Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Category:Phoenix, AZ | Open Energy Information  

Open Energy Info (EERE)

AZ AZ Jump to: navigation, search Go Back to PV Economics By Location Media in category "Phoenix, AZ" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Phoenix AZ Arizona Public Service Co.png SVFullServiceRestauran... 75 KB SVHospital Phoenix AZ Arizona Public Service Co.png SVHospital Phoenix AZ ... 88 KB SVLargeHotel Phoenix AZ Arizona Public Service Co.png SVLargeHotel Phoenix A... 85 KB SVLargeOffice Phoenix AZ Arizona Public Service Co.png SVLargeOffice Phoenix ... 87 KB SVMediumOffice Phoenix AZ Arizona Public Service Co.png SVMediumOffice Phoenix... 75 KB SVMidriseApartment Phoenix AZ Arizona Public Service Co.png SVMidriseApartment Pho... 73 KB SVOutPatient Phoenix AZ Arizona Public Service Co.png SVOutPatient Phoenix A...

2

DOE Challenge Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandalay Mandalay Homes Phoenix, AZ BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

3

3610 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ●  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ● Fax 602-808-2099 ● www.sunzia.net 10 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ● Fax 602-808-2099 ● www.sunzia.net October 17, 2013 Transmitted via electronic mail to juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov Subject: SunZia Southwest Transmission Project comments on Department of Energy's August 29, 2013 Federal Register Notice regarding Improving Performance of Federal Permitting and Review of Infrastructure Projects. The following comments are provided to the Department of Energy (DOE) in response to the agency's request for information on (RFI) the draft Integrated Interagency Pre-Application (IIP) Process. These comments reflect the views and suggestions of the SunZia Southwest Transmission Project (SunZia). The Bureau of Land Management is the lead agency for processing our right-of-

4

Phoenix rising  

Science Conference Proceedings (OSTI)

Phoenix Coal currently operates 3 surface coal mines in Western Kentucky and have recently obtained the permits to construct their first underground mine. The expansion of the Phoenix Coal company since its formation in July 2004 is described. 4 photos.

Buchsbaum, L.

2008-08-15T23:59:59.000Z

5

Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Phoenix, Arizona B Phoenix, Arizona Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-2b_az_phoenix.zip benchmark-v1.1_3.1-2b_usa_az_phoenix.zip benchmark-new-v1.2_4.0-2b_usa_az_phoenix.zip More Documents & Publications

6

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 1  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 1 Gary A. Bishop, Sajal S-day remote sensing study in the Phoenix, AZ area in the fall of 1998. The remote sensor used in this study selected for 1999. On-Road Remote Sensing in the Phoenix Area: Year 1 2 #12;INTRODUCTION Many cities

Denver, University of

7

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4, November 2002 Gary A conducted a five-day remote sensing study in the Phoenix, AZ area in the fall of 2002. The remote sensor #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4 2 by 5 years

Denver, University of

8

Scottsdale, AZ  

Science Conference Proceedings (OSTI)

... Vice President, Communications, and Chief Marketing Officer, Henry ... Sonora Quest Laboratories Rose Glenn Arizona State Award ... Scottsdale, AZ d ...

2012-10-12T23:59:59.000Z

9

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 5,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 5, November 2004 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing of Automobile-day remote sensing study in the Phoenix, AZ area in the fall of 2004. The remote sensor used in this study

Denver, University of

10

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

11

EV Project Overview Report - Project to Date through December...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

12

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

13

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

14

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2011 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

15

EV Project Overview Report - Project to Date through September...  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

16

MonthlyReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2011 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

17

EV Project Overview Report - Project to Date through June 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

18

Tucson, AZ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Tucson, AZ New coal technologies could lower utility costs By Richaed T. Newesnb lee uf( Engineerlng, and the national posslblity orst lest doubllng the with Its reactor safty and wast dis tility deregulallun hls laborstorlee, such as Los Alasn, net efficiency of cool-bMed power towal problemas. ralied public concerns conlinr the easiteoce of Innovative generetion while at the ame time The mpUctlons In all ofthis for bhout meneng the demunds solutlon in the form of low- and producing a ream of carbon dior- Arlaoes are tignlfcant. Our state for electricity t remaonable cot In zero emlsslon dclan coal (ZEC) tch- Ide that can be aely and poertu has both a wU-elenblhd coal growing states such Arizona with- nolngle. nently sequestered urndrgrouwmL ndustry and a reputatlon for clean

19

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Performed Electricity Consumed (AC MWh) Phoenix, AZ Metropolitan Area 524 59,284 456.28 Tucson, AZ Metropolitan Area 145 16,694 119.53 Los Angeles, CA Metropolitan Area 528...

20

SME Annual Meeting Feb. 28-Mar. 03, 2010, Phoenix, AZ  

E-Print Network (OSTI)

-066 DESIGNING AND MODELING WIRELESS MESH COMMUNICATIONS IN UNDERGROUND COAL MINES K. R. Griffin, Virginia Tech recent regulatory developments in underground coal communication systems, the implementation of these new technologies were limited. After several coal mining accidents in early 2006, the United States Congress

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SME Annual Meeting Feb. 28-Mar. 03, 2010, Phoenix, AZ  

E-Print Network (OSTI)

-090 DECREASED CARBON FOOTPRINT THROUGH EFFECTIVE COAL DEGASIFICATION S. Keim, Virginia Tech, Blacksburg, VA K industry sector. Specifically, the combustion of one ton of coal produces between one and three tons of carbon dioxide, dependent upon the carbon content and heating value of the combusted coal. Additionally

22

City of Phoenix - Energize Phoenix Residential Incentives (Arizona...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and with support from Arizona Public Service. The Energize Phoenix program saves energy, creates jobs and will transform a diverse array of neighborhoods along a 10-mile...

23

The Phoenix story  

Science Conference Proceedings (OSTI)

One of the fastest growing cities in the Sun Belt, Phoenix currently has a metropolitan area population of more than 1.1 million and is adding more than 2,000 people every week. The major urban area of south central Arizona, Phoenix includes within its borders almost 250 square miles. It is a major natural gas market, with 281,000 residential, commercial, and industrial customers enjoying natural gas service provided by Southwest Gas Corp. Southwest Gas acquired the gas system in metropolitan Phoenix November 1, 1984, along with all of the other Arizona Public Service Co. gas properties in the state. Southwest not only gained 281,000 new customers system-wide, but also inherited some major maintenance and piping replacements, repairs, and renovations requiring a long-term program. Approximately 108,000 of the customers in the acquired system were served through 2,500 miles of ABS (acrylonitrile-butadiene-styrene) plastic mains and services that had been installed from 1959 through 1971. (Arizona Public Service switched to polyethylene pipe after 1971; Southwest Gas has installed only PE3408 since acquiring the system in 1984.) An incident in September 1984, before Southwest Gas officially acquired the properties, resulted in a management decision that the ABS plastic system should be replaced over an extended period.

Hale, D.

1986-02-01T23:59:59.000Z

24

Property:Com sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

sales (mwh) sales (mwh) Jump to: navigation, search This is a property of type Number. Sales to commercial consumers Pages using the property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 26,367 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 15,395 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 16,880 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 16,286 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,519 +

25

Better Buildings Neighborhood Program: Phoenix Overcomes Barriers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Phoenix Overcomes Barriers and Energizes Homeowners to Make Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Phoenix Overcomes Barriers and Energizes...

26

Better Buildings Neighborhood Program: Phoenix, Arizona  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona on Twitter Bookmark Better Buildings Neighborhood Program: Phoenix, Arizona on Google Bookmark Better Buildings Neighborhood Program: Phoenix, Arizona on Delicious Rank...

27

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Energy storage solutions for Renewable Integration and Transmission and Distribution (T&D) Grid Support often require systems of 10's of MWs in scale, and energy durations of longer than 4 hours. The goals of this study were to develop cost, performance and conceptual design information for several current and emerging alternative bulk storage systems in the scale of 50 MW / 250 MWh.

2011-12-28T23:59:59.000Z

28

City of Phoenix- Energize Phoenix Residential Incentives (Arizona)  

Energy.gov (U.S. Department of Energy (DOE))

The city of Phoenix was awarded a $25 million federal grant from the U.S. Department of Energy Better Buildings Neighborhood Program and the American Recovery and Reinvestment Act (ARRA) to launch...

29

City of Phoenix - Energize Phoenix Commercial Incentives (Arizona...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State University and Arizona Public Service (APS), the City of Phoenix is providing incentives for businesses located along a 10-mile stretch of the Metro light rail to improve...

30

Phoenix Analog | Open Energy Information  

Open Energy Info (EERE)

Phoenix Analog Phoenix Analog Jump to: navigation, search Name Phoenix Analog Place Phoenix, Arizona Product Focused on micro fuel cell power management. Coordinates 33.44826°, -112.075774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.44826,"lon":-112.075774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Phoenix Press | Open Energy Information  

Open Energy Info (EERE)

Press Press Jump to: navigation, search Name Phoenix Press Facility Phoenix Press Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Phoenix Press Energy Purchaser Phoenix Press Location New Haven CT Coordinates 41.3012815°, -72.90182948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3012815,"lon":-72.90182948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ Metropolitan Area 915 169,414 1,259.24 Tucson,...

33

Category:Tucson, AZ | Open Energy Information  

Open Energy Info (EERE)

Tucson, AZ Tucson, AZ Jump to: navigation, search Go Back to PV Economics By Location Media in category "Tucson, AZ" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Tucson AZ Arizona Public Service Co.png SVFullServiceRestauran... 75 KB SVHospital Tucson AZ Arizona Public Service Co.png SVHospital Tucson AZ A... 88 KB SVLargeHotel Tucson AZ Arizona Public Service Co.png SVLargeHotel Tucson AZ... 82 KB SVLargeOffice Tucson AZ Arizona Public Service Co.png SVLargeOffice Tucson A... 86 KB SVMediumOffice Tucson AZ Arizona Public Service Co.png SVMediumOffice Tucson ... 75 KB SVMidriseApartment Tucson AZ Arizona Public Service Co.png SVMidriseApartment Tuc... 73 KB SVOutPatient Tucson AZ Arizona Public Service Co.png SVOutPatient Tucson AZ...

34

Category:Flagstaff, AZ | Open Energy Information  

Open Energy Info (EERE)

AZ AZ Jump to: navigation, search Go Back to PV Economics By Location Media in category "Flagstaff, AZ" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Flagstaff AZ Salt River Project.png SVFullServiceRestauran... 70 KB SVHospital Flagstaff AZ Salt River Project.png SVHospital Flagstaff A... 83 KB SVLargeHotel Flagstaff AZ Salt River Project.png SVLargeHotel Flagstaff... 77 KB SVLargeOffice Flagstaff AZ Salt River Project.png SVLargeOffice Flagstaf... 83 KB SVMediumOffice Flagstaff AZ Salt River Project.png SVMediumOffice Flagsta... 73 KB SVMidriseApartment Flagstaff AZ Salt River Project.png SVMidriseApartment Fla... 70 KB SVOutPatient Flagstaff AZ Salt River Project.png SVOutPatient Flagstaff... 74 KB SVPrimarySchool Flagstaff AZ Salt River Project.png

35

Property:Ind sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

industrial consumers industrial consumers Pages using the property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 19,022 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 14,148 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 18,516 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 14,517 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,398 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 14,930 +

36

Property:Tot sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

all consumers all consumers Pages using the property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 104,175 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 78,855 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 93,756 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 87,806 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 87,721 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 88,236 +

37

Property:Res sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

residential consumers residential consumers Pages using the property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 58,786 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 49,312 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 58,360 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 57,003 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 52,804 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 56,047 +

38

Property:Oth sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

other consumers other consumers Pages using the property "Oth sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) C Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008 + 1,113 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December 2008 + 1,202 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 + 536 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2009 + 2,187 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2008 + 707 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2009 + 1,537 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 + 697 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008 + 880 +

39

AZ Biodiesel | Open Energy Information  

Open Energy Info (EERE)

AZ Biodiesel AZ Biodiesel Jump to: navigation, search Name AZ Biodiesel Place Chandler, Arizona Zip 85225 Product AZ Biodiesel is a biodiesel producer that announced plans in July 2008 to relocate and reopen its main processing facility to Gilbert, Arizona. Coordinates 32.307977°, -95.479539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.307977,"lon":-95.479539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Phoenix Energy LLC | Open Energy Information  

Open Energy Info (EERE)

94115 Sector Biomass Product California-based distributor and installer of biomass gasification systems. References Phoenix Energy LLC1 LinkedIn Connections CrunchBase Profile...

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Federal Correctional Institution - Phoenix, Arizona | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institution - Phoenix, Arizona October 7, 2013 - 9:54am Addthis Photo of a Parabolic-Trough Solar Water-Heating System Installed at the Federal Correctional Institution...

42

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other...

43

Zoning, Land-use Fragmentation And Environmental Justice In Early Phoenix, AZ Euclidean Zoning adopted by Phoenix in 1930 to  

E-Print Network (OSTI)

(6) Planing and flour mills, industrial steam laundries, ice manufacturing and cold storage, chemical

Hall, Sharon J.

44

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are artificially low and that these fake costs are used to 'sell'...

45

City of Phoenix- Renewable Energy Goal  

Energy.gov (U.S. Department of Energy (DOE))

In 2008, the Phoenix City Council approved a renewable energy goal for the city. The city aims for 15% of the electricity used by the city to come from renewable energy sources by 2025. This goal...

46

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

47

City of Phoenix- Design Standards for City Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The City of Phoenix has had energy standards for public buildings in place since 2005. In June 2005, the Phoenix City Council adopted a policy requiring all new city buildings built with 2006 bond...

48

Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico...

49

Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico...

50

US Mnt(S) AZ Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

51

US Mnt(S) AZ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

52

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

53

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

54

Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

55

Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTownGas SPPurchasedEngyNrmlYrMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

56

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

57

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

58

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtColg SPPurchasedEngyNrmlYrMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

59

Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTownGas SPPurchasedEngyForPeriodMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

60

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrWoodChips SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

62

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

63

Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrLogs SPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

64

Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrNaturalGas SPPurchasedEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

65

Property:Building/SPPurchasedEngyForPeriodMwhYrLogs | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrLogs SPPurchasedEngyForPeriodMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

66

Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrWoodChips SPPurchasedEngyNrmlYrMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

67

Property:Building/SPPurchasedEngyNrmlYrMwhYrOther | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOther SPPurchasedEngyNrmlYrMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

68

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtColg SPPurchasedEngyForPeriodMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

69

Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrPellets SPPurchasedEngyForPeriodMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

70

Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

71

Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOther SPPurchasedEngyForPeriodMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

72

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

73

Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrPellets SPPurchasedEngyNrmlYrMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

74

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

75

Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrNaturalGas SPPurchasedEngyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

76

Phoenix American Rooftop Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Rooftop Solar Technologies Jump to: navigation, search Name Phoenix American Rooftop Solar Technologies Place Michigan Zip 48168 Sector Solar Product Manufacturer of solar power...

77

City of Phoenix - Renewable Energy Goal (Arizona) | Open Energy...  

Open Energy Info (EERE)

Renewable Energy Incentive Programs Website http:phoenix.govgreenphoenixsustainabilitysummarygreen.html Date added to DSIRE 2011-01-31 Last DSIRE Review 01092013...

78

City of Phoenix - Design Standards for City Buildings (Arizona...  

Open Energy Info (EERE)

requirements specified by the City. Website http:phoenix.govgreenphoenixsustainabilitysummarygreen.html Date added to DSIRE 2011-01-31 Last DSIRE Review 01092013...

79

Heating Water with Solar Energy Costs Less at the Phoenix Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in...

80

Phoenix Canada Oil Company | Open Energy Information  

Open Energy Info (EERE)

Canada Oil Company Canada Oil Company Jump to: navigation, search Name Phoenix Canada Oil Company Place Toronto, Ontario, Canada Zip M5J 1S9 Sector Hydro, Hydrogen, Solar Product Oil and gas exploration company, with a US division, Phoenix International Energy Inc, developing a solar hydrogen production process catalysed with platinum group metals aligned with various ligands. Coordinates 43.64856°, -79.385324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.64856,"lon":-79.385324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

82

Waste Toolkit A-Z Light bulbs  

E-Print Network (OSTI)

Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have for the `hazardous' symbol on the packaging or on the light bulb (crossed out wheelie bin symbol). How can I recycle light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

Melham, Tom

83

Tank 241-AZ-102 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

84

Tank 241-AZ-101 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

85

Phoenix Geothermal Services | Open Energy Information  

Open Energy Info (EERE)

Geothermal Services Geothermal Services Jump to: navigation, search Name Phoenix Geothermal Services Place Auburn, New York Sector Geothermal energy Product Designer, developer, and reseller of geothermal heating systems. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Valley of the Sun Clean Cities (Phoenix) coalition Contact Information Bill Sheaffer 480-314-0360 bill@cleanairaz.org Brianna Graf 480-884-1623 brianna@cleanairaz.org Coalition Website Clean Cities Coordinators Coord Bill Sheaffer Coord Coord Brianna Graf Coord Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this all-volunteer coalition. The coalition has been actively involved with the state legislature as well as the key agencies, municipalities, and

87

Formation of Vanadate Conversion Coating on AZ31 Magnesium Alloy  

Science Conference Proceedings (OSTI)

In the present investigation, a chromate-free, corrosion-resistant conversion coating using vanadium based solution was applied to AZ31 magnesium alloy.

88

The Impact of Increasing Summer Mean Temperatures on Extreme Maximum and Minimum Temperatures in Phoenix, Arizona  

Science Conference Proceedings (OSTI)

Over the past few decades, heat-island related temperature increases in Phoenix, Arizona have been similar to the temperature increases predicted in a number of greenhouse simulation experiments. In this investigation, we use the Phoenix climate ...

Robert C. Balling Jr.; Jon A. Skindlov; Daniel H. Phillips

1990-12-01T23:59:59.000Z

89

ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN  

Science Conference Proceedings (OSTI)

This report presents the analyses results for three samples obtained under RPP-PLAN-28509, Sampling and Analysis Plan for Building 241 702-AZ A Train. The sampling and analysis was done in response to problem evaluation request number PER-2004-6139, 702-AZ Filter Rooms Need Radiological Cleanup Efforts.

DUNCAN JB; FRYE JM; COOKE CA; LI SW; BROCKMAN FJ

2006-12-13T23:59:59.000Z

90

241-AZ Farm Annulus Extent of Condition Baseline Inspection  

Science Conference Proceedings (OSTI)

This report provides the results of the comprehensive annulus visual inspection for tanks 241- AZ-101 and 241-AZ-102 performed in fiscal year 2013. The inspection established a baseline covering about 95 percent of the annulus floor for comparison with future inspections. Any changes in the condition are also included in this document.

Engeman, Jason K.; Girardot, Crystal L.; Vazquez, Brandon J.

2013-05-15T23:59:59.000Z

91

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

92

Phoenix Silicon International Corp Psi | Open Energy Information  

Open Energy Info (EERE)

Phoenix Silicon International Corp Psi Phoenix Silicon International Corp Psi Jump to: navigation, search Name Phoenix Silicon International Corp (Psi) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based silicon recycler and manufacturer of wafers to the semiconductor and solar industries; also makes lithium-ion batteries. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund | Open  

Open Energy Info (EERE)

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Jump to: navigation, search Name Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) Place New York, New York Sector Solar Product New York venture capital firm, specialising in early-stage solar companies. References Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) is a company located in New York, New York . References ↑ "Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)" Retrieved from "http://en.openei.org/w/index.php?title=Rudd_Klein_Alternative_Energy_Ventures_LLC_aka_Phoenix_Energy_Fund&oldid=350507"

94

Tank 241-AZ-101 and Tank 241-AZ-102 Airlift Circulator Operation Vapor Sampling and Analysis Plan  

DOE Green Energy (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs) and during the initial operation (''bump'') of the tank 241-AZ-101 mixer pumps. The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-142-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No. 2E98-082 and No. 2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). In addition the last two vapor samples will be collected from the headspace of tank 241-AZ-101 during the operation of the mixer pumps. Each mixer pump will be operated for approximately 5 minutes. Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from vapor samples retrieved during the ALC testing.

TEMPLETON, A.M.

1999-12-07T23:59:59.000Z

95

Enhancing Tensile and Compressive Strength of AZ41 Magnesium ...  

Science Conference Proceedings (OSTI)

Al and 1 wt.% Al with 1.5 vol.% nano-sized Al2O3 (50 nm) particulates in to AZ31 magnesium alloy, respectively, using disintegrated melt deposition technique.

96

Compressed natural gas fuel may be the future for Phoenix  

Science Conference Proceedings (OSTI)

It's the law: the future must include cleaner air, and alternative fuels for vehicular engines is one way to achieve it. In Phoenix, a city beset by moderate air quality problems, equipment managers of the Public Works Department's (PWD) fleet say their future seems to be with compressed natural gas (CNG). CNG fuels a pair of refuse packer trucks that have been operating for a year with few, if any, problems. The object of buying and running them, was to see if one can run an alternate fuels vehicle on a regular route. Can the trucks adapt, can the drivers adapt So far the answer is yes. The trucks are among an assortment of municipal vehicles running on CNG and propane. CNG makes sense for Phoenix because it's modestly priced and readily available locally.

Berg, T.

1994-08-01T23:59:59.000Z

97

Reference design of 100 MW-h lithium/iron sulfide battery system for utility load leveling  

SciTech Connect

The first year in a two-year cooperative effort between Argonne National Laboratory and Rockwell International to develop a conceptual design of a lithium alloy/iron sulfide battery for utility load leveling is presented. A conceptual design was developed for a 100 MW-h battery system based upon a parallel-series arrangement of 2.5 kW-h capacity cells. The sales price of such a battery system was estimated to be very high, $80.25/kW-h, exclusive of the cost of the individual cells, the dc-to-ac converters, site preparation, or land acquisition costs. Consequently, the second year's efforts were directed towards developing modified designs with significantly lower potential costs.

Zivi, S.M.; Kacinskas, H.; Pollack, I.; Chilenskas, A.A.; Barney, D.L.; Grieve, W.; McFarland, B.L.; Sudar, S.; Goldstein, E.; Adler, E.

1980-03-01T23:59:59.000Z

98

City of Williams - AZ, Arizona (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Williams - AZ, Arizona (Utility Company) Williams - AZ, Arizona (Utility Company) Jump to: navigation, search Name City of Williams - AZ Place Arizona Utility Id 56535 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City owned Lights(20,000 Lumens,400 W MV-Pole) Lighting City owned Lights(4,000 Lumens-Pole) Lighting City owned Lights(7,000 Lumens, 175 W MV-Pole) Lighting Customer owned Lights(20,000 Lumens 400 W MV-Pole) Commercial Customer owned Lights(4,000 Lumens-Pole) Lighting

99

Influence of Cerium on Stress Corrosion Cracking in AZ91D  

Science Conference Proceedings (OSTI)

This paper considers the effect of cerium additions on the stress corrosion cracking in the Mg-Al-Zn alloy AZ91D. The two dominant phases in the AZ91D...

100

AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)  

SciTech Connect

Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.

THOMAS, W.K.

2000-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The desert city within : notions about urban form for Phoenix, Arizona  

E-Print Network (OSTI)

Phoenix Arizona is a valley in which the temperature rises above 100 F for over a hundred days a year, with an average of 300 days of sunshine. The Architectural form does not reflect such a climate. Phoenix has been labeled ...

Wolfson, Michael A. (Michael Alan)

1990-01-01T23:59:59.000Z

102

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing

Denver, University of

103

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing

Denver, University of

104

Geochemical anomalies in soil and sandstone overlying the Phoenix uranium deposit, Athabasca Basin Natural Resources  

E-Print Network (OSTI)

Collaboration Introduction The Wheeler River Property, host of Denison Mine's Phoenix uranium depositCo Mo Ni UU Geochemical anomalies in soil and sandstone overlying the Phoenix uranium deposit is the most efficient analytical method to detect these anomalies. Athabasca Basin Figure 1: Denison Mine

105

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. ...

106

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

107

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

108

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

109

Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8.938 8.916 5.241 3.570 4.280...

110

Mixer pump test plan for double shell tank AZ-101  

Science Conference Proceedings (OSTI)

Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

STAEHR, T.W.

1999-05-12T23:59:59.000Z

111

The Role of Rural Variability in Urban Heat Island Determination for Phoenix, Arizona  

Science Conference Proceedings (OSTI)

The effect of rural variability in calculating the urban heat island effect for Phoenix, Arizona, was examined. A dense network of temperature and humidity sensors was deployed across different land uses on an agricultural farm southeast of ...

Timothy W. Hawkins; Anthony J. Brazel; William L. Stefanov; Wendy Bigler; Erinanne M. Saffell

2004-04-01T23:59:59.000Z

112

Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky  

E-Print Network (OSTI)

This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

Isaacs, Mark Andrew

1980-01-01T23:59:59.000Z

113

Development of a Real-Time Interactive Storm-Monitoring Program in Phoenix, Arizona  

Science Conference Proceedings (OSTI)

The Arizona Thunderstorm Chase (AZTC) program, a cooperative project between the National Weather Service (NWS) in Phoenix and Arizona State University (ASU), uses trained ASU students as mobile observers with real-time communications ability to ...

Randall S. Cerveny; Steven M. Calderon; Michael W. Franjevic; Norman C. Hoffmann

1992-06-01T23:59:59.000Z

114

Temporal Analysis of Long-Term Atmospheric Moisture Levels in Phoenix, Arizona  

Science Conference Proceedings (OSTI)

Long-term monthly averaged dew point and relative humidity levels for Phoenix, Arizona are examined in this investigation. Dew points are generally unchanged over the 18961984 period of instrumental record; relative humidities have dropped ...

Sandra W. Brazel; Robert C. Balling Jr.

1986-02-01T23:59:59.000Z

115

Climate Variability and Residential Water Use in the City of Phoenix, Arizona  

Science Conference Proceedings (OSTI)

In this investigation, how annual water use in the city of Phoenix, Arizona, was influenced by climatic variables between 1980 and 2004 is examined. Simple correlation coefficients between water use and annual mean temperature, total annual ...

