first experiment, "The Energy Dependence of Nucleon Propagation in Nuclei as Measured in the (e,

  4. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  5. In H Canyon's 60th Year, Retirees Remember Facility's Beginnings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In H Canyon's 60th Year, Retirees Remember Facility's Beginnings and Challenging Careers In H Canyon's 60th Year, Retirees Remember Facility's Beginnings and Challenging Careers...

  6. Deactivation Project Begins at Paducah Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins at Paducah Gaseous Diffusion Plant Deactivation Project Begins at Paducah Gaseous Diffusion Plant October 21, 2014 - 5:00pm Addthis EM Paducah site lead Jennifer Woodard...

  7. Y-12 begins to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins to separate lithium isotopes During the years from 1946 through the early 1950s, Y-12 continued to expand as needed to meet the demand for a growing primary mission of machining uranium. The increased support was required as the nuclear weapon stockpile was being built and the testing of new designs continued. With the decision by President Truman to develop the hydrogen bomb, Y-12 soon became engaged in manufacturing parts for both the standard atomic weapons and the new designs being

  8. CWI begins exhuming waste from Pit 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CH2M-WG Idaho, LLC. News Media Contact: Joseph Campbell, 208-360-0142 For Immediate Release January 10, 2011 CWI begins exhuming waste from Pit 9 Cleanup crews with CH2M-WG Idaho (CWI), the main cleanup contractor at the Department of Energy�s Idaho Site, began digging into Pit 9 recently as part of a campaign that is expected to exhume 500 cubic meters of radioactive and hazardous waste during the next 18 months. Crews are digging up plutonium and uranium-contaminated filters,

  9. Jefferson Lab Work Officially Begins (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    insidebiz.com/news/jefferson-lab-work-officially-begins Submitted: Friday, September 3, 2010

  10. Safety, Codes, and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes, and Standards Safety, Codes, and Standards Hydrogen, in vast quantities, has been used safely for many years in chemical and metallurgical applications, the food industry, and the space program. As hydrogen and fuel cells begin to play a greater role in meeting the energy needs of our nation and the world, minimizing the safety hazards related to the use of hydrogen as a fuel is essential. DOE is working to develop and implement practices and procedures that will ensure safety in

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  13. "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 8.1;" " Unit: Percents." " "," "," " " "," ",,,"Source of Financial Support for Activity" "NAICS"," "," " "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know" ,,"Total United States" " 311 - 339","ALL

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  15. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal"...

  16. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG...

  17. Time at the beginning (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Time at the beginning Citation Details In-Document Search Title: Time at the beginning You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This ...

  18. Time at the beginning (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Time at the beginning Citation Details In-Document Search Title: Time at the beginning Age consistency for the Universe today has been an important cosmological test. Even more ...

  19. December 12, 2003: Operations begin at Glovebox Excavator Method facility |

    Energy Savers [EERE]

    Department of Energy 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003: Operations begin at Glovebox Excavator Method facility December 12, 2003 The Department's Idaho National Engineering and Environmental Laboratory (INEEL) begins operations at the Glovebox Excavator Method (GEM) facility. The GEM project will demonstrate buried waste retrieval at Pit 9, which contains mixed

  20. Los Alamos National Laboratory to begin DARHT 2 operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT 2 operations begin Los Alamos National Laboratory to begin DARHT 2 operations The Dual Axis Radiographic Hydrodynamic Test facility has officially become "dual" with authorization to begin full power operations of Axis 2. January 29, 2008 DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream

  1. Wellbore Cement: Research That Begins Where the Sidewalk Ends | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wellbore Cement: Research That Begins Where the Sidewalk Ends Wellbore Cement: Research That Begins Where the Sidewalk Ends October 29, 2013 - 1:15pm Addthis Wellbore Cement: Research That Begins Where the Sidewalk Ends Learn more To learn more about this research, read the full report, An Assessment of Research Needs Related to Improving Primary Cement Isolation of Formations in Deep Offshore Wells. Full report on NETL's website. As we meander down the sidewalk, how many of us

  2. Big Things from Small Beginnings | Department of Energy

    Energy Savers [EERE]

    Big Things from Small Beginnings Big Things from Small Beginnings May 15, 2013 Presenter: D. Bullen on behalf of Peter Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board. 2013 Special ISM Champions Workshop: Optimizing Activity-level Work Planning and Control. Presentation prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. Topics Covered: Barriers Between Workers and Plant ISM and DOE Accident Experiences Activity-Level Work Planning and

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  7. General Gordon Begins Tenure as Administrator of the National...

