Sample records for na tional energy

  1. Sandia National Laboratories: Lawrence Berkeley Na-tional Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Solar power and other sources of renewable energy can help combat global warming but they have a draw-back: they don't produce energy as predictably as generating...

  2. NA Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUSAdvancedMuseum Day at0019 Forx N yo

  3. The OLCF center ensures that the world's most advanced computa-tional scientists get the resources they need, allowing them to help

    E-Print Network [OSTI]

    they need, allowing them to help improve both the world and our understanding of it. Home to Jaguar, a Cray such as the Department of Energy's Innovative and Novel Computational Impact on Theory and Experiment (IN- CITE), the center ensures that the world's most advanced computa- tional scientists get the resources they need

  4. China For all ages a MulTi-generaTional exPloraTion

    E-Print Network [OSTI]

    Rowley, Clarence W.

    China For all ages a MulTi-generaTional exPloraTion The greaT Wall, TerraCoTTa Warriors & The MighCTuresque China Experience the Delights of a Well-Crafted Family Tour Dear Princetonian, Join Princeton Journeys, June 27 ­ July 9, 2013, for a comprehensive tour of China designed with families in mind. Explore

  5. AUSTRALIAN. N~TIONAL UNIVE~SITY DEPARTMENTO:miNUCLEAR PFf-y'SICS

    E-Print Network [OSTI]

    Chen, Ying

    AUSTRALIAN. N~TIONAL UNIVE~SITY DEPARTMENTO:miNUCLEAR PFf-y'SICS 14UD TANK OPENING REPORT/iNo. 51 functions for which it provides power. An order was . immediately placed with N.E.C. for 28 perspex bars microamp hours of b.d.p. generation than its predicted lifetime. In preparation for the next opening

  6. FEiNA SCP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpenEyeforenergyFEMSolar

  7. NaWoTec | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNS Solar05 JumpNYSEG Solutions

  8. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    E-Print Network [OSTI]

    Xu, Jingke; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K; Ianni, Aldo; Lamere, Edward; Lippincott, W Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-01-01T23:59:59.000Z

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3keV$_{\\text{nr}}$ to 52keV$_{\\text{nr}}$, covering the whole DAMA/LIBRA energy region for light WIMP interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies, but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  9. Analytical Potential Energy Surface for the Na + HF NaF + H reaction: Application of Conventional Transition-State Theory

    E-Print Network [OSTI]

    Analytical Potential Energy Surface for the Na + HF NaF + H reaction: Application of Conventional Transition-State Theory Alessandra F. A. Vilela, Ricardo Gargano a Patr´icia R.P. Barreto b a Instituto de from calculation of the rate constant using con- ventional Transition State Theory (TST

  10. Measurement of low-energy Na^+ -- Na total collision rate in an ion--neutral hybrid trap

    E-Print Network [OSTI]

    Goodman, D S; Kwolek, J M; Blümel, R; Narducci, F A; Smith, W W

    2014-01-01T23:59:59.000Z

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient $k_\\mathrm{ia}$ of cold sodium (\\ce{Na}) with optically-dark low energy \\ce{Na+} ions in a hybrid ion-neutral trap. To determine $k_\\mathrm{ia}$, we measured the trap loading and loss from both a \\ce{Na} magneto-optical trap (MOT) and a linear radio frequency quadrupole Paul trap. We found the total rate coefficient to be $7.4 \\pm 1.9 \\times 10^{-8}$ cm$^3$/s for the type I \\ce{Na} MOT immersed within an $\\approx 140$ K ion cloud and $1.10 \\pm 0.25 \\times 10^{-7}$ cm$^3$/s for the type II \\ce{Na} MOT within an $\\approx 1070$ K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal \\textit{ab initio} calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  11. DOE-NA-STD-3016-2006 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1 DEPARTMENTSeptember 27, 2012 Access HandbookMay 19, 2006 Hazard

  12. The 23Na(?,p) 26Mg reaction rate at astrophysically relevant energies

    E-Print Network [OSTI]

    A. M. Howard; M. Munch; H. O. U. Fynbo; O. S. Kirsebom; K. L. Laursen; C. Aa. Diget; N. J. Hubbard

    2015-06-23T23:59:59.000Z

    The production of 26 Al in massive stars is sensitive to the 23 Na(a,p) 26 Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of 40. We present here differential cross sections for the 23 Na(a,p) 26 Mg reaction measured in the energy range E c.m. = 1.7 - 2.5 MeV. Concurrent measurements of Rutherford scattering provide absolute normalisations which are independent of variations in target properties. Angular distributions were measured for both p 0 and p 1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates of a factor of 40, impacting on the 26 Al yield from massive stars by more than a factor of three.

  13. NaRec New and Renewable Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy ThermalEnergy,

  14. New and Renewable Energy Centre NaREC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNew EnergyCity Data Jam HomeNewNew and

  15. N/Z and N/A dependence of balance energy as a probe of symmetry energy in heavy-ion collisions

    E-Print Network [OSTI]

    Aman D. Sood

    2011-07-21T23:59:59.000Z

    We study the N/Z and N/A dependence of balance energy (E$_{bal}$) for isotopic series of Ca having N/Z (N/A) varying from 1.0 to 2.0 (0.5 to 0.67). We show that the N/Z (N/A) dependence of E$_{bal}$ is sensitive to symmetry energy and its density dependence at densities higher than saturation density and is insensitive towards the isospin dependence of nucleon-nucleon (nn) cross section and Coulomb repulsion. We also study the effect of momentum dependent interactions (MDI) on the N/Z (N/A) dependence of E$_{bal}$. We find that although MDI influences the E$_{bal}$ drastically, the N/Z (N/A) dependence of E$_{bal}$ remains unchanged on inclusion of MDI.

  16. EA-372 GDF Suez Energy Marketing NA, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-WideBPAPowerEEauthorizong NobleCLT toBEMLPGDF

  17. EA-372 GDF Suez Energy Marketing NA, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197EFindingEA-257-CEA-296-B22441 Aquilon Power4-A366EA-37072

  18. Solar Energy Materials & Solar Cells 58 (1999) 199}208 The behaviour of Na implanted into Mo thin "lms

    E-Print Network [OSTI]

    Rockett, Angus

    Solar Energy Materials & Solar Cells 58 (1999) 199}208 The behaviour of Na implanted into Mo thin, As ngstro( m Solar Center, P.O. Box 534, SE-751 21 Uppsala, Sweden Department of Materials Science Mo thin "lms used as back contacts for Cu(In,Ga)Se solar cells. The samples were analysed

  19. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    design and evaluation of renewable energy policies, is anreport,” Na- tional Renewable Energy Laboratory, Golden, CO,applications,” National Renewable Energy Laboratory, Golden,

  20. Measurement of the Low Energy Nuclear Response in NaI(Tl) Crystals for Use in Dark Matter Direct Detection Experiments

    E-Print Network [OSTI]

    Stiegler, Tyana Michele

    2013-07-30T23:59:59.000Z

    The response of low energy nuclear recoil in NaI(Tl) is investigated in the following experiment. Such detectors have been used recently to search for evidence of dark matter in the form of weakly interacting massive particles (WIMPs). Na...

  1. Determination of Na submonolayer adsorption site on Cu(111) by low-energy ion blocking

    SciTech Connect (OSTI)

    Zhang, R.; Makarenko, B. [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Bahrim, B. [Department of Chemistry and Physics, Lamar University, Beaumont, Texas 77710 (United States); Rabalais, J. W. [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Department of Chemistry and Physics, Lamar University, Beaumont, Texas 77710 (United States)

    2007-09-15T23:59:59.000Z

    The structure of a submonolayer coverage of sodium adsorbed on a Cu(111) surface at room temperature has been investigated using time-of-flight scattering and recoiling spectrometry. The effect of the adsorbed Na atoms on the angular distribution of scattered 2 keV H{sup +} ions is analyzed by molecular dynamics and scattering and recoiling imaging code simulations. It is shown that at a coverage {theta}=0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7{+-}0.1 A above the first-layer Cu atoms. At a lower coverage of {theta}=0.10 ML, there is no adsorption site preference for the Na atoms on the Cu(111) surface.

  2. PREPARED FORTHE U.S. DEPARTMENT ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    multiple subdisplines physics. particular, generation sustainment magnetic fields dynamics electrically #­e#ect drives mean parallel electric current, which, turn, modifies initial background magnetic driven combination thermal, rota­ tional, and gravitational energies. example, dynamics earth dominated

  3. Report from NA49

    E-Print Network [OSTI]

    Katarzyna Grebieszkow; for the NA49 Collaboration

    2011-12-04T23:59:59.000Z

    The signatures of the onset of deconfinement, found by the NA49 experiment at low SPS energies, are confronted with new results from the Beam Energy Scan (BES) program at BNL RHIC and CERN LHC results. Additionally, new NA49 results on chemical (particle ratio) fluctuations, azimuthal angle fluctuations, intermittency of di-pions, etc. are presented.

  4. NA49 Energy Scan Results for Central Lead-Lead Collisions at the CERN SPS

    E-Print Network [OSTI]

    M. Botje; for the NA49 Collaboration

    2004-07-05T23:59:59.000Z

    The energy dependence of hadron production in central Pb-Pb collisions at SPS energies is presented and compared with data at lower and higher energies and with results from p-p interactions. It is observed that there is little change in transverse activity in the SPS energy range, that there is a steepening rate of increase of pion production and that the K+/pi+ ratio exhibits a sharp peak located at about 30 AGeV. The Lambda/pi ratio also shows a pronounced maximum which is weaker in Ksi/pi and absent in Omega/pi.

  5. MHK Projects/Ocean Navitas NaREC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE < MHK Projects

  6. MHK Projects/University of Manchester Phase 1 and 2 NaREC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,ThamesInformation

  7. An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmite

  8. Ris Energy Report 5 Wind 2 In the past 20 years wind energy has proved itself as a

    E-Print Network [OSTI]

    Risø Energy Report 5 Wind 2 6.1 Status In the past 20 years wind energy has proved itself all these achievements, wind energy remains on the fringes of power generation. For people working ignorance and emo- tional opposition. Wind energy is far from having been proved to lay people, large

  9. Application Level Optimizations for Energy Efficiency and Thermal Stability

    E-Print Network [OSTI]

    Coskun, Ayse

    -efficiency, and (ii) the effect of temperature optimization on system-level energy consumption. 1. INTRODUCTION Recent]. A closely related issue is ther- mal management: High power consumption not only increases opera- tional challenges--Performance, Energy, and Temperature (PET)--solely through novel hardware design. We know

  10. Colloyuc C6, supplinzcrlt uu rzo 7, Tornc 41, Juillet 1980,lI(i@' C6-88 Energy levels of F,(Na)-centre in KC1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Colloyuc C6, supplinzcrlt uu rzo 7, Tornc 41, Juillet 1980,lI(i@' C6-88 Energy levels of F,(Na)-centre in KC1 C. K. Ong PhysicsDepartment,Ahmadu Bello University,Zaria, Nigeria RCsumC. - Nous avons calcult les energies des bandes d'absorption du centre F,(Na) dans KC1 par la methode du reseau statique

  11. An energy-aware dynamic RWA framework for next-generation wavelength-routed networks

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    of the underlying network infrastructure and make use of green energy sources wherever possible. This approach the development of ``green'' renewable energy sources (such as solar panels, wind turbines, and geothermal plants) for powering NEs. Green energy sources are preferable with respect to the tradi- tional ``dirty'' ones (e

  12. Gravitational and non-gravitational energy: the need for background structures

    E-Print Network [OSTI]

    Wüthrich, Christian

    Gravitational and non-gravitational energy: the need for background structures Vincent Lam- tional energy within the general theory of relativity. Some aspects of the difficulties to ascribe the usual features of localization and conservation to gravitational energy are reviewed and considered

  13. Results from NA49

    E-Print Network [OSTI]

    C. Hoehne

    2005-10-17T23:59:59.000Z

    An overview of results from the CERN experiment NA49 is presented with emphasis on most recent measurements. NA49 has systematically studied the dependence of hadron production on energy and system size or centrality. At top-SPS energy the detailed investigation of hadron production, now also extending to elliptic flow of Lambda-baryons and to identified particle yields at high p_t, shows that the created matter behaves in a similar manner as at RHIC energies. In the lower SPS energy range a distinct structure is observed in the energy dependence of the rate of strangeness production and in the slopes of p_t-spectra suggesting the onset of the creation of a deconfined phase of matter.

  14. Precision measurement of the 3 s sub 1/2 -3 p sub 3/2 transition energy in Na-like platinum ions

    SciTech Connect (OSTI)

    Cowan, T.E.; Bennett, C.L.; Dietrich, D.D.; Bixler, J.V.; Hailey, C.J.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Marrs, R.E.; Schneider, M.B. (University of California, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94550 (US))

    1991-03-04T23:59:59.000Z

    We report a measurement of the 3{ital s}{sub 1/2-}3{ital p}{sub 3/2} transition energy in Na-like {sub 78}Pt{sup 67+} ions of 653.44{plus minus}0.02(stat) {plus minus}0.05(syst) eV. The x rays were observed from ions in an electron-beam ion trap. The uncertainty in our result corresponds to 1% of the total estimated quantum electrodynamic radiative contribution to this transition energy. This value differs significantly from extrapolations based on previous lower-{ital Z} data, and establishes a benchmark for calculations of high-{ital Z} multielectron radiative and relativistic effects.

  15. Cross sections for monitor reactions {sup 27}Al((p, x){sup 24}Na, {sup 27}Al(p, x){sup 22}Na, and {sup 27}Al(p, x){sup 7}Be at proton energies in the range 0.04-2.6 GeV

    SciTech Connect (OSTI)

    Titarenko, Yu. E.; Borovlev, S. P.; Butko, M. A.; Zhivun, V. M.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Tikhonov, R. S.; Florya, S. N.; Koldobskiy, A. B. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-04-15T23:59:59.000Z

    The cross sections for the monitor reactions {sup 27}Al(p, x){sup 24}Na, {sup 27}Al(p, x){sup 22}Na, and {sup 27}Al(p, x){sup 7}Be at 12 proton energies, 2605, 1598, 1199, 799, 600, 400, 249, 147.6, 97.2, 66.0, 44.6, and 40.8 MeV, have been determined with 72 Multiplication-Sign 72-mm square and 10.5-mm-diameter round aluminum foils. The rates of the reactions of the production of {sup 24}Na, {sup 22}Na, and {sup 7}Be in the foils in each irradiation run have been determined by {gamma} spectrometry, whereas the number of protons transmitted through these foils has been determined using calibrated fast current transformers. The cross sections have been determined as the ratios of the corresponding reaction to the average proton fluence.

  16. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Ya [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States); You, Ya [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Chemistry; Yin, Yaxia [Brookhaven National Lab. (BNL), Upton, NY (United States); Nam, Kyung -Wan [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  17. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Ya; Yu, Xiqian; You, Ya; Yin, Yaxia; Nam, Kyung -Wan

    2015-01-01T23:59:59.000Z

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore »during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  18. Energy and rapidity dependence of electric charge correlations at 20-158GeV beam energies at the CERN SPS (NA49)

    E-Print Network [OSTI]

    NA49 Collaboration

    2005-10-25T23:59:59.000Z

    Electric charge correlations are studied with the Balance Function method for central Pb + Pb collisions at the CERN - SPS. The results on centrality selected Pb + Pb interactions at 40 and 158 AGeV are presented for the first time for two different rapidity intervals. In the mid-rapidity region a decrease of the width with increasing centrality of the collision is observed whereas in the forward rapidity region this effect vanishes. This could suggest a delayed hadronization scenario. In addition, the results from a first attempt to study the energy dependence of the Balance Function throughout the whole SPS energy range, are presented. The suitably scaled decrease of the width is approximately constant for the intermediate energies (30 to 80 AGeV) and gets stronger for the highest SPS and RHIC energies. On the other hand, both URQMD and HSD simulation results show no dependence on the collision energy.