Robert C. Balling Jr.; Patricia Gober

2007-07-01T23:59:59.000Z

116

Safety analysis for tank 241-AZ-101 mixer pump process test  

Science Conference Proceedings (OSTI)

This document establishes the safety envelope for Project W-151,the process test of two mixer pumps in AWF waste tank 241-AZ-101.

Milliken, N.J., Westinghouse Hanford

1996-08-01T23:59:59.000Z

117

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A-Z Topics lists topics with relevance to a broad cross-section of our Web site's audiences. The items are representative of popular topics or publications, ...

118

ICME Modeling of a Super Vacuum Die Cast (SVDC) AZ91 ...  

Science Conference Proceedings (OSTI)

... of a super vacuum die cast (SVDC) AZ91 automotive shock tower component. .... PI-7: A Three-dimensional Lattice Boltzmann Model for Columnar Dendrite...

119

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

120

WM2008 Conference, February 24-28, 2008, Phoenix, AZ Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled  

E-Print Network (OSTI)

the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations - 8199 R. A for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Conceptual design of electrical balance of plant for advanced battery energy storage facility. Annual report, March 1979. [20-MW, 100 MWh  

SciTech Connect

Large-scale efforts are in progress to develop advanced batteries for utility energy storage systems. Realization of the full benefits available from those systems requires development, not only of the batteries themselves, but also the ac/dc power converter, the bulk power interconnecting equipment, and the peripheral electric balance of plant equipment that integrate the battery/converter into a properly controlled and protected energy system. This study addresses these overall system aspects; although tailored to a 20-MW, 100-MWh lithium/sulfide battery system, the technology and concepts are applicable to any battery energy storage system. 42 figures, 14 tables. (RWR)

1980-01-01T23:59:59.000Z

122

COUNTRY INSTITUTION DATE WEB ADDRESS AZERBAIJAN Azerbaijan Medical University 15.03.2011 http://amu.edu.az/  

E-Print Network (OSTI)

COUNTRY INSTITUTION DATE WEB ADDRESS AZERBAIJAN Azerbaijan Medical University 15.03.2011 http://amu.edu.az/ AZERBAIJAN Baku State University 23.09.2011 http://bsu.edu.az/en/ AZERBAIJAN University of Architecture

Di Pillo, Gianni

123

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

124

The oxidationreduction potential of aqueous soil solutions at the Mars Phoenix landing site  

E-Print Network (OSTI)

with high oxidation reduction potentials (ORP) [Zent and McKay, 1994]. Direct measurements of aqueous of the Viking biology experiments or as a contributing species to the solu- tion ORP. [3] In this paper, results from the Wet Chemistry Labora- tory are used to determine the ORP of the Phoenix WCL Rosy Red sample

Kounaves, Samuel P.

125

Urban Heat Island Research in Phoenix, Arizona: Theoretical Contributions and Policy Applications  

Science Conference Proceedings (OSTI)

Over the past 60 years, metropolitan Phoenix, Arizona, has been among the fastest-growing urban areas in the United States, and this rapid urbanization has resulted in an urban heat island (UHI) of substantial size and intensity. During this time, an ...

Winston T. L. Chow; Dean Brennan; Anthony J. Brazel

2012-04-01T23:59:59.000Z

126

The Passenger Steamboat Phoenix: An Archaeological Study of Early Steam Propulsion in North America  

E-Print Network (OSTI)

The advent of steam contributed heavily to the economic transformation of early America, facilitating trade through the transportation of goods along the countrys lakes, rivers, and canals. Serious experimentation with steam navigation began in the last quarter of the 18th century. By the turn of the 19th century, fledgling US steamboat companies vied for control of navigation rights in the countrys northern waterways. The second steamboat to be launched on Lake Champlain, Phoenix, operated as a passenger steamer between 1815 and 1819, when she caught fire and sank in the lake. The intention of this study is to advance our knowledge of early steamboat design and use in the United States through the archaeological investigation of the countrys earliest-known steamboat wreck. As little is known about the development of these early steam vessels, the study of Phoenix offers a unique opportunity to gain new information related to steamboat design in the early 19th century as well as a glimpse into life on the lakes and rivers of North America during this era. The dissertation presents detailed information on Phoenixs construction, operation, and sinking based on historical and archaeological analysis and interpretation. In combination with the available archival record and analytical comparisons with steamboats of similar size and age, a more comprehensive understanding of the developmental phases of steam travel and its impact on early America can be gained.

Schwarz, George 1977-

2012-12-01T23:59:59.000Z

127

DOE - Office of Legacy Management -- Monument Valley Mill Site - AZ 0-01  

Office of Legacy Management (LM)

Monument Valley Mill Site - AZ 0-01 Monument Valley Mill Site - AZ 0-01 FUSRAP Considered Sites Site: Monument Valley Mill Site (AZ.0-01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Monument Valley, Arizona, Processing Site Documents Related to Monument Valley Mill Site Data Validation Package for the June 2009 Water Sampling at the Monument Valley, Arizona, Processing Site; LMS/MON/S0609; October 2009 Natural and Enhanced Attenuation of Soil and Ground Water at Monument Valley, Arizona, and Shiprock, New Mexico 2006 Status Report June 2008 Data Validation Package for 2007 Groundwater Sampling at the Monument Valley, AZ Processing Site

128

A Review on Severe Plastic Deformation of the Magnesium Alloy AZ31  

Science Conference Proceedings (OSTI)

... Ukraine, Poland, Korea, Iran, Israel and China. In this paper an effort is made to review the work done on AZ31 using SPD processes to improve its properties.

129

System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System  

SciTech Connect

The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.

ROMERO, S.G.

2000-02-14T23:59:59.000Z

130

Final results of double-shell tank 241-AZ-101 ultrasonic inspection  

SciTech Connect

This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.

JENSEN, C.E.

1999-08-23T23:59:59.000Z

131

Pseudovertical Temperature Profiles and the Urban Heat Island Measured by a Temperature Datalogger Network in Phoenix, Arizona  

Science Conference Proceedings (OSTI)

As part of an air-quality field campaign conducted in Phoenix, Arizona, during the summer of 2001, a network of temperature dataloggers and surface meteorological stations was deployed across the metropolitan area for a 61-day period. The ...

Jerome D. Fast; Joel C. Torcolini; Randy Redman

2005-01-01T23:59:59.000Z

132

Single-Doppler Velocity Retrievals with Phoenix II Data: Clear Air and Microburst Wind Retrievals in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

A new three-dimensional single-Doppler velocity retrieval is introduced and tested with reflectivity and radial velocity data gathered during the Phoenix II field program near Boulder, Colorado. This retrieval is based on reflectivity ...

Alan Shapiro; Scott Ellis; Justin Shaw

1995-05-01T23:59:59.000Z

133

Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

2011-08-01T23:59:59.000Z

134

EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Quartzsite Solar Energy Project, La Paz County, AZ 0: Quartzsite Solar Energy Project, La Paz County, AZ EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ Summary This EIS evaluates the environmental impacts of interconnecting a proposed 100-megawatt concentrating solar power plant to Western's Bouse-Kofa 161-kilovolt transmission line. The proposal includes amending the Bureau of Land Management Resource Management Plan. Cooperating agencies in the preparation of this EIS are Bureau of Land Management (Yuma Field Office ), U.S. Army Corps of Engineers, U.S. Army Garrison (Yuma Proving Grounds), Arizona Game and Fish Department, and the Arizona Department of Environmental Quality. Further information is available for this Project on the Western Area Power Administration Website Public Comment Opportunities

135

DOE - Office of Legacy Management -- Tuba City Mill Site - AZ 0-02  

Office of Legacy Management (LM)

Mill Site - AZ 0-02 Mill Site - AZ 0-02 FUSRAP Considered Sites Site: Tuba City Mill Site (AZ.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Tuba City, Arizona, Disposal Site Documents Related to Tuba City Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Tuba City, Arizona, Disposal Site. LMS/S09461. February 2013 2008 UMTRCA Title I Annual Report January 2009 Tuba City, Arizona February 2009 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site May 2009 This fact sheet provides information about the Uranium Mill Tailings

136

DOE Solar Decathlon: News Blog » AZ State/New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

AZ State/New Mexico AZ State/New Mexico Below you will find Solar Decathlon news from the AZ State/New Mexico archive, sorted by date. Transportation Issues Challenge Teams on the Second Day of Assembly Tuesday, September 24, 2013 By Richard King On the second day of assembly, everyone seems to be settling in for the long haul. Either they were exhausted from working 18 hours straight on Monday or the adrenalin of the first day excitement had worn off. Either way, there was a constant but steadier pace to the work today. The U.S. Department of Energy Solar Decathlon is a marathon, not a sprint, and the teams understand that. Photo of two decathletes wearing hard hats, safety glasses, and safety vests. Safety is our number one priority. Here, two members of the Vienna University of Technology team display their safety equipment, including

137

EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40: Quartzsite Solar Energy Project, La Paz County, AZ 40: Quartzsite Solar Energy Project, La Paz County, AZ EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ Summary This EIS evaluates the environmental impacts of interconnecting a proposed 100-megawatt concentrating solar power plant to Western's Bouse-Kofa 161-kilovolt transmission line. The proposal includes amending the Bureau of Land Management Resource Management Plan. Cooperating agencies in the preparation of this EIS are Bureau of Land Management (Yuma Field Office ), U.S. Army Corps of Engineers, U.S. Army Garrison (Yuma Proving Grounds), Arizona Game and Fish Department, and the Arizona Department of Environmental Quality. Further information is available for this Project on the Western Area Power Administration Website Public Comment Opportunities

138

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

Science Conference Proceedings (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-03-06T23:59:59.000Z

139

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

Science Conference Proceedings (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-04-10T23:59:59.000Z

140

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

SciTech Connect

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation  

E-Print Network (OSTI)

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely ...

Subramanian, Vidya

142

CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER  

SciTech Connect

This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.

DUNCAN JB; HUBER HJ

2011-04-21T23:59:59.000Z

143

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A. Abbreviations, energy related; About ...

144

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. G. Gabon Country Energy Profile;

145

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. L. Landfill Gas; Laos Country Energy Profile ;

146

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A. Abbreviations, energy related; About U.S ...

147

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. F. Factors Affecting Natural Gas Prices ...

148

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. D. Daily Spot Prices of Crude Oil; Dealer Tank Wagon ...

149

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. A-Z Index. A B C D E F G H I J K L M N O P Q R S T U V W XYZ. O. Ocean Thermal Energy Conversion ...

150

Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation  

SciTech Connect

Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

Onishi, Y.; Recknagle, K.

1997-04-01T23:59:59.000Z

151

Estimating vegetation cover in an urban environment based on Landsat ETM imagery: A case study in Phoenix, USA  

Science Conference Proceedings (OSTI)

Studies of urban ecological systems can be greatly enhanced by combining ecosystem modelling and remote sensing which often requires establishing statistical relationships between field and remote sensing data. At the Central Arizona-Phoenix Long-Term ... Keywords: Landsat ETM+, Linear spectral mixture analysis, Regression analysis, Urban, Vegetation index

A. Buyantuyev; J. Wu; C. Gries

2007-01-01T23:59:59.000Z

152

Wind and Thermodynamic Retrieval from Single-Doppler Measurements of a Gust Front Observed during Phoenix II  

Science Conference Proceedings (OSTI)

The adjoint method to retrieve the three-dimensional wind and thermodynamic fields is applied to single-Doppler observations of a gust front measured during the Phoenix II experiment. This method uses a fluid dynamics model and its adjoint, and ...

Juanzhen Sun; Andrew Crook

1994-06-01T23:59:59.000Z

153

File:NREL-az-80m.pdf | Open Energy Information  

Open Energy Info (EERE)

az-80m.pdf az-80m.pdf Jump to: navigation, search File File history File usage Arizona Annual Average Wind Speed at 80 Meters Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.24 MB, MIME type: application/pdf) Description Arizona Annual Average Wind Speed at 80 Meters Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010-01-15 Extent State Countries United States UN Region Northern America States Arizona File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:00, 21 December 2010 Thumbnail for version as of 15:00, 21 December 2010 1,275 × 1,650 (1.24 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

154

File:USDA-CE-Production-GIFmaps-AZ.pdf | Open Energy Information  

Open Energy Info (EERE)

AZ.pdf AZ.pdf Jump to: navigation, search File File history File usage Arizona Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 249 KB, MIME type: application/pdf) Description Arizona Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Arizona External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:11, 27 December 2010 Thumbnail for version as of 16:11, 27 December 2010 1,650 × 1,275 (249 KB) MapBot (Talk | contribs) Automated bot upload

155

DOE - Office of Legacy Management -- Tuba City AEC Ore Buying Station - AZ  

NLE Websites -- All DOE Office Websites (Extended Search)

AEC Ore Buying Station - AEC Ore Buying Station - AZ 0-02A FUSRAP Considered Sites Site: Tuba City AEC Ore Buying Station (AZ.0-02A) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The ideal scenario was to accumulate a sufficient stockpile of ore and

156

Anemometer Data (Wind Speed, Direction) for Pascua Yaqui, AZ (2003 - 2004)  

Open Energy Info (EERE)

Pascua Yaqui, AZ (2003 - 2004) Pascua Yaqui, AZ (2003 - 2004) Dataset Summary Description Wind data collected from Pascua Yaqui Indian Reservation in Arizona from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2003 through 2004, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released December 02nd, 2010 (3 years ago) Date Updated December 02nd, 2010 (3 years ago) Keywords wind

157

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

A-Z Index A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Abbreviations, energy related About U.S. Natural Gas Pipelines (U.S. & state) Acid rain (U.S., Census division, & state) Definition Emissions data Overview Acquisitions and Divestitures by Foreign Direct Investors in U.S. Energy (report) Activities for kids Additions to storage (natural gas; includes U.S. & state) Underground, by all operators Underground, by storage type Liquefied natural gas additions and withdrawals Addresses of electric companies Utility Nonutility AEO (See Annual Energy Outlook) AER (Annual Energy Review - report with annual U.S. data back to 1949) Afghanistan Country Analysis Brief Africa - Country Analysis Briefs Air-conditioning, number of households with

158

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

159

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

160

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution  

SciTech Connect

A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of$6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities.

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution  

DOE Green Energy (OSTI)

A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of$6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities.

Not Available

2004-09-01T23:59:59.000Z

162

Simple Modifications to Improve Fifth-Generation Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model Performance for the Phoenix, Arizona, Metropolitan Area  

Science Conference Proceedings (OSTI)

The diurnal temperature cycle in the Phoenix, Arizona, metropolitan area, as represented in the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model (MM5), is examined using a high-resolution 2-...

Joseph A. Zehnder

2002-09-01T23:59:59.000Z

163

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution; Federal Energy Management Program (FEMP) Achieving Results with Renewable Energy in the Federal Government (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water with Solar Energy Costs Less Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front

164

Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery  

Science Conference Proceedings (OSTI)

This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

CARLSON, A.B.

1998-11-19T23:59:59.000Z

165

CSER 96-014: criticality safety of project W-151, 241-AZ-101 retrieval system process test  

Science Conference Proceedings (OSTI)

This Criticality Safety Evaluation Report (CSER) documents a review of the criticality safety implications of a process test to be performed in tank 241-AZ-101 (101-AZ). The process test will determine the effectiveness of the retrieval system for mobilization of solids and the practicality of the system for future use in the underground storage tanks at Hanford. The scope of the CSER extends only to the testing and operation of the mixer pumps and does not include the transfer of waste from the tank. Justification is provided that a nuclear criticality is extremely unlikely, if not impossible, in this tank.

Vail, T.S., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

166

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site's inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-01-01T23:59:59.000Z

167

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

SciTech Connect

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site`s inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-12-31T23:59:59.000Z

168

Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance  

Science Conference Proceedings (OSTI)

Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

Whicker, Jeffrey J [Los Alamos National Laboratory; Field, Jason P [UNIV OF ARIZONA; Breshears, David D [UNIV OF ARIZONA

2008-01-01T23:59:59.000Z

169

Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona  

DOE Green Energy (OSTI)

This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

Mathur, A K

1983-09-01T23:59:59.000Z

170

Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102  

SciTech Connect

The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

Y Onishi; KP Recknagle; BE Wells

2000-08-09T23:59:59.000Z

171

WM'05 Conference, February 27 March 3, 2005, Tucson, AZ WM-5202 INTERNATIONAL APPROACH TO MONITORING FOR RADIOACTIVELY  

E-Print Network (OSTI)

acceptable scrap metal radiation monitoring and response protocol. Second, international training programs radiation exposure to workers and the public, this unwanted radioactive scrap material causes environmentalWM'05 Conference, February 27 ­ March 3, 2005, Tucson, AZ WM-5202 1 INTERNATIONAL APPROACH

172

Recipient: County ut Pinal, AZ ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Recipient: County ut Pinal, AZ ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Activity 1 - Energy Efficiency Audits A9, All This NEPA determination is limited to conducting audits/compiling the results of the audits/and making recommendations only. (see Activity 4 for audit implementation activities) Activity 2 - Energy Efficiency Municipal Partnership A9, All, B5.1 Waste Stream Clause Historic Preservation Clause Engineering clause Activity 3 - Ironwood-Gantzel Roadway Traffic Lights Synchronization A9 None Activity 4 - Energy Efficiency Corrective Measures Implementation A9, All, B5.1 Waste Stream Clause Historic Preservation Clause

173

Florence & Oracle Junction, Pinal County, AZ, RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

emergency wood pole emergency wood pole replacement at 59 structures located along the Coolidge-Oracle 115-kV T.L. , near Cooiidge, Florence & Oracle Junction, Pinal County, AZ, RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western plans to replace deteriorated wood poles, cross arms and X-braces at 59 existing H-frame or 3-pole-turning structures (Table 1) located along the Coolidge-Oracle 115-kV Transmission Line in Pinal County, Arizona (Figure 1), Built in 1943, its aging components are beyond repair and require replacement. These poles performed poorly during structural tests, and we consider them unstable, This project ensures the safety of Western's workers and the public as well as reliability of the bulk electric system, Western will accomplish the work by clearing vegetation and blading a level pad at

174

Tank 241-AZ-101 prototype corrosion probe four month status report  

SciTech Connect

High-level nuclear wastes at the Hanford Site are stored underground in carbon steel double-shell and single-shell tanks. The installation of a prototype corrosion monitoring system into double-shell tank 241-AZ-101 was completed in August, 1996. The system monitors fluctuations in corrosion current and potential (electrochemical noise) occurring on three electrode arrays immersed in the waste liquid and in the vapor space above the waste. The system also supports the use of Tafel and linear polarization resistance testing. By monitoring and analyzing the data from these techniques, changes in the corrosive characteristics of the waste have been rapidly detected and correlated with operational changes in the tank.

Edgemon, G.L., Westinghouse Hanford

1996-12-12T23:59:59.000Z

175

Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site  

Science Conference Proceedings (OSTI)

In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

ANANTATMULA, R.P.

1999-10-20T23:59:59.000Z

176

Investigation of a Severe Downburst Storm near Phoenix, Arizona, as Seen by a Mobile Doppler Radar and the KIWA WSR-88D  

Science Conference Proceedings (OSTI)

A Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) was deployed near Phoenix, Arizona, during the summer of 2004. The goal was to capture a severe microburst at close range to understand the low-altitude wind structure and ...

Steven V. Vasiloff; Kenneth W. Howard

2009-06-01T23:59:59.000Z

177

Study of the temporal and spatial variation of climate and solar radiation in th metropolitan Phoenix area. Final technical progress report, July 1, 1977-June 30, 1978  

DOE Green Energy (OSTI)

The research performed was designed to identify spatial or temporal variation of any atmospheric parameters that might affect the operation of devices utilizing solar energy in the metropolitan Phoenix area. The first part of the research involved the analysis of all available solar and climatic data to determine their validity and comparability. For the standard climatic parameters, few difficulties were encountered, but the task of determining comparability of solar radiation data involved many pitfalls. It was concluded that most of the solar data acquired before January 1977 could not be used for purposes of identifying spatial variability. And, a year and a half of data does not represent a long enough period of time upon which to base sound conclusions about spatial and temporal variability of solar radiation in the metropolitan Phoenix region. The data currently available to us do not indicate any great variation of solar radiation in the metropolitan Phoenix area. However, any meaningful statements about spatial and temporal variability of solar radiation in the metropolitan Phoenix area must await the acquisition of additional data from well-calibrated equipment.

Durrenberger, R.W.

1978-09-29T23:59:59.000Z

178

Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.  

E-Print Network (OSTI)

and latent heat fluxes and therefore the ground temperature, Tg. Evaporation, E, for each grid cell temperature and heat fluxes in the Phoenix metropolitan area. S. Grossman-Clarke1, J.A. Zehnder2, and W) satellite images [2]. The data were upscaled to a 30-second grid and used to augment and correct

Hall, Sharon J.

179

Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area  

Science Conference Proceedings (OSTI)

The impact of 19732005 land useland cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and ...

Susanne Grossman-Clarke; Joseph A. Zehnder; Thomas Loridan; C. Sue B. Grimmond

2010-08-01T23:59:59.000Z

180

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

Science Conference Proceedings (OSTI)

Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

SciTech Connect

Shop test of the sludge mobilization cart system to be used in the AZ-101 Mixer Pump Demonstration Test Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-01-27T23:59:59.000Z

182

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

183

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

184

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

185

Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ to someone by E-mail Share Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Facebook Tweet about Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Twitter Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Google Bookmark Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Delicious Rank Solid-State Lighting: Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ on Digg

186

SunShot CSP Program Review 2013 Presentation Guidelines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Concentrating Solar Power SunShot CSP Program Review 2013 Hilton Phoenix EastMesa | Phoenix, AZ | April 23-25, 2013 Presentation Guidelines * Each award will be allotted either a...

187

RFI Comments - IEDA  

Science Conference Proceedings (OSTI)

... the state agency that markets Arizona's share of ... and power interests of Arizona political subdivisions and ... Lane, Suite 140 Phoenix, AZ 85004-4603 ...

2013-04-10T23:59:59.000Z

188

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 82013 Neil Kirschner Phoenix, AZ Clean Start - Development of a National Liquid Propane Refueling Network This CX form is for one location in this project selected under...

189

Transportation and Stationary Power Integration Workshop: "An...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seminar 2008 Transportation and Stationary Power Integration Workshop "An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles" Phoenix, AZ 27 October 2008 Britta...

190

Estimate of the Distribution of Solids Within Mixed Hanford Double-Shell Tank AZ-101: Implications for AY-102  

SciTech Connect

This paper describes the current level of understanding of the suspension of solids in Hanford double-shell waste tanks while being mixed with the baseline configuration of two 300-horsepower mixer pumps. A mixer pump test conducted in Tank AZ-101 during fiscal year 2000 provided the basis for this understanding. Information gaps must be filled to demonstrate the capability of the baseline feed delivery system to effectively mix, sample, and deliver double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) for vitrification.

Wells, Beric E.; Ressler, Jennifer J.

2009-04-29T23:59:59.000Z

191

Hybrid Al/SiC Composite Optics for IFE Applications W. Kowbel, MER Corp., Tucson, AZ And M. Tillack, UCSD, La Jolla, CA  

E-Print Network (OSTI)

Hybrid Al/SiC Composite Optics for IFE Applications W. Kowbel, MER Corp., Tucson, AZ And M. Tillack support of the mirror is a SiC composite. The SiC composite is chosen for the following reasons: 1) Very the mechanical deformations of the mirror's surface are minimized. 3) SiC is a low activation material, so

Tillack, Mark

192

Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy  

SciTech Connect

The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pits on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.

Wang Qiang [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Liu Yaohui, E-mail: liuyaohui2005@yahoo.com [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Fang Shijie [Department of Mechanical and Electrical Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Song Yulai; Zhang Dawei; Zhang Lina; Li Chunfang [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

2010-06-15T23:59:59.000Z

193

Health assessment for 19th Avenue Landfill National Priorities List (NPL) Site, Phoenix, Maricopa County, Arizona, Region 9. CERCLIS No. AZD980496780. Preliminary report  

Science Conference Proceedings (OSTI)

The 19th Avenue Landfill is an National Priorities List site located in Maricopa County, Phoenix, Arizona. The site was operated as a sanitary landfill between 1957 and 1979. Most of the waste disposed of at the landfill was from municipal sources; however, old gasoline storage tanks, radioactive waste, hospital waste, industrial waste, and old transformers were also landfilled. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ingestion, dermal contact, or inhalation of contaminants in subsurface soil and refuse, soil-gas, and air.

Not Available

1989-04-10T23:59:59.000Z

194

FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

KRUGER AA; MATLACK KS; BARDAKCI T; D'ANGELO NA; GONG W; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

195

HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2  

SciTech Connect

The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

DUNCAN, G.P.

2000-02-28T23:59:59.000Z

196

Characterization of High Strain Rate Mechanical behavior of AZ31 magnesium alloy using 3D Digital Image Correlation  

Science Conference Proceedings (OSTI)

Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}.

Wang, Yanli [ORNL; Xu, Hanbing [ORNL; ERDMAN III, DONALD L [ORNL; Starbuck, J Michael [ORNL; Simunovic, Srdjan [ORNL

2011-01-01T23:59:59.000Z

197

CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER  

SciTech Connect

This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.'

DUNCAN JB; HUBER HJ

2011-06-08T23:59:59.000Z

198

Twenty-five years later--an address prepared for delivery at the Solar Jubilee Dinner June 4, 1980, at Phoenix, Arizona  

SciTech Connect

The world-wide scientific organization which is known today as the International Solar Energy Society had its beginning in Phoenix 25 years ago, less than a mile from the hall in which the Solar Jubilee Banquet will be held. The Arizona civic leaders who founded the predecessor organization named it The Association for Applied Solar Energy and, as a Christmas present to the entire world, they incorporated it on December 24, 1954. Its aims were three-fold: to gather, compile, and disseminate information relating to solar energy; to foster research and education in fields related to solar energy; and to encourage the expansion and development of the applications of solar energy. An objective of this address is to show how the founders set out to accomplish these objectives and to let the hearers and readers of this address determine for themselves how effectively they have reached their goals.

Yellott, J.I.

1980-01-01T23:59:59.000Z

199

A-Z Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Quick Assessment Tool (DRQAT) DER-CAM Design Intent Tool Distributed Energy DOE-2...