    National Nuclear Security Administration (NNSA)

    Gordon Begins Tenure as Administrator of the National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  8. Reshaping Its Skyline: Y-12 Recieves Approval to Begin Multi...

    National Nuclear Security Administration (NNSA)

    Reshaping Its Skyline: Y-12 Recieves Approval to Begin Multi-Building Biology Complex Demolition Project | National Nuclear Security Administration Facebook Twitter Youtube Flickr...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  13. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  14. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  15. "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  16. "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  17. Demolition of K-31 gaseous diffusion building begins

    Broader source: Energy.gov [DOE]

    OREM begins demolition of the K-31 Building at Oak Ridge’s East Tennessee Technology Park (ETTP), marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site.

  18. Jefferson Lab imager can detect beginnings of breast tumors ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and detector group continue to refine their abilities to detect the small beginnings of breast cancer tumors, and are hopeful for a new round of clinical testing on their latest...

  19. New Mexico Airlines begins Los Alamos/ Albuquerque flights April 8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Airlines begins Los Alamos/ Albuquerque flights April 8 Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit New Mexico Airlines begins Los Alamos/ Albuquerque flights April 8 Open House scheduled for April 5. April 1, 2013 New Mexico Airlines plane A New Mexico Airlines plane. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The service is available to

  20. World's Largest Post-Combustion Carbon Capture Project Begins

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis News Media Contact 202-586-4940 Department of Energy Supported Project Will Capture 1.4 Million Tons of CO2 Annually Washington, D.C. - Today, the Department of Energy - in partnership with NRG Energy Inc. and JX Nippon - announced that construction has begun on the first

  1. Solar Decathlon 2015: Let the Competition Begin | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Let the Competition Begin Solar Decathlon 2015: Let the Competition Begin February 13, 2014 - 1:00pm Addthis The Solar Decathlon competition has provided more than 17,000 college students with the training and hands-on experience. This video highlights how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Richard King Richard King Director, Solar Decathlon Solar Decathlon 2015 Team Facts: This

  2. The 'America's Next Top Energy Innovator' Challenge Begins Today |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The 'America's Next Top Energy Innovator' Challenge Begins Today The 'America's Next Top Energy Innovator' Challenge Begins Today May 2, 2011 - 12:02pm Addthis Lasers used for photovoltaic research in one of SERI's PV labs. | Photo courtesy of the National Renewable Energy Laboratory Lasers used for photovoltaic research in one of SERI's PV labs. | Photo courtesy of the National Renewable Energy Laboratory Ginny Simmons Ginny Simmons Former Managing Editor for

  3. DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The

  4. Astronomy days lectures begin July 8 at Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astronomy days lectures begin July 8 Astronomy Days lectures begin July 8 at Bradbury Science Museum Didier Saumon leads off the series with a talk about extrasolar planets and brown dwarf stars. July 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  5. Lab begins demolition of Cold War-era buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demolition begins of cold War-Era buildings Lab begins demolition of Cold War-era buildings More than 165,000 square feet of former research, production, and office buildings will be demolished. December 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  6. CO2 Injection Begins in Illinois | Department of Energy

    Office of Environmental Management (EM)

    CO2 Injection Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration

  7. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon 2013: Let the Building Begin Solar Decathlon 2013: Let the Building Begin Addthis Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction, the Solar Decathlon village has started to take shape. The houses open to the public on October 3, 2013 at 11 am. Image: Stefano Paltera, Energy Department Day 7 Construction 2 of 22 Day 7 Construction The University of North Carolina at Charlotte team members assemble their Solar Decathlon entry. Image: Eric Grigorian,

  8. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste

  9. DOE Partner Begins Carbon Storage Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration

  10. Beginning Foreign Obligation Balances for the Power Reactors Presentation

    National Nuclear Security Administration (NNSA)