  19. NREL is a na*onal laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. A Survey of State-Level Cost and

    E-Print Network [OSTI]

    of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. A Survey of State-Level Cost and Benefit Es7mates. Download report: hSp://www.nrel.gov/docs/fy14os*/61042.pdf or hSp://emp.lbl.gov/publica*ons/survey

  20. Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries

    E-Print Network [OSTI]

    Ceder, Gerbrand

    - 180 Wh/kg) than other rechargeable batteries, such as lead-acid and Ni-Cd batteries. Na-ion batteriesSidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries Hailong Chen, Cambridge, United Kingdom *S Supporting Information ABSTRACT: Na-ion batteries represent an effective energy

  1. 20Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNa

  2. 20Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNa

  3. na-00

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A en4/%2A en

  4. Oxidation energies of transition metal oxides within the GGA+U framework Lei Wang, Thomas Maxisch, and Gerbrand Ceder*

    E-Print Network [OSTI]

    Ceder, Gerbrand

    is computed using the generalized gradient approach GGA and GGA+U methods. Two substantial contributions, combustion, metal refining, electrochemical energy generation and storage, photosynthesis, and metabolism and generalized gradient approxima- tion GGA , two standard approximations to density func- tional theory DFT

  5. NA61/SHINE ion program

    E-Print Network [OSTI]

    Maja Mackowiak for the NA61 Collaboration

    2010-09-06T23:59:59.000Z

    The Super Proton Synchrotron (SPS) at CERN covers one of the most interesting regions of the phase diagram (T - \\mu_{B}) of strongly interacting matter. The study of central Pb+Pb collisions by NA49 indicate that the threshold for deconfinement is reached already at the low SPS energies. Theoretical considerations predict a critical point of strongly interacting matter at energies accessible at the SPS. The NA61/SHINE experiment, a successor of the NA49 project, will study hadron production in p+p, p+A, h+A, and A+A reactions at various energies. The broad physics program includes the investigation of the properties of strongly interacting matter, as well as precision measurements of hadron spectra for the T2K neutrino experiment and for the Pierre Auger Observatory and KASCADE cosmic-ray projects. The main physics goals of the NA61/SHINE ion program are to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. To achieve these goals a broad range in the (T - \\mu_{B}) phase diagram will be covered by performing an energy (10A-158A GeV/c) and system size (p+p, B+C, Ar+Ca, Xe+La) scan. The first data for this 2-D scan were taken in 2009, i.e. p+p interactions at 20, 30, 40, 80, 158 GeV/c beam energy. This contribution will summarize physics arguments for the NA61/SHINE ion program, show the detector performance and present the current status of the experiment and plans for the next years.

  6. 19Na

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay Evaluated

  7. NA SD 452.2

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San| National NuclearMonthlyN

  8. On the crystal energy and structure of A{sub 2}Ti{sub n}O{sub 2n+1} (A=Li, Na, K) titanates by DFT calculations and neutron diffraction

    SciTech Connect (OSTI)

    Catti, Michele, E-mail: catti@mater.unimib.it [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Pinus, Ilya [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Scherillo, Antonella [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)

    2013-09-15T23:59:59.000Z

    First-principles quantum-mechanical calculations (CRYSTAL09 code, B3LYP functional) were performed on alkali titanates A{sub 2}Ti{sub n}O{sub 2n+1} with layered structure (n=3,4,6). Monoclinic structural types with unshifted (P2{sub 1}/m) and with shifted (C2/m) layers were considered. Crystal energies and full structural details were obtained for all Li, Na, and K phases. Neutron diffraction data were collected on powder samples of P2{sub 1}/m-Li{sub 2}Ti{sub 3}O{sub 7} (a=9.3146(3), b=3.7522(1), c=7.5447(3) Å, ?=97.611(4)°) and C2/m-K{sub 2}Ti{sub 4}O{sub 9} (a=18.2578(8), b=3.79160(9), c=12.0242(4) Å, ?=106.459(4)°) and their structures were Rietveld-refined. Computed energies show the P2{sub 1}/m arrangement as favoured over the C2/m one for n=3, and the opposite holds for n=6. In the n=4 case the P2{sub 1}/m configuration is predicted to be more stable for Li and Na, and the C2/m one for K titanates. Analysis of Li–O and K–O crystal-chemical environments from experiment and theory shows that the alkali atom bonding is stabilized/destabilized in the different phases consistently with the energy trend. - Graphical abstract: Display Omitted - Highlights: • The P2{sub 1}/m structure-type is found to be more stable for A{sub 2}Ti{sub 3}O{sub 7} layer titanates. • The C2/m structure-type is found to be more stable for A{sub 2}Ti{sub 6}O{sub 13} layer titanates. • Tetratitanates are predicted to prefer the P2{sub 1}/m (Li and Na) or C2/m (K) structure. • Li–O and K–O bond distances follow a trend consistent with computed phase energies.

  9. Relativistic many-body Moller-Plesset perturbation theory calculations of the energy levels and transition rates in Na-like to P-like Xe ions

    SciTech Connect (OSTI)

    Vilkas, Marius J.; Ishikawa, Yasuyuki [Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, PR 00931-3346 (Puerto Rico); Traebert, Elmar [Astronomisches Institut, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); High Temperature and Astrophysics Division, LLNL, P.O. Box 808, Livermore, CA 94550 (United States)], E-mail: traebert@astro.rub.de

    2008-09-15T23:59:59.000Z

    Relativistic multireference many-body perturbation theory calculations have been performed for Xe{sup 43+} to Xe{sup 39+} ions, resulting in energy levels, electric dipole transition rates, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, the frequency-dependent Breit correction, and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  10. Ris-R-1103(EN) Annual Report 1998

    E-Print Network [OSTI]

    for implementation of the national energy policy in the area of wind energy and furthering the global applicationRisø-R-1103(EN) Annual Report 1998 Wind Energy and Atmospheric Physics Department P. Hauge Madsen The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø Na- tional

  11. na-00 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQ PIA,na-00 | National

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  13. INTRODUCTION Several proposals for future air traffic man-

    E-Print Network [OSTI]

    Parasuraman, Raja

    for Aeronautics [RTCA], 1995) and Distributed Air/Ground Traffic Management (DAG-TM; Na- tional Aeronautics

  14. O3-type Na(Mn?.??Fe?.??Co?.??Ni?.??)O?: a quaternary layered cathode compound for rechargeable Na ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xi [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science and Engineering; Zhou, Yong-Ning [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wu, Di [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Mechanical Engineering; Liu, Lei [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science and Engineering; Ceder, Gerbrand [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science and Engineering; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-12-01T23:59:59.000Z

    We report a new layered Na(Mn?.??Fe?.??Co?.??Ni?.??)O? compound with O3 oxygen stacking. It delivers 180 mAh/g initial discharge capacity and 578 Wh/kg specific energy density with good cycling capability at high cutoff voltage. In situ X-ray diffraction (XRD) shows a reversible structure evolution of O3-P3-O3'-O3'' upon Na de-intercalation. The excellent capacity and cycling performance at high cutoff voltage make it an important model system for studying the general issue of capacity fading in layered Na cathode compounds.

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  16. Photoemission study of the electronic structure and charge density waves of Na?Ti?Sb?O

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; Niu, X. H.; Song, Y.; Zhang, C. L.; Dai, P. C.; Xie, B. P.; Lai, X. C.; Feng, D. L.

    2015-04-30T23:59:59.000Z

    The electronic structure of Na?Ti?Sb?O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na?Ti?Sb?O in the non-magnetic state, which indicates that there is no magnetic order in Na?Ti?Sb?O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na?Ti?Sb?O. Photon energy dependent ARPES results suggest that the electronic structure of Na?Ti?Sb?O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore »7 K, indicating that Na?Ti?Sb?O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less

  17. Perceptions of Species Abundance, Distribution, and Diversity: Lessons from Four Decades

    E-Print Network [OSTI]

    Dorcas, Michael E.

    years, the US Department of Energy's (DOE) Savannah River Site National Environ- mental Research Park management; Reptile 1Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, South a 44-year study period on the US Department of Energy's (DOE) Savannah River Site Na- tional

  18. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  19. 20Na.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNa

  20. 20Na_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNa

  1. DOE/NA-0027

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer |At.<ENDMENT/MODIFICATION NO. 3.3 FISCAL127

  2. Challenges for Na-ion Negative Electrodes

    E-Print Network [OSTI]

    Chevrier, V. L.

    Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

  3. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  4. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    E-Print Network [OSTI]

    Xu, Tengfang

    2013-01-01T23:59:59.000Z

    Technology Support Unit (ETSU). 1998. Reducing Energy costsand additional reports (ETSU 1998, NRCAN 2001). If theBritain n/a 20.7 g N/A N/A ETSU (1998) Kenya Okoth (1997)

  5. ESAIM: Control, Optimisation and Calculus of Variations URL: http://www.emath.fr/cocv/

    E-Print Network [OSTI]

    Santosa, Fadil

    ESAIM: Control, Optimisation and Calculus of Variations URL: http://www.emath.fr/cocv/ January 1996 of Energy under grant DE­FG02­94ER25225, the Na­ tional Science Foundation under grant DMS­9210489 Institute. #12; 18 FADIL SANTOSA Here, g and u represent the data and the model parameters of the problem

  6. Moving Toward Product Line Engineering in a Nuclear Industry Consortium

    E-Print Network [OSTI]

    Boyer, Edmond

    power have special institutions overseeing and regulating nuclear safety. Nuclear industry projects must conform to na- tional safety institutions and international regulations. In many cases, regulatory sophisticated and complex energy systems ever designed. Nuclear safety Permission to make digital or hard copies

  7. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  9. Aithisg Bhliadhnail Coilltearachd na h-Alba

    E-Print Network [OSTI]

    ' toirt thugaibh Lèirmheas Bliadhnail Ùghdarras Coilltearachd na h-Alba 2007-08. B' e seo a' chiad bliadhna. Tha mise a' meas an Lèirmheas seo mar `iris dhealbhach' an cois na h-Aithisg Bhliadhnail agus Ùghdarras na Coilltearachd a bhith dèanamh cinnteach gu lean an fhàs seo agus gum bi e na bhuannachd do

  10. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

  11. Investigation of thermonuclear $^{18}$Ne($?$,$p$)$^{21}$Na rate via resonant elastic scattering of $^{21}$Na+$p$

    E-Print Network [OSTI]

    L. Y. Zhang; J. J. He; A. Parikh; S. W. Xu; H. Yamaguchi; D. Kahl; S. Kubono; P. Mohr; J. Hu; P. Ma; S. Z. Chen; Y. Wakabayashi; H. W. Wang; W. D. Tian; R. F. Chen; B. Guo; T. Hashimoto; Y. Togano; S. Hayakawa; T. Teranishi; N. Iwasa; T. Yamada; T. Komatsubara; Y. H. Zhang; X. H. Zhou

    2014-03-19T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp-process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus $^{22}$Mg have been investigated by measuring the resonant elastic scattering of $^{21}$Na+$p$. An 89 MeV $^{21}$Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm$^2$ thick polyethylene (CH$_{2}$)$_{n}$ target. The $^{21}$Na beam intensity was about 2$\\times$10$^{5}$ pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of $\\theta_{c.m.}$$\\approx$175.2${^\\circ}$, 152.2${^\\circ}$, and 150.5${^\\circ}$ by three sets of $\\Delta E$-$E$ telescopes, respectively. The excitation function was obtained with the thick-target method over energies $E_x$($^{22}$Mg)=5.5--9.2 MeV. In total, 23 states above the proton-threshold in $^{22}$Mg were observed, and their resonant parameters were determined via an $R$-matrix analysis of the excitation functions. We have made several new $J^{\\pi}$ assignments and confirmed some tentative assignments made in previous work. The thermonuclear $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, as well as the onset temperature of this breakout reaction in these astrophysical phenomena.

  12. Role of Cl in Electrogenic Na -coupled Cotransporters GAT1 and Received for publication, August 10, 2000, and in revised form, September 5, 2000

    E-Print Network [OSTI]

    Eskandari, Sepehr

    criterion to classify Na cotransporters. Electrogenic sodium cotransporters utilize the movement of Na down, nutrients, and neu- rotransmitters into cells (1). This broad group of Na -driven cotransporters contains potential in most cells is close to the resting membrane potential, and little free energy would be provided

  13. An analysis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic for efficient refrigeration and thermal energy harvesting

    SciTech Connect (OSTI)

    Vats, Gaurav; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Bowen, Chris R. [Department of Mechanical Engineering, Materials Research Centre, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-01-07T23:59:59.000Z

    This article demonstrates the colossal energy harvesting capability of a lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic using the Olsen cycle. The maximum harvestable energy density estimated for this system is found to be 1523?J/L (1523?kJ/m{sup 3}) where the results are presented for extreme ambient conditions of 20–160?°C and electric fields of 0.1–4 MV/m. This estimated energy density is 1.7 times higher than the maximum reported to date for the lanthanum-doped lead zirconate titanate (thin film) system. Moreover, this study introduces a generalized and effective solid state refrigeration cycle in contrast to the ferroelectric Ericson refrigeration cycle. The cycle is based on a temperature induced polarization change on application of an unipolar electric field to ferroelectric ceramics.

  14. NA1 Sept | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    at NNSA Blog Home content Social Media NA1 Sept NA1 Sept .@FrankKlotzNNSA gives a shout out to programs contributing to NNSA's enduring mission http:1.usa.gov1mUBgrn...

  15. NA1 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Working at NNSA Blog Home content Social Media NA1 NA1 Administrator's message to NNSA workforce on another impressive achievement-full copy here: http:1.usa.gov1teEgRy...

  16. Workforce Statistics - NA SH | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Workforce Statistics - NA SH Workforce Statistics - NA SH NA SH FY14 Year End...

  17. Department of meDicine CliniCal & TranslaTional

    E-Print Network [OSTI]

    He, Chuan

    regulatory mechanisms in primates" 9:15­9:45am Lucy Godley, MD, PhD (Associate Professor of MedicineTERNOONsEssION To regisTer go To: http://tinyurl.com/l46hcem or email: medvicechair@medicine.bsd.uchicago.edu 5807 South

  18. tional prizes, Mayr's major contributions to the field of evolution stretch back well

    E-Print Network [OSTI]

    Palumbi, Stephen

    - graphs, and commentaries in between. He has contributed a great deal of hard data about evolution, but he--then a world powerhouse of evolu- tionary biology. The success of those lectures led naturally to Systemat- ics

  19. Abstract An important principle of the func-tional organization of plant cells is the targeting

    E-Print Network [OSTI]

    Zaiane, Osmar R.