200

A-Z Index  

NLE Websites -- All DOE Office Websites (Extended Search)

China Energy Group Climate Combustion Technologies Group Commercial Buildings Commercial Buildings Communications Office Contact Us Cookstove Efficiency and Emissions Testing...

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A-Z Index  

NLE Websites -- All DOE Office Websites (Extended Search)

BATT Fabrication Laboratory Batteries and Fuel Cells Building Controls Virtual Test Bed Building Technology and Urban Systems Buildings Energy Efficiency...

202

A-Z Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Grid Electricity Markets Electricity Reliability Electrochemical Technologies Group Electronics, Lighting and Networks Group Energy Analysis Energy Analysis and...

203

A-Z Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Productivity High Technology and Industrial Systems Home Energy Saver for Consumers Home Energy Saver for Professionals...

204

The Role of Friction Stir Welding on the Microstructure and Mechanical Properties of AZ31B-H24 Mg alloy  

Science Conference Proceedings (OSTI)

In this study, an attempt was made to join AZ31B magnesium alloy by friction stir welding (FSW) process. A single tool with cylindrical screw threaded pin was used to investigate the effect of welding parameters on microstructure and mechanical properties of stir zone (SZ). Several welds were made at different rotational ({omega}) and traverse ({upsilon}) speeds, while the {omega}/{upsilon} ratios were kept constant. The optical and scanning electron microscopy were used to study the variation of microstructure across the welds. Moreover, micro-hardness and tensile tests were carried out to evaluate the mechanical properties of joints. It was found that {omega} plays more significant role on the resulted grain structure than {upsilon}, and at a constant {omega}/{upsilon} ratio, decreasing rotational speed decreased the size of grains, and hence, improved the hardness value and the tensile strength of the SZ.

Darzi, Kh.; Saeid, T. [Advanced Materials Research Center - Faculty of Materials Engineering, Sahand University of Technology - Tabriz (Iran, Islamic Republic of)

2011-12-26T23:59:59.000Z

205

Time-Temperature-Transformation Study of Simulated Hanford Tank Waste (AZ-101) and Optimization of Glass Formulation for Processing Such Waste  

SciTech Connect

This paper presents the current results of a study for the optimization of the quality of the wasteform to be produced by vitrification of Hanford High Level Waste (HLW). A simulant of the content of Hanford Tank AZ-101 has been used for the experiments. A first phase of the research focused on the wasteform composition and showed that a high quality and chemical-resistant wasteform can be formed incorporating 60 weight % of dried waste into a borosilicate glass enriched with zinc oxide and boric acid and provided some indication about the heat treatment of the melt. A second phase of the study, still in progress, refines these findings. A detailed crystallinity survey of the waste form after various heat treatments has been performed, culminating in the development of a time-temperature-transformation (TTT) diagram. The results of the first phase of research and preliminary results from the second phase are described.

Ramsey, W. G.; Kauffman, B. M.; Bricka, M.; Meaker, T. F.; Giordana, A.; Smith, J. D.; Miller, F. S.; Bohannan, E.; Powell, J.; Reich, M.; Jordan, J.; Venter, L.; Barletta, R. E.; Ramsey, A. A.; Maise, G. M.; Manowitz, B.; Steinberg, M.; Salzano, F.

2003-02-26T23:59:59.000Z

206

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

207

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Electric utilities are interested energy storage solutions for renewable integration and transmission and distribution (TD) grid support that require systems of 10's of MWs in scale and energy durations of longer than 4 hours. Compressed air energy storage and pumped hydro systems are currently the lowest capital cost (/ kW-h) bulk storage options for energy durations longer than 10 hour; however, these storage facilities have geological and siting restrictions and require long permitting and deployment ...

2010-12-16T23:59:59.000Z

208

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology...

209

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network (OSTI)

The Performance of Solar Water Heater With Natural Ci rculperformance of solar thermos i phon water heaters with heatSolar Jubilee, Phoenix, AZ, June 2-6, 1980 THERMOSIPHON WATER HEATERS

Mertol, Atila

2012-01-01T23:59:59.000Z

210

LTS-O&M Selected Publications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do?" Proceedings of Waste Management 2010 Symposium, Phoenix, AZ. Carroll, K.C., F.L. Jordan, E.P. Glenn, W.J. Waugh, and M.L. Brusseau, 2009. "Comparison of nitrate attenuation...

211

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 9:52:44 AM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

212

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:30:52 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

213

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 21% 1% 2011 ECOtality 8102011 1:34:23 PM INLMIS-11-21904 Page 1 of 10 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

214

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 212013 8:31:28 AM INLMIS-11-21904 Page 1 of 15 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

215

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2013 ECOtality 4232013 11:20:12 AM INLMIS-11-21904 Page 1 of 17 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

216

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

NLE Websites -- All DOE Office Websites (Extended Search)

events 80% 16% 4% 2011 ECOtality 1182011 11:44:44 AM INLMIS-11-21904 Page 1 of 11 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

217

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events (mi) 25.8 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

218

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 17% 5% 2011 ECOtality 1262012 2:19:55 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

219

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 2:02:15 PM INLMIS-11-24041 Page 1 of 12 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

220

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 7312012 6:48:45 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Solar Decathlon: 2013 Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Teams AZ StateNew Mexico SHADE Czech Republic AIR House KentuckyIndiana Phoenix House Las Vegas DesertSol Middlebury College InSite Missouri University S&T Chameleon House...

222

Origins of the extragalactic background at 1mm from a combined analysis of the AzTEC and MAMBO data in GOODS-N  

E-Print Network (OSTI)

We present a study of the cosmic infrared background, which is a measure of the dust obscured activity in all galaxies in the Universe. We venture to isolate the galaxies responsible for the background at 1mm; with spectroscopic and photometric redshifts we constrain the redshift distribution of these galaxies. We create a deep 1.16mm map (sigma ~ 0.5mJy) by combining the AzTEC 1.1mm and MAMBO 1.2mm datasets in GOODS-N. This combined map contains 41 secure detections, 13 of which are new. By averaging the 1.16mm flux densities of individually undetected galaxies with 24um flux densities > 25uJy, we resolve 31--45 per cent of the 1.16mm background. Repeating our analysis on the SCUBA 850um map, we resolve a higher percentage (40--64 per cent) of the 850um background. A majority of the background resolved (attributed to individual galaxies) at both wavelengths comes from galaxies at z > 1.3. If the ratio of the resolved submillimeter to millimeter background is applied to a reasonable scenario for the origins o...

Penner, Kyle; Chapin, Edward L; Greve, Thomas R; Bertoldi, Frank; Brodwin, Mark; Chary, Ranga-Ram; Conselice, Christopher J; Coppin, Kristen; Giavalisco, Mauro; Hughes, David H; Ivison, Rob J; Perera, Thushara; Scott, Douglas; Scott, Kimberly; Wilson, Grant

2010-01-01T23:59:59.000Z

223

City of Phoenix - Energize Phoenix Residential Incentives (Arizona...  

Open Energy Info (EERE)

Building Insulation, Central Air conditioners, DuctAir sealing, Heat pumps, Lighting, Windows, Shade Screens Active Incentive Yes Implementing Sector Local Energy Category Energy...

224

FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03  

Science Conference Proceedings (OSTI)

This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.

KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

2011-12-29T23:59:59.000Z

225

FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved, which was used as an indicator of a maximized feed rate for each test. The first day of each test was used to build the cold cap and decrease the plenum temperature. The remainder of each test was split into two- to six-day segments, each with a different bubbling rate, bubbler orientation, or feed concentration of chloride and sulfur.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

226

AZ CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

227

State Laboratory Contact Information AZ  

Science Conference Proceedings (OSTI)

... David Pfahler Brad Stover ... Joe Benavides Harvey Fischer Daniel Gibbons Preston Adachi Philip Wright Shauna Pereiro Lisa Corn Pat Sanders ...

2013-01-07T23:59:59.000Z

228

FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

229

FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05  

Science Conference Proceedings (OSTI)

The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

230

Master Powerpoint Briefing - Color  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented by: Presented by: Gary Lanthrum, Director Gary Lanthrum, Director Office of National Transportation Office of National Transportation April 4, 2005 April 4, 2005 Phoenix, AZ Phoenix, AZ Introduction * Since the September 2004 Transportation External Coordination Working Group (TEC) meeting, the Office of National Transportation (ONT) has made steady progress in developing the transportation infrastructure in its four project areas: - Infrastructure Acquisition Transportation casks Rolling Stock - Nevada Rail - Operational Planning - Institutional * ONT has refined the management infrastructure to integrate and oversee the four project areas. * ONT has expanded its interactions with other Office of Civilian Radioactive Waste Management (OCRWM) program elements.

231

Microsoft Word - 11319 Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phoenix, AZ Phoenix, AZ Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites - 11319 Christopher Clayton*, Vijendra Kothari**, Michael Widdop***, Susan Kamp***, Laura Cummins***, and Joey Gillespie*** *U.S. Department of Energy Office of Legacy Management, Washington, DC 20585 **U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia 26505 ***S.M. Stoller Corporation, Grand Junction, Colorado 81503 ABSTRACT The U.S. Department of Energy (DOE) and other agencies conducted a significant amount of radiological remediation over decades prior to the development and implementation of the Multi-Agency Radiation

232

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topic Group Summary Topic Group Summary Presented to: Transportation External Coordination Working Group Presented by: Presented by: Dan King, Oneida Nation, Tribal Topic Group Member Dan King, Oneida Nation, Tribal Topic Group Member April 5, 2005, Spring 2005 April 5, 2005, Spring 2005 Phoenix, AZ Phoenix, AZ 2 Funding Issues - Considerations * Examination of overlapping jurisdictions * Reconsider half-mile limit * Include all public safety officials in training * Ongoing training - turnover of personnel * Recovery of money spent responding to accidents * Cultural resources cannot be replaced - used to sustain communities 3 Funding Issues - Recommendations * Lessons Learned from Department of Homeland Security * Provide direct funding to Tribes * Create simple application process * Appoint Tribal representatives on application

233

Water-Balance Cover Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010, Phoenix, AZ 0, 2010, Phoenix, AZ Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site-10281 W.J. Waugh, D.E. Miller, S.A. Morris, and L.R. Sheader S.M. Stoller Corporation, Grand Junction, CO E.P. Glenn, D. Moore, and K.C. Carroll University of Arizona, Tucson, AZ L. Benally and M. Roanhorse Navajo Nation, Window Rock, AZ R.P. Bush U.S. Department of Energy, Grand Junction, CO ABSTRACT The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial

234

Phoenix, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.2754058°, -122.818092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2754058,"lon":-122.818092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Evening Transition Observations in Phoenix, Arizona  

Science Conference Proceedings (OSTI)

Past research has suggested that the evening transition in complex topography typically has several main features, such as (a) continued weak upslope flows persisting 35 h after sunset (if the sidewalls of the valley prevent Coriolis-induced ...

A. J. Brazel; H. J. S. Fernando; J. C. R. Hunt; N. Selover; B. C. Hedquist; E. Pardyjak

2005-01-01T23:59:59.000Z

236

Phoenix, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

111456°, -87.6347683° 111456°, -87.6347683° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6111456,"lon":-87.6347683,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Phoenix: an epidemic approach to time reconstruction  

Science Conference Proceedings (OSTI)

Harsh deployment environments and uncertain run-time conditions create numerous challenges for postmortem time reconstruction methods. For example, motes often reboot and thus lose their clock state, considering that the majority of mote platforms lack ...

Jayant Gupchup; Douglas Carlson; R?zvan Mus?loiu-E.; Alex Szalay; Andreas Terzis

2010-02-01T23:59:59.000Z

238

FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03  

Science Conference Proceedings (OSTI)

This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

2011-12-29T23:59:59.000Z

239

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,100.5,95,97,19.88,33600,42,27 182,40183,40183,100.5,95,97,19.88,33600,42,27 "Nepool MH DA LMP",40183,40184,40184,95,90,92.96,-4.04,39200,49,25 "Nepool MH DA LMP",40184,40185,40185,94,83,86.45,-6.51,33600,42,30 "Nepool MH DA LMP",40185,40186,40186,90,81.5,83.19,-3.26,47200,53,27 "Nepool MH DA LMP",40186,40189,40189,91,88.75,89.88,6.69,42400,53,30 "Nepool MH DA LMP",40189,40190,40190,71,67.75,68.95,-20.93,78400,95,30 "Nepool MH DA LMP",40190,40191,40191,61.25,58.75,59.99,-8.96,52800,64,31 "Nepool MH DA LMP",40191,40192,40192,56.25,54.75,55.33,-4.66,71200,82,32 "Nepool MH DA LMP",40192,40193,40193,53.75,53,53.36,-1.97,44000,55,25 "Nepool MH DA LMP",40193,40196,40196,55.75,54.75,55.64,2.28,21600,25,12

240

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 "Indiana Rt Peak",41247,41248,41248,34,33.5,33.75,2.25,1600,2,3 "Indiana Rt Peak",41248,41249,41249,37.25,37,37.13,3.38,8000,10,9 "Indiana Rt Peak",41249,41250,41250,34.25,33.25,33.67,-3.46,2400,3,6 "Indiana Rt Peak",41250,41253,41253,38.25,37,37.5,3.83,12800,16,13 "Indiana Rt Peak",41253,41254,41254,37.75,37.5,37.63,0.13,1600,2,4 "Indiana Rt Peak",41254,41255,41255,34,34,34,-3.63,2400,3,4 "Indiana Rt Peak",41255,41256,41256,32.25,32,32.19,-1.81,3200,4,6 "Indiana Rt Peak",41256,41257,41257,31,31,31,-1.19,1600,2,3 "Indiana Rt Peak",41257,41260,41260,33,32,32.5,1.5,1600,2,4 "Indiana Rt Peak",41260,41261,41261,33.9,33.5,33.66,1.16,3200,4,7

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 "Indiana",40912,40913,40913,31,30.45,30.73,-3.65,4800,6,7 "Indiana",40913,40914,40914,31,28.75,30.27,-0.46,20000,25,14 "Indiana",40917,40918,40918,29.05,29,29.03,-1.24,1600,2,4 "Indiana",40918,40919,40919,29.5,28.5,29.02,-0.01,5600,7,8 "Indiana",40919,40920,40920,32.25,30.75,31.59,2.57,6400,8,7 "Indiana",40920,40921,40921,35,33.25,33.92,2.33,30400,37,19 "Indiana",40921,40924,40924,29.5,29,29.25,-4.67,1600,2,4 "Indiana",40924,40925,40925,31.5,29.75,30.52,1.27,7200,9,8 "Indiana",40925,40926,40926,30.25,29.5,30,-0.52,3200,4,6 "Indiana",40926,40927,40927,33.75,32,32.61,2.61,13600,17,16 "Indiana",40927,40928,40928,33.5,32.5,33,0.39,9600,12,12

242

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

37.25,35.5,36.16,3.13,27200,25,16 37.25,35.5,36.16,3.13,27200,25,16 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",32,31,31.63,-4.53,12800,15,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",26.25,25.5,25.86,-5.77,7200,7,10 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,38.5,39.21,13.35,20000,24,13 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,45,46.51,7.3,27200,32,19 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,42,42.79,-3.72,39200,46,20

243

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

26,25.25,25.71,-1.15,6800,16,15 26,25.25,25.71,-1.15,6800,16,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",24,23.25,23.63,-2.08,14400,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",23.85,22,23.36,-0.27,8800,22,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.85,19.25,20.77,-2.59,10000,25,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.75,20,21.32,0.55,9600,23,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.25,19,20.42,-0.9,7200,16,14

244

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40.5,40.35,40.43,2.67,3200,8,3 40.5,40.35,40.43,2.67,3200,8,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,40.85,40.97,0.54,2000,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-4.72,3200,1,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.05,39,39.02,2.77,1200,2,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-2.77,3200,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.75,36.5,36.63,0.38,1600,4,3

245

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,31,27.5,29.51,108000,101,28 258,37259,37259,31,27.5,29.51,108000,101,28 "PJM West",37259,37260,37260,28.25,26.95,27.38,107200,96,32 "PJM West",37260,37263,37263,26.7,26.25,26.45,102400,106,29 "PJM West",37263,37264,37264,26.25,25.45,25.75,87200,81,27 "PJM West",37264,37265,37265,24.85,24.2,24.45,53600,58,27 "PJM West",37265,37266,37266,23.6,22.5,23.05,88000,87,25 "PJM West",37266,37267,37267,23.05,22.75,22.91,72000,79,24 "PJM West",37267,37270,37270,25.1,24.55,24.88,75200,82,29 "PJM West",37270,37271,37271,23.65,22.6,23.44,47200,44,22 "PJM West",37271,37272,37272,23.05,22.85,22.95,42400,47,21 "PJM West",37272,37273,37273,23.6,23.1,23.33,68000,76,27 "PJM West",37273,37274,37274,23.8,23.3,23.47,72800,73,28

246

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

50.25,49,49.68,2.51,19200,46,20 50.25,49,49.68,2.51,19200,46,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.5,48.5,49.1,-0.58,18000,43,18 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.25,47,48.32,-0.78,27200,63,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55,50.5,52.65,4.33,23200,29,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,46.5,47.18,-5.47,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,44.75,45.82,-1.36,13600,28,18

247

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

8,50.33,2.26,87200,193,30 8,50.33,2.26,87200,193,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.5,48.4,-1.93,70400,154,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,46.48,-1.92,62000,146,28 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,51.48,5,90400,108,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,45.53,-5.95,38800,94,28

248

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 "SP-15 Gen DA LMP Peak",41247,41248,41248,43,42,42.36,-1.51,36800,59,23 "SP-15 Gen DA LMP Peak",41248,41249,41249,40.25,39.75,40,-2.36,17200,24,11 "SP-15 Gen DA LMP Peak",41249,41250,41251,37,36.5,36.56,-3.44,31200,28,13 "SP-15 Gen DA LMP Peak",41250,41253,41253,41.25,40,40.84,4.28,12000,26,16 "SP-15 Gen DA LMP Peak",41253,41254,41254,39.5,38.5,39.08,-1.76,12400,26,15 "SP-15 Gen DA LMP Peak",41254,41255,41255,39.45,39,39.11,0.03,15600,26,13 "SP-15 Gen DA LMP Peak",41255,41256,41256,43.75,42,43.02,3.91,16000,32,20 "SP-15 Gen DA LMP Peak",41256,41257,41258,43,40.5,42.17,-0.85,38400,32,18 "SP-15 Gen DA LMP Peak",41257,41260,41260,42,41.5,41.62,-0.55,6400,10,11

249

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

7,49.6,0.49,22400,56,24 7,49.6,0.49,22400,56,24 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54,56.09,6.49,29200,73,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,60.07,3.98,28400,71,26 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50,55.19,-4.88,32800,41,20 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,56.14,0.95,20800,52,22

250

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 "ERCOT-South",39086,39087,39087,42.5,42.25,42.38,-0.87,1600,2,4 "ERCOT-South",39087,39090,39090,43.25,43.25,43.25,0.87,800,1,2 "ERCOT-South",39090,39091,39091,45,45,45,1.75,800,1,2 "ERCOT-South",39091,39092,39092,44.5,44.5,44.5,-0.5,800,1,2,,,," " "ERCOT-South",39099,39100,39100,62,62,62,17.5,3200,4,6 "ERCOT-South",39100,39101,39101,56.5,56,56.17,-5.83,2400,3,5 "ERCOT-South",39101,39104,39104,55,55,55,-1.17,800,1,2 "ERCOT-South",39104,39105,39105,57.25,57,57.08,2.08,2400,3,4 "ERCOT-South",39105,39106,39106,59,58,58.54,1.46,4800,6,5 "ERCOT-South",39106,39107,39107,58,57.75,57.81,-0.73,3200,4,5 "ERCOT-South",39107,39108,39108,54.5,54.5,54.5,-3.31,800,1,2

251

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

720,38721,38721,69,68,68.6,1.54,74400,63,23 720,38721,38721,69,68,68.6,1.54,74400,63,23 "PJM Wh Real Time Peak",38721,38722,38722,74.25,69,70.77,2.17,68000,68,33 "PJM Wh Real Time Peak",38722,38723,38723,77.75,73.5,76.91,6.14,61600,70,35 "PJM Wh Real Time Peak",38723,38726,38726,74,69,70.06,-6.85,55200,57,22 "PJM Wh Real Time Peak",38726,38727,38727,63,61.75,62.52,-7.54,60800,72,29 "PJM Wh Real Time Peak",38727,38728,38728,55,51,53.51,-9.01,68800,55,30 "PJM Wh Real Time Peak",38728,38729,38729,50.5,49,49.37,-4.14,56000,55,25 "PJM Wh Real Time Peak",38729,38730,38730,50.6,49.5,50.17,0.8,54400,55,25 "PJM Wh Real Time Peak",38730,38733,38733,63.5,59,60.85,10.68,36800,37,23 "PJM Wh Real Time Peak",38733,38734,38734,65,64,64.63,3.78,12000,10,13

252

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,74,72,73,1600,2,4 449,39450,39450,74,72,73,1600,2,4 "Entergy",39450,39451,39451,64,64,64,800,1,2 "Entergy",39451,39454,39454,47.5,46.5,47,2400,3,3 "Entergy",39454,39455,39455,41.5,41,41.17,2400,3,3 "Entergy",39455,39456,39456,43,43,43,800,1,2 "Entergy",39456,39457,39457,52,49,50.33,2400,3,5 "Entergy",39457,39458,39458,49,49,49,800,1,2 "Entergy",39458,39461,39461,67,67,67,800,1,2 "Entergy",39461,39462,39462,73,73,73,800,1,2 "Entergy",39462,39463,39463,69,68,68.33,2400,3,5 "Entergy",39463,39464,39464,70,64,68,2400,3,3 "Entergy",39464,39465,39465,65,65,65,1600,2,2 "Entergy",39465,39468,39468,79,75,76.67,2400,3,5 "Entergy",39468,39469,39469,74,73,73.7,4000,5,8

253

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8720,38721,38721,51,50,50.625,3200,4,4 8720,38721,38721,51,50,50.625,3200,4,4 "Entergy",38721,38722,38722,56.5,53.5,55.3,4000,5,7 "Entergy",38722,38723,38723,60,60,60,5600,6,5 "Entergy",38723,38726,38726,59,58,58.5,1600,2,3 "Entergy",38726,38727,38727,55.5,53,54.1,4000,5,5 "Entergy",38727,38728,38728,53.5,52,53.0938,6400,8,9 "Entergy",38728,38729,38729,49,46,47.6667,9600,11,8 "Entergy",38729,38730,38730,49,47.5,48.0417,4800,6,7 "Entergy",38730,38733,38733,54.25,54.25,54.25,800,1,2 "Entergy",38733,38734,38734,53.75,53.75,53.75,800,1,2 "Entergy",38734,38735,38735,62,58,60.1,4000,5,6 "Entergy",38735,38736,38736,60,58,58.875,4800,4,5 "Entergy",38736,38737,38737,55,50,53.1944,7200,9,8

254

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,32.5,29,30.16,20800,26,20 623,37624,37624,32.5,29,30.16,20800,26,20 "Entergy",37624,37627,37627,36.75,34.75,35.54,28800,27,18 "Entergy",37627,37628,37628,38,35.5,36.31,45600,53,26 "Entergy",37628,37629,37629,35,31.25,33.69,26400,33,21 "Entergy",37629,37630,37630,33.55,32.75,33.19,22400,26,20 "Entergy",37630,37631,37631,37.75,34.5,35.51,36000,45,24 "Entergy",37631,37634,37634,43.75,38.25,41.62,36800,46,20 "Entergy",37634,37635,37635,42.5,38,40.72,17600,22,18 "Entergy",37635,37636,37636,43,42,42.61,16800,21,17 "Entergy",37636,37637,37637,43,41.25,42.02,12000,15,15 "Entergy",37637,37638,37638,50,44.15,45.85,8800,10,13 "Entergy",37638,37641,37641,41,39.25,40.1,31200,29,16 "Entergy",37641,37642,37642,41.75,38,40.09,25600,27,15

255

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.75,40,42.24,2.81,10000,25,19 43.75,40,42.24,2.81,10000,25,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40,38.75,39.35,-2.89,12400,31,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,41.5,43.54,4.19,16000,38,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,42.25,43.09,-0.45,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,40,40.64,-2.45,20000,25,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,41,41.35,0.71,14000,34,17

256

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6894,36895,36895,74.5,74,74.25,1600,2,3 6894,36895,36895,74.5,74,74.25,1600,2,3 "NEPOOL",36899,36900,36900,83,81,82,1600,2,3 "NEPOOL",36900,36901,36901,89,88,88.67,2400,3,3 "NEPOOL",36901,36902,36902,77.5,73,75.25,1600,2,3 "NEPOOL",36902,36903,36903,75.75,75.75,75.75,800,1,2 "NEPOOL",36903,36906,36906,75,74,74.5,2400,3,3 "NEPOOL",36906,36907,36907,80,76.5,77.75,3200,4,3 "NEPOOL",36907,36908,36908,79.5,76,78.38,3200,4,4 "NEPOOL",36908,36909,36909,75.5,74.5,75,3200,3,4 "NEPOOL",36909,36910,36910,71.75,70.75,71.25,1600,2,3 "NEPOOL",36910,36913,36913,74.75,74,74.4,4000,5,3 "NEPOOL",36914,36915,36915,67.5,66.5,67,2400,3,3 "NEPOOL",36915,36916,36916,67,65.75,66.33,2400,3,2 "NEPOOL",36916,36917,36917,65,61.25,63.38,3200,4,3

257

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,47,48.2,3.37,9600,24,17 1,47,48.2,3.37,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53,55.36,7.17,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.2,55,57.22,1.85,9200,23,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.25,49,50.04,-7.18,8400,21,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,43.5,44.24,-5.8,26400,28,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,50,51.46,7.22,7600,19,15

258

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

48,45.75,46.49,-0.96,30000,63,25 48,45.75,46.49,-0.96,30000,63,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.5,45,46.75,0.26,31600,79,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51,45,45.83,-0.92,40000,50,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.25,47.75,48.43,2.6,26000,51,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.75,49.25,50.5,2.07,27200,68,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,51.5,52.02,1.52,46400,55,20