    Beginning Foreign Obligation Balances Beginning Foreign Obligation Balances for the Power Reactors for the Power Reactors Michael J. Smith Michael J. Smith NAC International NAC International Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop January 13, 2004 January 13, 2004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, Georgia Atlanta, Georgia Project Purpose Project Purpose * Bridge the gap in foreign obligated (FO) inventory tracking for US

  11. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Energy Savers [EERE]

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  12. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Environmental Management (EM)

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  13. DOE Regional Partnership Begins Core Sampling for Large-Volume

    Office of Environmental Management (EM)

    Sequestration Test | Department of Energy Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort

  14. Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium

    Office of Environmental Management (EM)

    Finishing Plant on track to meet regulatory milestone | Department of Energy Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone November 18, 2011 - 12:00pm Addthis Media Contacts Geoff Tyree Department of Energy Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin CH2M HILL Plateau Remediation Company

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  19. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  13. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  18. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * Strategies/Roles * Near-Term Focus * Measuring Progress/Outcomes/Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement processes to achieve the maximum practicable improvements in building energy efficiency 3 Building Energy Codes Program - Goals

  19. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  20. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  1. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommorefiles created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.less

  2. Oak Ridge's K-27 Demolition Officially Begins | Department of Energy

    Energy Savers [EERE]

    Ridge's K-27 Demolition Officially Begins Oak Ridge's K-27 Demolition Officially Begins February 11, 2016 - 12:50pm Addthis Oak Ridge's EM program kicked off the K-27 Building demolition Feb. 8. Oak Ridge's EM program kicked off the K-27 Building demolition Feb. 8. OAK RIDGE, Tenn. - The ceremonial "first bite" on Feb. 8 signaled the start of the K-27 Building demolition as URS|CH2M Oak Ridge, the EM Oak Ridge program's lead cleanup contractor for the East Tennessee Technology Park

  3. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Energy Savers [EERE]

    Let the Building Begin Solar Decathlon 2013: Let the Building Begin September 30, 2013 - 10:45am Addthis Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction, the Solar Decathlon village has started to take shape. The houses open to the public on October 3, 2013 at 11 am. Image: Stefano Paltera, Energy Department Day 7 Construction 2 of 22 Day 7 Construction The University of North Carolina at Charlotte team members assemble their Solar Decathlon entry. Image: Eric

  4. Grouting Begins on Next SRS Waste Tank | Department of Energy

    Energy Savers [EERE]

    Begins on Next SRS Waste Tank Grouting Begins on Next SRS Waste Tank June 30, 2015 - 12:00pm Addthis Cement trucks hauling specially-formulated grout are once again traversing SRS after grouting activities on Tank 16 began in June. Cement trucks hauling specially-formulated grout are once again traversing SRS after grouting activities on Tank 16 began in June. Workers at SRS monitor the grouting process of Tank 16. Workers at SRS monitor the grouting process of Tank 16. Cement trucks hauling

  5. Paducah Plant Begins Enrichment Operations after Five Parties Strike

    Energy Savers [EERE]

    Agreement | Department of Energy Plant Begins Enrichment Operations after Five Parties Strike Agreement Paducah Plant Begins Enrichment Operations after Five Parties Strike Agreement May 1, 2012 - 12:00pm Addthis This cylinder hauler at Paducah’s Babcock & Wilcox Conversion Services plant delivers the first of DOE’s 14-ton depleted uranium cylinders to USEC for re-enrichment as part of a five-party agreement that is extending enrichment operations at the 60-year-old plant for

  6. Construction Begins for Solar Decathlon 2011 | Department of Energy

    Office of Environmental Management (EM)

    Construction Begins for Solar Decathlon 2011 Construction Begins for Solar Decathlon 2011 September 13, 2011 - 11:13am Addthis Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. WASHINGTON, D.C. - Collegiate teams featuring over 4,000 students from around the world are arriving at the National Mall's West

  7. New Membrane Technology for Post-Combustion Carbon Capture Begins

    Office of Environmental Management (EM)

    Pilot-Scale Test | Department of Energy Membrane Technology for Post-Combustion Carbon Capture Begins Pilot-Scale Test New Membrane Technology for Post-Combustion Carbon Capture Begins Pilot-Scale Test January 26, 2015 - 8:14am Addthis A promising new technology sponsored by the U.S. Department of Energy (DOE) for economically capturing 90 percent of the carbon dioxide (CO2) emitted from a coal-burning power plant has begun pilot-scale testing. The technology is the PolarisTM membrane

  8. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a...