    -dimensional gel electrophoresis, tandem mass spectrometry (LC-MS/MS) and de novo sequencing. Another high, plastocyanin-like domains, copper­zinc superoxide dismutases, gamma-thi- oinins, thaumatins, ubiquitins napus Æ Extracellular proteins Æ Proteomics Abbreviations MS mass spectrometry DTT dithiothreitol IPG

  20. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  1. NA-ASC-100R-04-Vol.1-Rev.0

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San| National

  2. Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    E-Print Network [OSTI]

    Xu, Tengfang

    2013-01-01T23:59:59.000Z

    Technology Support Unit (ETSU). 1998. Reducing Energy costsand additional reports (ETSU 1998, NRCAN 2001). If theBritain n/a 20.7 g N/A N/A ETSU (1998) Kenya Okoth (1997)

  3. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Natural Conven- Effi- lamps) Solar Geyser 10(yrs) Gas 10(yrs) tional 10(yrs) Power requirement (Watts) Appliance life (hours) Usage (

  4. Investigation of thermonuclear $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate via resonant elastic scattering of $^{21}$Na+$p$

    E-Print Network [OSTI]

    Zhang, L Y; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Kubono, S; Mohr, P; Hu, J; Ma, P; Chen, S Z; Wakabayashi, Y; Wang, H W; Tian, W D; Chen, R F; Guo, B; Hashimoto, T; Togano, Y; Hayakawa, S; Teranishi, T; Iwasa, N; Yamada, T; Komatsubara, T; Zhang, Y H; Zhou, X H

    2014-01-01T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp-process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus $^{22}$Mg have been investigated by measuring the resonant elastic scattering of $^{21}$Na+$p$. An 89 MeV $^{21}$Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm$^2$ thick polyethylene (CH$_{2}$)$_{n}$ target. The $^{21}$Na beam intensity was about 2$\\times$10$^{5}$ pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of $\\theta_{c.m.}$$\\approx$175.2${^\\circ}$, 152.2${^\\circ}$, and 150.5${^\\circ}$ by three sets of $\\Delta E$-$E$ telescopes, respectively. The excitation function was obtained with the thick-target method over energies $E_x$($^{22}$Mg)=5.5--9.2 MeV. In total, 23 states above the proton-threshold in $^{22}$Mg were observed, and their resonant parameters were determ...

  5. Recent results from NA61/SHINE

    E-Print Network [OSTI]

    Marek Gazdzicki; for the NA61/SHINE Collaboration

    2014-12-13T23:59:59.000Z

    This paper briefly presents the NA61/SHINE facility at the CERN SPS and its measurements motivated by physics of strong interactions, neutrinos and cosmic rays.

  6. Course # Course Title Instructor Author (s) Title Edition Publisher ISBN MMAE100 Introduction to the Profession Clack, Gosz, Vural NO TEXT REQUIRED NO TEXT REQUIRED N/A N/A N/A

    E-Print Network [OSTI]

    Heller, Barbara

    or earlier Babcock & Wilcox Company 978-1-603-86021-5 (36th) MMAE426 (2) Nuclear, Fossil Fuel://www.personal.utulsa.edu/~kenneth-weston) 1st Free online N/A MMAE426 (3) Nuclear, Fossil Fuel, and Sustainable Energy Systems Ostrogorsky by Author Website Address TBD MMAE310 Fluid Mechanics with Lab Wark Munson, Young, Okiishi, & Huebach

  7. * Corresponding author. Tel.: #44-01223-332650; fax: #44-01223-332662. E-mail address: na#@eng.cam.ac.uk (N.A. Fleck)

    E-Print Network [OSTI]

    Fleck, Norman A.

    compressive behaviour of aluminium alloy foams V.S. Deshpande, N.A. Fleck* Cambridge University Engineering and materials chosen for study Foamed aluminium alloys are ultra-light solids which absorb considerable energy. Alcan foam (an aluminium alloy foam) was independent of applied strain rate in the range 10\\}10 s\\ (the

  8. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect (OSTI)

    Musial, W.

    2014-08-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  9. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W., E-mail: jwc@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  10. NA-ASC-500-13 Issue 26 ASC eNews Quarterly Newsletter

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San| NationalNA-ASC-500-13

  11. A research university's rapid response to a fatal chemistry accident: Safety changes and outcomes

    E-Print Network [OSTI]

    Gibson, JH; Schröder, I; Wayne, NL

    2014-01-01T23:59:59.000Z

    to a fatal chemistry accident: Safety changes and outcomesprogram following a chemistry accident in December 2008 thatcommunity. Since the 2008 accident at UCLA, the na- tional

  12. A-Power Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th Day Energy Jump to:NA-Power

  13. Laser-induced ionization of Na vapor

    SciTech Connect (OSTI)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01T23:59:59.000Z

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  14. Cosmogenic radionuclide production in NaI(Tl) crystals

    E-Print Network [OSTI]

    J. Amaré; S. Cebrián; C. Cuesta; E. García; C. Ginestra; M. Martínez; M. A. Oliván; Y. Ortigoza; A. Ortiz de Solórzano; C. Pobes; J. Puimedón; M. L. Sarsa; J. A. Villar; P. Villar

    2015-01-16T23:59:59.000Z

    The production of long-lived radioactive isotopes in materials due to the exposure to cosmic rays on Earth surface can be an hazard for experiments demanding ultra-low background conditions, typically performed deep underground. Production rates of cosmogenic isotopes in all the materials present in the experimental set-up, as well as the corresponding cosmic rays exposure history, must be both well known in order to assess the relevance of this effect in the achievable sensitivity of a given experiment. Although NaI(Tl) scintillators are being used in experiments aiming at the direct detection of dark matter since the first nineties of the last century, very few data about cosmogenic isotopes production rates have been published up to date. In this work we present data from two 12.5 kg NaI(Tl) detectors, developed in the frame of the ANAIS project, which were installed inside a convenient shielding at the Canfranc Underground Laboratory just after finishing surface exposure to cosmic rays. The very fast start of data taking allowed to identify and quantify isotopes with half-lives of the order of tens of days. Initial activities underground have been measured and then production rates at sea level have been estimated following the history of detectors; values of about a few tens of nuclei per kg and day for Te isotopes and 22Na and of a few hundreds for I isotopes have been found. These are the first direct estimates of production rates of cosmogenic nuclides in NaI crystals. A comparison of the so deduced rates with calculations using typical cosmic neutron flux at sea level and a carefully selected description of excitation functions will be also presented together with an estimate of the corresponding contribution to the background at low and high energies, which can be relevant for experiments aiming at rare events searches.

  15. NA GC - Office of General Counsel | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA GC - Office of General Counsel NA GC - Office of General Counsel...

  16. NA 1 - Immediate Office of the Administrator | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 1 - Immediate Office of the Administrator NA 1 - Immediate Office of the...

  17. NA MB - Associate Administrator for Management & Budget | National...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA MB - Associate Administrator for Management ... NA MB - Associate Administrator...

  18. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...

  19. NA APM - Associate Administrator for Acquisition & Project Management...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA APM - Associate Administrator for Acquisition ... NA APM - Associate...

  20. NA 40 - Associate Administrator for Emergency Operations | National...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 40 - Associate Administrator for Emergency Operations NA 40 - Associate...

  1. NA 15 - Assistant Deputy Administrator for Secure Transportation...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 15 - Assistant Deputy Administrator for ... NA 15 - Assistant Deputy...

  2. NA 80 - Associate Administrator for Counterterrorism andCounterprolif...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 80 - Associate Administrator for Counterterrorism ... NA 80 - Associate...

  3. NA 50 - Associate Administrator for Safety, Infrastructure and...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 50 - Associate Administrator for Safety, ... NA 50 - Associate Administrator...

  4. NA 10 - Deputy Administrator for Defense Programs | National...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 10 - Deputy Administrator for Defense Programs NA 10 - Deputy Administrator for...

  5. NA 70 - Associate Administrator for Defense Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 70 - Associate Administrator for Defense ... NA 70 - Associate Administrator...

  6. analiticheskij kompleks na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  7. achados na ressonancia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  8. aktinidnykh matrits na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  9. aquaticas na eficiencia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  10. aplicacao na padronizacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  11. ambientais defendidos na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  12. aprendizagem organizacional na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  13. atomizacao na industria: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  14. aplicacao na prevencao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  15. acumulam na doenca: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  16. alongamento mesenterial na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  17. arteriais na cirurgia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  18. acometido na vertigem: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  19. abordagem multiescala na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  20. antiga terapia na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  1. apendicite aguda na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  2. amazonicus characidae na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  3. aktivnykh dobavok na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  4. aplicacao na producao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  5. aparelhos na radioterapia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  6. aiton na serra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  7. aditivos na injetabilidade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  8. argila na morfologia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  9. a2780 na cisplatinu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  10. atmosferica na regiao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  11. atividade pesqueira na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  12. adjuvante na papilomatose: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  13. agem na demanda: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  14. aegypti na ilha: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  15. anemia materna na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  16. azotada na produtividade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  17. asma aguda na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  18. anseniformes ocorrido na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  19. autogeno na cirurgia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  20. avarii na chaehs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  1. alcalino neoproterozoico na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  2. adultos na coorte: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  3. argilas pilarizadas na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  4. antioxidantes na resposta: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  5. alteracoes na sintese: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  6. aborto ilegal na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  7. artificiais na bacia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  8. acidente na usina: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  9. ambulatoriais na cidade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  10. atheriniformes atherinopsidae na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  11. adquirida na comunidade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  12. antioxidantes na asma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  13. antimicrobiana na cirurgia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  14. aleitamento materno na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  15. avarii na aehs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  16. aplicacao na calibracao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  17. adsorbirovannogo na tverdykh: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  18. armazenamento na disponibilidade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  19. animais silvestres na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  20. alternativa na quebra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  1. alternativos utilizados na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  2. acidentes na industria: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  3. aliado na busca: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  4. atmosfera controlada na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  5. alegorias na pintura: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  6. alteracoes na secrecao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  7. auxilio na atividade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  8. atmosferas modificadas na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  9. aquecimento na vida: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  10. aplicacao na dosimetria: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  11. aplicado na automacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  12. aktivnosti na fiziologicheskie: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  13. amostragem na lavoura: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  14. alada na distrofia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  15. achados na artroscopia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  16. anemia falciforme na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  17. avaliadas na semeadura: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  18. anodo na oxidacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  19. aprendizado na fundoplicatura: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  20. achados na tomografia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  1. Document: NA Actionee: Dorothy Riehie

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol.PREDICTINGvN T opvT opT

  2. The performance of thin NaI(Tl) scintillator plate for dark matter search

    E-Print Network [OSTI]

    K. Fushimi; H. Kawasuso; E. Aihara; R. Hayami; M. Toi; K. Yasuda; S. Nakayama; N. Koori; M. Nomachi; K. Ichihara; R. Hazama; S. Yoshida; S. Umehara; K. Imagawa; H. Ito

    2006-04-15T23:59:59.000Z

    A thin (0.05cm) and wide area (5cmX5cm) NaI(Tl) scintillator was developed. The performance of the thin NaI(Tl) plate, energy resolution, single photoelectron energy and position sensitivity were tested. An excellent energy resolution of 20% (FWHM) at 60keV was obtained. The single photoelectron energy was calculated to be approximately 0.42 0.02keV. Position information in the 5cmx5cm area of the detector was also obtained by analyzing the ratio of the number of photons collected at opposite ends of the detector. The position resolution was obtained to be 1cm (FWHM) in the 5cmx5cm area.

  3. OR I GI NA L S I GNE D B Y OR I GI NA L S I GNE D B Y

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers |OJT!LSU/CAMD ProcedureNA L S I GNE

  4. Federal Comprehensive Annual Energy Performance Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NAUse) |In

  5. CEC4002012005CMF CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    APPENDICES THE BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS JOINT For Occupant Controlled Smart Thermostats JA6 ­ HVAC System Fault Detection and Diagnostic Technology JA7 Procedures for Relocatable Public School Buildings NA5 ­ RESERVED NA6 ­ Alternate Default Fenestration

  6. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    scenario in a notional generation IV example sodium fastCommittee and the Generation IV Interna- tional Forum.Generation IV roadmap - crosscutting fuels and materials R&D

  7. The climate change and energy security nexus

    SciTech Connect (OSTI)

    King, Marcus Dubois [George Washington University; Gulledge, Jay [ORNL

    2013-01-01T23:59:59.000Z

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategic Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.

  8. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; Niu, X. H.; Song, Y.; Zhang, C. L.; Dai, P. C.; Xie, B. P.; Lai, X. C.; Feng, D. L.

    2015-04-30T23:59:59.000Z

    The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)

  9. U Gorskome kotaru kao na Strawberry Hillu

    E-Print Network [OSTI]

    Boley, Colleen; Stakun, Rebecca; Novak, Charles; Pirnat-Greenberg, Marta

    2012-07-01T23:59:59.000Z

    je prvi put posjetio Hrvatsku. “Bilo je kao da sam se vratio na Hill. U Hrvatskoj sam našao istu to- plu, prijateljsku atmosferu i ista prezi- mena kojih se sje?am iz djetinjstva. Kad odem u Hrvatsku, vidim mnoge sli?no- sti sa svojim starim... toliki no- vac”, sje?a se Don. Nedugo nakon toga dobio je dozvo- lu da doveze Danijelu u SAD da godinu dana boravi kod njegove obitelji. Poletio je iz Kansas Cityja u petak uve?er, sti- gao u Zagreb u subotu ujutro i vratio se u Kansas City...

  10. Calendar Year 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on the Audit of National Security Technologies, LLC Costs Claimed under Department of Energy Contract No. DE-AC52-06NA25946 for Fiscal Year 2007 May 6, 2009 Audit Report: IG-0815...

  11. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Conference on Energy Sustainability. Jacksonville, Florida,tional Conference on Energy Sustainability (InterPACK2009).Need for Sustainability Indicators Energy, pollution, and

  12. STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-14A NA7.5.13 Distributed Energy Storage DX AC DISTRIBUTED ENERGY STORAGE DX AC SYSTEMES ACCEPTANCE CEC-MECH-14A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  13. STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

  14. master's degree NaNotechNology

    E-Print Network [OSTI]

    Twente, Universiteit

    master's degree NaNotechNology When choosing a Master's programme, it is wise to look one step topical, incorporating the latest developments in applied physics, nanotechnology, chemical engineering projects will be carried out at the MESA+ institute for nanotechnology, or the MIRA institute

  15. Laser trapping of {sup 21}Na atoms

    SciTech Connect (OSTI)

    Lu, Zheng-Tian

    1994-09-01T23:59:59.000Z

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  16. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

  17. Characterization of NOx Species in Dehydrated and Hydrated Na...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOx Species in Dehydrated and Hydrated Na- and Ba-Y, FAU Zeolites Formed in NO Adsorption. Characterization of NOx Species in Dehydrated and Hydrated Na- and Ba-Y, FAU Zeolites...

  18. Topical Review Voltage Dependence of the Na/K Pump

    E-Print Network [OSTI]

    Gadsby, David

    Topical Review Voltage Dependence of the Na/K Pump R.F. Rakowski1 , D.C. Gadsby2 , P. De Weer3 1, Philadelphia, PA 19104, USA Received: 2 August 1996/Revised: 13 September 1996 Introduction Whether Na/K pump & Rakowski, 1988). While it follows from first principles that the rate of net forward Na/K pumping must

  19. Influence of Salt Purity on Na+ and Palmitic Acid Interactions

    E-Print Network [OSTI]

    Influence of Salt Purity on Na+ and Palmitic Acid Interactions Zishuai Huang, Wei Hua, Dominique of salt purity on the interactions between Na+ ions and the carboxylate (COO- ) head group of palmitic frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous

  20. [1] RUSH (J. J.), Investigation of rotational and vibra-tional freedom in molecules by cross section measu-

    E-Print Network [OSTI]

    Boyer, Edmond

    of the I. A. E. A. Symposium on Inelastic Scattering of Neutrons in Solids and Liquids, Vienna, 1960, 336.) and KROH (A.), Proceedings of the I. A. E. A. Symposium on Inelactic Scattering of Neutrons in Solids. Symposium on Inelastic Scattering of Neutrons in Solids and Liquids, Vol. II, Chalk River, 1962, 253. [10

  1. Comparative studies of etching mechanisms of CR-39 in NaOH/H2O and NaOH/ethanol

    E-Print Network [OSTI]

    Yu, K.N.