259

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62,66.21,-0.74,44400,109,30 62,66.21,-0.74,44400,109,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60,64.12,-2.09,45200,113,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,60.9,-3.22,99200,123,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,63.2,2.3,50400,114,31 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.98,-0.22,48800,122,31

260

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.25,42,42.63,4.13,1600,2,4 43.25,42,42.63,4.13,1600,2,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.65,42.65,42.65,0.02,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.25,44,44.86,2.21,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,45.75,46.08,1.22,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,45,45,-1.08,4000,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.75,44.75,44.75,-0.25,1600,2,4

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,56.85,56.25,56.7,6400,7,7 355,38356,38356,56.85,56.25,56.7,6400,7,7 "NEPOOL MH DA LMP",38356,38357,38357,55.25,55,55.0833,2400,3,3 "NEPOOL MH DA LMP",38357,38358,38358,59,59,59,800,1,2 "NEPOOL MH DA LMP",38358,38359,38359,57.5,57,57.25,2400,3,5 "NEPOOL MH DA LMP",38359,38362,38362,55.5,55.5,55.5,3200,4,6 "NEPOOL MH DA LMP",38362,38363,38363,58.75,58,58.575,9600,11,10 "NEPOOL MH DA LMP",38363,38364,38364,57.75,57.5,57.625,1600,2,4 "NEPOOL MH DA LMP",38364,38365,38365,55.75,55.25,55.4688,12800,15,11 "NEPOOL MH DA LMP",38365,38366,38366,58.5,58.25,58.4583,4800,5,6 "NEPOOL MH DA LMP",38366,38369,38369,92,85,88.7143,5600,7,8 "NEPOOL MH DA LMP",38369,38370,38370,97.5,97,97.1667,2400,3,5

262

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

22.6,23.25,-1.53,6400,14,16 22.6,23.25,-1.53,6400,14,16 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18.25,18.97,-4.28,6400,8,9 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,19.32,0.35,5600,14,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",17,17.24,-2.08,7200,12,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,18.61,1.38,7200,17,17

263

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,38.5,38,38.29,10400,13,11 988,37991,37991,38.5,38,38.29,10400,13,11 "Entergy",37991,37992,37992,56,50.5,51.79,15200,19,13 "Entergy",37992,37993,37993,60,56,58.95,12000,15,9 "Entergy",37993,37994,37994,55,51,52.44,16800,21,14 "Entergy",37994,37995,37995,43,40.5,41.28,7200,9,9 "Entergy",37995,37998,37998,45,39,40.86,5600,7,8 "Entergy",37998,37999,37999,39.5,38,38.42,8000,10,7 "Entergy",37999,38000,38000,39,36,37.48,10400,12,9 "Entergy",38000,38001,38001,40.25,38,38.66,14400,17,10 "Entergy",38001,38002,38002,39,36.25,36.98,10400,12,9 "Entergy",38002,38005,38005,39,37,37.44,13600,12,9 "Entergy",38005,38006,38006,55,48,52.64,5600,7,10 "Entergy",38006,38007,38007,54,47,50.58,12000,15,11

264

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.25,63,64.48,0.53,9600,12,15 65.25,63,64.48,0.53,9600,12,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,57,57.68,-6.8,20000,23,13 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58,57,57.45,-0.23,8800,9,9 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57,55.75,56.53,-0.92,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,56,56.46,-0.07,10400,13,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59.25,56.75,58.09,1.63,20000,25,17

265

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

7988,37991,37991,62,62,62,800,1,2 7988,37991,37991,62,62,62,800,1,2 "NEPOOL MH DA LMP",37991,37992,37992,70,69,69.5,1600,2,2 "NEPOOL MH DA LMP",37992,37993,37993,75.25,72,73.81,3200,4,6 "NEPOOL MH DA LMP",37993,37994,37994,81,76,78.3,8000,10,11 "NEPOOL MH DA LMP",37994,37995,37995,85.75,81.5,84.24,12800,16,12 "NEPOOL MH DA LMP",37998,37999,37999,77,72.5,74.12,6400,8,9 "NEPOOL MH DA LMP",37999,38000,38000,120,92,104.81,16800,21,11 "NEPOOL MH DA LMP",38000,38001,38001,375,270,311.75,6400,8,8 "NEPOOL MH DA LMP",38001,38002,38002,175,170,171,4000,5,5 "NEPOOL MH DA LMP",38005,38006,38006,90,84,86.78,7200,9,7 "NEPOOL MH DA LMP",38006,38007,38007,94,81.5,87.42,10400,13,13 "NEPOOL MH DA LMP",38007,38008,38008,76,72,74.69,6400,8,8

266

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

31.9,30.75,31.02,,14000,34,10 31.9,30.75,31.02,,14000,34,10 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.85,28,28.3,-2.72,52000,59,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",31.5,31,31.22,2.92,20000,41,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",34.25,33.4,33.8,2.58,22000,47,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",30,29.75,29.9,-3.9,52800,54,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.25,27.85,27.95,-1.95,48000,57,11

267

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

59.05,59,59.03,2.03,1600,2,3 59.05,59,59.03,2.03,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,63,63,3.97,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.5,60,61,-2,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.75,63,63.32,2.32,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,55,55.5,-7.82,3200,4,5 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55.5,55.5,55.5,0,800,1,2

268

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 "PJM Wh Real Time Peak",39818,39819,39819,60.25,57.75,58.92,2.64,109600,119,41 "PJM Wh Real Time Peak",39819,39820,39820,58,55,56.66,-2.26,49600,60,29 "PJM Wh Real Time Peak",39820,39821,39821,55.55,55,55.21,-1.45,48000,56,34 "PJM Wh Real Time Peak",39821,39822,39822,63,60.75,61.9,6.69,38400,46,28 "PJM Wh Real Time Peak",39822,39825,39825,69,66,67.63,5.73,62400,74,37 "PJM Wh Real Time Peak",39825,39826,39826,66.5,61,64.03,-3.6,91200,107,40 "PJM Wh Real Time Peak",39826,39827,39827,85.5,80,82.91,18.88,103200,124,50 "PJM Wh Real Time Peak",39827,39828,39828,100,88,93.22,10.31,110400,135,51 "PJM Wh Real Time Peak",39828,39829,39829,110,93,98.58,5.36,77600,93,37

269

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,43.25,36,38.11,35200,40,16 988,37991,37991,43.25,36,38.11,35200,40,16 "PJM West",37991,37992,37992,53.5,50,51.99,33600,41,24 "PJM West",37992,37993,37993,70,66.25,67.48,34400,40,25 "PJM West",37993,37994,37994,62,59.65,60.58,36000,41,19 "PJM West",37994,37995,37995,56.75,53,54.66,32800,39,23 "PJM West",37995,37998,37998,53.75,51.25,52.44,40000,47,25 "PJM West",37998,37999,37999,54,52.55,53.14,37600,47,24 "PJM West",37999,38000,38000,65.25,61.5,63.18,30400,37,20 "PJM West",38000,38001,38001,88,77,82.58,50400,57,28 "PJM West",38001,38002,38002,90,77,80.76,31200,37,20 "PJM West",38002,38005,38005,53.25,52.75,53.03,30400,38,18 "PJM West",38005,38006,38006,70,67,68.64,36000,45,24

270

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

150,150,,400,1,2 150,150,,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",180,180,30,2400,3,4 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",310,310,130,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",350,350,40,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",165,165,-185,800,1,2

271

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 "Entergy Peak",41247,41248,41248,28.5,28.5,28.5,1,800,1,2 "Entergy Peak",41248,41249,41249,30,30,30,1.5,800,1,2 "Entergy Peak",41250,41253,41253,30,29,29.5,-0.5,1600,2,3 "Entergy Peak",41253,41254,41254,30,29.75,29.88,0.38,1600,2,2 "Entergy Peak",41254,41255,41255,29.75,29.75,29.75,-0.13,800,1,2 "Entergy Peak",41269,41270,41270,32,32,32,2.25,1600,2,2 "Entergy Peak",41355,41358,41358,38.5,38.5,38.5,6.5,800,1,2 "Entergy Peak",41367,41368,41368,35,35,35,-3.5,800,1,2 "Entergy Peak",41425,41428,41428,37,37,37,2,800,1,2 "Entergy Peak",41436,41437,41437,42,42,42,5,800,1,2 "Entergy Peak",41446,41449,41449,41,41,41,-1,800,1,2

272

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

32.5,33.04,-3.33,15200,19,19 32.5,33.04,-3.33,15200,19,19 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,37.32,4.28,7600,19,18 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35,35.46,-1.86,9600,24,22 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,38.66,3.2,14800,36,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.75,40.34,1.69,9200,23,22

273

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 "ERCOT Houston",40912,40913,40913,28.3,28,28.18,1.35,4800,6,7 "ERCOT Houston",40913,40914,40914,26.35,26.2,26.29,-1.89,3200,4,6 "ERCOT Houston",40914,40917,40917,27.25,27,27.13,0.84,8000,10,5 "ERCOT Houston",40917,40918,40918,27.75,27.5,27.58,0.45,2400,3,3 "ERCOT Houston",40918,40919,40919,27.5,27.5,27.5,-0.08,1600,2,2 "ERCOT Houston",40919,40920,40920,31.5,31,31.33,3.83,2400,3,4 "ERCOT Houston",40920,40921,40921,31,30.25,30.5,-0.83,2400,2,4 "ERCOT Houston",40925,40926,40926,26,25.75,25.96,-4.54,5600,7,4 "ERCOT Houston",40926,40927,40927,23.75,23.75,23.75,-2.21,2400,3,5 "ERCOT Houston",40928,40931,40931,22.15,22.15,22.15,-1.6,800,1,2

274

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,26,22.95,24.08,51200,64,19 258,37259,37259,26,22.95,24.08,51200,64,19 "Entergy",37259,37260,37260,28.25,24.5,26.09,38400,47,17 "Entergy",37260,37263,37263,22.5,17,20.72,34400,43,16 "Entergy",37263,37264,37264,25,19,20.17,19200,24,15 "Entergy",37264,37265,37265,20,19,19.55,44000,54,19 "Entergy",37265,37266,37266,23,18.75,19.31,50400,62,18 "Entergy",37266,37267,37267,19,15,18.21,45600,56,18 "Entergy",37267,37270,37270,18.85,17.4,18.21,65600,81,17 "Entergy",37270,37271,37271,21.75,18.2,19.01,24800,28,18 "Entergy",37271,37272,37272,22.35,18.95,20.98,31200,38,16 "Entergy",37272,37273,37273,22,19,21.2,49600,62,22 "Entergy",37273,37274,37274,22.5,19.5,20.93,46400,55,20 "Entergy",37274,37277,37277,19.75,18.75,19.26,36000,45,18

275

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,83,83,83,800,1,2 6893,36894,36894,83,83,83,800,1,2 "Entergy",36894,36895,36895,93,93,93,800,1,2 "Entergy",36895,36896,36896,83,78.5,80.83,7200,9,4 "Entergy",36896,36899,36899,78,67,74.25,3200,4,5 "Entergy",36899,36900,36900,57,54,55.5,1600,2,4 "Entergy",36900,36901,36901,53,53,53,1600,1,2 "Entergy",36902,36903,36903,67.5,65,66.5,4000,5,3 "Entergy",36903,36906,36906,52.5,48,50.25,1600,2,3 "Entergy",36907,36908,36908,52,45,48.86,8800,11,4 "Entergy",36908,36909,36909,56,51,51.95,16800,21,6 "Entergy",36909,36910,36910,50,48.5,49.33,24000,30,7 "Entergy",36910,36913,36913,56.5,54,55.25,11200,13,7 "Entergy",36913,36914,36914,63,57,58.38,6400,8,3 "Entergy",36914,36915,36915,61.5,42,55.75,15200,19,9

276

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,180,158,161.65,26400,33,22 449,39450,39450,180,158,161.65,26400,33,22 "NEPOOL MH DA LMP",39450,39451,39451,123,108,114.27,36800,46,28 "NEPOOL MH DA LMP",39451,39454,39454,77,75.5,76.31,21600,26,17 "NEPOOL MH DA LMP",39454,39455,39455,68.25,66,67.1,41600,51,26 "NEPOOL MH DA LMP",39455,39456,39456,69.5,68,68.71,21600,27,18 "NEPOOL MH DA LMP",39456,39457,39457,81,74,75.75,30400,35,17 "NEPOOL MH DA LMP",39457,39458,39458,75,69.75,71.18,24800,31,19 "NEPOOL MH DA LMP",39458,39461,39461,80.5,77,79.38,17600,19,17 "NEPOOL MH DA LMP",39461,39462,39462,102,95,98.76,52000,64,24 "NEPOOL MH DA LMP",39462,39463,39463,90.5,87.5,88.59,34400,43,25 "NEPOOL MH DA LMP",39463,39464,39464,85,83.5,84.21,20800,26,14

277

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,43,42.5,42.75,5.17,1600,2,4 815,39818,39818,43,42.5,42.75,5.17,1600,2,4 "ERCOT-South",39818,39819,39819,40,39.5,39.88,-2.87,3200,4,3," " "ERCOT-South",39819,39820,39820,39,38,38.73,-1.15,8800,9,9 "ERCOT-South",39820,39821,39821,41.5,39,39.82,1.09,8800,11,9 "ERCOT-South",39821,39822,39822,38.75,37.5,38.03,-1.79,6400,8,10 "ERCOT-South",39822,39825,39825,43.5,43.5,43.5,5.47,800,1,2 "ERCOT-South",39825,39826,39826,55,50.5,52.95,9.45,8800,11,12,,," " "ERCOT-South",39826,39827,39827,45.5,43.5,44.44,-8.51,14400,18,18 "ERCOT-South",39827,39828,39828,45,44.25,44.68,0.24,12000,14,12 "ERCOT-South",39828,39829,39829,44,42.75,43.18,-1.5,8000,10,10 "ERCOT-South",39833,39834,39834,33,32.5,32.75,-10.43,9600,12,8

278

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.5,53.4,53.98,5.44,3200,4,7 54.5,53.4,53.98,5.44,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,47.25,48.27,-5.71,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53.5,54.75,6.48,4800,6,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",97,87,89.96,35.21,20800,18,16 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.25,51,53.71,-36.25,16800,19,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,46,46.33,-7.38,17600,22,17

279

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 "Nepool MH Da Lmp",39818,39819,39819,67,65,66.22,0.78,39200,46,22 "Nepool MH Da Lmp ",39819,39820,39820,65,63.25,63.83,-2.39,20000,24,18 "Nepool MH Da Lmp ",39820,39821,39821,67.5,65.75,66.47,2.64,28000,33,16 "Nepool MH Da Lmp ",39821,39822,39822,78.5,76,77.31,10.84,21600,27,16 "Nepool MH Da Lmp ",39822,39825,39825,100,90,94.19,16.88,28800,35,19 "Nepool MH Da Lmp ",39825,39826,39826,81,72.75,74.76,-19.43,36000,44,24 "Nepool MH Da Lmp ",39826,39827,39827,101,98,99.83,25.07,16000,20,18 "Nepool MH Da Lmp",39827,39828,39828,130,117,120.32,20.49,40000,50,27 "Nepool MH Da Lmp ",39828,39829,39829,120,106,109.76,-10.56,72800,91,35

280

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 "SP 15",39450,39451,39452,70,63,68.49,291200,275,37 "SP 15",39451,39454,39454,75,68,69.2,140000,326,39 "SP 15",39454,39455,39455,73.25,69,71.52,144800,329,37 "SP 15",39455,39456,39456,72.25,70.25,71.32,198000,425,35 "SP 15",39456,39457,39457,73.75,70.75,72.79,157600,351,37 "SP 15",39457,39458,39459,70.25,67.25,68.46,226400,268,33 "SP 15",39458,39461,39461,75,73.25,73.77,184000,366,38 "SP 15",39461,39462,39462,78.25,75,75.77,110800,235,34 "SP 15",39462,39463,39464,88,77.5,79.42,323200,351,36 "SP 15",39463,39465,39466,79,74.25,77.52,259200,302,36 "SP 15",39464,39468,39468,84.45,77,82.35,126400,287,36

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.55,54.05,54.37,1.9,8800,20,11 54.55,54.05,54.37,1.9,8800,20,11 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",53.25,52.75,53.09,-1.28,35200,64,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,51.25,51.51,-1.58,13600,28,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.5,53.25,54.08,2.57,65600,71,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.15,50.8,51.01,-3.07,27600,53,19 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50.75,50,50.18,-0.83,23200,39,11

282

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,62,55,55.98,10400,13,10 084,39085,39085,62,55,55.98,10400,13,10 "NEPOOL MH DA LMP",39085,39086,39086,54.75,52.75,53.53,30400,38,20 "NEPOOL MH DA LMP",39086,39087,39087,56,55,55.35,24800,31,19 "NEPOOL MH DA LMP",39087,39090,39090,58,56.5,57.08,8000,10,12 "NEPOOL MH DA LMP",39090,39091,39091,58.75,57.25,57.86,34400,41,19 "NEPOOL MH DA LMP",39091,39092,39092,60.5,59,59.8,20800,25,19 "NEPOOL MH DA LMP",39092,39093,39093,65,63.5,64.04,13600,16,15 "NEPOOL MH DA LMP",39093,39094,39094,61.25,59.75,60.82,15200,19,14 "NEPOOL MH DA LMP",39094,39097,39097,62,59,60.95,16800,21,16 "NEPOOL MH DA LMP",39097,39098,39098,69.25,67,68.25,22400,28,15 "NEPOOL MH DA LMP",39098,39099,39099,89,84.5,86.33,34400,43,26

283

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

53.5,48,50.93,,13600,17,11 53.5,48,50.93,,13600,17,11 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,52.75,55,4.07,31200,39,15 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.5,49.5,50.38,-4.62,3200,4,4 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,49.5,51.25,0.87,19200,24,12 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,45.25,45.8,-5.45,21600,27,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43,39.5,41.3,-4.5,10400,13,8

284

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 "Mid Columbia Peak",41247,41248,41248,28.5,27,27.86,0.1,79200,187,26 "Mid Columbia Peak",41248,41249,41249,28,23.5,27.02,-0.84,76000,170,25 "Mid Columbia Peak",41249,41250,41251,23.25,21.25,22.44,-4.58,159200,191,23 "Mid Columbia Peak",41250,41253,41253,25.25,21.25,23.45,1.01,74800,176,25 "Mid Columbia Peak",41253,41254,41254,23.75,20.75,22.51,-0.94,92800,209,26 "Mid Columbia Peak",41254,41255,41255,24.5,23,23.84,1.33,100800,222,27 "Mid Columbia Peak",41255,41256,41256,28,25.5,26.88,3.04,80800,182,26 "Mid Columbia Peak",41256,41257,41258,27.75,26.5,27.13,0.25,152000,171,25 "Mid Columbia Peak",41257,41260,41260,25.75,23.25,24.43,-2.7,76000,180,25

285

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

38.75,37.25,37.95,-2.02,13600,17,14 38.75,37.25,37.95,-2.02,13600,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,40,42.39,4.44,10000,25,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,37.75,38.26,-4.13,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.25,37.25,38.46,0.2,7600,19,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,38,38.93,0.47,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38.25,36.5,37.29,-1.64,13600,17,17

286

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,37.45,33.75,35.69,28800,36,19 623,37624,37624,37.45,33.75,35.69,28800,36,19 "PJM West",37624,37627,37627,48,47,47.58,28800,32,20 "PJM West",37627,37628,37628,50.5,48,49.53,33600,42,19 "PJM West",37628,37629,37629,47,44.25,45.39,35200,44,20 "PJM West",37629,37630,37630,39,37,37.73,27200,33,19 "PJM West",37630,37631,37631,43.5,41.75,42.44,25600,27,17 "PJM West",37631,37634,37634,64,56.5,58.31,20800,26,19 "PJM West",37634,37635,37635,56,54.8,55.52,19200,24,19 "PJM West",37635,37636,37636,56.5,54.9,55.51,28000,33,19 "PJM West",37636,37637,37637,53,50.25,51.89,32000,40,22 "PJM West",37637,37638,37638,54,52,52.63,30400,38,23 "PJM West",37638,37641,37641,48.25,47,47.48,26400,33,17

287

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,33.75,32.5,33.23,10400,13,12 258,37259,37259,33.75,32.5,33.23,10400,13,12 "NEPOOL",37259,37260,37260,36.25,35,35.98,24800,31,18 "NEPOOL",37260,37263,37263,34,33.25,33.66,8800,11,12 "NEPOOL",37263,37264,37264,34,33.5,33.67,10400,13,11 "NEPOOL",37264,37265,37265,32.6,31,32.04,9600,11,13 "NEPOOL",37265,37266,37266,29.5,28.7,29.1,10400,13,11 "NEPOOL",37266,37267,37267,29.25,28.25,28.75,12000,15,12 "NEPOOL",37267,37270,37270,31,30,30.24,16800,17,13 "NEPOOL",37270,37271,37271,30.5,29.75,30.09,30400,36,15 "NEPOOL",37271,37272,37272,29.5,28.65,28.98,23200,28,15 "NEPOOL",37272,37273,37273,30.4,29.8,30.02,32800,39,16 "NEPOOL",37273,37274,37274,30,29.1,29.37,11200,14,15 "NEPOOL",37274,37277,37277,30,29.25,29.72,6400,8,9

288

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,89,82.75,86.08,20.49,214400,242,55 182,40183,40183,89,82.75,86.08,20.49,214400,242,55 "PJM Wh Real Time Peak",40183,40184,40184,80.65,74.5,77.16,-8.92,270400,295,56 "PJM Wh Real Time Peak",40184,40185,40185,80.5,77.5,78.92,1.76,93600,111,47 "PJM Wh Real Time Peak",40185,40186,40186,86,78.25,80.64,1.72,278400,316,62 "PJM Wh Real Time Peak",40186,40189,40189,82.75,72,80.64,0,81600,98,36 "PJM Wh Real Time Peak",40189,40190,40190,73,65.75,67.86,-12.78,178400,205,50 "PJM Wh Real Time Peak",40190,40191,40191,55.25,53,53.89,-13.97,162400,180,50 "PJM Wh Real Time Peak",40191,40192,40192,49.75,48,48.84,-5.05,97600,109,45 "PJM Wh Real Time Peak",40192,40193,40193,46.25,43.5,44.65,-4.19,99200,117,46 "PJM Wh Real Time Peak",40193,40196,40196,46,44.95,45.38,0.73,59200,71,35

289

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 "ERCOT-South",38748,38749,38749,57,57,57,-0.5,800,1,2 "ERCOT-South",38751,38754,38754,59,59,59,2,1600,2,3 "ERCOT-South",38786,38789,38789,48,48,48,-11,800,1,2 "ERCOT-South",38803,38804,38804,52.5,50.5,51.06,3.06,6400,8,7 "ERCOT-South",38804,38805,38805,54.75,54.75,54.75,3.69,3200,2,3 "ERCOT-South",38805,38806,38806,55.25,53.5,54.21,-0.54,4800,6,5 "ERCOT-South",38806,38807,38807,58,58,58,3.79,800,1,2,,,,," " "ERCOT-South",38810,38811,38811,60,60,60,2,800,1,2 "ERCOT-South",38811,38812,38812,64,64,64,4,800,1,2 "ERCOT-South",38812,38813,38813,63,62.5,62.63,-1.37,3200,4,6 "ERCOT-South",38813,38814,38814,62,62,62,-0.63,800,1,2

290

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 "PJM Wh Real Time Peak",40547,40548,40548,49.25,47.45,48.14,-0.57,64000,67,40 "PJM Wh Real Time Peak",40548,40549,40549,53.5,51.5,52.27,4.13,55200,66,37 "PJM Wh Real Time Peak",40549,40550,40550,60.5,57,58.43,6.16,80000,93,39 "PJM Wh Real Time Peak",40550,40553,40553,63.5,57,60.43,2,105600,124,41 "PJM Wh Real Time Peak",40553,40554,40554,69.5,64.25,66.98,6.55,128800,145,44 "PJM Wh Real Time Peak",40554,40555,40555,72.25,62,67.54,0.56,158400,194,51 "PJM Wh Real Time Peak",40555,40556,40556,84,75,80.13,12.59,92800,116,46 "PJM Wh Real Time Peak",40556,40557,40557,89.5,80.5,84.09,3.96,108800,133,42 "PJM Wh Real Time Peak",40557,40560,40560,57.55,55,56.11,-27.98,88800,105,40

291

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 "SP-15 Gen DA LMP Peak",40183,40184,40184,51.75,50.5,51.01,-0.84,61600,115,25 "SP-15 Gen DA LMP Peak",40184,40185,40185,53,50.5,51.39,0.38,59600,115,24 "SP-15 Gen DA LMP Peak",40185,40186,40187,58.5,55,56.79,5.4,394400,381,29 "SP-15 Gen DA LMP Peak",40186,40189,40189,51.25,50.75,51,-5.79,59200,116,26 "SP-15 Gen DA LMP Peak",40189,40190,40190,50.25,49,49.8,-1.2,53600,102,25 "SP-15 Gen DA LMP Peak",40190,40191,40192,51.5,50.75,51.12,1.32,59200,61,19 "SP-15 Gen DA LMP Peak",40191,40193,40194,49,48.25,48.35,-2.77,77600,71,20 "SP-15 Gen DA LMP Peak",40192,40196,40196,50.5,50,50.3,1.95,38800,71,18 "SP-15 Gen DA LMP Peak",40193,40197,40197,51.35,50,50.93,0.63,66800,84,19

292

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43,43,43,4800,6,6 084,39085,39085,43,43,43,4800,6,6 "Entergy",39085,39086,39086,40,34,38.3,4000,5,6 "Entergy",39086,39087,39087,38,37,37.5,1600,2,2 "Entergy",39087,39090,39090,41,41,41,800,1,2 "Entergy",39090,39091,39091,49,46,48.14,5600,6,6 "Entergy",39091,39092,39092,48,48,48,2400,3,4 "Entergy",39092,39093,39093,49,47,48,1600,2,3 "Entergy",39093,39094,39094,45,44,44.5,1600,2,4 "Entergy",39094,39097,39097,51,47,49.33,2400,3,5 "Entergy",39097,39098,39098,58.5,53.5,56.06,6400,8,8 "Entergy",39098,39099,39099,62,56,58.97,7200,9,9 "Entergy",39099,39100,39100,54.5,53,53.6,4000,5,5 "Entergy",39100,39101,39101,50.75,50,50.15,4000,5,9 "Entergy",39101,39104,39104,55,53,54,2400,3,3