  9. General Gordon Begins Tenure as Administrator of the National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | National Nuclear Security Administration Gordon Begins Tenure as Administrator of the National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  10. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  11. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  12. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  13. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  14. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Leadership, Governance » Ethics, Accountability, Contract » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Ethics and Compliance Group (505) 667-7506 Email Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our

  15. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  16. Codes and Standards

    Broader source: Energy.gov [DOE]

    Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  2. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Collaborative American Institute of ... Studios 3. Education, Health Care (outpatient), Public Order and Safety, ... elements to the Journal of the American ...

  3. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  4. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  5. Sandia National Laboratories beginnings focus of Los Alamos' 70th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anniversary lecture Alamos' 70th anniversary lecture Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization. March 6, 2013 The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and components. The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and

  6. Sandia National Laboratories: A new era of astronomy begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new era of astronomy begins By Mike Desjarlais Thursday, March 03, 2016 Detection of gravitational waves called one of the century's great science breakthroughs Mike Desjarlais is a Sandia Senior Scientist and Fellow of the American Physical Society. Note: When the news broke that scientists at the Laser Interferometer Gravitational Wave Observatory had for the first time detected gravitational waves emanating from the collision of two blacks holes, we asked Sandia Senior Scientist and Fellow

  7. A New Era Begins | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Era Begins Welcome to the first major addition to the U.S. fusion program of the 21st century. The U.S. Department of Energy's Princeton Plasma Physics Laboratory's (PPPL) new $94 million National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful fusion facility of its kind on Earth and a device poised to bring the world closer to a bold new energy age. Publication File: PDF icon NSTX-U_presskit_print_NewEra

  8. New season of colloquia begins at Princeton Plasma Physics Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab New season of colloquia begins at Princeton Plasma Physics Laboratory By Raphael Rosen September 15, 2015 Tweet Widget Google Plus One Share on Facebook The new colloquium committee. From left to right: Mike Mardenfeld, David Mikkelsen, Committee Administrator Carol Ann Austin, Brent Stratton (Photo by Elle Starkman) The new colloquium committee. From left to right: Mike Mardenfeld, David Mikkelsen, Committee Administrator Carol Ann Austin, Brent Stratton Just as

  9. Microsoft Word - WIPP Updates_Underground Recovery Process Begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5DR0314 / 002NWPR0314 NWP Media Contacts: Donavan Mager Nuclear Waste Partnership LLC (575) 234-7586 www.wipp.energy.gov For Immediate Release WIPP UPDATES: Underground Recovery Process Begins Initial Results Show no Airborne Radioactive Contamination in Underground Shafts CARLSBAD, N.M., March 9 - Nuclear Waste Partnership (NWP), the management and operations contractor at the Waste Isolation Pilot Plant (WIPP) for the U.S. Department of Energy (DOE), has initiated the first phase of an

  10. Graduate Research Fellowship Program deadlines begin November 13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Research Fellowship Program Deadlines Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Graduate Research Fellowship Program deadlines begin November 13 The program is designed to recognize and support outstanding students pursuing research-based masters and doctoral degrees in its mission areas. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community

  11. NREL and Private Industry Begin Nationwide Solar Measuring Network - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL and Private Industry Begin Nationwide Solar Measuring Network November 13, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory and IBERDROLA RENEWABLES have jointly deployed the first of several solar resource measuring stations as part of a planned instrumentation network throughout the United States. The stations, located across Arizona, are part of NREL's Solar Resource and Meteorological Assessment Project (SOLRMAP), a collaboration between the

  12. Los Alamos National Laboratory begins pumping tests on chromium plume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pumping tests on chromium plume Los Alamos National Laboratory begins pumping tests on chromium plume The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. May 22, 2013 Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo taken during well construction in 2011. Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo

  13. Los Alamos National Laboratory begins pumping tests on chromium plume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pumping tests on chromium plume Los Alamos National Laboratory begins pumping tests on chromium plume The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. May 22, 2013 Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo taken during well construction in 2011. Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo

  14. Jefferson Lab Begins Awarding Contracts For Construction of $310 Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade | Jefferson Lab Begins Awarding Contracts For Construction of $310 Million Upgrade NEWPORT NEWS, Va., Jan. 6, 2009 - The U.S. Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility has awarded three contracts as part of a $310 million upgrade project that will provide an international community of physicists with a cutting-edge facility for studying the basic building blocks of the visible universe. The lab awarded a contract worth $1.5 million to Ritchie-Curbow

  15. Leading Edge Erosion Phase II Wind Tunnel Test Begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edge Erosion Phase II Wind Tunnel Test Begins - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  16. Los Alamos National Laboratory begins pumping tests on chromium plume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pumping tests on chromium plume Los Alamos National Laboratory begins pumping tests on chromium plume The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. May 22, 2013 Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo taken during well construction in 2011. Well R-50 at Los Alamos National Laboratory has detected chromium at levels which exceed New Mexico standards. Photo

  17. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  18. Verification of the BISON fuel performance code

    SciTech Connect (OSTI)

    D. M. Perez; R. J. Gardner; J. D. Hales; S. R. Novascone; G. Pastore; B. W. Spencer; R. L. Williamson

    2014-09-01

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Labo- ratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze 1D spherical, 2D axisymmetric, or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISONs unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  3. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  5. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  6. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  7. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  9. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  10. U.S. LPG pipeline begins deliveries to Pemex terminal

    SciTech Connect (OSTI)

    Bodenhamer, K.C.

    1997-08-11

    LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

  11. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  12. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  13. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  14. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview April 22, 2014 Building Energy Codes Program - Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking (Determinations vs. all others) Adoption Compliance Statutory Requirements 2 Relevant Statutory Guidance Residential Adoption (42 U.S.C. 6833(a)(5)(B)) Each State is required to certify that it has compared its residential building code regarding energy efficiency to

  15. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  16. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore »of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  17. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  18. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  19. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  20. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    EH-4.2.1.4-Interim-GENII Rev. 1 GENII Computer Code Application Guidance for Documented Safety Analysis Interim Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 September 2003 GENII Guidance Report September 2003 Interim Report for Review INTENTIONALLY BLANK GENII Guidance Report September 2003 Interim Report for Review FOREWORD This document provides guidance to Department of Energy (DOE) facility analysts in the

  1. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  2. Department of Energy Begins Demolition on K-25's East Wing -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins Demolition on K-25's East Wing - Moves closer to completing Oak Ridge's largest cleanup project Department of Energy Begins Demolition on K-25's East Wing - Moves closer to...

  3. Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use Fact 790: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use The maintenance of our...

  4. BEGIN:VCALENDAR VERSION:2.0 METHOD:PUBLISH PRODID:-//Accessible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEGIN:VCALENDAR VERSION:2.0 METHOD:PUBLISH PRODID:-Accessible Web DesignMy Calendarhttp:www.joedolson.comv2.4.16EN BEGIN:VEVENT UID:97-95 LOCATION:Washington, DC ...

  5. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  6. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore »a single database which makes it easier to postprocess the results data.« less

  7. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  8. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  9. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  10. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  11. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  12. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  13. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  14. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  15. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  16. Construction Begins on First-of-its-Kind Advanced Clean Coal Electric

    Energy Savers [EERE]

    Generating Facility | Department of Energy Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated

  17. Jefferson Lab imager can detect beginnings of breast tumors (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab https://www.jlab.org/news/articles/jefferson-lab-imager-can-detect-beginnings-breast-tumors-daily-press Jefferson Lab imager can detect beginnings of breast tumors The new device is capable of seeing things a mammogram might miss. By Patrick Lynch, Daily Press February 2, 2008 NEWPORT NEWS - The scientists and engineers at Jefferson Lab's imaging and detector group continue to refine their abilities to detect the small beginnings of breast cancer tumors, and are hopeful for a