    Comparative studies of etching mechanisms of CR-39 in NaOH/H2O and NaOH/ethanol K.C.C. Tse, D Avenue, Kowloon Tong, Hong Kong Available online 13 May 2007 Abstract The bulk etch rate for CR-39 in NaOH/ethanol accumulates on the surface of CR-39 detector during etching in NaOH/ethanol, which is absent during etching

  2. CoverSheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinetic energy release in fission 5 High energy neutron computed tomography at LANSCE 7 Neutron scattering en- ables structural charac- terization of multifunc- tional materials...

  3. Background studies for NaI(Tl) detectors in the ANAIS dark matter project

    SciTech Connect (OSTI)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Solórzano, A. Ortiz de; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain and Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain)] [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain and Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain)

    2013-08-08T23:59:59.000Z

    Several large NaI(Tl) detectors, produced by different companies, have been operated in the Canfranc Underground Laboratory (LSC) in the frame of the ANAIS (Annual modulation with NaI Scintillators) project devoted to the direct detection of dark matter. A complete background model has been developed for a 9.6 kg detector (referred as ANAIS-0 prototype) after a long data taking at LSC. Activities from the natural chains of {sup 238}U and {sup 232}Th, and {sup 40}K in the NaI(Tl) crystal were evaluated applying different methods: discrimination of alpha particles vs beta/gamma background by Pulse Shape Analysis for quantifying the content of the natural chains and coincidence techniques for {sup 40}K. Radioactive contaminations in the detector and shielding components were also determined by HPGe spectrometry. Monte Carlo simulations using Geant4 package were carried out to evaluate their contribution. At high energies, most of the measured background is nicely reproduced; at low energy some non-explained components are still present, although some plausible background sources have been analyzed. The {sup 40}K content of the NaI(Tl) crystal has been confirmed to be the dominant contributor to the measured background with this detector. In addition, preliminary results of the background characterization, presently underway at the LSC, of two recently produced NaI(Tl) detectors, with 12.5 kg mass each, will be presented: cosmogenic induced activity has been clearly observed and is being quantified, and {sup 40}K activity at a level ten times lower than in ANAIS-0 has been determined.

  4. Data:Ca970684-217f-45fd-848b-09dee6ba4d3e | Open Energy Information

    Open Energy Info (EERE)

    prior to January 1, 2008 in the former Duke Energy Carolinas Nantahala Area in Cherokee, Clay, Graham, Macon, Jackson and, Swain, counties. Existing Pole - NA New pole - NA New...

  5. Spectroscopy of $^{28}$Na: shell evolution toward the drip line

    E-Print Network [OSTI]

    Lepailleur, A; Mutschler, A; Sorlin, O; Bader, V; Bancroft, C; Barofsky, D; Bastin, B; Baugher, T; Bazin, D; Bildstein, V; Borcea, C; Borcea, R; Brown, B A; Caceres, L; Gade, A; Gaudefroy, L; Grévy, S; Grinyer, G F; Iwasaki, H; Khan, E; Kröll, T; Langer, C; Lemasson, A; Llidoo, O; Lloyd, J; Negoita, F; Santos, F de Oliveira; Perdikakis, G; Recchia, F; Redpath, T; Roger, T; Rotaru, F; Saenz, S; Saint-Laurent, M -G; Smalley, D; Sohler, D; Stanoiu, M; Stroberg, S R; Thomas, J C; Vandebrouck, M; Weisshaar, D; Westerberg, A

    2015-01-01T23:59:59.000Z

    Excited states in $^{28}$Na have been studied using the $\\beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $\\gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{\\pi}$=3,4$^+$) and negative (J$^{\\pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$\\_{5/2}$ protons and a 0d$\\_{3/2}$ neutron, while the latter are due to couplings with 1p$\\_{3/2}$ or 0f$\\_{7/2}$ neutrons. While the relative energies between the J$^{\\pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$\\_{5/2}$-0d$\\_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{\\pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{\\pi}$=5$^-$ state around 2.5 MeV give further support to the col...

  6. Spectral and temporal structures of high-order harmonic generation of Na in intense mid-ir laser fields

    E-Print Network [OSTI]

    Chu, Shih-I

    and efficient propagation of the wave function in space and time. Excellent agreement of the HHG spectrum into different HHG mechanisms in different energy regimes of Na atoms at long wavelengths. DOI: 10.1103/Phys,2 . The generation of har- monics in rare-gas atoms that extend up to orders of about 300 well within the water

  7. Surface Tensions in NaCl-Water-Air Systems from MD Simulations Ranjit Bahadur, Lynn M. Russell,*, and Saman Alavi

    E-Print Network [OSTI]

    Russell, Lynn

    Surface Tensions in NaCl-Water-Air Systems from MD Simulations Ranjit Bahadur, Lynn M. Russell, Ottawa, Ontario K1A 0R6, Canada ReceiVed: July 9, 2007; In Final Form: July 30, 2007 Surface tensions to the surface tension, while the energy-integral and test area methods provide direct estimates. At 1 atm

  8. Federal Building Energy Use Benchmarking Guidance, August 2014 Update |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NA

  9. Penning and associative ionization in crossed-beam Na/Na collisions assisted by strong resonant laser fields

    SciTech Connect (OSTI)

    Weiner, J.; Polak-Dingels, P.

    1981-01-01T23:59:59.000Z

    We observe the production of Na/sub 2//sup +/ and Na/sup +/ arising from single collisions between crossed beams of sodium atoms when a laser field is tuned near the Na(3p /sup 2/P/sub 3/2/) and Na(3p /sup 2/P/sub 1/2/) transitions. Measurements of ion intensity vs laser intensity show that at moderately high power true laser-induced processes dominate over purely collisional effects. Relative intensity of mass-selected ions produced at either member of the Na resonance doublet shows conclusively that Na/sup +/ does not arise simply from photodissociation of Na/sub 2//sup +/ but must result from a direct, laser-induced collisional ionization.

  10. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O?: Honeycomb-ordered cathodes for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; Khalifah, Peter G.; Grey, Clare P.; Zhu, Yimei

    2015-04-14T23:59:59.000Z

    Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na?/Na), the honeycomb-layered compound Na(Ni2/3Sb1/3)O? can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms, depending onmore »the synthesis conditions. The average structure of Na(Ni2/3Sb1/3)O? is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3?m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants (C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and ? = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni2/3Sb1/3)O? is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the three possible choices for distributing Ni and Sb cations into a honeycomb lattice in each transition metal layer. It is observed that the full theoretical discharge capacity expected for a Ni³?/²? redox couple (133 mAh/g) can be achieved for the ordered variant but not for the disordered variant (~110 mAh/g). The first 3.27 V plateau during charging is found to be associated with a two-phase O3 ? P3 structural transition, with the P3 stacking sequence persisting throughout all further stages of desodiation.« less

  11. Supporting Information Ionic Binding of Na+

    E-Print Network [OSTI]

    1350 1400 1450 1500 1550 0.00 0.05 0.10 0.15 0.20 D31 - PA - pH 1.0 (PPP) D31 - PA - pH 13.3 (PPP) Frequency (cm -1 ) SFGIntensity(a.u.) Figure S1. ppp VSFG spectra of D31-PA monolayers on water with p.08 0.12 D31 - PA - 0.6 M NaCl (PPP) 0.00 0.04 0.08 0.12 D31 - PA - 0.6 M KCl (PPP) 1300 1350 1400 1450

  12. Microsoft Word - NA-02-29 NIF reaches milestone.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San REPORTMarch 28,1Q For

  13. Beta-delayed gamma spectroscopy of neutron rich 27,28,29Na

    SciTech Connect (OSTI)

    Tripathi, V.; Tabor, S.L.; Hoffman, C.R.; Wiedeking, M.; Volya,A.; Mantica, P.F.; Davies, A.D.; Liddick, S.N.; Mueller, W.F.; Stolz, A.; Tomlin, B.E.

    2006-05-04T23:59:59.000Z

    The low-energy level structure of the exotic Na isotopes {sup 27,28,29}Na has been investigated through {beta}-delayed {gamma} spectroscopy. Detailed level structure of {sup 28,29}Na has been obtained through {beta}{gamma} and {beta}{gamma}{gamma} coincidence measurements. The low-lying levels populated in {sup 27}Na by {beta} decay were found to corroborate well with the in-beam data from the literature. Half-lives of the parent nuclides, {sup 27,28,29}Ne, were measured using {beta} fragment as well as fragment {beta}{gamma} coincidences and compared to previous measurements. The {beta}-delayed one- and two-neutron emission branching probabilities have been obtained from the {gamma} activities of the grand daughter nuclei. A comparison of the level schemes and the {beta}-decay branching ratios is made with shell-model predictions, both with and without intruder configurations, to understand the transition from normal-dominant to intruder-dominant excitations in these neutron-rich nuclei approaching the island of inversion.

  14. {beta}-delayed {gamma} spectroscopy of neutron rich {sup 27,28,29}Na

    SciTech Connect (OSTI)

    Tripathi, Vandana; Tabor, S.L.; Hoffman, C.R.; Wiedeking, M.; Volya, A.; Otsuka, T.; Utsuno, Y. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033 (Japan) and RIKEN, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Advanced Science Research Centre, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Mantica, P.F.; Liddick, S.N.; Tomlin, B.E. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States); Davies, A.D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Mueller, W.F.; Stolz, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2006-05-15T23:59:59.000Z

    The low-energy level structure of the exotic Na isotopes {sup 27,28,29}Na has been investigated through {beta}-delayed {gamma} spectroscopy. Detailed level structure of {sup 28,29}Na has been obtained through {beta}{gamma} and {beta}{gamma}{gamma} coincidence measurements. The low-lying levels populated in {sup 27}Na by {beta} decay were found to corroborate well with the in-beam data from the literature. Half-lives of the parent nuclides, {sup 27,28,29}Ne, were measured using {beta} fragment as well as fragment {beta}{gamma} coincidences and compared to previous measurements. The {beta}-delayed one- and two-neutron emission branching probabilities have been obtained from the {gamma} activities of the grand daughter nuclei. A comparison of the level schemes and the {beta}-decay branching ratios is made with shell-model predictions, both with and without intruder configurations, to understand the transition from normal-dominant to intruder-dominant excitations in these neutron-rich nuclei approaching the island of inversion.

  15. From Inside Energy:

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofrAdministration Frederico PenaInside

  16. Spectroscopy of $^{28}$Na: shell evolution toward the drip line

    E-Print Network [OSTI]

    A. Lepailleur; K. Wimmer; A. Mutschler; O. Sorlin; V. Bader; C. Bancroft; D. Barofsky; B. Bastin; T. Baugher; D. Bazin; V. Bildstein; C. Borcea; R. Borcea; B. A. Brown; L. Caceres; A. Gade; L. Gaudefroy; S. Grévy; G. F. Grinyer; H. Iwasaki; E. Khan; T. Kröll; C. Langer; A. Lemasson; O. Llidoo; J. Lloyd; F. Negoita; F. de Oliveira Santos; G. Perdikakis; F. Recchia; T. Redpath; T. Roger; F. Rotaru; S. Saenz; M. -G. Saint-Laurent; D. Smalley; D. Sohler; M. Stanoiu; S. R. Stroberg; J. C. Thomas; M. Vandebrouck; D. Weisshaar; A. Westerberg

    2015-03-30T23:59:59.000Z

    Excited states in $^{28}$Na have been studied using the $\\beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $\\gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{\\pi}$=3,4$^+$) and negative (J$^{\\pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$\\_{5/2}$ protons and a 0d$\\_{3/2}$ neutron, while the latter are due to couplings with 1p$\\_{3/2}$ or 0f$\\_{7/2}$ neutrons. While the relative energies between the J$^{\\pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$\\_{5/2}$-0d$\\_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{\\pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{\\pi}$=5$^-$ state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the 0f$\\_{7/2}$ and 1p$\\_{3/2}$ levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the $^{26}$F and $^{25}$O nuclei.

  17. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  18. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  19. Towards "Zero-energy" using NEMFET-based Power Management for 3D Hybrid Stacked ICs

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    potentially autonomous "zero-energy" devices. Index Terms--Low power electronics, Energy efficiency, Na experiment we believe that such 3D hybrid NEMS/CMOS approach creates the premises for the substantial

  20. Results from the NA62 2014 Commissioning Run

    E-Print Network [OSTI]

    Dario Soldi

    2015-05-12T23:59:59.000Z

    The main purpose of the NA62 experiment is to measure the branching ratio of the (ultra) rare decay $K+ \\rightarrow {\\pi}+{\

  1. Angular distributions of photoelectrons from free Na clusters

    SciTech Connect (OSTI)

    Wopperer, P.; Dinh, P. M. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique, IRSAMC, F-31062 Toulouse Cedex, France and CNRS, UMR 5152, F-31062 Toulouse Cedex (France); Faber, B.; Reinhard, P.-G. [Institut fuer Theoretische Physik, Universitaet Erlangen, D-91058 Erlangen (Germany); Suraud, E. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique, IRSAMC, F-31062 Toulouse Cedex, France and CNRS, UMR 5152, F-31062 Toulouse Cedex (France); Institut fuer Theoretische Physik, Universitaet Erlangen, D-91058 Erlangen (Germany)

    2010-12-15T23:59:59.000Z

    We explore, from a theoretical perspective, photoelectron angular distributions (PADs) of the Na clusters Na{sub 8}, Na{sub 10}, Na{sub 12}, Na{sub 18}, Na{sub 3}{sup +}, Na{sub 11}{sup +}, Na{sub 13}{sup +}, and Na{sub 19}{sup +}. The basis of the description is the time-dependent local-density approximation (TDLDA), augmented by a self-interaction correction (SIC) to describe ionization properties correctly. The scheme is solved on a numerical grid in coordinate space with absorbing bounds. We assume for each cluster system an isotropic ensemble of free clusters and develop for the case of one-photon emission analytical formulas for computing the orientation-averaged PAD on the basis of a few TDLDA-SIC calculations for properly chosen reference orientations. It turns out that all the information in the averaged PAD is contained in one anisotropy parameter. We find that this parameter varies very little with system size, but as a whole is crucially influenced by the detailed ionic structure. We also make comparisons with direct orientation averaging and consider one example reaching outside the perturbative regime.

  2. Results from the NA62 2014 Commissioning Run

    E-Print Network [OSTI]

    Soldi, Dario

    2015-01-01T23:59:59.000Z

    The main purpose of the NA62 experiment is to measure the branching ratio of the (ultra) rare decay $K+ \\rightarrow {\\pi}+{\

  3. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    U.S. as well as Imports and Exports Jointly funded by the NRC & NNSA - Managed by NA-73 Fuel Cycle Facilities Conversion Enrichment Fuel Fabrication Power Reactors,...

  4. alvo molecular na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relacionar as percepes de identidade profissional dos docentes de educao infantil com (more) Leito, Zuleica Maria Tavares de Brito 2013-01-01 122 for the NA48...

  5. armazenamento na energia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rey Juan Carlos, Universidad 3 Portugal lidera consrcio envolvido na produo de "energia limpa, segura e abundante" Engineering Websites Summary: ) - A produo de...

  6. ambientais envolvidos na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elisa Flvia Luiz Cardoso 2014-01-01 4 Portugal lidera consrcio envolvido na produo de "energia limpa, segura e abundante" Engineering Websites Summary: ) - A produo de...

  7. alta energia na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leonardo Oliveira Ferreira 2006-01-01 2 Portugal lidera consrcio envolvido na produo de "energia limpa, segura e abundante" Engineering Websites Summary: ) - A produo de...

  8. Pion and kaon freezeout in NA44

    SciTech Connect (OSTI)

    NA44 Collaboration

    1994-12-01T23:59:59.000Z

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  9. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect (OSTI)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27T23:59:59.000Z

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  10. Crnica I Encontro Solar na UDC O pasado mrcores 24 de abril tivo lugar na Praza da Fraga (Campus da

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    /informativos/os-universitarios-da-coruna-comparten-unha-xornada-de- gastronomia-solar-573783 http://www.lavozdegalicia.es/noticia/coruna/2013/04/24/cocina-universitaria-energiaCrónica I Encontro Solar na UDC O pasado mércores 24 de abril tivo lugar na Praza da Fraga (Campus da Zapateira) a primeira edición do Encontro Solar na UDC. Esta era a terceira das actividades

  11. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  12. TorqueSpeed Relationships of Na+ -driven Chimeric

    E-Print Network [OSTI]

    Berry, Richard

    , H+ in Escherichia coli and Na+ in marine Vibrio species, driven by an inward-directed electrochemiTorque­Speed Relationships of Na+ -driven Chimeric Flagellar Motors in Escherichia coli Yuichi in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque

  13. Federal Energy Management Program News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAof

  14. Federal Energy Management Program News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAofDecember 17, 2013

  15. Federal Energy Management Program Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAofDecember 17,

  16. Federal Energy Management Program Renewable Energy Project Assistance |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA

  17. Hyperon production at CERN SPS energies

    E-Print Network [OSTI]

    Michael Mitrovski; for the NA49 collaboration

    2004-06-08T23:59:59.000Z

    New experimental results of NA49 on hyperon production in central Pb+Pb collisions at the SPS energies are presented. In particular, measurements of $\\Lambda$ production at 30 A$\\cdot$GeV and $\\Xi$ and $\\Omega$ production at 40 A$\\cdot$GeV are shown. Transverse mass spectra and rapidity distributions of hyperons at different energies are compared. The energy dependence of the particle yields and ratios is discussed.

  18. Page 1 of 5 July 2011 Energy Report Texas Tech University Energy Savings Program

    E-Print Network [OSTI]

    Gelfond, Michael

    use declined 2.5 kbtu/ft2 (6.3%) below the monthly energy goals for that quarter. Gas usage is down 13 as a reduction of natural gas use. Through this third quarter of the fiscal year, the dollar value of the free.9% ($ 303,772) Natural Gas 82.94 71.88 Down 13.3% $ 354,295. Cogeneration Steam 4.57 10.24 NA NA Total 128

  19. Nonlinear Galerkin Method Using Chebyshev and Legendre ...

    E-Print Network [OSTI]

    Dec 9, 2002 ... The exchange of energy between the low and high mode ... tional ef?ciency, to study the coupling between the small and large scale ...

  20. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01T23:59:59.000Z

    gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

  1. On the 21Na(p,gamma)22Mg thermonuclear rate for 22Na production in novae

    E-Print Network [OSTI]

    Nadya A. Smirnova; Alain Coc

    2000-08-16T23:59:59.000Z

    Classical novae are potential sources of gamma-rays, like the 1.275 MeV gamma emission following 22Na beta decay, that could be detected by appropriate instruments on board of future satellites like INTEGRAL. It has been shown that the production of 22Na by novae is affected by the uncertainty on the 21Na(p,gamma)22Mg rate and in particular by the unknown partial widths of the Ex = 5.714 MeV, J^pi = 2^+, 22Mg level. To reduce these uncertainties, we performed shell model calculations with the OXBASH code, compared the results with available spectroscopic data and calculated the missing partial widths. Finally, we discuss the influence of these results on the 21Na(p,gamma)22Mg reaction rate and 22Na synthesis.

  2. A=16Na (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See Energy93TI07)93TI07)86AJ04)

  3. A=17Na (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See Energy

  4. A=17Na (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See Energy2AJ01)

  5. A=18Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See Energy

  6. A=18Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See Energy3AJ01) (Not

  7. A=18Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See Energy3AJ01)

  8. A=18Na (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See Energy3AJ01)95TI07)

  9. A=20Na (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See Energy Level

  10. A=13Na (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level Diagrams

  11. A=13Na (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level Diagrams91AJ01) (Not

  12. A=14Na (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See0AJ04) (See Energy Level

  13. A=14Na (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See0AJ04) (See Energy Level91AJ01) (Not

  14. SOFE Romanelli_na1.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p o r t 2 0Roadmap to

  15. Contract No. DE-NA0001942

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS

  16. NA 80 - Associate Administrator for Counterterrorism and

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page iSecurityCounterproliferation

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  18. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  19. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  20. EUV micro-exposure tool at 0.5 NA for sub-16 nm lithography

    E-Print Network [OSTI]

    Goldstein, Michael

    2008-01-01T23:59:59.000Z

    25 nn has been achievedand a 0.5 NA micro- for Benefit opticprocesstechnologynode. A two-mirror 0.5 NA optical designisshown in figure 2. All are 0.5 NA (MET2) designs constrained

  1. Cleaning residual NaK in the fast flux test facility fuel storage cooling system

    SciTech Connect (OSTI)

    Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

    2008-01-15T23:59:59.000Z

    The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

  2. Energy-Information Trade-Offs between Movement and Malcolm A. MacIver1,2,3

    E-Print Network [OSTI]

    Hartmann, Mitra J. Z.

    . Patankar1 , Anup A. Shirgaonkar4 1 Department of Mechanical Engineering, Northwestern University, Evanston systems with their diverse energy loads. Citation: MacIver MA, Patankar NA, Shirgaonkar AA (2010) Energy

  3. auto-anticorpos na artrite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  4. anti-sepsia intrabucal na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  5. anticorpos anti-mielina na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  6. ansa-tsirkonotsenov na ikh: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  7. auto-estima na funcionalidade: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  8. anti-cd20 na terapia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  9. autonomia na auto-reconquista: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer, 2006) We report an extensive characterization of the Na monocarboxy- late...

  10. Prospects for $K^+ \\to ?^+ ?\\bar{ ?}$ at CERN in NA62

    E-Print Network [OSTI]

    G. Aglieri Rinella; R. Aliberti; F. Ambrosino; B. Angelucci; A. Antonelli; G. Anzivino; R. Arcidiacono; I. Azhinenko; S. Balev; J. Bendotti; A. Biagioni; C. Biino; A. Bizzeti; T. Blazek; A. Blik; B. Bloch-Devaux; V. Bolotov; V. Bonaiuto; M. Bragadireanu; D. Britton; G. Britvich; N. Brook; F. Bucci; V. Buescher; F. Butin; E. Capitolo; C. Capoccia; T. Capussela; V. Carassiti; N. Cartiglia; A. Cassese; A. Catinaccio; A. Cecchetti; A. Ceccucci; P. Cenci; V. Cerny; C. Cerri; O. Chikilev; R. Ciaranfi; G. Collazuol; P. Cooke; P. Cooper; G. Corradi; E. Cortina Gil; F. Costantini; A. Cotta Ramusino; D. Coward; G. D'Agostini; J. Dainton; P. Dalpiaz; H. Danielsson; J. Degrange; N. De Simone; D. Di Filippo; L. Di Lella; N. Dixon; N. Doble; V. Duk; V. Elsha; J. Engelfried; T. Enik; V. Falaleev; R. Fantechi; L. Federici; M. Fiorini; J. Fry; A. Fucci; L. Fulton; S. Gallorini; L. Gatignon; A. Gianoli; S. Giudici; L. Glonti; A. Goncalves Martins; F. Gonnella; E. Goudzovski; R. Guida; E. Gushchin; F. Hahn; B. Hallgren; H. Heath; F. Herman; D. Hutchcroft; E. Iacopini; O. Jamet; P. Jarron; K. Kampf; J. Kaplon; V. Karjavin; V. Kekelidze; S. Kholodenko; G. Khoriauli; A. Khudyakov; Yu. Kiryushin; K. Kleinknecht; A. Kluge; M. Koval; V. Kozhuharov; M. Krivda; Y. Kudenko; J. Kunze; G. Lamanna; C. Lazzeroni; R. Leitner; R. Lenci; M. Lenti; E. Leonardi; P. Lichard; R. Lietava; L. Litov; D. Lomidze; A. Lonardo; N. Lurkin; D. Madigozhin; G. Maire; A. Makarov; I. Mannelli; G. Mannocchi; A. Mapelli; F. Marchetto; P. Massarotti; K. Massri; P. Matak; G. Mazza; E. Menichetti; M. Mirra; M. Misheva; N. Molokanova; J. Morant; M. Morel; M. Moulson; S. Movchan; D. Munday; M. Napolitano; F. Newson; A. Norton; M. Noy; G. Nuessle; V. Obraztsov; S. Padolski; R. Page; V. Palladino; A. Pardons; E. Pedreschi; M. Pepe; F. Perez Gomez; M. Perrin-Terrin; P. Petrov; F. Petrucci; R. Piandani; M. Piccini; D. Pietreanu; J. Pinzino; M. Pivanti; I. Polenkevich; I. Popov; Yu. Potrebenikov; D. Protopopescu; F. Raffaelli; M. Raggi; P. Riedler; A. Romano; P. Rubin; G. Ruggiero; V. Russo; V. Ryjov; A. Salamon; G. Salina; V. Samsonov; E. Santovetti; G. Saracino; F. Sargeni; S. Schifano; V. Semenov; A. Sergi; M. Serra; S. Shkarovskiy; A. Sotnikov; V. Sougonyaev; M. Sozzi; T. Spadaro; F. Spinella; R. Staley; M. Statera; P. Sutcliffe; N. Szilasi; D. Tagnani; M. Valdata-Nappi; P. Valente; M. Vasile; V. Vassilieva; B. Velghe; M. Veltri; S. Venditti; M. Vormstein; H. Wahl; R. Wanke; P. Wertelaers; A. Winhart; R. Winston; B. Wrona; O. Yushchenko; M. Zamkovsky; A. Zinchenko

    2014-11-01T23:59:59.000Z

    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay $K^+ \\to \\pi^+ \

  11. On the study of wind energy at great heights using remote sensing techniques

    E-Print Network [OSTI]

    On the study of wind energy at great heights using remote sensing techniques Alfredo Pe~na1 by the wind energy industry due to the high sensitivity that the wind characteristics have on the performance Dong energy, Dong Energy, Kraftværksvej 53, DK-7000, Fredericia, Denmark e-mail: alfredo

  12. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  13. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  14. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  15. Hormonal Regulation of the Polarized Function and Distribution of Na/H Exchange and Na/HC03

    E-Print Network [OSTI]

    Machen, Terry E.

    as the Na-dependent, amiloride-sensitive component of pHi recovery from an acid load induced by a pulse proteins have been discovered: direct tar- geting ofnewly synthesized proteins fromthe Golgi complex

  16. A=16Na (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See

  17. A=17Na (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See

  18. A=17Na (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See93TI07) (Not

  19. A=17Na (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See93TI07)

  20. A=18Na (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See

  1. A=19Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,

  2. A=19Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01) (See the

  3. A=19Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01) (See

  4. A=19Na (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01) (See95TI07)

  5. A=19Na (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01)

  6. A=20Na (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar Diagram78AJ03) (See

  7. A=20Na (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar Diagram78AJ03)

  8. A=20Na (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar Diagram78AJ03)87AJ02)

  9. A=20Na (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar

  10. Document: NA (FOIA) Actionee: Dorothy Riehie

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol.PREDICTINGvN T opvT op

  11. Measurements of NaI:Tl Electron Response using SLYNCI: Comparison of Different Samples

    SciTech Connect (OSTI)

    Hull, G; Choong, W; Moses, W W; Bizarri, G; Valentine, J D; Payne, S A; Cherepy, N; Reutter, B W

    2007-11-12T23:59:59.000Z

    This paper measures the sample to sample variation in the light yield non-proportionality of NaI:Tl, and so explores whether this is an invariant characteristic of the material or whether it is dependent on the chemical and physical properties of tested sample. In this work we report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The non-proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. The Scintillation Light Yield Non-proportionality Characterization Instrument (SLYNCI) is a next generation Compton Coincidence device, explicitly designed to study the 'non-proportionality' of the electron response in scintillators and the contribution of this effect to the intrinsic energy resolution. We also discuss the gamma response, x-ray excited emission spectra and decay times for the nine crystals, in order to provide a complete characterization of their physical properties and determine whether the mechanism of scintillation varies between samples.

  12. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator| National LisaPrograms | National

  13. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  14. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  15. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  16. Integration of fluctuating energy by electricity price control

    E-Print Network [OSTI]

    to as the Smart Grid. Traditionally, the power sector has adapted and reinforced the power grid by laying more that the social net cost of setting up a Smart Grid is DKK 1.6 billion in contrast to the DKK 7.7 billion of a tradi- tional expansion scheme. The value creation of a Smart Grid mainly comes from the derivative

  17. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  18. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvest Jump

  19. Hygroscopic Growth and Deliquescence of NaCl Nanoparticles Coated with Surfactant Ahmad Alshawa,,

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Hygroscopic Growth and Deliquescence of NaCl Nanoparticles Coated with Surfactant AOT Ahmad AlshawaVember 09, 2008; ReVised Manuscript ReceiVed: February 13, 2009 Aerosolized nanoparticles of NaCl coated of surfactant on the hygroscopic growth of NaCl were studied. For pure NaCl nanoparticles, the deliquescence

  20. Isospin effects on the mass dependence of the balance energy

    SciTech Connect (OSTI)

    Gautam, Sakshi [Department of Physics, Panjab University, Chandigarh 160 014 (India); Sood, Aman D. [SUBATECH, Laboratoire de Physique Subatomique et des Technologies Associees, Universite de Nantes, IN2P3/CNRS, EMN 4 rue Alfred Kastler, F-44072 Nantes (France)

    2010-07-15T23:59:59.000Z

    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/A= 0.54 and 0.57 as well as isobaric systems with N/A= 0.5 and 0.58. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.

  1. Federal Correctional Institution - Phoenix, Arizona | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NAUse) |InPhoto

  2. Federal Electronics Challenge Gold Award | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NAUse)

  3. Federal Energy Management Program Director: Dr. Timothy Unruh | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NAUse)Portalof

  4. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  5. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  6. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  7. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  8. MULTISPECIES FISH PASSAGE BEHAVIOUR IN A VERTICAL SLOT FISHWAY ON THE RICHELIEU RIVER, QUEBEC, CANADA

    E-Print Network [OSTI]

    Cooke, Steven J.

    dam failure. N.P.--Na- tional Park. Mine impacts derive primarily from Miller Creek drainage Soda Butte Creek, Yellowstone National Park. A tailings dam failure in 1950 emplaced metal

  9. A synthesis of carbon in international trade

    E-Print Network [OSTI]

    Peters, G. P; Davis, S. J; Andrew, R.

    2012-01-01T23:59:59.000Z

    and Peters, G. P. : Carbon Footprint of Nations: A Global,analysis for na- tional carbon footprint accounting, Eco.study of the UK’s carbon footprint, Eco. Syst. Res. , 22,

  10. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  11. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  12. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

  14. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

  16. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  17. Symmetry Energy

    E-Print Network [OSTI]

    P. Danielewicz

    2006-07-15T23:59:59.000Z

    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

  18. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  19. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o

  20. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  1. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall

  2. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewablesAnalysis

  3. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan

  4. Sandia Energy » Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia StudentSandia

  5. Evidence for the onset of deconfinement and quest for the critical point by NA49 at the CERN SPS

    SciTech Connect (OSTI)

    Melkumov, G. L., E-mail: georgui.melkoumov@cern.ch [Joint Institute for Nuclear Research (Russian Federation); Anticic, T. [Rudjer Boskovic Institute (Croatia); Baatar, B. [Joint Institute for Nuclear Research (Russian Federation); Barna, D. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Bartke, J. [Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics (Poland); Beck, H. [Fachbereich Physik der Universitaet (Germany); Betev, L. [CERN (Switzerland); Bialkowska, H. [Institute for Nuclear Studies (Poland); Blume, C. [Fachbereich Physik der Universitaet (Germany); Bogusz, M. [Warsaw University of Technology, Faculty of Physics (Poland); Boimska, B. [Institute for Nuclear Studies (Poland); Book, J. [Fachbereich Physik der Universitaet (Germany); Botje, M. [NIKHEF (Netherlands); Buncic, P. [CERN (Switzerland); Cetner, T. [Warsaw University of Technology, Faculty of Physics (Poland); Christakoglou, P. [NIKHEF (Netherlands); Chung, P. [Stony Brook University (SUNYSB), Department of Chemistry (United States); Chvala, O. [Charles University, Institute of Particle and Nuclear Physics (Czech Republic); Cramer, J. G. [University of Washington, Nuclear Physics Laboratory (United States); Eckardt, V. [Max-Planck-Institut fuer Physik (Germany); and others

    2012-05-15T23:59:59.000Z

    The NA49 results on hadron production obtained in PbPb collisions at SPS energies from 20 to 158 A GeV are shown and discussed as evidence for the onset of deconfinement. The primary measures are the pion yield, the kaon-to-pion ratio and the slope parameter of transverse mass distributions. The possible indication of the QCD critical point signatures was investigated in the event-by-event fluctuations of various observables such as the mean transverse momentum, particle multiplicity and azimuthal angle distributions as well as in the particle ratio fluctuations. The energy dependence of these observables was measured in central PbPb collisions in the full SPS energy range while for analysis of the system size dependence data from pp, CC, SiSi, and PbPb collisions at the top SPS energy were used.

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blog Energy Blog RSS July 11, 2013 Climate Change: Effects on Our Energy A new report shows how a changing climate has impacted and may continue to affect our energy...

  7. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  8. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-Print Network [OSTI]

    V. Bonaiuto; A. Fucci; G. Paoluzzi; A. Salamon; G. Salina; E. Santovetti; F. Sargeni; F. M. Scarfi'

    2012-01-16T23:59:59.000Z

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  9. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-Print Network [OSTI]

    Vincenzo Bonaiuto; Adolfo Fucci; Giovanni Paoluzzi; Andrea Salamon; Gaetano Salina; Emanuele Santovetti; Fausto Sargeni; Francesco M. Scarfi'

    2012-01-18T23:59:59.000Z

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  10. The Wide-Area Energy Storage and Management System – Battery Storage Evaluation

    SciTech Connect (OSTI)

    Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Ma, Jian; Viswanathan, Vilayanur V.

    2009-07-01T23:59:59.000Z

    This report presents the modeling approach, methodologies, and results of the sodium sulfur (NaS) battery evaluation study, which was conducted by Battelle for the California Energy Commission (CEC).

  11. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  12. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied

  13. Sandia Energy - Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home Climate & Earth

  14. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Hometdheinr Home About

  15. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive Committee

  16. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeThe

  17. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeTheCRF

  18. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive

  19. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem Permalink

  20. Sandia Energy - Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem

  1. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  2. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon Capture

  3. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon

  4. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbonAssurance

  5. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department Awards

  6. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department

  7. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC Permalink

  8. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC

  9. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems

  10. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter for

  11. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter forComputational

  12. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter

  13. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  14. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T.Release

  15. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie Luk

  16. Observation of structure in laser-induced Penning and associative ionization in crossed-beam Na+Na collisions

    SciTech Connect (OSTI)

    Polak-Dingels, P.; Delpech, J.; Weiner, J.

    1980-06-23T23:59:59.000Z

    The results of double-laser experiments in which Na/sup +//sub 2/ and Na/sup +/ are produced in crossed-alkali beams under single-collision conditions in the presence of strong optical fields are reported. Structure in the mass-selected product ion intensity as a function laser frequency is observed when the optical field is strongly focused and tuned far off atomic or dimer transitions. These measurements are the first to show that nuclear motion of the quasimolecular collision intermediate plays an important role in laser-induced collisional ionization.

  17. Rate coefficient for the chemi-ionization in slow Li*(n)+Li and Na*(n)+Na collisions

    SciTech Connect (OSTI)

    Ignjatovic, Lj.M.; Mihajlov, A.A. [Institute of Physics, P. O. Box 68, 11080 Zemun, Belgrade (Serbia and Montenegro)

    2005-08-15T23:59:59.000Z

    The chemi-ionization processes in slow-atom-Rydberg-atom collisions are considered in this paper. A version of the semiclassical method of rate coefficient calculation that is free of the presumptions which significantly limited its applicability previously is presented. The method is applied to the cases of Li*(n)+Li and Na*(n)+Na collisions for the principal quantum numbers 5{<=}n{<=}25 and temperatures 600{<=}T{<=}1200 K. The results of calculation of the rate coefficients of the corresponding chemi-ionization processes are compared to the existing experimental data from the literature.

  18. Measurements of NaI(Tl) electron response: comparison of different samples

    SciTech Connect (OSTI)

    Hull, Giulia; Choong, Woon-Seng; Moses, William W.; Bizarri, Gregory; Valentine, John D.; Payne, Stephen A.; Cherepy, Nerine J.; Reutter, Bryan W.

    2008-12-10T23:59:59.000Z

    This paper measures the sample to sample variation in the light yield proportionality of NaI(Tl), and so explores whether this is an invariant characteristic of the material or whether it depends on the chemical and physical properties of the tested samples. We report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. We observe that while samples produced by the same manufacturer at approximately the same time have virtually identical electron response curves, there are significant sample to sample variations among crystals produced by different manufacturers or at different times. In an effort to correlate changes in the electron response with details of the scintillation mechanism, we characterized other scintillation properties, including the gamma response and the x-ray excited emission spectra and decay times, for the nine crystals. While sample to sample differences in these crystals were observed, we have been unable to identify the underlying fundamental mechanisms that are responsible for these differences.

  19. National Aeronautics and Space Administration NaNotechNology Roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A-27 #12;Foreword NASA's integrated technology roadmap, including both technology pull and technology push state of this effort is documented in NASA's DRAFT Space Technology Roadmap, an integrated set

  20. aceleradores na ciencia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aceleradores na ciencia First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CURSO DE VERN CIENCIAS FORENSES...

  1. High precision measurements of Na-26 beta(-) decay 

    E-Print Network [OSTI]

    Grinyer, GF; Svensson, CE; Andreoiu, C.; Andreyev, AN; Austin, RAE; Ball, GC; Chakrawarthy, RS; Finlay, P.; Garrett, PE; Hackman, G.; Hardy, John C.; Hyland, B.; Iacob, VE; Koopmans, KA; Kulp, WD; Leslie, JR; Macdonald, JA; Morton, AC; Ormand, WE; Osborne, CJ; Pearson, CJ; Phillips, AA; Sarazin, F.; Schumaker, MA; Scraggs, HC; Schwarzenberg, J.; Smith, MB; Valiente-Dobon, JJ; Waddington, JC; Wood, JL; Zganjar, EF.

    2005-01-01T23:59:59.000Z

    High-precision measurements of the half-life and beta-branching ratios for the beta(-) decay of Na-26 to Mg-26 have been measured in beta-counting and gamma-decay experiments, respectively. A 4 pi proportional counter and fast tape transport system...

  2. NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA

    E-Print Network [OSTI]

    Fuerschbach, Phillip

    NNSA PERSONNEL SECURITY CLEARANCE ACTION REQUEST Program Code: NA OFFICIAL USE ONLY (UPON sections and fields are required to be completed. The National Nuclear Security Administration (NNSA material (SNM). AL F 470.1 Form is used by NNSA Personnel Security Department to initiate background

  3. Gravitational energy

    E-Print Network [OSTI]

    Joseph Katz

    2005-10-20T23:59:59.000Z

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

  4. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  5. Page 1 of 5 October 2011 Energy Report Texas Tech University Energy Savings Program

    E-Print Network [OSTI]

    Gelfond, Michael

    .94 kbtu/ft2 (2.3%) below the monthly energy goals for that quarter. Gas usage is down 12.4% due to a 38 line since they would be realized as a reduction of natural gas use. In Table I, the campus energy use.5% ($ 310,215) Natural Gas 99.27 86.93 Down 12.4% $ 364,112. Cogeneration Steam 14.53 20.06 Up 38% NA Total

  6. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    of $8- $10/gge for a 1,500 kg/day distributed natural gas and $10- $13/gge for a 1,500 kg: Addressing Energy Challenges US DOE 10/2010 #12;5 Technology Barriers* Economic& Institutional Barriers Fuel of fuel cells. Assisting the growth of early markets will help to overcome many barriers, including

  7. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States--without compromising interior space or performance #12;5 Fuel Cells -- Where are we today? Fuel Cells ­ $80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer_reviews.html $43 $65 $34 $27

  8. Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K

    SciTech Connect (OSTI)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

    2012-07-01T23:59:59.000Z

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO􀀀 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O#1; #1; #1;H#1; #1; #1;O hydrogen bonds. In contrast, the HCO􀀀 3 anions form dimers, .HCO􀀀 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  9. The Physics of Low Energy Solar "Today neutrinos have a larger and larger place in

    E-Print Network [OSTI]

    Chapter 1 The Physics of Low Energy Solar Neutrinos "Today neutrinos have a larger and larger place oscillations could na¨ively be 1 #12;Chapter 1: The Physics of Low Energy Solar Neutrinos 2 accommodated simply of Low Energy Solar Neutrinos 3 first directly detected more than two decades later in 1953. Reines

  10. Transverse energy dependence of J/Psi suppression in Au+Au collisions at RHIC energy

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2001-12-18T23:59:59.000Z

    Prediction for transverse energy dependence of $J/\\psi$ to Drell-Yan ratio in Au+Au collisions at RHIC energy was obtained in a model which assume 100% absorption of $J/\\psi$ above a threshold density. The threshold density was obtained by fitting the NA50 data on $J/\\psi$ suppression in Pb+Pb collisions at SPS energy. At RHIC energy, hard processes may be important. Prediction of $J/\\psi$ suppression with and without hard processes were obtained. With hard processes included, $J/\\psi$'s are strongly suppressed.

  11. Background p(450 GeV/c)-p,d (NA51)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    #12;#12;Background ' Open charm J / Drell-Yan #12;* p(450 GeV/c)-p,d (NA51) 208 16 p(200 Ge) 32 p(450 GeV/c)-A (A=C,Al,Cu,W) (NA38) 10101 10101010 652 3 4 B targetprojectile B(J/)/(AB)(nb) 5 4 3 Pb(208x158 GeV/c)-Pb (NA50) S(32x200 GeV/c)-U (NA38) p(200 GeV/c)-W (NA38) p(450 GeV/c)-A (A=p,d) (NA

  12. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Liu, Jue [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, Byungju [Seoul National Univ. (Korea, Republic of); Qiao, Ruimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source; Yang, Zhenzhong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Xu, Shuyin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States)] (ORCID:000000018513518X); Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Hu, Yong-Sheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:0000000284306474); Yang, Wanli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source] (ORCID:0000000306668063); Kang, Kisuk [Seoul National Univ. (Korea, Republic of); Li, Hong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:000000028659086X); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Huang, Xuejie [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)

    2015-03-25T23:59:59.000Z

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.

  13. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; Qiao, Ruimin; Yang, Zhenzhong; Xu, Shuyin; Yu, Xiqian; Gu, Lin; Hu, Yong-Sheng; Yang, Wanli; et al

    2015-03-25T23:59:59.000Z

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accuratelymore »identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  14. THERMAL CONDUCTIVITY OF AQUEOUS NaCl SOLUTIONS

    Office of Scientific and Technical Information (OSTI)

    and uti1 ization of geothermal energy, petroleum recovery, desalination of sea water, and other energy systems involving water containing dissolved salts. brines contain a...

  15. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  16. OREM News Archive | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers |OJT!LSU/CAMD ProcedureNA3News

  17. OREM Press Releases | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 FederalTransformers |OJT!LSU/CAMD ProcedureNA3NewsPress

  18. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    will stimulate innovation, optimize domestic industry practices, support domestic energy production and bolster job creation. 1 Doubling energy productivity means powering more...

  19. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for LANL. Meeting renewable energy goals Original investors in renewable energy Low flow turbine used for electricity generation Abiquiu Dam power station Inside the TA-03 Steam...

  20. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3.4M Portable Power Backup Power $20.4M Auxiliary Power Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3 CHP & backup power) Auxiliary & Portable Power Transportation Total Market Energy Use Potential Size

  1. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon

  2. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation in buildings

  3. HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies...

    Open Energy Info (EERE)

    HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies Inc Canada Inc Jump to: navigation, search Name: HLT Energies 2006 Inc (formerly HLT Energies Inc, Heliotech...

  4. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  5. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  6. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Energy Savers [EERE]

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    what the U.S. energy economy might look like in 2040? EIA just released the Annual Energy Outlook Reference Case, containing projections about the growth of energy production...

  8. Energy Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchange Energy Exchange Energy Exchange August 11-13, 2015, Phoenix Convention Center The 2015 Energy Exchange in Phoenix, Arizona, is being launched to provide two-and-a-half...

  9. aqueous na2s2o3 solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Na+ in the aqueous solutions and aromatic rings on the graphite surfaces, promoting the adsorption of water molecules together with cations onto the graphite surfaces, i.e., Na+...

  10. The Effect of Water on the Adsorption of NO in Na- and Ba-Y,FAU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water on the Adsorption of NO in Na- and Ba-Y,FAU Zeolites: A Combined FTIR and TPD Investigation. The Effect of Water on the Adsorption of NO in Na- and Ba-Y,FAU Zeolites: A...

  11. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic In Situ 13C and 23Na Magic Angle Spinning NMR...

  12. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for WaterEthanol Separation. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for WaterEthanol Separation. Abstract:...

  13. The Beam and Detector for the NA48 Neutral Kaon CP Violation Experiment at CERN

    E-Print Network [OSTI]

    Fanti, V; Marras, D; Musa, L; Nappi, A; Batley, J Richard; Bevan, A; Dosanjh, R S; Galik, R; Gershon, T; Hay, B; Kalmus, George Ernest; Katvars, S; Lazzeroni, C; Moore, R; Munday, D J; Needham, M D; Olaiya, E; Parker, M A; Patel, M; Slater, M; Takach, S; White, T O; Wotton; Bal, F; Barr, G; Bocquet, G; Bremer, J; Brodier-Yourstone, P; Buchholz, P; Burns, M; Ceccucci, A; Clément, M; Cuhadar-Donzelsmann, T; Cundy, Donald C; Doble, Niels; Falaleev, V; Formenti, F; Funk, W; Gatignon, L; Gonidec, A; Grafström, P; Hallgren, B; Kapusta, P; Kesseler, G; Kubischta, Werner; Iwanski, W; Lacourt, A; Laverriere, G; Linser, G; Ljuslin, C; Marchioro, A; Mast, M; Matheys, J P; Morel, M; Norton, A; Orlic, J P; Panzer-Steindel, B; Schinzel, D; Seidl, W; Taureg, H; Tarlé, J C; Velasco, M; Vossnack, O; Wahl, H; Wertelaers, P; Weterings, J; Cheshkov, C; Gaponenko, A; Goudzovski, E; Khristov, P Z; Kalinin, A; Kekelidze, V D; Kozhevnikov, Yu; Madigozhin, D T; Molokanova, N A; Potrebenikov, Yu K; Tkatchev, A; Zinchenko, A I; Boyle, O; Knowles, I; Martin, V; Parsons, H; Peach, K J; Sacco, R; Veitch, E; Walker, A; Carassiti, V; Contalbrigo, M; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Duclos, J; Ferretti, P; Frabetti, P L; Gianoli, A; Martini, M; Petrucci, F; Porcu, M; Rossi, F; Savrié, M; Scarpa, M; Simani, C; Bizzeti, A; Calvetti, M; Collazuol, G; Graziani, G; Iacopini, E; Lenti, M; Martelli, F; Michetti, A; Ruggiero, G; Veltri, M; Becker, H G; Behler, M; Blümer, H; Coward, D; Ebersberger, C; Eppard, K; Eppard, M; Fox, H; Geib, K H; Hirstius, A; Kalter, A; Kleinknecht, K; Koch, U; Köpke, L; Lopes da Silva, P; Luitz, S; Marouelli, P; Masetti, L; Melzer-Pellmann, I; Moosbrugger, U; Morales-Morales, C; Peters, A; Renk, B; Scheidt, J; Schmidt, J; Schmidt, S A; Schönharting, V; Schué, Yu; Staeck, J; Wanke, R; Wilhelm, R; Winhart, A; Wittgen, M; Zeitnitz, O; Dabrowski, A; Fonseca-Martin, T; Chollet, J C; Crépé, S; de La Taille, C; Fayard, L; Iconomidou-Fayard, L; Martin-Chassard, G; Ocariz, J; Unal, G; Wingerter-Seez, I; Anzivino, Giuseppina; Bordacchini, F; Cenci, P; Imbergamo, E; Lariccia, P; Lubrano, P; Mestvirishvili, A; Papi, A; Pepé, M; Piccini, M; Punturo, M; Talamonti, C; Tondini, F; Bertanza, L; Calafiura, P; Carosi, R; Casali, R; Cerri, C; Cirilli, M; Costantini, F; Fantechi, R; Fidecaro, Francesco; Fiorini, L; Giudici, S; Gorini, B; Laico, F; Lamanna, G; Mannelli, I; Marzulli, V; Passuello, D; Pierazzini, G M; Raffaelli, F; Sozzi, M; Tripiccione, R; Anvar, S; Bédérède, D; Bugeon, F; Chèze, J B; Cogan, J; De Beer, M; Debu, P; Durand, D; Edard, S; Fallou, J L; Formica, A; Gosset, L; Granier de Cassagnac, R; Heitzmann, J; Le Provost, H; Louis, F; Mandzhavidze, I; Mazzucato, E; Migliori, A; Mur, M; Peyaud, B; Schanne, S; Steinkamp, O; Tarte, Gérard; Turlay, René; Vallage, B; Holder, M; Augustin, I; Bender, M; Maier, A; Schwarz, I; Ziolkowski, M; Arcidiacono, R; Barberis, P L; Benotto, F; Bertolino, F; Biino, C; Brunasso, O; Cartiglia, N; Clemencic, M; Dattola, D; Goy-Lopez, S; Govi, G; Guida, R; Marchetto, F; Menichetti, E; Palestini, S; Pastrone, N; Chlopik, A; Guzik, Z; Nassalski, J P; Rondio, E; Szleper, M; Wislicki, W; Wronka, S; Dibon, Heinz; Fischer, G; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Pernicka, M; Taurok, Anton; Widhalm, L

    2007-01-01T23:59:59.000Z

    The Beam and Detector, used for the NA48 experiment, devoted to the measurement of $Re(\\epsilon^{\\prime}/\\epsilon)$, and for the NA48/1 experiment on rare K_S and neutral hyperon decays, are described.

  14. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using...

  15. Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions

    SciTech Connect (OSTI)

    Sellers, R. S. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States); 1500 Engineering Dr., Madison WI 53711 (United States); Cheng, W. J. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States); National Taiwan Univ. of Science and Technology, Taiwan (China); Anderson, M. H.; Sridharan, K.; Wang, C. J.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin - Madison (United States)

    2012-07-01T23:59:59.000Z

    Molten fluoride salts such as FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) have been proposed for use as secondary reactor coolants, media for transfer of high temperature process heat from nuclear reactors to chemical plants, and for concentrated solar power thermal energy storage. In molten fluoride salts, passive oxide films are chemically unstable, and corrosion is driven largely by the thermodynamically driven dissolution of alloying elements into the molten salt environment. Two alloys, Hastelloy{sup R} N and 316L stainless steel were exposed to molten FLiNaK salt in a 316L stainless steel crucible under argon cover gas for 1000 hours at 850 deg. C. Graphite was present in some of the crucibles with the goal of studying corrosion behavior of relevant reactor material combinations. In addition, a technique to reduce alloy corrosion through modification of the reduction-oxidation state was tested by the inclusion of zirconium to the system. Corrosion of 316L stainless steel was noted to occur primarily through surface depletion of chromium, an effect that was enhanced by the presence of graphite. Hastelloy{sup R} N experienced weight gain through electrochemical plating of corrosion products derived from the 316L stainless steel crucible. In the presence of zirconium, both alloys gained weight through plating of zirconium and as a result formed intermetallic layers. (authors)

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. August 19, 2013

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Saving Energy and Money with Aerogel Insulation The Energy Department is investing...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bush Administration. March 19, 2012 March Madness: Slam Dunk Energy Efficiency Keep in mind the importance of sparing the real madness by working toward a sustainable energy...

  19. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    construction methods, and innovative technologies that drastically reduce energy consumption-while at the same time saving on energy bills. August 17, 2009 Please Stand By:...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    courtesy of Dennis Schroeder, NREL Living Comfortably: A Consumer's Guide to Home Energy Upgrades A four-step guide to making your home more comfortable, energy efficient and...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    taking advanced battery technologies from the lab to the marketplace. February 14, 2011 Home-energy display mobile phone application that shows how much energy an appliance is...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rob Guglielmetti helped leverage daylighting (i.e. sun and sunlight) to help the National Renewable Energy Laboratory's (NREL) Research Support Facility meet its energy efficiency...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the Rio Grande Valley on energy efficiency ideas for the home, recycling, energy production and consumption, wind and solar power and groundwater runoff. Texas...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    University (NAU), the top recruiter of Native American engineering students in their area. November 18, 2011 Energy Matters: Industrial Energy Efficiency On Wednesday,...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Resilient Communities The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    October 17, 2012 Utilities demonstrating the latest Green Button features at the Energy Datapalooza on October 1st. | Photo by Sarah Gerrity Green Button Energy Data Access...

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet...

  9. Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)

    SciTech Connect (OSTI)

    Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

    2009-03-31T23:59:59.000Z

    This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

  10. Fiscalizao e Controle: O Poder Legislativo na Argentina e no Brasil Contemporneos

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Fiscalização e Controle: O Poder Legislativo na Argentina e no Brasil Contemporâneos Charles na Argentina e no Brasil Contemporâneos "La société a le droit de demander compte à tout agent public concentrar-se na análise das novas instituições de controle externo no Brasil e na Argentina, de acordo com o

  11. Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices

    SciTech Connect (OSTI)

    Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

    2006-07-31T23:59:59.000Z

    Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be improved, regardless of the detector material.

  12. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission

  13. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power PersonnelH2FIRSTWind

  14. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:Education

  15. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:EducationAssurance

  16. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate ChangeLicense

  17. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  Why Hydrogen? * Fossil

  18. Update on the SEMATECH 0.5 NA Extreme-Ultraviolet Lithography (EUVL) Microfield Exposure Tool (MET)

    E-Print Network [OSTI]

    Cummings, Kevin

    2014-01-01T23:59:59.000Z

    eld Exposure Tools with 0.5 NA,” Proc. SPIE TBP (2014) [6]microexposure tool at 0.5 NA for sub-16 nm lithography,&Update on the SEMATECH 0.5 NA Extreme Ultraviolet

  19. Synthesis and photoluminescence properties of NaLaMgWO{sub 6}:RE{sup 3+} (RE = Eu, Sm, Tb) phosphor for white LED application

    SciTech Connect (OSTI)

    Hou, Jingshan [College of Materials Science and Engineering, Dong Hua University, Shanghai 200051 (China) [College of Materials Science and Engineering, Dong Hua University, Shanghai 200051 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Yin, Xin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China) [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang, Fuqiang, E-mail: huangfq@mail.sic.ac.cn [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China) [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Jiang, Weizhong, E-mail: jwzh@dhu.edu.cn [College of Materials Science and Engineering, Dong Hua University, Shanghai 200051 (China)] [College of Materials Science and Engineering, Dong Hua University, Shanghai 200051 (China)

    2012-06-15T23:59:59.000Z

    Highlights: ? NaLa{sub 1?x}MgWO{sub 6}:xRE{sup 3+} phosphors were synthesized by solid-state reaction method. ? Compared with Y{sub 2}O{sub 3}:Eu{sup 3+}, NaLaMgWO{sub 6}:Eu{sup 3+} performed better luminescence properties. ? The results demonstrated NaLaMgWO{sub 6} as a suitable host for RE{sup 3+}-doping. -- Abstract: Single phase of NaLa{sub 1?x}MgWO{sub 6}:xRE{sup 3+} (0 < x ?1) (RE = Eu, Sm, Tb) phosphors were prepared by solid-state reaction method. X-ray diffraction, scanning electron microscopy, the morphology energy-dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectra and photoluminescence were used to characterize the samples. Under the light excitation, NaLaMgWO{sub 6}:Eu{sup 3+}, NaLaMgWO{sub 6}:Sm{sup 3+} and NaLaMgWO{sub 6}:Tb{sup 3+}, phosphors showed the characteristic emissions of Eu{sup 3+} ({sup 5}D{sub 0} ? {sup 7}F{sub 4,3,2,1}), Sm{sup 3+} ({sup 4}G{sub 5/2} ? {sup 6}H{sub 5/2,7/2,9/2}), and Tb{sup 3+} ({sup 5}D{sub 4} ? {sup 7}F{sub 6,5,4,3}), respectively. The intensity of the red emission for Na(La{sub 0.6}Eu{sub 0.4})MgWO{sub 6} is 2.5 times higher than that of (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} under blue light irradiation. The quantum efficiencies of the entitled phosphors excited under 394 nm and 464 nm are also investigated and compared with commercial phosphors Y{sub 2}O{sub 3}:Eu{sup 3+}, Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Y{sub 3}A{sub 5}G{sub 12}:Ce{sup 3+}. The results demonstrated NaLaMgWO{sub 6}:RE{sup 3+} phosphors as potential candidates for white light emitting diode pumped by UV or blue chip.

  20. Energy Star

    E-Print Network [OSTI]

    Reihl, K.; Tullos, A.

    2012-01-01T23:59:59.000Z

    is a joint program of: ? U.S. Environmental Protection Agency (EPA) ? U.S. Department of Energy (DOE) ? Mission: ? ?Help us all save money and protect the environment through energy efficient products and practices.? ? History: ? 1992 ? Energy... Star Label introduced for energy-efficient products ? Expanded to include technical information & tools ? Website: www.energystar.gov ESL-KT-12-10-08 CATEE 2012: Clean Air Through Energy Efficiency Conference, Galveston, TX, October 9-11, 2012...

  1. Strategic Energy Planning | Department of Energy

    Office of Environmental Management (EM)

    Resources Energy Resource Library Strategic Energy Planning Strategic Energy Planning Below are resources for Tribes on strategic energy planning. Alaska Strategic Energy...

  2. Tribal Renewable Energy Foundational Course: Strategic Energy...

    Office of Environmental Management (EM)

    Strategic Energy Planning Tribal Renewable Energy Foundational Course: Strategic Energy Planning Watch the U.S. Department of Energy Office of Indian Energy foundational course...

  3. Tribal Renewable Energy Foundational Course: Assessing Energy...

    Office of Environmental Management (EM)

    Assessing Energy Needs and Resources Tribal Renewable Energy Foundational Course: Assessing Energy Needs and Resources Watch the U.S. Department of Energy Office of Indian Energy...

  4. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  5. Zero-Crossing Angle in the Np Analyzing Power at Medium Energies and its Relation to Charge Symmetry 

    E-Print Network [OSTI]

    Bhatia, T. S.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, BE; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Riley, P. J.; Ransome, R. D.

    1981-01-01T23:59:59.000Z

    The production of (22)Na in ONe novae can be influenced by the (22)Mg(p,gamma)(23)Al reaction. To investigate this reaction rate at stellar energies, we have determined the asymptotic normalization coefficient (ANC) for ...

  6. Ionic conduction, bond valence analysis of structure–property relationships of NaHoP{sub 2}O{sub 7}

    SciTech Connect (OSTI)

    Béjaoui, Anis, E-mail: bejaoui-anis@hotmail.fr; Horchani-Naifer, Karima; Férid, Mokhtar

    2013-08-15T23:59:59.000Z

    Single crystals of NaHoP{sub 2}O{sub 7} diphosphate have been prepared by the flux method and its structural and physical properties have been investigated. It crystallizes in the monoclinic system with the space group P2{sub 1}/n and its parameters are: a=8.6796(4) Å, b=5.3677(2) Å, c=13.6904(6) Å, ?=106.120° (2), V=612.75 (5) Å{sup 3}, Z=4. The structure of NaHoP{sub 2}O{sub 7} consists of a three-dimensional framework of HoO{sub 6} octahedra, linked by P{sub 2}O{sub 7} diphosphate units, forming tunnels running parallel to [0 1 0], which are occupied by Na atoms. The infrared and Raman vibrational spectra have been investigated. Activation energy was obtained from Arrhenius plots (Ln ?T versus 1000/T) and found to be 1.27 eV. The coupling of the structural analysis with the BVS model for NaHoP{sub 2}O{sub 7} has better interpret the measurements of the ionic conductivity and the most probably transport pathway model was determined. - Graphical abstract: Schematic representation of the structural arrangement of NaHoP{sub 2}O{sub 7} shows the sodium conduction pathway along the [0 1 0] direction. Highlights: • Single crystals of NaHoP{sub 2}O{sub 7} were prepared by flux method and characterized by single-crystal X-ray data. • The conductivity and loss spectra were analysed in order explain the mechanism of conduction. • The most probably conduction pathway are determined.

  7. Besedje stare kme?ke delovne šege na Koroškem – steljeraje

    E-Print Network [OSTI]

    Benko, Anja

    2010-01-01T23:59:59.000Z

    dolo?enem podro?ju s pomo?jo rok U? s?ta:rix ?ca:jtix, ?k? ?še ni b?w? ?n? ?c?:st pa ne e?l?:ktrike pa ?tuj k?m?:?ke mexani?za:cije ?ni:so poz?na:li, se je na ?pa:u?rex de?wa:wo u??s? na ?ro:ke. SSKJ + Plet. + delo || ?d?:wo -a s delanje, vezano na... ?lu:ksus. SSKJ – Plet. – paver || ?pa:w?r -ra m kmet U? s?ta:rix ?ca:jtix, ?k? ?še ni b?w? ?n? ?c?:st pa ne e?l?:ktrike pa ?tuj k?m?:?ke mexani?za:cije ?ni:so poz?na:li, se je na ?pa:u?rex de?wa:wo u??s? na ?ro:ke. [nem. der Bauer kmet] SSKJ + (nižje...

  8. Non-specific binding of Na$^+$ and Mg$^{2+}$ to RNA determined by force spectroscopy methods

    E-Print Network [OSTI]

    C. V. Bizarro; A. Alemany; F. Ritort

    2012-06-20T23:59:59.000Z

    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na$^+$]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg$^{2+}$ salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100 fold that concentration for small molecular constructs.

  9. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  10. Hubble Energy

    E-Print Network [OSTI]

    Alasdair Macleod

    2004-03-25T23:59:59.000Z

    Light received from a cosmological source is redshifted with an apparent loss of energy, a problem first pointed out by Edwin Hubble in 1936. A new type of energy called Hubble Energy is introduced to restore the principle of energy conservation. The energy has no inertial or gravitational effect but retards radial motion in a manner consistent with the anomalous acceleration experienced by the Pioneer probes leaving the solar system. The energy is predicted to have important effects on the scale of galaxies, and some of these effects are qualitatively examined: for example, with Hubble Energy, flat rotation curves are found to be an inevitable consequence of spiral galaxy formation. The Hubble Energy is incorporated into the Friedmann Equation and shown to add a term similar to the cosmological term, with a magnitude of order 10^-35 s^-2.

  11. Energy deskbook

    SciTech Connect (OSTI)

    Glasstone, S.

    1983-01-01T23:59:59.000Z

    This book explains recent energy-related terms and principles. It defines and outlines over 400 topics. The subjects covered include: alcohol and diesel fuels; atomic, biomass, and fusion energy; desulfurization; electric vehicles; geothermal resources development; laser fusion; ocean thermal energy conversion; steam generation; wind energy conversion. Scientists, engineers, administrators, government officials, and conservationists will want this authoritative reference close at hand for the invaluable assistance it can provide in their work.

  12. Dark Energy

    E-Print Network [OSTI]

    Norbert Straumann

    2003-11-26T23:59:59.000Z

    After some remarks about the history and the mystery of the vacuum energy I shall review the current evidence for a cosmologically significant nearly homogeneous exotic energy density with negative pressure (`Dark Energy'). Special emphasis will be put on the recent polarization measurements by WMAP and their implications. I shall conclude by addressing the question: Do the current observations really imply the existence of a dominant dark energy component?

  13. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  14. Energy Efficiency and Energy Policy 

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  15. Energy Efficiency and Energy Policy

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  16. Nacel Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy ThermalEnergy,Nacel Energy Jump to:

  17. Energy Matters: Our Energy Independence | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matters: Our Energy Independence Energy Matters: Our Energy Independence Addthis Description In this installment of the livechat series "Energy Matters," Dr. Arun Majumdar takes...

  18. Impact of surface roughness on the electrical parameters of industrial high efficiency NaOH-NaOCl textured multicrystalline silicon solar cell

    SciTech Connect (OSTI)

    Basu, P.K. [Department of Physics, Echelon Institute of Technology, Faridabad 121002, Haryana (India); Pujahari, R.M. [Department of Physics, Echelon Institute of Technology, Faridabad 121002, Haryana (India); Department of Physics, Manav Rachna International University, Faridabad 121001, Haryana (India); Kaur, Harpreet [Department of Physics, Manav Rachna International University, Faridabad 121001, Haryana (India); Department of Physics, Advanced Institute of Technology and Management, Palwal 121105, Haryana (India); Singh, Devi [Department of Physics, Manav Rachna International University, Faridabad 121001, Haryana (India); Varandani, D.; Mehta, B.R. [Department of Physics, Indian Institute of Technology, New Delhi 110016 (India)

    2010-09-15T23:59:59.000Z

    Sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) solution (1:1 ratio by volume) based texturization process at 80-82 C is an easy, low cost and comparatively new and convenient option for fabrication of any multicrystalline silicon (mC-Si) solar cell. In the present study atomic force microscope is used to observe the intragrain surface in a miniscule area (3 {mu}m x 3 {mu}m) of NaOH-NaOCl textured surface by two and three dimensional analysis, roughness analysis and section analysis. The r.m.s value of the surface parameter of 7.0 nm ascertains the smoothness of the textured surface and further the surface reflectivity is minimized to 4-6% in the 500-1000 nm wavelength range by a proper silicon nitride anti-reflection coating. Comparing with the standard HF-HNO{sub 3}-CH{sub 3}COOH acid textured cell, the NaOH-NaOCl textured cell shows a comparatively lower value of series resistance of 7.17 m{omega}, higher value of shunt resistance of 18.4 {omega} to yield a fill factor of 0.766 leading to more than 15% cell efficiency in the industrial cell processing line. This AFM study yields different surface roughness parameters for the NaOH-NaOCl textured wafers which can be used as a reference standard for optimized texturing. (author)

  19. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  20. Energy Policy ] (

    E-Print Network [OSTI]

    Jacobson, Arne

    of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne of California, Berkeley, USA Abstract Energy services are fundamental determinants of the quality of life, however, to explore changes in individual, household, and national levels of energy consumption

  1. Energy dependence of kaon production in central Pb+Pb collisions

    E-Print Network [OSTI]

    T. Kollegger

    2002-01-30T23:59:59.000Z

    Recent results from the NA49 experiment on the energy dependence of charged kaon production in central Pb+Pb collisions are presented. First results from the new data at 80 AGeV beam energy are compared with those from lower and higher energies. A difference in the energy dependence of the / and / ratios is observed. The / ratio shows a non-monotonic behaviour with a maximum near 40 AGeV.

  2. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  3. November 2012 Key Performance Indicator (KPI): Energy Consumption

    E-Print Network [OSTI]

    Evans, Paul

    and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating requirements by combusting municipal waste to produce hot water. The process significantly saves carbon

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Climate and Energy Secretary Moniz tells White House group that addressing the risks of climate change is the reason he returned to the Energy Department. May 24, 2013 The...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Blog Energy Blog RSS November 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Photo courtesy of the Energy Department Flickr page. The...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    page. August 28, 2012 Sinking a Pet's Teeth into Energy Saving Ernie's musings about pet ownership and its effects on a healthy and energy-efficient lifestyle. August 28, 2012...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to consumers is now home to Danville, Virg.'s first renewable energy project - a 154-panel solar energy system. November 3, 2010 Harnessing Sun, Wind and Lava for Islands'...

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 30, 2012 Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Estimating the Cost and Energy Efficiency of a Solar Water Heater Could...

  9. Energy Blog | Department of Energy

    Office of Environmental Management (EM)

    see how many you can name in 60 seconds. July 6, 2015 Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of...

  10. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    even end up on energy.gov January 17, 2013 MBC Ventures' new product line provides daylight to building interiors and generates thermal energy that can be used to heat the...

  11. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    engines in a vehicle can be better than one. November 29, 2012 The 2011 Renewable Energy Data book contains facts and figures on the U.S. and global renewable energy industry....

  12. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    an Energy Efficiency Tax Credit? Share with us home improvements you have made for an energy efficiency tax credit? December 1, 2010 In Case You Missed It: Tuesday Talk with...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Schaefer recently had an energy audit done on his 80-year-old home and is saving money on energy bills by putting some of the auditor's recommendations to work. May 28, 2010...

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2010 E-Shelters to Teach a Valuable Lesson on Energy Recovery Act funding is providing solar energy systems for more than 90 emergency shelters at Florida public schools. March...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 29, 2010 The EnergySmart Jobs program is a three-pronged approach to creating "green jobs" for Californians while also increasing energy efficiency at businesses around...

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Regnier, low-energy building designer Seeking Greater Influence in the World of Low-Energy Buildings Cindy Regnier is making a difference. Read how here. July 23, 2010 METRO...

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pump Need to heat your pool? Save energy and money with a smaller, more efficient pool pump that you operate less. May 29, 2012 Managing Swimming Pool Temperature for Energy...

  18. Energy 101: Home Energy Assessment

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  19. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights - Energy Research

  20. NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    SciTech Connect (OSTI)

    Sun, Yuanyuan; Wang, Wenzhong, E-mail: wzwang@mail.sic.ac.cn; Sun, Songmei; Zhang, Ling

    2014-04-01T23:59:59.000Z

    Highlights: • Design and synthesis of NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} based on upconversion. • NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF{sub 4}:Er,Yb and the shell was Bi{sub 2}MoO{sub 6} around the core, which was confirmed by EDS. The NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF{sub 4}:Er,Yb in the NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} nanocomposite and the core–shell structure.

  1. Cell Degradation of a Na-NiCl2 (ZEBRA) Battery

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2013-11-01T23:59:59.000Z

    In this work, the parameters influencing the degradation of a Na-NiCl2 (ZEBRA) battery were investigated. Planar Na-NiCl2 cells using ?”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influence the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.

  2. Energy Education BASS CONNECTIONS in ENERGY

    E-Print Network [OSTI]

    Ferrari, Silvia

    Energy Education BASS CONNECTIONS in ENERGY Leader: Prof. Richard Newell Duke University Energy Initiative Energy education at Duke capitalizes on the University's broader Energy Initiative, a university-wide interdisciplinary collaboration addressing today's pressing energy challenges related to the economy

  3. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  4. Government Energy Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project Funding Grants for Efficiency and Conservation Projects Incentives for Renewable Energy and Energy Efficient Improvements Renewable Energy Production Incentive...

  5. Federal Energy Management Program Golden Field Office Contacts | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAof Energy field

  6. Federal Energy Management Program National Laboratory Liaison Contacts |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NAof Energy

  7. Energy Northwest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21EnergyEnergy

  8. Refex Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product:AnatoliaRefex Energy Jump to:

  9. Renovalia Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformationRenovalia Energy Jump

  10. AGL Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEEOpenOpen EnergyAGL Energy Jump to:

  11. IPE Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9MoatEnergyElectricityUSINGIPE Energy Jump

  12. Positive Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: EnergyPositive Energy

  13. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergy

  14. Energy Star | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergyPublicStar

  15. Entero Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase Energy IncEntero Energy

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    6 6. Renewable Energy132 5. Renewable EnergyUnited States National Renewable Energy Laboratory, http://

  17. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01T23:59:59.000Z

    energy-efficiency measures Energy Management Programs and Systems Energy management programs Energy teams Energy monitoring

  18. Energy Efficient Mortgages | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financing Financing Structures Energy Efficient Mortgages Energy Efficient Mortgages Energy efficient mortgages (EEMs) encourage energy efficiency by giving buyers a better...

  19. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  20. Rural Development Energy Audit & Renewable Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Development Energy Audit & Renewable Energy Development Assistance Webinar Rural Development Energy Audit & Renewable Energy Development Assistance Webinar January 21, 2015...

  1. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  3. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Systems Analysis Home Transportation Energy Predictive Simulation of Engines Transportation Energy Systems Analysis Transportation Energy Systems AnalysisTara...

  4. Indian Energy News Archive | Department of Energy

    Office of Environmental Management (EM)

    1, 2015 Energy Department to Lead Workshop on Tribal Renewable Energy Development in Oklahoma Oklahoma tribal energy leaders have an opportunity to explore the tribal energy...

  5. Colorado: Energy Modeling Products Support Energy Efficiency...

    Energy Savers [EERE]

    Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

  6. Tribal Energy Program | Department of Energy

    Office of Environmental Management (EM)

    Tribal Energy Program Tribal Energy Program The Tribal Energy Photo of a turbine installed at the Rosebud Sioux Reservation in South Dakota. Program promotes tribal energy...

  7. District Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies District Energy Technologies District energy systems produce steam, hot water, or chilled water at a central plant. Then they pipe the energy to...

  8. DE-GM51-05NA25846

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the STATE OF TEXAS (hereinafter called the "State"), acting through the State Energy Conservation Office (hereinafter called SECO"). The DOE entered into Grant Instrument...

  9. DE-GM54-09NA29279

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF UNDERSTANDING BETWEEN CITY OF PANHANDLE, TEXAS AND THE UNITED STATES DEPARTMENT OF ENERGY This Memorandum of Understanding (hereinafter called "MOU") is between the City of...

  10. Functional and operational design requirements for decontamination and decommissioning of the EBR-I Mark-II NaK: Final report. [NaK eutectics

    SciTech Connect (OSTI)

    Brown, B.W.; Crandall, D.L.; Dafoe, R.E.; Dolenc, M.R.; LaRue, D.M.

    1987-09-01T23:59:59.000Z

    Approximately 180 gal of sodium/potassium (NaK) eutectic liquid metal were severely radioactively contaminated during a meltdown of the Mark-II core of the Experimental Breeder Reactor-I (EBR-I) in November 1955. This contaminated NaK, which is contained in four vessels, is currently stored in an underground bunker located at the Army Reentry Vehicle Facility Site (ARVFS) located approximately at the center of the Idaho National Engineering Laboratory (INEL). This document presents the Functional and Operational Requirements (F and ORs) for the D and D of the contaminated NaK and the ARVFS bunker site. This project will chemically deactivate the NaK; dispose of the radioactively contaminated product at a designated burial site; chemically deactivate any residual NaK in the containers, and dispose of the containers at a designated burial site; decontaminate and decommission any contaminated process equipment used in these operations, and decontaminate and decommission the ARVFS bunker site. Completion of the above technical objectives will allow for the effective disposition of the NaK, and will return the ARFVS bunker and immediate area to a reusable condition. Upon completion, the ARVFS NaK, which is now considered a significant potential hazard, will be removed from the Surplus Facilities Management Program priority listing of projects. 33 refs., 8 figs.

  11. #AskEnergySaver: Renewable Energy | Department of Energy

    Energy Savers [EERE]

    AskEnergySaver: Renewable Energy AskEnergySaver: Renewable Energy August 28, 2014 - 2:17pm Addthis If you've completed energy efficiency improvements and you're still looking for...

  12. Transporation Energy

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2012-06-30T23:59:59.000Z

    This Transportation Energy Project is comprised of four unique tasks which work within the railroad industry to provide solutions in various areas of energy conservation. These tasks addressed: energy reducing yard related decision issues; alternate fuels; energy education, and energy storage for railroad applications. The NIU Engineering and Technology research team examined these areas and provided current solutions which can be used to both provide important reduction in energy usage and system efficiency in the given industry. This project also sought a mode in which rural and long-distance education could be provided. The information developed in each of the project tasks can be applied to all of the rail companies to assist in developing efficiencies.

  13. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  14. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  15. Bulk and track etch properties of CR-39 SSNTD etched in NaOH/ethanol

    E-Print Network [OSTI]

    Yu, K.N.

    Bulk and track etch properties of CR-39 SSNTD etched in NaOH/ethanol K.F. Chan, F.M.F. Ng, D. described the use of NaOH/ethanol as an etchant for the CR-39 detector, and have determined the corre and track etch properties of CR- 39 in NaOH/ethanol were derived from direct measurements. The bulk etch

  16. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Renewable Energy ] (

    E-Print Network [OSTI]

    Firestone, Jeremy

    pro or con, and others may wish to evaluate for themselves the size and market value of a wind regimeRenewable Energy ] (

  18. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  19. Energy Policy ] (

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    to the locational marginal prices of several pricing points in the New England, New York, and PJM electricityEnergy Policy ] (

  20. Energy Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    corporate alternative minimum taxable income. See "TAX MATTERS" herein. 664,515,000 ENERGY NORTHWEST 155,390,000 Project 1 Electric Revenue Refunding Bonds, Series 2012-A...