293

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,55.25,54,54.67,7.01,27200,29,18 546,40547,40547,55.25,54,54.67,7.01,27200,29,18 "Nepool MH DA LMP",40547,40548,40548,50,48.75,49.39,-5.28,14400,16,14 "Nepool MH DA LMP",40548,40549,40549,54.25,53,53.44,4.05,24800,31,23 "Nepool MH DA LMP",40549,40550,40550,55.5,53.25,54.05,0.61,84800,80,24 "Nepool MH DA LMP",40550,40553,40553,65.5,64.75,65.01,10.96,21600,25,18 "Nepool MH DA LMP",40553,40554,40554,71,68.5,69.33,4.32,15200,18,17 "Nepool MH DA LMP",40554,40555,40555,79,72,77.51,8.18,68800,85,29 "Nepool MH DA LMP",40555,40556,40556,100.5,88,94.96,17.45,40000,49,23 "Nepool MH DA LMP",40556,40557,40557,92.25,87,87.7,-7.26,25600,31,23 "Nepool MH DA LMP",40557,40560,40560,66,63.5,65.03,-22.67,28000,30,17

294

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,41,39,40.13,6.73,12000,14,13 355,38356,38356,41,39,40.13,6.73,12000,14,13 "PJM Wh Real Time Peak",38356,38357,38357,41,40,40.57,0.44,13600,15,15 "PJM Wh Real Time Peak",38357,38358,38358,44,42,43.23,2.66,30400,35,16 "PJM Wh Real Time Peak",38358,38359,38359,46.25,44,45.07,1.84,17600,22,12 "PJM Wh Real Time Peak",38359,38362,38362,39.5,38.75,39.17,-5.9,9600,12,11 "PJM Wh Real Time Peak",38362,38363,38363,45,41.5,43.31,4.14,26400,32,17 "PJM Wh Real Time Peak",38363,38364,38364,44,41.25,41.8,-1.51,16000,19,15 "PJM Wh Real Time Peak",38364,38365,38365,39.5,38.5,39.1,-2.7,10400,13,13 "PJM Wh Real Time Peak",38365,38366,38366,51.5,47,48.26,9.16,57600,58,17 "PJM Wh Real Time Peak",38366,38369,38369,65,63,63.48,15.22,23200,21,14

295

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

34.5,34.5,34.5,3.21,1600,2,3 34.5,34.5,34.5,3.21,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35.75,35.5,35.58,1.08,2400,3,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.5,36,36.25,0.67,4000,5,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36,36.13,-0.12,3200,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,43.5,43.75,7.62,3200,4,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.25,43.75,44.04,0.29,5600,7,8

296

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 "ERCOT-South",40912,40913,40913,28,27.25,27.72,1.09,8000,9,7 "ERCOT-South",40913,40914,40914,25.75,25.75,25.75,-1.97,2400,3,4 "ERCOT-South",40914,40917,40917,27,27,27,1.25,1600,2,4 "ERCOT-South",40919,40920,40920,31,31,31,4,800,1,2 "ERCOT-South",40920,40921,40921,30.25,30.25,30.25,-0.75,800,1,2 "ERCOT-South",40925,40926,40926,25.5,25.5,25.5,-4.75,800,1,2 "ERCOT-South",40926,40927,40927,23.25,23.25,23.25,-2.25,800,1,2 "ERCOT-South",40931,40932,40932,24.5,24.5,24.5,1.25,800,1,2 "ERCOT-South",40932,40933,40933,26,25.75,25.96,1.46,4800,6,4 "ERCOT-South",40933,40934,40934,28,27,27.5,1.54,1600,2,4 "ERCOT-South",40934,40935,40935,29,28.75,28.88,1.38,1600,2,4

297

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

68.5,66,67.29,5.05,28400,71,21 68.5,66,67.29,5.05,28400,71,21 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.5,63.85,-3.44,27200,66,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,61.75,63.39,-0.46,80800,99,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,63.5,64.58,1.19,49200,107,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,64,64.98,0.4,32400,81,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,62.25,63.26,-1.72,78400,96,25

298

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.75,63,64.97,4.97,29600,55,25 65.75,63,64.97,4.97,29600,55,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.25,59,61.4,-3.57,106400,109,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,59.25,60.22,-1.18,45600,102,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.5,61.75,62.26,2.04,40400,86,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",64.2,62,62.52,0.26,38400,75,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.45,62,63.19,0.67,45200,87,27

299

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 "PJM-West Real Time Peak",41277,41278,41278,37,36,36.53,-6.11,19200,23,23 "PJM-West Real Time Peak",41278,41281,41281,36.5,36,36.17,-0.36,41600,48,32 "PJM-West Real Time Peak",41281,41282,41282,33.05,32.5,32.61,-3.56,20800,26,18 "PJM-West Real Time Peak",41282,41283,41283,33.75,32.5,32.91,0.3,37600,43,30 "PJM-West Real Time Peak",41283,41284,41284,31,30.25,30.64,-2.27,26400,31,26 "PJM-West Real Time Peak",41284,41285,41285,29.9,29.25,29.66,-0.98,38400,26,23 "PJM-West Real Time Peak",41285,41288,41288,32.5,31.5,32.14,2.48,40000,50,28 "PJM-West Real Time Peak",41288,41289,41289,37.5,34.5,36.5,4.36,64800,74,35

300

1 MW / 7.2 MWh NaS Battery Demonstration and Case Study Update  

Science Conference Proceedings (OSTI)

The New York Power Authority (NYPA), working together with the Metropolitan Transit Authority Long Island Bus (LIB) Company, has installed an advanced sodium sulfur battery energy storage system (NaS BESS) at the LIB facility located at 700 Commercial Avenue, Garden City, New York. The BESS is capable of providing a nominal 1MW of power to the bus fueling compressor station for 6-8 hours per day, 7 days per week.

2009-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 "SP-15 Gen DA LMP Peak",39905,39906,39907,28.7,27.5,28.03,-2.41,119200,103,17 "SP-15 Gen DA LMP Peak",39906,39909,39909,31.5,30.25,30.5,2.47,43200,89,17 "SP-15 Gen DA LMP Peak",39909,39910,39910,33.3,32.45,32.83,2.33,40800,80,20 "SP-15 Gen DA LMP Peak",39910,39911,39912,29,28,28.69,-4.14,116000,117,22 "SP-15 Gen DA LMP Peak",39911,39913,39914,27.25,26.55,26.88,-1.81,96800,110,21 "SP-15 Gen DA LMP Peak",39912,39916,39916,28.5,27.5,28.01,1.13,58000,119,19 "SP-15 Gen DA LMP Peak",39916,39917,39917,26.65,25,26.27,-1.74,26400,51,17 "SP-15 Gen DA LMP Peak",39917,39918,39918,28.25,27.7,27.97,1.7,55600,101,20

302

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43,39.05,41.9,4.15,5600,7,8 43,39.05,41.9,4.15,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.5,38.5,39.53,-2.37,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.25,38.25,38.9,-0.63,13600,17,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,39,40,1.1,10400,13,11 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,37.75,38.3,-1.7,12000,14,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,43,43.4,5.1,4000,5,5

303

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62.5,65.15,3.64,62800,150,34 62.5,65.15,3.64,62800,150,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54.25,61.54,-3.61,153600,172,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60.5,62.02,0.48,81200,188,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.73,0.71,69600,168,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.75,63.47,0.74,74400,170,34

304

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,45.5,-0.2,22800,57,25 1,45.5,-0.2,22800,57,25 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,45.44,-0.06,96000,198,32 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,43.27,-2.17,89600,210,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,42.7,-0.57,118400,261,35 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.5,43.86,1.16,169600,196,33

305

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 "Entergy Peak",40183,40184,40184,62.25,62.25,62.25,1.75,800,1,2 "Entergy Peak",40189,40190,40190,63.5,60.75,62.42,0.17,2400,3,3 "Entergy Peak",40190,40191,40191,46,45,45.5,-16.92,1600,2,2 "Entergy Peak",40196,40197,40197,40,40,40,-5.5,800,1,2 "Entergy Peak",40197,40198,40198,40,40,40,0,800,1,2 "Entergy Peak",40198,40199,40199,38,38,38,-2,800,1,2 "Entergy Peak",40199,40200,40200,38,38,38,0,800,1,2 "Entergy Peak",40204,40205,40205,47,47,47,9,800,1,2 "Entergy Peak",40205,40206,40206,45,45,45,-2,800,1,2 "Entergy Peak",40206,40207,40207,48,48,48,3,800,1,2 "Entergy Peak",40210,40211,40211,43,43,43,-5,800,1,2

306

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,131,114,125.81,37.67,95200,116,49 449,39450,39450,131,114,125.81,37.67,95200,116,49 "PJM Wh Real Time Peak",39450,39451,39451,106,99,102.43,-23.38,78400,96,39 "PJM Wh Real Time Peak",39451,39454,39454,54,52.5,53.44,-48.99,65600,74,34 "PJM Wh Real Time Peak",39454,39455,39455,45,41,42.69,-10.75,87200,98,48 "PJM Wh Real Time Peak",39455,39456,39456,47.5,45,46.31,3.62,47200,57,36 "PJM Wh Real Time Peak",39456,39457,39457,59.5,54.25,57.53,11.22,35200,44,34 "PJM Wh Real Time Peak",39457,39458,39458,51,46.25,48.3,-9.23,72800,88,51 "PJM Wh Real Time Peak",39458,39461,39461,76.5,70,74.88,26.58,103200,121,42 "PJM Wh Real Time Peak",39461,39462,39462,80,75.5,77.94,3.06,109600,127,40 "PJM Wh Real Time Peak",39462,39463,39463,72,68,70.47,-7.47,78400,95,35

307

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

911,40912,40912,56,52,53.84,-11.87,161600,191,55 911,40912,40912,56,52,53.84,-11.87,161600,191,55 "PJM Wh Real Time Peak",40912,40913,40913,39,38,38.7,-15.14,45600,54,30 "PJM Wh Real Time Peak",40913,40914,40914,33.25,33,33.05,-5.65,42400,53,33 "PJM Wh Real Time Peak",40914,40917,40917,37.25,36.5,36.8,3.75,43200,51,34 "PJM Wh Real Time Peak",40917,40918,40918,36,35.25,35.53,-1.27,48000,57,31 "PJM Wh Real Time Peak",40918,40919,40919,35,34.2,34.6,-0.93,32000,40,28 "PJM Wh Real Time Peak",40919,40920,40920,35.5,35,35.14,0.54,43200,48,27 "PJM Wh Real Time Peak",40920,40921,40921,40.75,38.6,39.44,4.3,108000,111,39 "PJM Wh Real Time Peak",40921,40924,40924,43.5,41.6,42.69,3.25,61600,74,39 "PJM Wh Real Time Peak",40924,40925,40925,35.25,34.5,34.68,-8.01,36000,44,23

308

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 "Nepool MH Da LMP Peak",41247,41248,41248,58.5,55,57.81,10.65,26400,32,21 "Nepool MH Da LMP Peak",41248,41249,41249,79.75,75,76.49,18.68,32800,39,18 "Nepool MH Da LMP Peak",41249,41250,41250,65,50.5,51.47,-25.02,35200,42,23 "Nepool MH Da LMP Peak",41250,41253,41253,47,45.5,46.48,-4.99,12800,16,14 "Nepool MH Da LMP Peak",41253,41254,41254,50,46,47.3,0.82,38400,44,22 "Nepool MH Da LMP Peak",41254,41255,41255,70,57,59.54,12.24,39200,49,19 "Nepool MH Da LMP Peak",41255,41256,41256,50,48.25,48.97,-10.57,53600,59,29 "Nepool MH Da LMP Peak",41256,41257,41257,39.25,38.5,38.98,-9.99,11200,14,10 "Nepool MH Da LMP Peak",41257,41260,41260,45,45,45,6.02,3200,4,6

309

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

82,75,79.66,6.43,30400,38,26 82,75,79.66,6.43,30400,38,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,58,60.11,-19.55,24000,30,22 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.05,43.75,44.81,-15.3,24000,28,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38,36,36.89,-7.92,35200,39,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,41.5,42.84,5.95,32000,39,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.44,3.6,22400,28,20

310

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

46,48.6,-4.22,46000,115,33 46,48.6,-4.22,46000,115,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.21,0.61,51600,120,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.75,46.71,-2.5,123200,150,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.35,2.64,63600,151,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.3,49.44,0.09,65600,163,34

311

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

39815,39818,39818,42,39,41,4.5,2400,3,4 39815,39818,39818,42,39,41,4.5,2400,3,4 "Entergy Peak",39818,39819,39819,44.5,44.5,44.5,3.5,800,1,2 "Entergy Peak",39819,39820,39820,44.5,44,44.25,-0.25,1600,2,4 "Entergy Peak",39820,39821,39821,46,45,45.5,1.25,2400,3,6 "Entergy Peak",39821,39822,39822,45,45,45,-0.5,800,1,2 "Entergy Peak",39822,39825,39825,45,40,42.5,-2.5,1600,2,3 "Entergy Peak",39825,39826,39826,48,48,48,5.5,1600,2,3 "Entergy Peak",39827,39828,39828,55,53,54,6,1600,2,4 "Entergy Peak",39828,39829,39829,56,53,54.33,0.33,2400,3,5 "Entergy Peak",39832,39833,39833,42.5,42.5,42.5,-11.83,800,1,2 "Entergy Peak",39833,39834,39834,43,42,42.5,0,1600,2,4 "Entergy Peak",39836,39839,39839,40,38,39,-3.5,1600,2,3

312

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,30,30,30,-2.63,1600,2,2 1246,41247,41247,30,30,30,-2.63,1600,2,2 "ERCOT Houston",41250,41253,41253,33,33,33,3,800,1,2 "ERCOT Houston",41260,41261,41261,27,26.9,26.98,-6.02,4000,5,4 "ERCOT Houston",41263,41264,41264,28.5,28.25,28.33,1.35,2400,3,4 "ERCOT Houston",41270,41271,41271,26.5,26.5,26.5,-1.83,800,1,2 "ERCOT Houston",41288,41289,41289,34.25,34,34.13,7.63,1600,2,3 "ERCOT Houston",41289,41290,41290,33.85,33.75,33.78,-0.35,2400,3,4 "ERCOT Houston",41338,41339,41339,34.75,34.25,34.58,0.8,2400,3,3 "ERCOT Houston",41372,41373,41373,42.75,42.75,42.75,8.17,800,1,2 "ERCOT Houston",41381,41382,41382,35.55,35.55,35.55,-7.2,800,1,2 "ERCOT Houston",41386,41387,41387,37.5,37.5,37.5,1.95,800,1,2

313

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

60.75,57.5,59.33,7.47,34400,42,23 60.75,57.5,59.33,7.47,34400,42,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,56.62,-2.71,36800,45,25 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.25,63.61,6.99,76000,86,34 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.5,60,63.84,0.23,43200,52,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,57.1,-6.74,36000,41,21 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.02,-11.08,33600,42,27

314

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,37,37,37,0,800,1,2 546,40547,40547,37,37,37,0,800,1,2 "Entergy Peak",40547,40548,40548,36,36,36,-1,800,1,2 "Entergy Peak",40548,40549,40549,33.75,33.75,33.75,-2.25,1600,2,2 "Entergy Peak",40550,40553,40553,42,42,42,8.25,800,1,2 "Entergy Peak",40555,40556,40556,52.75,49,50.88,8.88,1600,2,3 "Entergy Peak",40562,40563,40563,38.5,38,38.1,-12.78,4000,5,4 "Entergy Peak",40563,40564,40564,39,39,39,0.9,800,1,2 "Entergy Peak",40567,40568,40568,39,39,39,0,800,1,2 "Entergy Peak",40568,40569,40569,38,38,38,-1,800,1,2 "Entergy Peak",40571,40574,40574,36,36,36,-2,800,1,2 "Entergy Peak",40574,40575,40575,39.5,39.5,39.5,3.5,800,1,2 "Entergy Peak",40575,40576,40576,37,36.5,36.75,-2.75,1600,2,2

315

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 "Nepool MH DA LMP",40912,40913,40913,49,46,47.55,-39.61,78400,77,24 "Nepool MH DA LMP",40913,40914,40914,39.75,39.25,39.57,-7.98,12000,15,10 "Nepool MH DA LMP",40914,40917,40917,39,38,38.39,-1.18,8800,11,9 "Nepool MH DA LMP",40917,40918,40918,38.25,38,38.14,-0.25,8000,9,11 "Nepool MH DA LMP",40918,40919,40919,41.5,39.9,40.88,2.74,70400,83,25 "Nepool MH DA LMP",40919,40920,40920,37.25,36.75,36.83,-4.05,20000,23,16 "Nepool MH DA LMP",40920,40921,40921,44,43.5,43.73,6.9,11200,11,12 "Nepool MH DA LMP",40921,40924,40924,67,65.5,66.35,22.62,16800,21,15 "Nepool MH DA LMP",40924,40925,40925,50.75,50,50.24,-16.11,11200,14,12

316

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,65.5,64.5,65,1600,2,2 6893,36894,36894,65.5,64.5,65,1600,2,2 "PJM West",36894,36895,36895,63,59.5,61.25,3200,4,2 "PJM West",36895,36896,36896,60,58.5,59.12,4800,6,4 "PJM West",36899,36900,36900,59.5,59.5,59.5,800,1,2 "PJM West",36900,36901,36901,58,55.5,56.61,5600,7,6 "PJM West",36901,36902,36902,50.5,49,49.75,3200,4,4 "PJM West",36902,36903,36903,47,46,46.33,4800,6,3 "PJM West",36903,36906,36906,45.5,45,45.12,3200,4,6 "PJM West",36906,36907,36907,46,42,44.21,5600,7,6 "PJM West",36907,36908,36908,42.5,42,42.4,4000,4,7 "PJM West",36908,36909,36909,41,39,39.56,7200,7,6 "PJM West",36909,36910,36910,39.5,39,39.25,2400,3,5 "PJM West",36910,36913,36913,51,50,50.43,5600,5,6

317

A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING  

E-Print Network (OSTI)

Tex. , 3rd Ann. Solar Heating & Cooling R&D Contractors'Proceedings, Passive Solar Heating & Cooling~'-~&-l~orkshop,Solar Jubilee, Phoenix, AZ, June 2-6, 1980 A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING

Tavana, Medhi

2011-01-01T23:59:59.000Z

318

FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02  

Science Conference Proceedings (OSTI)

This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of heat transfer in rate attainment and the much greater role of wall effects in heat transfer when the melt pool is not agitated. The DM100 melter used for the present tests has a surface area of 0.108 m{sup 2}, which is approximately 5 times larger than that of the DM10 (0.021 m{sup 2}) and approximately 11 times smaller than that of the DM1000 (1.2 m{sup 2}) (the DM1000 has since been replaced by a pilot-scale prototypical HLW melter, designated the DM1200, which has the same surface area as the DM1000). Testing on smaller melters is the most economical method for obtaining data over a wide range of operating conditions (particularly at extremes) and for guiding the more expensive tests that are performed at pilot-scale. Thus, one objective of these tests was to determine whether the DM100 melters are sufficiently large to reproduce the un-bubbled melt rates observed at the DM1000 scale, or to determine the extent of any off-set. DM100-scale tests can then be used to screen feed chemistry variations that may serve to increase the un-bubbled production rates prior to confirmation at pilot scale. Finally, extensive characterization data obtained on simulated HLW melter feeds formed from various glass forming additives indicated that there may be advantages in terms of feed rheology and stability to the replacement of some of the hydroxides by carbonates. A further objective of the present tests was therefore to identify any deleterious processing effects of such a change before adopting the carbonate feed as the baseline. Data from the WVDP melter using acidified (nitrated) feeds, and without bubbling, showed productions rates that are higher than those observed with the alkaline RPP feeds at the VSL. Therefore, the effect of feed acidification on production rate also was investigated. This work was performed under Test Specification, 'TSP-W375-00-00019, Rev 0, 'HLW-DM10 and DM100 Melter Tests' dated November 13, 2000 and the corresponding Test Plan. It should be noted, however, that the RPP-WTP Project directed a series of changes to the Test Plan as the result

KRUGER AA; MATLACK KS; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

319

POWGEN EXPERIMENT A-Z-2013B  

NLE Websites -- All DOE Office Websites (Extended Search)

POWGEN POWGEN E XPERIMENT Before y ou a rrive/Send y our s amples: 1. C onfirmation: The c onfirmation o f a ll r elevant i nformation f or y our b eamtime i s d one t hrough o ur I ntegrated Proposal T racking S ystem ( IPTS: h ttp://www.ornl.gov/sci/iums/ipts/). B efore a rriving f or b eamtime, you w ill n eed t o c onfirm 1 ) L ab n eeds, 2 ) S amples, 3 ) S ample E nvironment, 4 ) S afety a nd 4 ) Experiment t ime. This i s y our f inal c hance t o e nter t he c orrect s ample i nformation a nd a nything t hat i s n ot c onfirmed cannot b e m easured d uring y our b eamtime. A dding s imilar s amples a s s tated i n y our p roposal w ill most l ikely t rigger n o a dditional r eview. H owever, r emember i f y ou a re e ntering d rastically d ifferent samples f rom y our a pproved p roposal t hey w ill g o t hrough a f urther a pproval a nd

320

DIPLOMAMUNKA Az RkpK fehrje termeltetse  

E-Print Network (OSTI)

.................................................................................5 1.3.3. A nif és fix gének

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

eb surface alloying of magnesium alloys az31 b and az91 d  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... If the price of this product displays as $0.00 for your customer category, you may download it for free. You must, however, add it to your cart and...

322

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

MWh) KA natural gas consumed by power generation (MWh LMWh) KA natural gas consumed by power generation (MWh) LMWh) KA natural gas consumed by power generation (MWh) L

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

323

Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Role of Liquid Waste Pretreatment Technologies in Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission W. R. Wilmarth March 5 2009 March 5, 2009 HLW Corporate Board Phoenix AZ HLW Corporate Board, Phoenix, AZ Co-authors M. E. Johnson, CH2M Hill Plateau Remediation Company G. Lumetta, Pacific Northwest National Laboratory N Machara DOE Office of Engineering and Technology N. Machara, DOE Office of Engineering and Technology M. R. Poirier, Savannah River National Laboratory P C S DOE S h Ri P. C. Suggs, DOE Savannah River M. C. Thompson, Savannah River National Laboratory, Retired Retired 2 Background Separations is a fundamental business within DOE. The role of separations today is to expedite waste retrieval The role of separations today is to expedite waste retrieval, processing and closure. Recognized as part of E&T Roadmap

324

TEC/WG Tribal Topic Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 4, 2005 - Phoenix, AZ April 4, 2005 - Phoenix, AZ Group Chair: Jay Jones (DOE/OCRWM) Tribal Topic Group Members Present: Nancy Bennett (UNM/ATRI), Kevin Blackwell (DOT/FRA), Kristen Ellis (DOE/CI), Ed Gonzales (ELG), Elizabeth Helvey (BSC), Jeff Hepting (Pueblo of Acoma), Robert Holden (NCAI), Judith Holm (DOE/OCRWM), Dan King (Oneida Nation), Gary Lanthrum (DOE/OCRWM), Bob Lupton (DOE/ORD/IR), Corinne Macaluso (DOE/OCRWM), Ellen Ott (DOE/GC), Jennifer Patric (BAH), Stanley Paytiamo (Pueblo of Acoma), Wilda Portner (SAIC), Willie Preacher (Shoshone-Bannock Tribes), Herman Shorty (Navajo Nation), Linda Sikkema (NCSL), Larry Stern (CVSA), Neil Weber (Pueblo of San Ildefonso), Christopher Wells (SSEB), Stephen White (NAEMT), Andrea Wilkins (NCSL), Corina Williams (Oneida Nation) (NOTE: Other

325

Water-Balance Cover Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011, Phoenix, AZ 2011, Phoenix, AZ Design and Installation of a Disposal Cell Cover Field Test C.H. Benson University of Wisconsin-Madison, Madison, Wisconsin W.J. Waugh S.M. Stoller Corporation, Grand Junction, Colorado W.H. Albright Desert Research Institute, Reno, Nevada G.M. Smith Geo-Smith Engineering, Grand Junction, Colorado R.P. Bush U.S. Department of Energy, Grand Junction, Colorado ABSTRACT The U.S. Department of Energy's Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-

326

Microsoft Word - LL-WM08 Paper 8351.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phoenix, AZ Phoenix, AZ Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site W.J. Waugh, M.K. Kastens, L.R.L. Sheader Environmental Sciences Laboratory* 2597 B ¾ Road, Grand Junction, CO 81503 C.H. Benson University of Wisconsin 1415 Engineering Drive, Madison, WI 53706 W.H. Albright Desert Research Institute 2215 Raggio Parkway, Reno, NV 89512 P.S. Mushovic U.S. Environmental Protection Agency 1595 Wynkoop Street, Denver, CO 80202 ABSTRACT The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in

327

Microsoft Word - 8482 Clayton.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Conference, February 24 - February 28, 2008, Phoenix, AZ 8 Conference, February 24 - February 28, 2008, Phoenix, AZ Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites - 8482 C. Clayton, Program Manager DOE Office of Legacy Management 1000 Independence Avenue SW, Washington, DC 20585 J. Gueretta, Records Management Lead DOE Office of Legacy Management 2597 B-3/4 Road, Grand Junction, CO 81503 J. Tack, Records Management Source One Management, Inc. 2597 B-3/4 Road, Grand Junction, CO 81503 M. Widdop, Project Manager S.M. Stoller Corporation 2597 B-3/4 Road, Grand Junction, CO 81503 ABSTRACT The Manhattan Engineer District (MED) and U.S. Atomic Energy Commission (AEC) contracted for support work through private and academic parties through the early 1960s. The

328

Davis-Kingman Draft EA Master_050611  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT Davis-Kingman Tap 69-kV Transmission Line Rebuild Mohave County, Arizona DOE/EA-1665 DOI-BLM-AZ-C0-# Prepared for: U.S. Department of Energy Western Area Power Administration 615 South 43rd Avenue Phoenix, Arizona 85009 Cooperating Agencies: Bureau of Land Management Kingman Field Office 2755 Mission Boulevard Kingman, Arizona 86401 Bureau of Reclamation Lower Colorado Regional Office

329

Microsoft Word - Phoenix_RTG_TECmeetingsummaryApr05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rail Topic Group Rail Topic Group Jay Jones (ONT) was the DOE presenter for this meeting. The meeting focused on the topic group's development of a paper on routing criteria, discussion of the routing criteria and route selection process, and possible new tasks for the Rail Topic Group. Key comments and discussions are summarized below. Comments/Discussion on the Rail Topic Group Paper Several members suggested that development of a Rail Topic Group paper on routing criteria be deferred. Others believed that the topic group's paper was not needed. Reasons included the following: * The State Regional Groups State Regional Groups already have the task of writing a paper on routing criteria in their scopes of work. If the Rail Topic Group is to have its

330

Phoenix, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3165°, -100.1907029° 3165°, -100.1907029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2113165,"lon":-100.1907029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Solar Phoenix 2 Launch Event | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Recovery Act: National Weatherization Conference Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela What We Do For You Month by month the clean energy...

332

Solar Phoenix 2 Launch Event | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Photo Galleries The Energy Department Goes to New York Energy Week Energy Secretary Moniz at CASL SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory White House...

333

PHOENIX NATURAL GAS LIMITED PRICE DETERMINATION REFERENCE Disclosures of interest  

E-Print Network (OSTI)

Member disclosures Martin Cave (Group Chairman) is a joint academic director of a Brussels-based think tank on regulation called CERRE (www.cerre.eu). This has occupied about ten days per year, mostly attending seminars in Brussels with regulators and regulatees. Another joint academic director is Prof C Waddams. They have not collaborated on any research projects, but he has chaired a panel which she was on. He has co-written a general book, or textbook, on regulation, which includes chapters on price control. The index lists three brief references to energy regulation: Baldwin, Cave &

Richard Taylor

2012-01-01T23:59:59.000Z

334

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

335

Parker Planet_EA_Cover_final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inal inal E N V I R O N M E N TA L A S S E S S M E N T FOR PARKER - PLANET TAP 69-KV TRANSMISSION LINE REBUILD, UPGRADE AND RIGHT-OF-WAY ACTION Prepared For: US Department of Energy 615 South 43rd Avenue Phoenix, AZ 85009 Western Area Power Administration Wester n No: DOE/EA-1685 DOI-BLM-AZ-C030-2009-0051-EA COOPERATING AGENCIES: US Bureau of Land Management US F ish and Wildlife Ser vice FINAL ENVIRONMENTAL ASSESSMENT DOE/EA-1685 DOI-BLM-AZ-C030-2009-0051-EA Parker-Planet Tap 69-kV Transmission Line Rebuild, Upgrade, and Right-of-Way Action San Bernardino County, California and Mohave and La Paz Counties, Arizona

336

Category:Utility Rate Impacts on PV Economics By Location | Open Energy  

Open Energy Info (EERE)

Utility Rate Impacts on PV Economics By Location Utility Rate Impacts on PV Economics By Location Jump to: navigation, search Impact of Utility Rates on PV Economics Montgomery, AL Little Rock, AR Flagstaff, AZ Phoenix, AZ Tucson, AZ Arcata, CA LA, CA San Francisco, CA Boulder, CO Eagle County, CO Pueblo, CO Bridgeport, CT Wilmington, DE Miami, FL Tampa, FL Atlanta, GA Savannah, GA Des Moines, IA Mason, IA Boise, ID Chicago, IL Springfield, IL Indianapolis, IN Goodland, KS Wichita, KS Lexington, KY New Orleans, LA Shreveport, LA Boston, MA Baltimore, MD Caribou, ME Portland, ME Detroit, MI Houghton-Lake, MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE Concord, NH Atlantic City, NJ Albuquerque, NM Las Vegas, NV Reno, NV New York, NY

337

CHARACTERIZATION OF AZ91E-Si ALLOYS: MICROSTRUCTURE ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... If the price of this product displays as $0.00 for your customer category, you may download it for free. You must, however, add it to your cart and...

338

Nogales, AZ Liquefied Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

250 282 2006-2012 Pipeline Prices 6.79 7.88 4.04 4.86 4.47 3.31 2006-2012 Liquefied Natural Gas Volumes 16 0 0 0 0 34 1998-2012 Liquefied Natural Gas Prices 15.27 -- -- -- --...

339

Dynamic Response of Magnesium Alloy AZ31B and Aluminum ...  

Science Conference Proceedings (OSTI)

Symposium, Measurements and Modeling of Advanced Automotive and Structural Materials at Intermediate and High Strain Rates. Presentation Title, Dynamic...

340

132- Microstructure and Composition Modifications in a Mg AZ80 ...  

Science Conference Proceedings (OSTI)

086- Improvement in Gas Tightness of YSZ Coatings Produced by Atmospheric Plasma ... 145- The Synergy of XRD and XRF in a Shale and Slate Analysis.

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nogales, AZ Liquefied Natural Gas Exports to Mexico  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Exports by Point of Exit (Volumes in Million Cubic Ft., Prices in Dollars per Thousand Cubic Ft.)

342

DOE Research and Development Accomplishments Site Index (A-Z...  

Office of Scientific and Technical Information (OSTI)

A - Z Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abrikosov, Alexei Abrikosov, Alexei: Publications activated complex theory of reaction rates adenosine...

343

Anemometer Data (Wind Speed, Direction) for Pascua Yaqui, AZ...  

Open Energy Info (EERE)

Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs...

344

Improving Melt Cleanliness and Mechanical Properties of AZ91E ...  

Science Conference Proceedings (OSTI)

Conference Tools for COM 2011 ... Presenter/Author Tools ... that has been linked to changing weather patterns and other extreme weather phenomenon.

345

Corrosion Mechanism of Anodized AZ91D and Its Biological ...  

Science Conference Proceedings (OSTI)

... Templates Facilitates Neural Stem Cell Adhesion, Proliferation and Differentiation ... Improving the Resistance of Ceramic Surfaces to Biofilm Formation ... Sol-Gel Synthesis of Bio-Active Nanoporous Sodium Zirconate Coated on 316L...

346

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network (OSTI)

cooling spray pump (MWh) Fans (including cooling tower fancooling spray pump (MWh) Fans (including cooling tower fancooling spray pump (MWh) Fans (including cooling tower fan

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

347

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE National Electric DOE National Electric Transmission Congestion Study Workshop Bob Smith Arizona Public Service Company December 15, 2011 San Diego Topics * Phoenix - Tucson Area - Congestion mitigated with planned transmission projects * Southern California Area - No congestion identified with current CA plans to meet RES - Conditional congestion if CA utilizes more solar from AZ/NV or wind from NM or northern Rocky Mountain Area - Conditional congestion if CA relies on out of state resources for ancillary services to firm in state renewable resources * Data Sources for Congestion Study December 15, 2011 2 Planned Phoenix - Tucson Area Transmission Projects December 15, 2011 3 * Planned EHV Projects - Palo Verde - Delaney - Sun Valley - Morgan - Pinnacle Peak 500kV - Southeast Valley 500kV - Pinal Central -

348

A Regional Approach to Market Monitoring in the West  

E-Print Network (OSTI)

Mid-C prices ($/MWh) SP15 and PV prices ($/MWh) A Regionalis positive when the PV price is higher. The SP15 price isprice differential ($/MWh) PV price ($/MWh) SP15 price ($/

Barmack, Matthew; Kahn, Edward; Tierney, Susan; Goldman, Charles

2006-01-01T23:59:59.000Z

349

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Biomass, Biogas, Landfill gas, Sewage gas, Geothermal)/MWh; Sewage and landfill gas: 45-60 /MWh; Wind OnshoreMWh; Landfill-, Sewage- & Landfill gas: 64.5-74.4 /MWh; PV:

Haas, Reinhard

2008-01-01T23:59:59.000Z

350

Xtreme Power 1.5 MW / 1.0 MWh Dynamic Power Resource (DPR) System Evaluation at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

Utility-scale advanced electrical energy storage has the potential to improve the reliability and efficiency of the energy delivery network and also pave the way for greater additions of variable renewable resources onto the grid. This in mind, Xcel Energy, EPRI, and other stakeholders are engaged in a multi-year project to demonstrate the use of energy storage to support the grid integration of renewablesspecifically, solar PV on the distribution network. To better understand the capabilities of the Xt...

2011-12-29T23:59:59.000Z

351

Xtreme Power 1.5 MW / 1.0 MWh "Solar-to-Battery Demonstration" at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

Utility-scale advanced electrical energy storage has the potential to improve the reliability and efficiency of the energy delivery network and also pave the way for greater additions of variable renewable resources onto the grid. With this in mind, EPRI, Xcel Energy, and other stakeholders are engaged in a multi-year project, known as the Solar-to-Battery (S2B) initiative, to demonstrate the use of utility-scale energy storage to support the grid integration of renewables, specifically, solar ...

2012-12-20T23:59:59.000Z

352

Transportation External Coordination Working Group:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishments and Future Accomplishments and Future Transportation External Coordination Working Group Meeting Phoenix, AZ Judith A. Holm, Office of National Transportation Office of Civilian Radioactive Waste Management April 4, 2005 TEC MEMBER ORGANIZATIONS American College of Emergency Physicians (ACEP) American Nuclear Society (ANS) Association of American Railroads (AAR) Brotherhood of Locomotive Engineers and Trainmen (BLET) Commercial Vehicle Safety Alliance (CVSA) Conference of Radiation Control Program Directors, Inc. (CRCPD) Council of Energy Resource Tribes (CERT) Council of State Governments-Eastern Regional Conference (CSG-ERC) Council of State Governments-Midwestern Office (CSG-MW) Council on Radionuclides and Radiopharmaceuticals (CORAR) Dangerous Goods Advisory Council (DGAC)

353

DRAFT 12-5-10 To be submitted to Indoor Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters Meera A. Sidheswaran 1 , Hugo Destaillats 1,2, , Douglas P. Sullivan 1 , Sebastian Cohn 1 , and William J. Fisk 1 1 Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory 2 Arizona State University School of Sustainable Engineering and the Built Environment Phoenix, AZ April 2011 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-5176E 2 Energy Efficient Indoor VOC Air Cleaning with

354

EM ARRA Best Practices and Lessons Learned Workshop: Field Manager's Top Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM ARRA BEST PRACTICES and LESSONS LEARNED WORKSHOP Waste Management Symposium Phoenix, AZ March 1, 2012 www.em.doe.gov 2 Field Manager's Top Issues Strategic Direction/Programmatic Decisions - Make remaining programmatic decisions so field can implement in expedited and efficient manner Streamline Requirements - Reduce reporting and new requirements from HQ to field Delegate to Field - Provide more tactical decision making to the field in the area of contracts, AE, and execution year budget decisions www.em.doe.gov 3 Field Manager's Top Issues Strategic Direction/Programmatic Decisions - Make remaining programmatic decisions so field can implement in expedited and efficient manner. Examples:

355

SPPR Group Proposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Doe Office of Indian Energy Tribal Doe Office of Indian Energy Tribal Leader Forum Leveraging Renewable Resources to Support Military Energy May 30 - 31, 2013 Phoenix, AZ Penny Casey Western Area Power Administration Presentation Overview  Power Marketing Administrations  Overview of Western Area Power Administration  Renewable Resources for Federal Agencies Program  Assisting Tribes with Renewable Energy Development 2 Power Marketing Administrations  Federal agencies formed under the Department of Energy Organization Act (1977) responsible for marketing hydropower primarily from multi-use water projects operated by the Bureau of Reclamation, the Army Corps of Engineers, and the International Boundary & Water Commission  4 Distinct PMAs under the Department of Energy

356

Introduction to the Office and Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Tribal Land Opportunities Overview of Tribal Land Opportunities John Nangle, National Renewable Energy Laboratory (NREL) Tribal Leader Forum, Phoenix, AZ - May 30 - 31, 2013 1 RENEWABLE ENERGY POTENTIAL ON TRIBAL LANDS Geospatial Analysis: Renewable Energy Technical Potential * New analysis represents an increase in potential density on tribal lands * Renewable energy technical potential on tribal lands is about 5% of the total national technical potential 3 Why is Geospatial Analysis Different? * A statistical approach to analyzing information that incorporates data that has a geographic component * Using GIS software, NREL applies geospatial analysis to determine renewable energy resources potential on tribal lands * Allows for a more refined analysis or technical potential

357

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

358

Sundance Energy Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS - 0322 DOE/EIS - 0322 Sundance Energy Project Final Environmental Impact Statement Western Area Power Administration June 2001 DOE/EIS - 0322 COVER SHEET Title: Sundance Energy Project, Pinal County, AZ, Final Environmental Impact Statement Lead Agency:U.S. Department of Energy, Western Area Power Administration For information about the Sundance Energy For general information on the DOE EIS Project contact: process, contact: Mr. John Holt, Environmental Manager Ms. Carol Borgstrom, Director Western Area Power Administration NEPA Policy and Assistance, EH-42 Desert Southwest Region U.S. Department of Energy P.O. Box 6457 1000 Independence Avenue, SW Phoenix, AZ 85005-6457 Washington, DC 20585 (602) 352-2592 (202) 586-4600 or (800) 472-2756 Fax: (602) 352-2630 E-mail: holt@wapa.gov

359

Obama Administration Announces Additional $63,817,400 for Local...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AZ Mohave County 408,700 AZ Navajo County 473,900 AZ Pima County 3,981,900 AZ Pinal County 2,060,800 AZ Yavapai County 548,200 AZ Yuma County 427,700 In addition,...

360

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

1,1,"AK",213,"Alaska Electric Light&Power Co",9111,782,58,0,9951,0,0,0,0,0,0,0,0,0,0 1,1,"AK",213,"Alaska Electric Light&Power Co",9111,782,58,0,9951,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",1651,"Bethel Utilities Corp",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,2974,264,2,0,3240,4461,786,114,0,5361 2011,1,"AK",10433,"Kodiak Electric Assn Inc",4574,976,101,0,5651,,,,,0,,,,,0 2011,1,"AK",11824,"Matanuska Electric Assn Inc",47365,3590,,,50955,,,,,0,,,,,0 2011,1,"AK",19558,"Homer Electric Assn Inc",24337,2482,0,0,26819,31,4,0,0,35,1.29,0.01,0,0,1.31 2011,1,"AL",195,"Alabama Power Co",,,,,,1227639,172463,5845,0,1405947,1548871.17,1047712.67,1805530.5,0,4402114.33

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,"AK",213,"Alaska Electric Light&Power Co",10105,925,62,0,11092,0,0,0,0,0,0,0,0,0,0 2,1,"AK",213,"Alaska Electric Light&Power Co",10105,925,62,0,11092,0,0,0,0,0,0,0,0,0,0 2012,1,"AK",3522,"Chugach Electric Assn Inc",77639,,,,77639,,,,,0,,,,,0 2012,1,"AK",7353,"Golden Valley Elec Assn Inc",37816,6372,488,,44676,,,,,0,,,,,0 2012,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,3262,312,0,0,3574,5074.17,742.17,0,0,5816.34 2012,1,"AK",10433,"Kodiak Electric Assn Inc",4574,1018,100,,5692,,,,,0,,,,,0 2012,1,"AK",10451,"Kotzebue Electric Assn Inc",915,6,,,921,,,,,0,,,,,0 2012,1,"AK",11824,"Matanuska Electric Assn Inc",47769,3513,0,0,51282,,,,,0,,,,,0 2012,1,"AK",19558,"Homer Electric Assn Inc",24988,2579,,,27567,41,5,,,46,2.05,0.06,,,2.1

362

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

3,1,"AK",213,"Alaska Electric Light&Power Co",10789,1063,76,0,11928,0,0,0,0,0,0,0,0,0,0 3,1,"AK",213,"Alaska Electric Light&Power Co",10789,1063,76,0,11928,0,0,0,0,0,0,0,0,0,0 2013,1,"AK",3522,"Chugach Electric Assn Inc",69377,8707,,,78084,,,,,0,,,,,0 2013,1,"AK",7353,"Golden Valley Elec Assn Inc",38017,6318,503,,44838,,,,,0,,,,,0 2013,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,3437,350,0,0,3787,5208.03,789.27,0,0,5997.31 2013,1,"AK",10433,"Kodiak Electric Assn Inc",4585,1038,105,0,5728,,,,,0,,,,,0 2013,1,"AK",10451,"Kotzebue Electric Assn Inc",915,6,0,0,921,,,,,0,,,,,0 2013,1,"AK",11824,"Matanuska Electric Assn Inc",47829,3616,0,0,51445,0,0,0,0,0,0,0,0,0,0 2013,1,"AK",19558,"Homer Electric Assn Inc",25421,2737,,,28158,46,6,,,52,2.37,0.87,,,3.24

363

Phoenix City of Colorado Springs Solar Assisted Heat Pump Project. Technical report, July 1--September 1977  

DOE Green Energy (OSTI)

The work completed to date in documenting the design of packaged Solar Assisted Optimized Heat Pump (SAOHP) systems as a step towards stimulating the advancement of an industrial, commercial, and professional capability for producing and distributing this type of system is covered. The SAOHP system consists of a collector group, a storage group, and an energy transport group. The design for the collector group with first tier parts and assembly lists are included, along with the energy transport group designs for the smaller capacity units. Rating curves are included for the 30,000 BtuH (2-/sup 1///sub 2/ ton) unit. A sample program printout for the performance analysis program is presented. Climatic region definition work is included in complete form. The economic analysis format for making life cycle cost comparisons between various available heating and cooling systems and the SAOHP is included.

Jardine, D.M.; Jones, D.W.

1977-10-01T23:59:59.000Z

364

Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona  

E-Print Network (OSTI)

problem. We model electric interruptions using outage data between the years of 2002 and 2005 across, and interactions between the two. We model electric interruptions using outage data for the years 2002;22:117­21. [14] Fritts TH. Economic costs of electrical system instability and power outages caused by snakes

365

Differential Adaptive Capacity to Extreme Heat: A Phoenix, Arizona, Case Study  

Science Conference Proceedings (OSTI)

Climate change is projected to increase the number of days producing excessive heat across the southwestern United States, increasing population exposure to extreme heat events. Extreme heat is currently the main cause of weather-related mortality ...

Mary H. Hayden; Hannah Brenkert-Smith; Olga V. Wilhelmi

2011-10-01T23:59:59.000Z

366

Coal-Mac, Inc. Phoenix No. 1 mine provides wildlife haven. 2007 Wildlife West Virginia Award  

Science Conference Proceedings (OSTI)

Coal Mac, Inc.'s Harless Wood Industrial Park off Holden 22 Mines Road in Logan Country, West Virginia is an award-winning reclamation site in the mountains frequented by geese, wild turkey, deer and black bears. Orchard grass and rye is a temporary cover for the timothy, clover and other seedlings. The area was mined several years ago. Some 40,000-50,000 tons of coal per month are surfaced mined with the current permit that takes in 1,500-2,000 acres. After removing the coal, valleys are backfilled as part of the mining and reclamation plan. 10 photos.

Skinner, A.

2007-07-15T23:59:59.000Z

367

Microbial enhanced waterflooding Mink Unit and Phoenix field pilots. Final report  

Science Conference Proceedings (OSTI)

To determine the feasibility of improving oil recovery and the economics of microbial enhanced waterflooding in mature oil wells in the United States, two field pilots have been conducted. Candidate fields were screened to determine whether they have any potential for a microbial system developed at the National Institute for Petroleum and Energy Research (NIPER), and microbial compatibility tests were conducted in the laboratory to select the target field. A specific microbial formulation was selected that was compatible with the chosen reservoir environment and had been shown to recover oil after waterflooding in Berea sandstone and field core. The microbial formulation was designed to improve microscopic oil displacement efficiency by surfactant, gas and acid production from fermentation of molasses. A 20-acre pilot test was initiated in October 1986, and completed in December 1989. Results from this pilot demonstrated that microorganisms could be injected into an ongoing waterflood and that such injection could increase oil production by at least 13%. A larger test (520 acres) was completed in the same formation to evaluate the feasibility of commercial application of the technology. This field pilot was injected with microorganisms and molasses from a centralized injection station in June 1990. Although microorganisms were injected only once per site, nutrient injection continued throughout the project life. All 19 injection wells were treated, and oil production was monitored from the 47 production wells. Injection pressures and volumes were monitored throughout the project. No operational problems were encountered. At the end of May 1993, oil production was improved by 19.6 %. Results from both projects are presented and the potential for microbial-enhanced waterflooding technology is evaluated.

Bryant, R.S.; Steep, A.K.; Bertus, K.M.; Burchfield, T.E. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Dennis, M. [Microbial Systems Corp., OK (United States)

1993-07-01T23:59:59.000Z

368

Phoenix from the Ashes? Repetitive Mass Mortality and the Biogeology of  

E-Print Network (OSTI)

massive" means that corals were usually less than 10 cm in diameter. Values are means and standard are means and standard deviation of percentages. Employed tests were one-way ANOVA with Student Acropora removed, fauna check-list in Riegl, 1999); changes in the western area were not recorded because

369

Analysis of Atmospheric Particles Deposited onto Mesquite Leaves in the Central Arizona -Phoenix LTER Area  

E-Print Network (OSTI)

and principal components with the statistical routine EXPLOR [1]. q Individual particles on the leaf and filter variable, small-scale, local winds Local sources include motor vehicle emissions Distant sources are coal by the regional distribution of particle sources, of both local and distant origins. Local sources: agriculture

Hall, Sharon J.

370

2.1E Sample Run Book  

E-Print Network (OSTI)

ELECTR LOAD (MWH) WASTED RCVRABL ENERGY (HB'rU) FUEL INPUTELECTR LOAD (MWH) WASTED RCVRABL ENERGY (HB'rU) FUEL INPUTELE_:TR LOAD (MWH) WASTED RCVRABL ENERGY (MSTU) FUEL INPUT

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

371

The Current and Historical Monthly Retail Sales, Revenues and...  

U.S. Energy Information Administration (EIA) Indexed Site

(MWh)","Other Sales (MWh)","All Sector Sales (MWh)","Average Retail Price Residential (ckWh)","Average Retail Price Commercial (ckWh)","Average Retail Price Industrial (c...

372

LIRR High-Speed Flywheel Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approximately 23% of New York State electricity needs 2006 Generation: 26.9MM MWh 75% hydro; 25% fossil 2006 energy sales: 42.9MM MWh (includes 16.5MM MWh purchased power)...

373

dynamic characterization of az31b and zek100 magnesium alloy ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... If the price of this product displays as $0.00 for your customer category, you may download it for free. You must, however, add it to your cart and...

374

assessment of hot cracking susceptibility in az91e using the ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... If the price of this product displays as $0.00 for your customer category, you may download it for free. You must, however, add it to your cart and...

375

GRED III Final Report Clifton Hot Springs Geothermal Greenlee County, AZ  

SciTech Connect

Black & Veatch Corporation has prepared this report for Arizona Public Service Company, Salt River Project, and Tucson Electric Power Company (APS/SRP/TEP). The purpose of this report is to assess the prospects for significant renewable energy development in Arizona. The scope of the study is limited to Arizona projects that would export power to the grid (that is, not distributed energy projects). This study includes a review of the current status of renewable energy in Arizona, characterization of renewable power generation technologies, assessment of Arizona''s renewable resources, and an assessment of key risk factors. This section summarizes the key findings in these areas.

Brown, David E.

2006-06-15T23:59:59.000Z

376

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What is the role of coal in the United States? ... Ancillary Services (Electricity) ... The EIA Glossary includes definitions of technical terms.

377

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Jobs (With the Energy Information Administration) Jordan Country ...

378

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Air-Conditioning, Number of Households With; Air Pollution Abatement Equipment; Air Pollution Emissions Data (Leave EIA) Alabama Energy Profile; Alaska ...

379

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

SPP: small power producer; SPR: ... VAWT: vertical-axis wind turbine; VLCC: very large crude carrier; VMT: vehicle miles traveled; VOC: volatile ...

380

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NEWS SPORT WEATHER WORLD SERVICE A-Z INDEX SEARCH You are in: Science/Nature  

E-Print Network (OSTI)

99 | Science/Nature Should the cold fusion dream die? 11 Sep 00 | Festival of science Arthur C Clarke demands cold fusion rethink Internet links: Nature Science Kenneth Suslick Oak Ridge National Laboratory Thursday, 25 July, 2002, 11:15 GMT 12:15 UK Fusion experiment disappoints The idea that we could build

Suslick, Kenneth S.

382

ABOUT CALENDAR FEES ENROLLMENT RECORDS University Home MyUCSC People Calendars A-Z Index  

E-Print Network (OSTI)

. Paul, Jr. Art Kirk Willis History 1999 Noel Fallows Romance Languages (postponed until end of headship Geography Bernard Dauenhauer Philosophy & Religion Paul Edmonston Art Mary Legler Music William Free English Art Frank K. Gibson Political Science Richard Hill Chemistry Charles Patterson English Warren Spencer

California at Santa Cruz, University of

383

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Think of it like the index of a book. It is structured so that synonyms, acronyms, and cross-referencing provide multiple ways for you to access information.

384

The Effects of Nickel in Oxide Layers on the AZ91 Mg Alloys ...  

Science Conference Proceedings (OSTI)

Aerosol Route Synthesis of Copper Oxide Nanoparticles Using Copper Nitrate Solution AlGaAs-Based Optical ... Defect Energetics and Fission Product Transport in ZrC ... Enhancing Mineral Beneficiation by High Intensity Power Ultrasound.

385

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

386

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Aluminum Industry Analysis Brief ; American Clean Energy and Security Act of 2009 - Analysis of Energy Market and Economic Impacts of H.R. 2454 ;

387

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

NERC (North American Electric Reliability Corporation; includes U.S. and Canada) Definition; Map; NERC Web Site (Leave EIA Site)

388

An A-Z of offshore oil and gas. Second ed  

Science Conference Proceedings (OSTI)

This is an illustrated international glossary and reference guide to the offshore oil and gas industries, and their technology. It contains more than 4,000 terms in current use, with 20 full-page maps and 200 line drawings, plus extensive appendices. The new edition has been considerably expanded, revised and updated. There are new features on subjects such as: new drilling rigs, fire and gas detection, gas dehydration, accommodation platforms, new articulated loading platforms, acoustic enclosures, and more. There are additional tables and maps as well as many more terms which have now come into practical use.

Whitehead, H.

1983-01-01T23:59:59.000Z

389

Evaluation of Plug Power Gensys 5C Fuel Cell System in Mesa, AZ: Final Report  

Science Conference Proceedings (OSTI)

A pre-commercial Plug Power Gensys 5C fuel cell was installed at the Arizona State University - Photovoltaic Testing Laboratory (ASU-PTL). The proton exchange membrane (PEM) fuel cell is fueled with natural gas and exports up to 5 kW to the local electrical grid. The overall performance and maintenance history over 18 months of operation is chronicled. PEM fuel cells are being positioned by Plug Power and other vendors as residential power generators.

2006-01-25T23:59:59.000Z

390

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Wholesale Electricity (See Electric Sales for Resale) Wholesale Market Data (Electricity) Why are gasoline prices higher in some ...

391

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

R. Rack Prices (Gasoline; includes U.S., PADD & State) Data; Definition; Rack Sales (Gasoline; includes U.S., PADD & State) Data; Definition; Railroad ...

392

Wahlfach II: ,,Ansthesie von A-Z Von der Prmedikation bis zur postoperativen Visite"  

E-Print Network (OSTI)

://www.bmbf.de/pub/begabtenfoerderungswerke.pdf Handbuch Promotion: Forschung - Förderung ­ Finanzierung Ansgar Nünning/Roy Sommer (Hrsg.) Verlag: Metzler

Manstein, Dietmar J.

393

C22 Twinning Behavior in AZ31-B Polycrystal Texture Subjected to ...  

Science Conference Proceedings (OSTI)

A37 Unconventional Method of Nitriding of 316l Austenitic Steel A38 Role of ..... I24 The Study of Cotton Finishing by Artemsia Argyi Oil Microcapsules.

394

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Major Coal Consumer (Manufacturers and Coke Plants) Major Coal Mines ... Miles Driven per Vehicle; Miles per Gallon; Minnesota Energy Profile ; ...

395

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey (CBECS ) (# of buildings, ... Consumption of Petroleum (Petroleum Products Supplied; includes U.S. & International)

396

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Alternative fuels survey forms; ... Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran, The ; Average diesel fuel price

397

double-sided arc welding of az31b magnesium alloy sheet  

Science Conference Proceedings (OSTI)

Jul 20, 2012... tailor-welded blanks for forming automotive structural components. ... initial investigations suggest that visually acceptable symmetrical welds...

398

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... EIS: Environmental Impact Statement;

399

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

400

Lattice Strain Evolution during In-situ Deformation of AZ31 Alloy ...  

Science Conference Proceedings (OSTI)

Based on the deviation of the lattice strain from its linear elastic trajectory, basal slip is identified in (10-12) and (10-13) grains at ~ 75 and 90 MPa respectively.

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

deformation behaviour of az80 subject to multi-axial tensile loading  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... If the price of this product displays as $0.00 for your customer category, you may download it for free. You must, however, add it to your cart and...

402

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Copyright & Reuse Accessibility. Related Sites U.S. Department of Energy USA.gov FedStats. Stay Connected Facebook Twitter YouTube Email Updates RSS Feeds ...

403

Solidification Heat Transfer Analysis of AZ91D Cast Strip by Using a ...  

Science Conference Proceedings (OSTI)

The heat transfer coefficient between the molten magnesium ally and copper roll is important to cast magnesium strip. In the present study investigate the heat...

404

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, stocks, ... Petroleum Cost to Electric Power Industry (U.S., Census Divsion & State) Annual;

405

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

406

SIAM Conference on Numerical Combustion Sedona, AZ May 9-12, 2004  

Science Conference Proceedings (OSTI)

The Society for Industrial and Applied Mathematics hosted the Tenth International Conference on Numerical Combustion held May 9-12, 2004 in Sedona, Arizona. This distinguished conference series began in 1985 in Sophia Antipolis, France and was followed by conferences in San Francisco, California (1987), Juan les Pins, France (1989), St. Petersburg Beach, Florida (1991), Garmisch, Germany (1993), New Orleans, Louisiana (1996), York, England (1998), Amelia Island, Florida (2000), and Sorrento, Italy (2002). SIAM is widely recognized as the originator and the U.S. anchor of this important meeting whose topics concerns the applied mathematics and computation associated with combustion and reactive flow. In particular, the International Numerical Combustion Symposiums have become one of the international major venues for research on direct simulation and modeling turbulent reacting flow. It is also one of the major international venues for theoretical work in reacting flows. This meeting drew approximately 200 participants from 30 countries whose research included the topics in turbulence, kinetics, detonation, flames, pollution, microgravity, micro-combustion, ignition, applications of parallel processing, tera-scale computation of combustion applications, material synthesis, droplets and sprays, heterogeneous combustion, energetic materials (propellants and explosives), engine and furnace combustion, fires, numerical methods and, software engineering for combustion applications.

None

2004-09-23T23:59:59.000Z

407

Maintenance of Open Chromatin States by Histone H3 Eviction and H2A.Z  

E-Print Network (OSTI)

coregulator occupancy and chromatin modification. Proc Natlsuggested that 30-50% of chromatin-bound H3 undergoesa broad range of chromatin-based phenotypes, including

Lombardi, Laura

2011-01-01T23:59:59.000Z

408

Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ  

Science Conference Proceedings (OSTI)

Uranium mining and processing near Monument Valley, Arizona resulted in the formation of a large nitrate plume in a shallow alluvial aquifer. The results of prior field characterization studies indicate that the nitrate plume is undergoing a slow rate of attenuation via denitrification, and the results of bench-scale studies suggest that denitrification rates can potentially be increased by an order of magnitude with the addition of ethanol as a carbon substrate. The objective of the study was to investigate the potential of ethanol amendment for enhancing the natural denitrification occurring in the alluvial aquifer. Pilot tests were conducted using the single well, push-pull method and a natural-gradient test. The results showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicate the ethanol amendment effected a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrogen indicated that the nitrate concentration reductions were biologically mediated. Continued monitoring after completion of the pilot tests has shown that nitrate concentrations in the injection zone have remained at levels three orders of magnitude lower than the initial values, indicating that the impacts of the pilot tests have been sustained for several months.

Borden, A. K.; Brusseau, M. L.; Carroll, Kenneth C.; McMillan, Andrew; Akyol, N. H.; Berkompas, J.; Miao, Z.; Jordan, F.; Tick, Geoff; Waugh, W. J.; Glenn, E. P.

2012-01-01T23:59:59.000Z

409

Microsoft Word - WESTCARB AZ Pilot FactSheet--BKi 10-28.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

yet the area hosts one of the West's largest concentration of baseload coal-fired power plants, making it an ideal location for future CO 2 capture and storage projects....

410

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales ... State Energy Data System ... provide multiple ways for you to access ...

411

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The EIA Glossary includes definitions of technical terms. Please use the glossary to find the meanings of words. What items are included?

412

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Smart Grid (Electrical System) Study; SO 2 Emissions (Electricity Industry) Solar Electricity Generation; Solar Energy Potential (map) Photovoltaic; Solar ...

413

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Electric Power Grid; Electric Power Industry Maps; Electric Power Monthly (Report; ... Electrical System Smart Grid Study; Electricity (Main Electricity Web Page)

414

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

of large-scale integration of wind power in the electricityintegration in buildings") up to 550 /MWh; Sewage and landfill gas: 45-60 /MWh; Wind

Haas, Reinhard

2008-01-01T23:59:59.000Z

415

Case Study: Grand Junction VA Medical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion Data - Building Additions - PV Solar Array www.antaresgroupinc.com Key Energy Usage Characteristics * Electricity Use: - Summer (Max.): 494 MWh - Winter (Min.): 367 MWh -...

416

Western Veg Management EA  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Glen Canyon to Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project within the Coconino National Forest DOE/EA-1863 July 2012 Lead Agency: United States Department of Energy, Western Area Power Administration Cooperating Agency: United States Forest Service Coconino National Forest FINAL ENVIRONMENTAL ASSESSMENT DOE/EA-1863 Glen Canyon - Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project Coconino and Yavapai Counties, Arizona U.S. Department of Energy Western Area Power Administration Desert Southwest Customer Service Region 615 South 43rd Avenue Phoenix, Arizona 85009 U.S. Department of Agriculture US Forest Service Coconino National Forest 1824 S. Thompson St. Flagstaff, AZ 86001 July 2012

417

Co-production of Hydrogen and Electricity (A Developer's Perspective)  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-production of Hydrogen and Electricity (A Developer's Perspective) Pinakin Patel FuelCell Energy, Inc. Transportation and Stationary Power Integration Workshop Fuel Cell Seminar 2008 Phoenix, AZ October 27, 2008 reliable, efficient, ultra-clean Presentation Outline * FuelCell Energy Overview * Direct Fuel Cell (DFC) Technology Status * Hydrogen Co-production Technology, Benefits and Status * Strategic Input for the DOE Workshop FCE Overview * Leading fuel cell developer for over 30 years - MCFC, SOFC, PAFC and PEM (up to 2 MW size products) - Over 230 million kWh of clean power produced world-wide (>60 installations) - Renewable fuels: over two dozen sites with ADG fuel - Ultra-clean technology: CARB-2007 certified Danbury, CT * Highly innovative approach to fuel cell development

418

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Nangle, National Renewable Energy Laboratory (NREL) John Nangle, National Renewable Energy Laboratory (NREL) Tribal Leader Forum, Phoenix, AZ - May 30 - 31, 2013 State Incentives and Project Impacts Main Points - Market Context * State Renewable Portfolio Standards (RPS) - What are they? - How can they help your project? - Potential gap means more market demand for RE projects Starting a Renewable Energy Project * What renewable resources exist? * What sites with resources do you own? * To whom will you sell the electricity? * How will federal and state incentives or policies impact your project? * Access to transmission * Other policies - Interconnection standards - Environmental standards Renewable Portfolio Standard (RPS) * A requirement set by a state for utilities to generate x% of electricity from renewables by a specific date

419

Susan Martindale  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEETING MEETING ALBUQUERQUE, NEW MEXICO APRIL 21-23, 2004 John Allen Transportation Research Board of the National Research Council Battelle 901 D Street, S.W. Washington, DC 20024 (202) 646-5225 FAX: (202) 646-5271 allenj@battelle.org Dennis Ashworth U.S. Department of Energy Office of Environmental Management 1000 Independence Avenue, S.W. Washington, DC 20585 (202) 586-8548 Dennis.Ashworth@hq.doe.gov Frederic Bailly Cogema, Incorporated 4800 Hampden Lane, Suite 1100 Bethesda, Maryland 20814 (301) 986-8585 fbailly@cogema-inc.com Rich Baker Arizona Radiation Regulatory Agency 4814 South 40 th Street Phoenix, Arizona 85040 (602) 255-4845 rbaker@aara.state.az.us Ira Baldwin, President National Conference of State Transportation Specialists

420

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

3 3 Normalized Annual End Uses of Water in Select Restaurants in Western United States (1) Fixture/End Use (2) Faucets Dishwashing Toilets/Urinals Ice Making Total Indoor Use (3) (4) (4) Building Size (SF) Seats: Meals: Benchmarking Values for Restaurants (6) N Gal./SF/year 90 Gal./meal 90 Gal./seat/day 90 Gal./employee/day 90 Note(s): Source(s): American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000. 25th Percentile of Users 130 - 331 6 - 9 20 - 31 86 - 122 Familiy-style dine-in establishments. Four restaurants in southern California, one in Phoenix, AZ. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EA-1863-FEA-2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen Canyon to Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project within the Coconino National Forest DOE/EA-1863 July 2012 Lead Agency: United States Department of Energy, Western Area Power Administration Cooperating Agency: United States Forest Service Coconino National Forest Approved October 2012 FINAL ENVIRONMENTAL ASSESSMENT DOE/EA-1863 Glen Canyon - Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project Coconino and Yavapai Counties, Arizona U.S. Department of Energy Western Area Power Administration Desert Southwest Customer Service Region 615 South 43rd Avenue Phoenix, Arizona 85009 U.S. Department of Agriculture US Forest Service Coconino National Forest 1824 S. Thompson St. Flagstaff, AZ 86001

422

EVS24  

NLE Websites -- All DOE Office Websites (Extended Search)

6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project Stephen Schey 1 , Don Scoffield 2 , John Smart 2 1 ECOtality North America, 430 S. 2nd Ave., Phoenix, AZ 85003, sschey@ecotality.com 2 Idaho National Laboratory, 2351 .N Boulevard, Idaho Falls, ID 83415, don.scoffield@inl.gov, john.smart@inl.gov Abstract ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over

423

SRS - Retiree Benefits - Forms  

NLE Websites -- All DOE Office Websites (Extended Search)

Forms Forms Medical Forms Return completed forms to: 5-200 Health Care Programs Enrollment Change Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808 5-340 Medical Claim Form Claims Processing Center P.O. Box 100300, Columbia, SC 29202 -- Pharmacy Claim Form Caremark Prescription Drug Claim Processing Center, P.O. Box 52059, Phoenix, AZ 85072-2059 Dental Forms Return completed forms to: 5-200 Health Care Programs Enrollment Change Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808 5-342 Dental Claim Form Claims Processing Center P.O. Box 100300, Columbia, SC 29202 Life Insurance Return completed forms to: 5-171 Contributory Group Life Application and Deduction Authorization Benefits Solutions Service Center Bldg 703-47A, Aiken, SC 29808

424

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Resource Exchange Center Transportation Resource Exchange Center presented at The Transportation External Coordination Working Group (TEC) Meeting Phoenix, AZ, April 4, 2005 ATR Institute 2 The newly redesigned T-REX Website will be published this Spring with... Increased Usability More Documents More Resources Search Based on Your User Type Search by Subject Site Search Capabilities Transportation Resource Exchange Center ATR Institute 3 ATR Institute Transportation Resource Exchange Center 4 Search by User Type ATR Institute Transportation Resource Exchange Center 5 Currently, the Center is conducting a telephone usability survey of our Website users, including many TEC members. So far, over 50 interviews have been conducted and valuable comments given by all participants. If you have not been contacted and

425

EA-1665: Final Environmental Assessment and Finding of No Significant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Finding of No Final Environmental Assessment and Finding of No Significant Impact EA-1665: Final Environmental Assessment and Finding of No Significant Impact Davis-Kingman Tap 69-kV Transmission Line Rebuild Project, Mohave County, Arizona For more information, contact: Ms. Linette King Desert Southwest Region Western Area Power Administration P.O. Box 6457 Phoenix, AZ 85005-6457 Telephone: 602-605-2434 Fax: 602-605-2630 Electronic mail: lking@wapa.gov The Western Area Power Administration (Western) plans to rebuild a 26.2-mile-long portion of the existing Davis-Kingman Tap 69-kilovolt (kV) Transmission Line located in Mohave County,Arizona. The existing Davis-Kingman Tap 69-kV Transmission Line originates in Bullhead City, Arizona, at the Davis Dam Switchyard and extends northwest of Kingman, Arizona, four

426

LTS-O&M Selected Publications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected Publications Selected Publications LTS-O&M Selected Publications Waugh, W.J., E.P. Glenn, P.H. Charley, B. Maxwell, and M.K. O'Neill. 2011. Helping Mother Earth Heal: Diné College and Enhanced Natural Attenuation Research at U.S. Department of Energy Uranium Processing Sites on Navajo Land. In: Burger, J. (ed.) Stakeholders and Scientists: Achieving Implementable Solutions to Energy and Environmental Issues. Springer, New York, New York. Benson, C.H., W.J. Waugh, W.H. Albright, and R.P. Bush, 2011. "Design and Installation of a Disposal Cell Cover Renovation Field Experiment, Proceedings of Waste Management 2011 Symposium, Phoenix, AZ. Dayvault, J., S. Morrison, and J. Waugh, 2011. "Overview of U.S. Department of Energy Office of Legacy Management Applied Science and

427

May 7, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

PO BOX 670 PO BOX 670 3700 W. MAIN STREET THATCHER, ARIZONA 85552 Office 928-428-2290 Fax 928-428-7061 Web Site Thatcheraz.com TOWN COUNCIL Terry Hinton, Town Manager Robert Rivera, Mayor Charles Morris William Mulleneaux, Vice Mayor Donald Innes Eric Merriman Wayne Griffin Kenneth Larson VIA ELECTRONIC MAIL TO: DSWFPP@wapa.gov 7/27/10 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project The Town of Thatcher Municipal Utility is a member of the Southwest Public Power Resource ('SPPR") Group and supports the proposed ED5

428

DOEIEA-1863  

NLE Websites -- All DOE Office Websites (Extended Search)

DOEIEA-1863 Department of Energy Western Area Power Administration Desert Southwest Customer Service Region P.O. Box 6457 Phoenix, AZ 85005-6457 Department of Energy Western Area Power Administration Finding of No Significant Impact Glen Canyon - Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project Coconino and Yavapai Counties, Arizona Summary - The U.S. Department of Energy (DOE) Western Area Power Administration (Western) proposes to develop and implement a vegetation management and right-of-way maintenance project on the Coconino National Forest (CNF) in Coconino and Yavapai Counties, Arizona (project). The Proposed Action consists of two primary components: (I) initial vegetation removal within and adjacent to Western's rights-of-way, and (2) vegetation

429

The ARRA EAP En  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JANUARY 3, 2011 THE AMERICAN RECOVERY AND REINVESTMENT ACT VOLUME 2, NUMBER 1 JANUARY 3, 2011 THE AMERICAN RECOVERY AND REINVESTMENT ACT VOLUME 2, NUMBER 1 Need to Know DOE/OE Regional Tabletop Exercise "Smart Grid and Cyber Security for Energy Assurance" Upcoming Events NARUC Winter Meetings National Electricity Forum NASEO/ASERTTI Energy Policy and Technology Outlook Conference Action Items Initial State EA Plans Tabletop Exercises Reminders Energy Assurance Success Stories Phoenix, AZ Speedway, IN Other Useful Information and Links 2010 Energy Sector Specific Plan Smart Grid 101 Presentation Winter Fuels Conference Guidance from NASEO Be Prepared to Deal with the Needs of Policymakers Maintain a Good Working Relationship with Private and Public Sector Contacts Alice Lippert, EAP Program Manager

430

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

431

AGENCY:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Administration Western Area Power Administration Desert Southwest Customer Service Region P.O. Box 6457 Phoenix, AZ 85005-6457 FINDING OF NO SIGNIFICANT IMPACT Townsite Solar Project Transmission Line Clark County, Nevada DOE/EA-1960 AND ADOPTION OF U.S. BUREAU OF LAND MANAGEMENT ENVIRONMENT AL ASSESSMENT (DOI-BLM-NV-SOl0-2013-0052-EA) U.S. Department of Energy, Western Area Power Administration ACTION: Adoption of an Environmental Assessment and Issuance of a Finding of No Significant Impact BACKGROUND: U.S. Department of Energy (DOE), Western Area Power Administration (Western) is responding to an interconnection and land grant request by KOWEPO America (KOAM) for the Townsite Solar Power facility and a 2.75-mile-long, 230-kV generation tie line from the facility to Western's Mead

432

EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement to the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and BLM Notice of Availability of the Supplement DOE and BLM Notice of Availability of the Supplement to the Draft Programmatic Environmental Impact Statement EIS-0403-S1: DOE and BLM Notice of Availability of the Supplement to the Draft Programmatic Environmental Impact Statement Solar Energy Development in Six Southwestern States The full document number is EIS-0403D-S1. Project website: http://solareis.anl.gov. The Bureau of Land Management (BLM) and the Department of Energy (DOE) (the Agencies) as joint lead agencies announce the availability of the Supplement to the Draft Programmatic Environmental Impact Statement (EIS) for Solar Energy Development in Six Southwestern States (Supplement) (BLM/DES 11-49, DOE/EIS-0403D-S). Public meetings on the Supplement to the Draft Solar PEIS were held in November and December 2011 in Las Vegas, NV; Phoenix, AZ; El Centro, CA,

433

EM ARRA Best Practices and Lessons Learned Workshop: Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learned Learned Oak Ridge Presenter: Sue Cange EM ARRA BEST PRACTICES and LESSONS LEARNED WORKSHOP Waste Management Symposium Phoenix, AZ www.em.doe.gov 1 March 1, 2012 Oak Ridge Overview of Best Practice or Opportunity pp y Working closely together, the Y-12 Site M&O Contractor, the ORO Reservation disposal cell, DOE-EM, and the Regulators crafted a technically defensible, yet very cost effective characterization program in an effort to rapidly D&D two buildings that were part of the Y-12 ARRA scope. This characterization program should serve DOE-EM well as a new scope s c a ac e a o p og a s ou d se e O e as a e characterization model for disposal of extremely low-level, low risk facilities in the on- reservation disposal cell. Benefit (actual or anticipated) Benefit (actual or anticipated)

434

EA-1863-FONSI-2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 DOE/EA-1863 Department of Energy Western Area Power Administration Desert Southwest Customer Service Region P .0. Box 6457 Phoenix, AZ 85005-6457 Department of Energy Western Area Power Administration Finding of No Significant Impact Glen Canyon- Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project Coconino and Yavapai Counties, Arizona Summary - The U.S. Department of Energy (DOE) Western Area Power Administration (Western) proposes to develop and implement a vegetation management and right-of-way maintenance project on the Coconino National Forest (CNF) in Coconino and Yavapai Counties, Arizona (project). The Proposed Action consists of two primary components: (1) initial vegetation removal within and adjacent to Western's rights-of-way, and (2) vegetation

435

Fuel Cells for Portable Power Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Portable Power Fuel Cells for Portable Power JoAnn Milliken Office of Transportation Technologies Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-2480 JoAnn.Milliken@ee.doe.gov January 15-17, 2002 Phoenix, AZ Presentation Outline * Why are we here? * DOE Transportation Fuel Cell Program * Workshop Objectives * Guidelines for Workshop Product * What have past DOE workshops achieved? Why are we here? Goal 300 10,000 Cost in $/kW 50kW system Today's low volume cost (1 unit) 2002 2010 Gasoline System Cost 50 Today's high volume cost (500,000 units) 1990 3,000 Government: Cost - the primary barrier to commercialization of PEMFCs for automobiles Industry: Business plans include fuel cells or fuel cell powered products

436

Across the Pond Newsletter Issue 6  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Members of DOE's Office of Members of DOE's Office of Environmental Management (EM) and the UK's Nuclear Decommissioning Authority (NDA) held their 8th Standing Committee Meeting on March 2, 2011, at the annual Waste Management 2011 Conference in Phoenix, AZ. The meeting focused on the progress achieved since the last time the committee met in the UK in October 2010 as well as new areas for collaboration such as Project Management and Supply Chain Management. The general concensus was that the collaboration efforts are progressing steadily and that both organizations are recognizing the value of the Agreement. From left-to-right: Jim Marra (Senior Scientist, IPA, DOE), Steve Schneider (Director, Office of Waste Processing, DOE), Edgard Espinosa (US DOE Fellow, Florida International University), Graham Jonsson (National Programmes, NDA), Laurie Judd (VP, NuVision Engineering), Jay Roach (President, Nexergy

437

LM Training & Conferences | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LM Training & Conferences LM Training & Conferences LM Training & Conferences Current Training and Conferences Attended by LM Employees Solar Power International Conference (Chicago, IL; October 21-24, 2013) 2014 National Environmental Justice Conference and Training Program Save-the-Date (English) 2014 National Environmental Justice Conference and Training Program Save-the-Date(Spanish) Past Training and Conferences Attended by LM Employees IAEA Workshop, Note: There is also a write up in the LM Quarterly Program Update. Alaska Forum on Environment (Anchorage, AK; February 2-4 2013) Waste Management Conference (Phoenix, AZ; February 24-28, 2013) National Adaptation Forum (Denver, CO; April 2-3, 2013) National Environmental Justice Conference (Washington, DC; April 3-5, 2013)

438

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

439

file://\\troi2\wwwroot\TeamWorks\index.htm  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 6, 2013 WIPP Quick Facts (As of 2-26-13) 11,112 Shipments received since opening (10,483 CH and 629 RH) 85,498 Cubic meters of waste disposed (85,185 CH and 313 RH) 165,172 Containers disposed in the underground (164,545 CH and 627 RH) WIPP exhibit and truck at Waste Management 2013 The annual Waste Management Conference is scheduled in Phoenix, AZ on February 24 -28. The conference, often referred to as one of the leading international conferences for the management of radioactive material, attracted over 2,200 participants last year. David Huizenga, senior advisor for the U.S. Department of Energy's Office of Environmental Management, served as a panelist for the event's plenary session and had high praise for WIPP in his speech to participants.

440

DOE's Offices of Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Intent (SOI) Statement of Intent (SOI) between the US Dept of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) on decommissioning and waste management was renewed for a further five years during the Waste Management conference in Phoenix, AZ in March. The signatories to the SOI were the DOE's Offices of Environmental Management (EM) and Nuclear Energy (NE) and the NDA, with NE being a new addition to the arrangement. The Office of Environment Management is responsible for the clean-up of the former nuclear weapons' sites and the relationship between them and the NDA has already resulted in collaboration in a number of areas such as thermal treatments for stabilization of wastes, plutonium management, aging facilities management, non-standard fuels

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

442

Public agency cost savings from standardizing energy management temperature control systems  

SciTech Connect

In 1992, the city of Phoenix, AZ, standardized its energy management temperature control systems (EMTCS) in the construction of a 5-year series of projects that included a new library, city hall, renovated art museum, a museum of science and technology, a parking garage, and a rebuilt municipal building. This article presents an evaluation of the city`s philosophy for the standardization of EMTCS equipment, the issue of interconnectibility, and development and procurement guidance. Our research indicates that the perception that front-end costs increase when EMTCS work is not bid competitively is exaggerated. We also found that it is easier for private businesses to make sole source procurement decisions than it is for governments, because businesses are not constrained by laws that require awarding contracts to the lowest bidder. 1 tab.

Mayo, R.E.; Badger, W.W.; Bashford, H.H.

1995-04-01T23:59:59.000Z

443

Degradation in Solid Oxide Cells During High Temperature Electrolysis  

DOE Green Energy (OSTI)

Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation, held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: Delamination of O2-electrode and bond layer on steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

Manohar Sohal

2009-05-01T23:59:59.000Z

444

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P O W E R A D M I N I S T R A T I O N P O W E R A D M I N I S T R A T I O N Role of PMAs in Transmission and Distribution US DOE Office of Indian Energy Tribal Leader Forum Melanie Jackson Bonneville Power Administration May 30-31, 2013 Phoenix, AZ B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Key Topics  Introduction to BPA  Governing Statutes  Business Model  BPA Transmission System  Infrastructure Investments  Customer Involvement B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

445

Microsoft Word - ED5-PV Hub Support Ltr.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

TOWN OF WICKENBURG TOWN OF WICKENBURG 155 N. Tegner St., Suite A, Wickenburg, Arizona 85390 (928) 684-5451 x529 FAX (602) 506-1580 Sent via e-mail Mr. Darrick Moe Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 th Parker-Davis Project customer meeting, and in conjunction with comments previously submitted by the Southwest Public Power Resources ("SPPR") Group, the Town of Wickenburg is submitting these comments in support of the proposed ED5-Palo Verde Hub Project, also known as the SPPR Group Proposal. Furthermore, we are in support of Western Area Power Administration's

446

SOLERAS - Solar Cooling Engineering Field Tests Project: United Technologies Research Center. Design guidelines for solar heating/cooling/power generation systems  

Science Conference Proceedings (OSTI)

This report documents the methodology, design guidelines and analytical tools for the preliminary technical/economic evaluation of solar heating/cooling/power generation systems. In particular, it provides the theoretical framework, data bases and software tools for: determining the preliminary economic feasibility of solar-powered configurations compared with grid-supplied electric power and/or competing fossil fuels; selecting the optimum system configuration with respect to solar collector area and ''solar-side'' thermal storage capacity. Implementation of the methodology described in this report can be facilitated by the use of the accompanying IBM PC-compatible computer program ''SOLERAS''. This report represents the final task of the multi-year SOLERAS Program -- jointly sponsored by the US Department of Energy and the King Abdulaziz City for Science and Technology -- which involved the development and field-testing of a solar-powered cooling system in Phoenix, AZ. 11 refs., 37 figs.

Not Available

1987-01-01T23:59:59.000Z

447

North American EV show  

Science Conference Proceedings (OSTI)

The hit of the North American EV and Infrastructure Conference held in Phoenix, AZ in December, was without a doubt, the new hybrid vehicle from Toyota known as the Prius. The Prius has both an internal combustion engine and an electric motor. As ordinary as it may appear, there`s a critical difference between the Prius and the other electric vehicles that were being demonstrated in Phoenix. Prius is an electric vehicle that never needs to be recharged. Range is not an issue, nor is battery replacement. This is the first mass-produced car with hybrid power providing the benefits of low emissions and high gasoline mileage in a real-world vehicle that can be driven anywhere. Many other alternative fueled vehicles were on display from other manufacturers as well. GM`s EV1, Nissan`s Altra station wagon, Ford`s electric Ranger pickup, DaimlerChrysler`s EPIC van as well as small, short-range ``neighborhood vehicles`` from Bombardier and Global Electric Motor-Cars were available for inspection and test drives.

Pfleeger, D.

1999-01-01T23:59:59.000Z

448

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network (OSTI)

MWh of incremental renewable energy production provides, onincremental renewable energy production exceeds 10 billion

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

449

Phoenix City of Colorado Springs solar assisted heat pump project. Technical report, December 1, 1977-April 1, 1978  

DOE Green Energy (OSTI)

The design of packaged Solar Assisted Optimized Heat Pump (SAOHP) systems as a step towards stimulating the advancement of an industrial, commercial, and professional capability for producing and distributing this type of system is covered. The SAOHP system consists of a collector group, a ground coupled seasonal storage (GCSS) group, and an energy transport and distribution (ETD) group. The design for the collector group with first tier parts and assembly lists are included, along with the ETD group designs for the smaller capacity units. Rating curves are included for the 30,000 BtuH (2-1/2 ton), 36,000 BtuH (3 ton), 48,000 BtuH (4 ton), 60,000 BtuH (5 ton) and 90,000 BtuH (7-1/2 ton) units. All system revisions have been completed and the results of these revisions documented. The system analysis program, modified to compliance with NBS 76-1137 during the second quarter, has been successfully generating daily, weekly and monthly energy balances. Reliability of the SAOHP system has been fair this quarter and problems occurring are documented. Climatic region definition work is included in complete form. The economic analysis format for making life cycle cost comparisons between various available heating and cooling systems and the SAOHP is included. A list of visitors, project photographs and presentations are included in the appendices.

Jardine, D.M.; Jones, D.W.

1978-06-01T23:59:59.000Z

450

PhoenixSim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks  

Science Conference Proceedings (OSTI)

Recent developments have shown the possibility of leveraging silicon nanophotonic technologies for chip-scale interconnection fabrics that deliver high bandwidth and power efficient communications both on- and off-chip. Since optical devices are fundamentally ...

Johnnie Chan; Gilbert Hendry; Aleksandr Biberman; Keren Bergman; Luca P. Carloni

2010-03-01T23:59:59.000Z

451

An Observational and Numerical Study of a Sheared, Convective Boundary Layer. Part I: Phoenix II Observations, Statistical Description, and Visualization  

Science Conference Proceedings (OSTI)

Four-dimensional velocity fields derived from dual Doppler radar observations are the basis of a description and statistical analysis of a convective, sheared planetary boundary layer during an afternoon over the High Plains of eastern Colorado. ...

Jeanne M. Schneider; Douglas K. Lilly

1999-09-01T23:59:59.000Z

452

A recursive programming analysis of water conservation in Arizona agriculture : a study of the Phoenix active management area .  

E-Print Network (OSTI)

??Arizona agriculture faces many changes in the near future. One of the most imminent changes will come from the enactment of the 1980 Arizona Groundwater (more)

Lierman, Wally Kent.

1983-01-01T23:59:59.000Z

453

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

454

The Fatigue Behavior of AZ91D/SiCp and 2XXX/SiCp Composites  

Science Conference Proceedings (OSTI)

Effect of Strain Rate and Triaxiality on the Constitutive Response of Super ... High Energy Density Film-on-foil Capacitor Fabrication Utilizing Electrostatic...

455

Superfund Record of Decision (EPA Region 9): Tucson International Airport Area (volume 1 and 2), Tucson, AZ, September 30, 1997  

SciTech Connect

This Record of Decision (ROD) addresses the contamination at the Tucson International Airport Property (hereafter referred to as the `Airport Property`), Burr-Brown Corporation property (Burr-Brown Property) and the former West-Cap Arizona Company property (former West-Cap Property) located within the Tucson International Airport Area Superfund Site in Tucson, Arizona (TIAA Site). This ROD addresses soils and shallow groundwater contaminated with volatile organic compounds (VOCs), soil and sludges contaminated with polychlorinated biphenyls (PCBs), and closure of the Tucson Airport Authority Landfill (TAA Landfill).

NONE

1998-01-01T23:59:59.000Z

456

Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.  

Science Conference Proceedings (OSTI)

This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

Huang, Yunzhi; Gowri, Krishnan

2011-02-28T23:59:59.000Z

457

Superfund record of decision (EPA Region 9): Yuma Marine Corps Air Station, Operable Unit 2, Yuma, AZ, December 2, 1997  

SciTech Connect

This Record of Decision (ROD) for Operable Unit (OU2) documents the remedial action plan for OU2 at Marine Corps Air Station (MCAS), Yuma, Arizona. On the basis of the data collected at the OU2 sites, no further action is necessary for 12 of the 18 CAOCs included in OU2, because these sites do not pose a threat to human health or the environment. However, remedial action is required to protect human health and comply with regulatory requirements at three of the CAOCs in OU2 because of the presence of ACM. Under this alternative, ACM fragment visible on soil surfaces would be collected manually. Collection would include removing approximately the upper inch of soil beneath the ACM to reduce the potential for asbestos fibers remaining behind in the soil. The ACM and soils would be stockpiled, manifested, loaded, transported, and disposed of at a permitted facility.

NONE

1998-10-01T23:59:59.000Z

458

Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

2001-02-01T23:59:59.000Z

459

Computer software configuration management plan for the 241-AY and 241-AZ tank farm MICON automation system  

SciTech Connect

Software configuration items pertaining to the process control systems, of the ventilation systems of the tank farms, are identified and configuration controls are defined.

Teats, M.C.

1995-04-01T23:59:59.000Z

460

Building America Top Innovations Hall of Fame Profile … Community Scale High-Performance with Solar: Pulte Homes, Tucson, AZ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pulte Homes' Civano project in Tucson, Pulte Homes' Civano project in Tucson, Arizona, is one of the few communities in the United States to integrate passive and active solar with a comprehensive building science strategy. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Pulte Homes' Civano project in Tucson, Arizona, have an extraordinary impact, demonstrating the business case for adopting proven energy-efficiency measures along with solar energy systems for an entire community. Building America has shown in numerous field demonstrations that critical economies of scale and maximum energy benefits can be realized when production builders select energy-efficiency

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Technologies Office: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Homes Alabama - SEP Partner profile Website: WISE Home Energy Program Back to Top Arizona Phoenix, Arizona Partner profile Featured story: Phoenix Overcomes Barriers and...

462

Solid-State Lighting Issue 23: Selected Business and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Phoenix Group through a stock swap. Lighting Science is "preparing to introduce LED light bulbs for both commercial and residential applications" in late 2004. Phoenix Group...

463

Arizona | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Energize Phoenix Commercial Incentives (Arizona) Through a partnership with Arizona State University and Arizona Public Service (APS), the City of Phoenix is providing...

464

Arkansas's 4th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Arkansas. Registered Energy Companies in Arkansas's 4th congressional district PRM Energy Phoenix Renewable Energy Phoenix Biomass Pinnacle Biofuels Inc Retrieved from "http:...

465

VA's CHP Program  

NLE Websites -- All DOE Office Websites (Extended Search)

- 36,353 MWh Total Contract Cost - 70.3 million 1,900MWh generation + Extra Boilers + FREE STEAM VA's Existing CHP Plants Partnerships for Healing Environments 2010 6...

466

NETL Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

to Revision Notes IGCC and PC fired with Bituminous Coal CF for IGCC 80%, PC 85% 30-Year, Current -Dollar Levelized Cost of Electricity 150MWh 86MWh +73% 4 DOE CCS...

467

step 1: retrieve usage step 2: convert usage  

E-Print Network (OSTI)

planet #12;step 2: convert usage data to ghg electricity conversion EPA eGRID database provides state by state data on: lbs CO2 / MWh lbs NOx / MWH eGRID Massachusetts ­ specific conversion factors only

Paulsson, Johan

468

U.S. Department of Energy Pumping System Assessment  

E-Print Network (OSTI)

://www.epa.gov/climateleaders/smallbiz/footprint.html #12;Emissions Savings · Pump kWh savings ­ 824 MWH savings · (981.1 ­ 157.0 MWH) · Location eGrid

Oak Ridge National Laboratory

469

Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana  

E-Print Network (OSTI)

change in electricity consumption of 166,217 MWh/year. Allincrease in electricity consumption of 166,217 MWh/year alsoelectricity consumption by 166,217 megawatt hours per year (

Kotchen, Matthew J; Grant, Laura E.

2008-01-01T23:59:59.000Z

470

Review of current Southern California edison load management programs and proposal for a new market-driven, mass-market, demand-response program  

E-Print Network (OSTI)

Once the spot market energy prices reaches $100/MWh, thehour until spot market energy prices reach $250/MWh. At thatand actual spot market energy prices. If, for example, the

Weller, G.H.

2002-01-01T23:59:59.000Z

471

Kentucky Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hydroelectric : 288 thousand MWh 1.3% Aug-13 find more: Other Renewables : 16 thousand MWh 0.1% Aug-13 Stocks: Kentucky: Share of U.S. Period: find ...

472

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

$10/MWh for wind Average Energy Price Integration Costs Highprices: The case of wind electricity in Spain. Energy

Mills, Andrew

2010-01-01T23:59:59.000Z

473

Is Real-Time Pricing Green?: The Environmental Impacts of Electricity Demand Variance  

E-Print Network (OSTI)

Coal Natural Gas and Oil Nuclear Quantity Supplied (MWh)natural gas, and oil. In this market, when quantity supplied

Holland, Stephen P.; Mansur, Erin T.

2004-01-01T23:59:59.000Z

474

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hourly average CAISO real time prices (for 2006) on the pathin these prices. Average Real Time Price ($/MWh) Hour

Phadke, Amol

2008-01-01T23:59:59.000Z

475

Microgrid Dispatch for Macrogrid Peak-Demand Mitigation  

E-Print Network (OSTI)

The installed battery has an energy capacity of 4 MWh and acapacity appears to be decreasing with increasing battery

DeForest, Nicholas

2013-01-01T23:59:59.000Z

476

Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaNGaN heterostructure field-effect transistor  

E-Print Network (OSTI)

. Redwing Epitronics/ATMI, Phoenix, Arizona 85027 Received 14 December 1999; accepted for publication 21

Yu, Edward T.

477

Demonstration of Energy Savings of Cool Roofs  

E-Print Network (OSTI)

Philadelphia, Phoenix, and Washington DC/Baltimore. Sum totals for all 11 MSAs were: annual electricity

Konopacki, S.

2010-01-01T23:59:59.000Z

478

Federal Energy Management Program: Federal Correctional Institution -  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Correctional Institution - Phoenix, Arizona to someone by E-mail Share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Facebook Tweet about Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Twitter Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Google Bookmark Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Delicious Rank Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on Digg Find More places to share Federal Energy Management Program: Federal Correctional Institution - Phoenix, Arizona on AddThis.com... Energy-Efficient Products Technology Deployment

479

Value of Demand Response Theoretical thoughts Klaus Skytte  

E-Print Network (OSTI)

/MWh consumer surplus CP MWhqload MB #12;Determination of load profile MWh/h qt load Timet #12 Companies Private households #12;Determination of load each hour /MWh CP MWhqload MB #12;Consumer surplus the welfare losses in each period. The load-serving entity might determine the consumer price (CP

480

,"Arizona Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"N3050AZ3","N3010AZ3","N3020AZ3","N3035AZ3","NA1570SAZ3","N3045AZ3" "Date","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of Arizona Natural Gas...

Note: This page contains sample records for the topic "mwh phoenix az" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Workshop title: Transmission and Utility Scale Solar Opportunities "South of Phoenix" (or should we say "in Arizona" if we inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose: A stakeholder communication with transmission customers, Tribes, developers, state Purpose: A stakeholder communication with transmission customers, Tribes, developers, state and federal agencies, and utilities about Western Area Power Administration's (Western) Rocky Mountain Region (RMR) and its Transmission Planning and Business Unit. The workshop will provide an overview of Western RMR's transmission planning and services and provide an opportunity for open discussion on overcoming transmission challenges in the region. The workshop will also meet the local transmission planning process requirements for FERC Order 890 as outlined in Western's Open Access Transmission Tariff.

482

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

483

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-09-27T23:59:59.000Z

484

Scenes of Sun City  

E-Print Network (OSTI)

City, AZ, August 29th, 2010. Brian Knecht Photo 4: Sun City4, Sun City, AZ, August 29th, 2010.Scenes of Sun Valley Photo 5: Sun City 5, Sun City, AZ,

Knecht, Brian

2013-01-01T23:59:59.000Z

485

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book (EERE)

4 4 2009 Energy Consumption Expenditures by Selected City ($2009/SF) (1) Number of Number of Urban Responses Suburban Responses New York, NY 4.32 33 N.A. N.A. Los Angeles, CA 2.84 22 2.47 78 Chicago, IL 1.72 58 N.A. N.A. Houston, TX 2.16 27 2.29 149 Phoenix, AZ 2.23 13 1.81 42 Philadelphia, PA 2.81 14 2.87 33 San Antonio, TX N.A. N.A. N.A. 15 San Diego, CA 2.67 14 1.69 75 Dallas, TX 2.27 23 2.19 131 San Jose, CA N.A. N.A. 1.88 76 San Francisco, CA 2.55 64 2.19 46 Miami, FL N.A. N.A. 2.77 29 Washington, DC 3.29 78 N.A. N.A. Seattle, WA 1.51 24 1.75 29 Boston, MA 3.19 32 2.99 47 National Average (2) 2.33 2.08 Note(s): Source(s): 1) Energy includes electric, gas, fuel oil, purchased steam, purchased chilled water, and water/sewage expenditures. "N/A" indicates that the sample size was not large enough to be assumed representative of a given city. BOMA cautions that any data based on fewer than 25

486

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

5 5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on four budget hotels and one luxury hotel. Three budget hotels in Southern California, one in Phoenix, AZ. Luxury hotel in Los Angeles, CA. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) Based on one hotel. 3) Based on three hotels. 5) The

487

ANALYSIS OF OFF-GRID, OFF-PIPE HOUSING FOR HOT-HUMID AND HOT-ARID CLIMATES  

E-Print Network (OSTI)

This paper investigates the feasibility of off-grid, off-pipe housing in hot-humid and hot-arid climates in the U.S. The study aims to eliminate the need for non-renewable sources of energy and municipal water in residences by using off-grid, off-pipe design approach. To accomplish this, a 2001 International Energy Conservation Code compliant house in Houston, TX and Phoenix, AZ was simulated to determine the base-case energy and water use. Based on the availability of on-site renewable energy and water sources (i.e., solar, wind and biomass and rainfall) in these locations, energy and water efficiency measures were selected in order to reduce the energy and water use to a level that could be met solely by on-site renewable resources. Finally, the sizing of the renewable energy and rainwater harvesting systems was performed to provide for daily needs as well as cumulative needs during the critical periods, in order to achieve complete self sufficiency in terms of energy and water use. The analysis was performed by integrating the results of DOE-2.1e, F-Chart and PV F-Chart programs, and cumulative rainwater supply and water demand analysis. The simulation results demonstrate the differences between the priorities for energy efficiency, water-efficiency and renewable energy measures in hot-humid and hot-arid climates.

Malhotra, M.; Haberl, J.

2008-12-01T23:59:59.000Z

488

Residential heating and cooling energy cost implications associated with window type: Revision  

SciTech Connect

We present a comparative study in which residential heating and cooling energy costs are analyzed as a function of window glazing type, with a particular emphasis on the performance of windows having low-emittance coatings. The DOE-2.1B energy analysis simulation program was used to generate a data base of the heating and cooling energy requirements of a prototypical single-family ranch-style house. Algebraic expressions derived by multiple regression techniques permitted a direct comparison of those parameters that characterize window performance: orientation, size, conductance, and solar transmission properties. We use these equations to discuss the energy implications of conventional double- and triple-pane window designs and newer designs in which number and type of substrate, low-emittance coating type and location and gas fill are varied. Results are presented for the heating-dominated climate of Madison, WI, and cooling-dominated locations of Lake Charles, LA, and Phoenix, AZ. The analysis shows the potential for substantial savings but suggests that both heating and cooling energy should be examined when evaluating the performance of different fenestration systems. Coating and substrate properties and the location of the coating in the glazing system are shown to have moderate effects as a function of orientation and climate. In addition, with the low-conductance glazing units, the window frame becomes a contributor to overall residential energy efficiency. 4 refs., 10 figs., 1 tab.

Sullivan, R.; Selkowitz, S.

1986-11-01T23:59:59.000Z

489

Residential heating and cooling energy cost implications associated with window type  

SciTech Connect

A comparative study is presented in which residential heating and cooling energy costs are analyzed as a function of window glazing type, with a particular emphasis on the performance of windows having low-emittance coatings. The DOE-2.1B energy analysis simulation program was used to generate a data base of the heating and cooling energy requirements of a prototypical single-family ranch-style house. Algebraic expressions derived by multiple regression techniques permitted a direct comparison of those parameters that characterize window performance: orientation, size, conductance, and solar transmission properties. These equations are used to discuss the energy implications of conventional double- and triple-pane window designs and newer designs in which number and type of substrate, low-emittance coating type and location and gas fill are varied. Results are presented for the heating-dominated climate of Madison, WI, and cooling-dominated locations of Lake Charles, LA, and Phoenix, AZ. The analysis shows the potential for substantial savings but suggests that both heating and cooling energy should be examined when evaluating the performance of different fenestration systems. Coating and substrate properties and the location of the coating in the glazing system are shown to have moderate effects as a function of orientation and climate. In addition, with the low-conductance glazing units, the window frame becomes a contributor to overall residential energy efficiency.

Sullivan, R.; Selkowitz, S.

1986-11-01T23:59:59.000Z

490

Model year 2010 Ford Fusion Level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

2010-11-23T23:59:59.000Z

491

Model year 2010 Honda insight level-1 testing report.  

DOE Green Energy (OSTI)

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2011-03-22T23:59:59.000Z

492

Terrestrial service environments for selected geographic locations. Final report. [1965--1974 data; to define solar array environment to aid in encapsulation program  

DOE Green Energy (OSTI)

This report contains results obtained from analyses of climatic, precipitation, air pollution, and other environmental data for the years 1965 to 1974 at nine widely different geographic locations in the United States (Albuquerque, N.M.; Bismarck, N.D.; Boston, Mass.; Brownsville, TX.; Cleveland, OH; Fairbanks, AK; Los Angeles, CA; Miami, FL; and Phoenix, AZ). In addition to descriptive and diurnal statistics for 24 individual climatic variables, ''environmental cell'' statistics were computed to obtain the frequencies, durations, and transitions for the simultaneous occurrence of various combinations of environmental variables. Results are presented for the simultaneous occurrence of specific levels of air temperature, relative humidity, wind speed, and insolation, in addition to representative results obtained for other combinations of variables. The results characterize the environmental conditions to which terrestrial solar arrays would be exposed over a 20-year lifetime, and serve to identify environmental factors and levels that can be used in testing candidate encapsulation materials and systems for such terrestrial exposures. An innovative methodology was applied to obtain these results for combinations of environmental variables. Because of its generality and demonstrated feasibility, it is concluded that the methodology also has broad applications to other testing programs.

Thomas, R.E.; Carmichael, D.C.

1976-06-24T23:59:59.000Z

493

Model year 2010 (Gen 3) Toyota Prius level 1 testing report.  

DOE Green Energy (OSTI)

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

2010-06-24T23:59:59.000Z

494

Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)  

DOE Green Energy (OSTI)

Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2011-11-01T23:59:59.000Z

495

Advanced Microturbine Systems  

SciTech Connect

Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. ?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

None

2005-12-31T23:59:59.000Z

496

EM ARRA Best Practices and Lessons Learned Workshop: Overview from Thomas Johnson, Jr., Recovery Act Program Director  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM ARRA BEST PRACTICES and LESSONS LEARNED WORKSHOP Presenter: Thomas Johnson, Jr. Recovery Act Program Director Waste Management Symposium Phoenix, AZ March 1, 2012 www.em.doe.gov 2 Recovery Act Benefits  $6B of Recovery Act funds supported 122 projects/activities; including 29 identified added buy-back projects: › 90 funded projects have been physically completed as of March 1st (74% of total) › Another 23 will be completed in FY 2012 (94% of total) › 7 will be completed in FY 2013 (100% of total)  Small Business: Over $2.1B › Prime: $671,119,367 › Subcontractors: $1,434,858,660  FTEs : 2,672.03 (1QFY2012)  Headcount of 36,787 (End of FY 2011) www.em.doe.gov 3 Recovery Act Funding Details Spend Plan Total does not include $ 10 million reprogrammed to DOE Departmental Administration

497

SIMULATED BUILDING ENERGY PERFORMANCE OF SINGLE-FAMILY DETACHED RESIDENCES DESIGNED FOR OFF-GRID, OFF-PIPE OPERATION  

SciTech Connect

This paper presents the analysis of energy performance of single-family detached homes in three U.S. climates, in order to determine energy-efficiency measures for minimizing the loads and sizing requirements of renewable energy systems that are essential for its offgrid, off-pipe (i.e., utility-independent) operation. The analysis used a DOE-2.1e simulation model of a 2000/2001 IECC (International Energy Conservation Code) standard house as a base case in three climate locations: Minneapolis, MN, Atlanta, GA, and Phoenix, AZ. This selection of measures and determination of loads for renewable energy systems were accomplished by analyzing the energy use using DOE-2.1e simulations and heating/cooling load components using the Manual J Average Load Procedure. The analysis showed several aspects of building energy performance during different times of the year in terms of available energy resources that are critical for the sizing, utilization, and cost effectiveness of renewable energy systems.

Malhotra, Mini [ORNL; Haberl, Dr. Jeff S. [Texas A& M University

2010-01-01T23:59:59.000Z

498

DOE - Office of Legacy Management -- University of Arizona Southwest...  

Office of Legacy Management (LM)

University of Arizona Southwest Experiment Station Buildings - AZ 01 FUSRAP Considered Sites Site: UNIVERSITY OF ARIZONA (SOUTHWEST EXPERIMENT STATION BUILDINGS) (AZ.01) Eliminated...

499

South Africa - Analysis - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA .gov. A-Z Index; A-Z ... African Independent Power Producers Association has noted that there are regulatory barriers ...

500

Three-dimensional shape analysis of coarse aggregates ...  

Science Conference Proceedings (OSTI)

... Rock/Mineral Identification. IN. Natural river gravel. Indiana. Limestone,shale- siltstone, siliceous (eg, quartz, chert). AZ/az. Natural river gravel. Arizona ...

2005-06-06T23:59:59.000Z