  18. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  19. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  20. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  1. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  2. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  3. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  4. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  5. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  6. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Resources Building Codes Resources Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations. State-wide minimum codes may be amended by local jurisdictions to be more stringent if energy performance requirements are lacking or liberal. Find building codes resources below. DOE Resources Building Energy Codes Program: Resource Center Building Energy Codes Program:

  7. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  8. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  9. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program (BECP) 2015 Building Technologies Office Peer Review David Cohan, david.cohan@ee.doe.gov U.S. Department of Energy BECP Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking Adoption Compliance Statutory Requirements 2 BECP Budget FY 2015 $5.59M + FOA budget ≈$2M/yr 3 $800,000 $825,000 $5,607,000 Development Adoption Compliance Goal Reduce energy use in buildings subject to energy codes. Impacts: * Mid-term: By 2020,

  10. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN

  11. An evaluation of the nuclear fuel performance code BISON

    SciTech Connect (OSTI)

    Perez, D. M.; Williamson, R. L.; Novascone, S. R.; Larson, T. K.; Hales, J. D.; Spencer, B. W.; Pastore, G.

    2013-07-01

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISON's unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI. (authors)

  12. Stretch/Reach Codes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stretch/Reach Codes Stretch/Reach Codes This webinar covered stretch codes, particularly some that are coming in the form of green codes. Transcript PDF icon Presentation More Documents & Publications Green Codes and Programs Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Effective O&M Policy in Public Buildings

  13. Hanford workers begin cleaning out historic McCluskey Room | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hanford workers begin cleaning out historic McCluskey Room Hanford workers begin cleaning out historic McCluskey Room Addthis Description Workers have entered one of the most hazardous rooms at the Hanford Site in Washington state to begin final cleanup of a room that became known to workers over the years by the name of a worker injured there in a Cold War-era accident. The first reentry on Monday, September 8, 2014, consisted mostly surveying the room. More information:

  14. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  15. Code for Calculating Regional Seismic Travel Time

    Energy Science and Technology Software Center (OSTI)

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  16. Stone's code reveals Earth's processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stone's code reveals Earth's processes Stone's code reveals Earth's processes The returning student researches carbon sequestration to determine the best methods to capture the greenhouse gas that increases global warming. August 27, 2013 Ian Stone At the Lab's Earth and Environmental Sciences (EES) Division, Stone helps monitor movement of Earth's crust while predicting the effects of these events on the environment. He uses his photographic lens to record the effects of a more personal

  17. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  18. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  19. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2 | Building Technologies Office eere.energy.gov Appliance Standards and Building Codes Program Goals Appliance Standards Program Goals Provide cost-effective energy savings through national appliance and equipment standards: Issue 23 final rules by end of FY2015 Deliver at least 1 qBtu of savings annually by 2030

  20. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  1. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEEP Building Energy Codes Project 2014 Building Technologies Office Peer Review MISSION Accelerate the efficient use of energy in the Northeast and Mid-Atlantic Regions Carolyn Sarno, csarno@neep.org Northeast Energy Efficiency Partnerships (NEEP) Project Summary Timeline: Start date: September 1, 2012 Planned end date: August 31, 2015 Key Milestones 1. Rhode Island Code Compliance Initiative, December 2012 2. Massachusetts 2012 IECC Adoption (July 1, 2013) Budget: Total DOE $ to date: $216,500

  2. New gamma-ray observatory begins operations at Sierra Negra volcano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico The High-Altitude Water Cherenkov Gamma Ray Observatory has begun formal...

  3. Local Motors Begins Their Six Day Quest to 3D Print the 'Strati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Local Motors Begins Their Six Day Quest to 3D Print the 'Strati' Car Live at IMTS More Documents & Publications Printing a Car: A Team Effort in Innovation Printing a Car: ...

  4. Reshaping Its Skyline: Y-12 Receives Approval to Begin Multi-Building Demolition Project

    Broader source: Energy.gov [DOE]

    A major step toward a skyline changing transformation at Y-12 will commence in Spring 2010 as demolition begins on four buildings in the former Biology Complex, visible from the site’s main entrance.

  5. 10 Million U.S. Department of Energy Grant Program Begins at...

    Open Energy Info (EERE)

    Million U.S. Department of Energy Grant Program Begins at Raft River Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: 10 Million U.S. Department of Energy...

  6. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  7. Harbec: A Fifteen Year Journey to the Beginning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harbec: A Fifteen Year Journey to the Beginning Harbec: A Fifteen Year Journey to the Beginning This presentation by HARBEC, Inc. at the 2014 Energy Summit in Niagara Falls, Ontario. discusses the company's progress over 15 years taking advantage of eco-economic opportunities by implementing an ISO 50001 Energy Management System and participating the Superior Energy Performance® (SEP(tm)) program. PDF icon 15 Year Pursuit of Sustainable Manufacturing, 2014 More Documents & Publications

  8. Webinar Series Begins This Month: Issues in Designing the Future Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Series Begins This Month: Issues in Designing the Future Grid Webinar Series Begins This Month: Issues in Designing the Future Grid January 4, 2012 - 9:12am Addthis The Department has funded an effort at the Power Systems Engineering Research Center (PSERC) to investigate the requirements of an electric grid with high penetrations of sustainable energy systems and heavy reliance on cyber systems for sensing and communication. The goal of the effort is to stimulate

  9. Savannah River Site's H Canyon Begins 2012 with New and Continuing

    Office of Environmental Management (EM)

    Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 | Department of Energy H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the

  10. ITP Mining: The Future Begins with Mining - A Vision of the Mining Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future | Department of Energy The Future Begins with Mining - A Vision of the Mining Industry of the Future ITP Mining: The Future Begins with Mining - A Vision of the Mining Industry of the Future PDF icon vision.pdf More Documents & Publications ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry (December 2002) ITP Mining: Exploration and Mining Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap

  11. Five Million Smart Meters Installed Nationwide is Just the Beginning of

    Energy Savers [EERE]

    Smart Grid Progress | Department of Energy Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress June 13, 2011 - 1:55pm Addthis A 21st Century Grid includes increasing the overall efficiency of our generating, transmission and distribution system to facilitate the growth of renewable energy sources. | Energy Department Image A 21st Century Grid includes increasing the

  12. PSERC Webinar Series on the Future Grid Initiative Begins January 22, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PSERC Webinar Series on the Future Grid Initiative Begins January 22, 2013 PSERC Webinar Series on the Future Grid Initiative Begins January 22, 2013 January 16, 2013 - 4:21pm Addthis The Department has funded an effort at the Power Systems Engineering Research Center (PSERC) entitled The Future Grid to Enable Sustainable Energy Systems. The initiative investigates the requirements of an electric grid with high penetrations of sustainable energy systems and heavy

  13. Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Nationwide Begin Work on Cutting-Edge Innovative Research Projects Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research Projects February 21, 2012 - 12:18pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that with support from the Department of Energy, 142 small businesses around the nation are starting work this week on 180 innovative research projects ranging from designing better wind turbines to developing a

  14. Work Begins On First Recovery Act Funded Demolition Project at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Work Begins On First Recovery Act Funded Demolition Project at ORNL Work Begins On First Recovery Act Funded Demolition Project at ORNL July 20, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) has begun cleanup and demolition of the former Radioisotope Development Laboratory, a long-vacant facility on the Laboratory's central campus. Contractors expect to employ approximately 30 workers for the project,

  15. 'Safety Begins with Me' Works toward an Injury-Free Workplace at

    Energy Savers [EERE]

    Savannah River Site - Employees embrace high-quality safety awareness campaign | Department of Energy 'Safety Begins with Me' Works toward an Injury-Free Workplace at Savannah River Site - Employees embrace high-quality safety awareness campaign 'Safety Begins with Me' Works toward an Injury-Free Workplace at Savannah River Site - Employees embrace high-quality safety awareness campaign February 1, 2012 - 12:00pm Addthis A Savannah River Nuclear Solutions employee hangs one of several

  16. SunLine Begins Extended Testing of Hybrid Fuel Cell Bus | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Begins Extended Testing of Hybrid Fuel Cell Bus SunLine Begins Extended Testing of Hybrid Fuel Cell Bus DOE Hydrogen Program (Fact Sheet) PDF icon 43203.pdf More Documents & Publications SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects

  17. Nevada Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Administrative Code Citation Nevada Administrative Code (2014)....

  18. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  19. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  20. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: