National Library of Energy BETA

Sample records for mw wind turbine

  1. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  2. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine...

    Office of Scientific and Technical Information (OSTI)

    for Testing MW-Scale Wind Turbine Generators (Poster) Citation Details In-Document Search Title: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators ...

  3. The 1.5 MW wind turbine of tomorrow

    SciTech Connect (OSTI)

    De Wolff, T.J.; Sondergaard, H.

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  4. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  5. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  6. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of ...

  7. Seneca Nation of Indians Project: 1.8 MW Wind Turbine on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAST ACTIVITIES & PROJECTS 1.8 MW Wind Turbine on Common Lands Department of Energy ... and NG. PROJECT OBJECTIVES 1.8 MW Wind Turbine on Common Lands Design procure and ...

  8. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant

  9. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    SciTech Connect (OSTI)

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  10. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Generators (Poster) (Conference) | SciTech Connect Conference: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) Citation Details In-Document Search Title: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21

  11. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  12. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  13. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)

    SciTech Connect (OSTI)

    McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

    2013-04-01

    In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  14. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  15. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  16. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... SunShot Grand Challenge: Regional Test Centers 50MW extreme-scale turbine HomeTag:50MW ...

  17. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  18. Coalescing Wind Turbine Wakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  19. Coalescing Wind Turbine Wakes

    SciTech Connect (OSTI)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  20. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  1. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. Seneca Nation of Indians Leverages DOE Support for Wind Turbine...

    Broader source: Energy.gov (indexed) [DOE]

    held for its 1.5-MW wind turbine on April 27. Photo by Ken Parker, Food Is Our Medicine. ... held for its 1.5-MW wind turbine on April 27. Photo by Ken Parker, Food Is Our Medicine. ...

  3. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  4. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  5. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  6. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  7. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  8. Distributed Wind Market Report: Small Turbines Lead to Big Growth...

    Energy Savers [EERE]

    Image: Northern Power Systems 2 of 11 A 1.65 megawatt (MW) wind turbine is installed at ... Image: Bruce Hatchett, Energy Options 5 of 11 A 25 kW wind turbine is installed in ...

  9. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  10. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: Decades of Wind Turbine Loads Simulations, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  11. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  12. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  13. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  14. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  15. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  16. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  17. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  19. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update

  20. Testing America's Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing America's Wind Turbines Testing America's Wind Turbines View All Maps Addthis

  1. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo Newsletter Signup SlideShare Sandia Wind Turbine Loads Database ...

  2. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce...

  3. wind-turbine fleet reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-turbine fleet reliability - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers wind-turbine fleet reliability Home...

  4. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  5. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  6. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  7. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * Electrical controls * Blade pitch controls Rotor Hub Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller turbines are needed to capture optimal wind resources Wind power is competitive with wholesale prices Source: Wiser and Bolinger, 2009 Note: Wholesale price range reflects flat block of power across 23 pricing

  8. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  9. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  10. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  13. Wind Turbine System State Awareness

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-02-08

    Researchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading....

  14. Category:Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

  15. Large wind turbine development in Europe

    SciTech Connect (OSTI)

    Zervos, A.

    1996-12-31

    During the last few years we have witnessed in Europe the development of a new generation of wind turbines ranging from 1000-1500 kW size. They are presently being tested and they are scheduled to reach the market in late 1996 early 1997. The European Commission has played a key role by funding the research leading to the development of these turbines. The most visible initiative at present is the WEGA program - the development, together with Europe`s leading wind industry players of a new generation of turbines in the MW range. By the year 1997 different European manufacturers will have introduced almost a dozen new MW machine types to the international market, half of them rated at 1.5 MW. 3 refs., 3 tabs.

  16. Pioneer Asia Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Asia Wind Turbines Jump to: navigation, search Name: Pioneer Asia Wind Turbines Place: Madurai, Tamil Nadu, India Zip: 625 002 Sector: Wind energy Product: Madurai-based wind...

  17. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  18. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  19. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  20. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  1. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  2. 10 MW Supercritical CO2 Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 MW Supercritical CO2 Turbine Project 10 MW Supercritical CO2 Turbine Project This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_turchi.pdf (1.86 MB) More Documents & Publications 10-Megawatt Supercritical Carbon Dioxide Turbine - FY13 Q2 10-MW Supercritical-CO2 Turbine Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials

  3. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  4. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  5. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  6. Middelgrunden Wind Turbine Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name: Middelgrunden Wind Turbine Cooperative Place: Copenhagen, Denmark Zip: 2200 Sector: Wind energy Product:...

  7. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    Maglev Wind Turbine Technologies Jump to: navigation, search Name: Maglev Wind Turbine Technologies Place: Sierra Vista, Arizona Zip: 85635 Sector: Wind energy Product: The new...

  8. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  9. NREL and Alstom Celebrate Wind Turbine Installation - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Alstom Celebrate Wind Turbine Installation 3 MW, 60 Hz Alstom ECO 100 Now Fully Operational at National Wind Technology Center April 26, 2011 Golden, Colo., April 26, 2011 - Officials from the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from Alstom, today commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at NREL's National Wind Technology Center. This event

  10. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  11. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  12. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  13. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  14. City of Medford Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Medford Wind Turbine Jump to: navigation, search Name City of Medford Wind Turbine Facility City of Medford Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  15. New England Tech Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Tech Wind Turbine Jump to: navigation, search Name New England Tech Wind Turbine Facility New England Tech Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  16. Small Wind Turbine Certifications Signal Maturing Industry |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Wind Turbine Certifications Signal Maturing Industry Small Wind Turbine Certifications Signal Maturing Industry January 6, 2014 - 10:00am Addthis A 5-kW wind turbine with a ...

  17. Westwind Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Ireland based small scale wind turbine manufacturer which originally started in Australia. References: Westwind Wind Turbines1 This article is a stub. You can help OpenEI...

  18. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency ...

  19. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... First, the authors would like to thank the entire Wind Turbine Radar Interference Working ...

  20. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect (OSTI)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  1. A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes

    Broader source: Energy.gov [DOE]

    Starting in 2012, researchers tried placing spotlights downwind from the 2.5-megawatt (MW) wind turbine in Rosemount, Minnesota. The research team was attempting to study turbulent airflow around a turbine in the field.

  2. Archbold Local Schools Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Archbold Local Schools Wind Turbine Jump to: navigation, search Name Archbold Local Schools Wind Turbine Facility Archbold Local Schools Wind Turbine Sector Wind energy Facility...

  3. Conneaut Middle School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Conneaut Middle School Wind Turbine Jump to: navigation, search Name Conneaut Middle School Wind Turbine Facility Conneaut Middle School Wind Turbine Sector Wind energy Facility...

  4. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy...

  5. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  6. Liberty Turbine Test Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. The Inside of a Wind Turbine

    Broader source: Energy.gov [DOE]

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

  8. Dynamic Models for Wind Turbines and Wind Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Each of these models includes representations of general turbine aerodynamics, the ... 9 1.1.2 Wind power integration and wind turbine modeling ......

  9. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  10. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  11. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  12. 10-MW Supercritical-CO2 Turbine

    Broader source: Energy.gov [DOE]

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  13. Wind Turbine Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all ...

  14. Scale Models and Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    As wind turbines and wind farms become larger to take advantage of the economies of scale and increased wind speeds at higher altitudes, their impact in the locales where they are sited becomes more dramatic. One place this is especially contentious is in the offshore environment of the Northeast. This lesson explores scale models and the issues surrounding models and their accuracy when developing a large wind farm. Worksheets are included.

  15. Holy Name Central Catholic School Wind Turbine | Open Energy...

    Open Energy Info (EERE)

    Name Central Catholic School Wind Turbine Jump to: navigation, search Name Holy Name Central Catholic School Wind Turbine Facility Holy Name Central Catholic School Wind Turbine...

  16. International Turbine Research Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type...

  17. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  18. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  19. NREL: Wind Research - Small Wind Turbine Independent Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack of small wind turbine systems that are independently tested and certified. To ...

  20. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  1. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  2. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. This video highlights the various parts and mechanisms of a modern wind turbine. Text Version Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as

  3. Northern Cheyenne Tribe30 MW Wind Energy Development Grant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Location * Colstrip coal fired power plant is 25 miles to the north. * Transmission and interconnection study ...

  4. Gamesa Wind Turbines Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gamesa Wind Turbines Pvt Ltd Jump to: navigation, search Name: Gamesa Wind Turbines Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind...

  5. Microsoft Word - Increased Strength in Wind Turbine Blades through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Strength in Wind Turbine Blades through Innovative Structural ... design approach is applied to wind turbine blades, manufacturing and structural ...

  6. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  7. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect (OSTI)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  8. Dissipation of turbulence in the wake of a wind turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  9. Nature's Classroom Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgwindex.php?titleNature%27sClassroomWindTurbine&oldid585985...

  10. Wind Turbine Condition Monitoring, Reliability Database, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O&M Research Update ... (OEMs), gearbox rebuild shops, wind plant owneroperators, and consulting ...

  11. Controlling Wind Turbines for Secondary Frequency Regulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC ... Workshop on Large-Scale Integration of Wind Power Into Power Systems as Well as on ...

  12. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... from the advice and comments of two wind industry and trade association ...

  13. Three D Metals Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Three D Metals Wind Turbine Jump to: navigation, search Name Three D Metals Wind Turbine Facility Three D Metals Wind Turbine Sector Wind energy Facility Type Small Scale Wind...

  14. Built Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  15. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  16. NREL: Wind Research - NREL and Clemson University Put Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test...

  17. wind-turbine composites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  18. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 101: Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern

  19. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  20. Wind Turbine Radar Interference Mitigation Working Group Releases New Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines...

  1. Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy...

    Open Energy Info (EERE)

    Minnkota Power Cooperative Wind Turbine (Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind...

  2. Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongqi Wind Turbine Blade Engineering Co Ltd Jump to: navigation, search Name: Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd Place: Tianjin Municipality, China Sector: Wind...

  3. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  4. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  5. Danish Wind Turbine Owners Association | Open Energy Information

    Open Energy Info (EERE)

    Turbine Owners Association Jump to: navigation, search Name: Danish Wind Turbine Owners' Association Place: Aarhus C, Denmark Zip: DK-8000 Sector: Wind energy Product: Danish Wind...

  6. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    Open Energy Info (EERE)

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  7. FloDesign Wind Turbine Corporation | Open Energy Information

    Open Energy Info (EERE)

    FloDesign Wind Turbine Corporation Jump to: navigation, search Name: FloDesign Wind Turbine Corporation Place: Massachusetts Zip: 1095 Sector: Wind energy Product:...

  8. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu; Teichmann, Ralph; Avagliano, Aaron; Kammer, Leonardo Cesar; Pierce, Kirk Gee; Pesetsky, David Samuel; Gauchel, Peter

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  9. Decades of Wind Turbine Load Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decades of Wind Turbine Load Simulation Matthew Barone ∗ , Joshua Paquette † , Brian Resor ‡ Sandia National Laboratories § , Albuquerque, NM 87185 Lance Manuel ¶ University of Texas, Austin, TX 78712 A high-performance computer was used to simulate ninety-six years of operation of a five megawatt wind turbine. Over five million aero-elastic simulations were performed, with each simulation consisting of wind turbine operation for a ten minute period in turbulent wind conditions. These

  10. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  11. Adaptive Pitch Control for Variable Speed Wind Turbines - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the early development of wind energy, the majority of wind turbines or wind turbine ... In most cases, wind turbine pitch angles can be adjusted to control the operation of the ...

  12. On the Fatigue Analysis of Wind Turbines

    SciTech Connect (OSTI)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  13. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  14. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  15. NREL: Wind Research - Small and Distributed Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at sunset. Photo by Todd Spink The objectives of NREL's small and distributed wind research is to increase consumer confidence in and the number of certified small wind turbines on the market through certification testing, to improve performance, and to reduce installed costs so that wind can compete in the retail electric market with other forms of distributed generation. Distributed wind applications include

  16. Intelligent Wind Turbine Program - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Find More Like This Return to Search Intelligent Wind Turbine Program Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryA unique LANL research team composed of world experts in structural health monitoring, modeling and simulation, and prognostic decision making has established a strong capability in wind energy research. The intelligent wind-turbine project has resulted in a U.S. patent application and copyrighted software,

  17. 10 MW Supercritical CO2 Turbine Test (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    10 MW Supercritical CO2 Turbine Test Citation Details In-Document Search Title: 10 MW Supercritical CO2 Turbine Test The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved

  18. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  19. Robotic Wind Turbine Inspection | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances Wind Turbine Inspection Through Robotic Trials Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Advances Wind Turbine Inspection Through Robotic Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector

  20. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND ... Both VARTM and prepreg materials have particular design challenges for manufacturing ...

  1. Active Load Control Techniques for Wind Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Load Control Techniques for Wind Turbines Scott J. Johnson and C. P. "Case" van Dam Department of Mechanical and Aeronautical Engineering University of California One ...

  2. new wind-turbine controls algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  3. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. NREL: Wind Research - Advanced Research Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meteorological towers upwind are instrumented to collect data. The National Wind Technology Center (NWTC) uses two large turbines to conduct advanced controls research. ...

  5. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  6. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  7. 1.5 MW turbine installation at NREL's NWTC on Aug. 21

    ScienceCinema (OSTI)

    None

    2013-05-29

    Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

  8. How Does a Wind Turbine Work?

    Broader source: Energy.gov [DOE]

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  9. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    up to 1,000 square meters improve their turbine designs and manufacturing processes to ... Manufacturing Process Upgrades; Turbine Certification (for wind turbines with ...

  10. SMART Wind Turbine Rotor: Data Analysis and Conclusions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Data Analysis and Conclusions Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. SMART Wind Turbine Rotor: Data Analysis and Conclusions (2.47 MB) More Documents & Publications SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Design and Field Test

  11. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect (OSTI)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts

  12. An exploration of wind energy and wind turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that effect wind turbine design. Explain the goals of the following lab experiments. Review what practices make for good experimental design and the need to control...

  13. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  14. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February...

  15. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  16. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Addthis Description Innovation in the design ...

  17. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  18. Statistics Show Bearing Problems Cause the Majority of Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...

  19. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  20. Aerodynamic Wind-Turbine Blade Design for the National Rotor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Design for the National Rotor Testbed - Sandia Energy Energy Search ... Twitter Google + Vimeo Newsletter Signup SlideShare Aerodynamic Wind-Turbine Blade Design ...

  1. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ... For the wind industry, 3D printing could transform turbine blade mold manufacturing, ...

  2. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  3. New Modularization Framework Transforms FAST Wind Turbine Modeling...

    Broader source: Energy.gov (indexed) [DOE]

    an expanded version of its FAST wind turbine computer-aided engineering tool under a ... to analyze multimember offshore wind turbine substructures A new state-space ...

  4. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Broader source: Energy.gov (indexed) [DOE]

    chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ... chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ...

  5. Abstract - This paper describes the latest generic wind turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbine generator models of types 3 and 4 developed for implementation in the Western Electricity Coordinating Council (WECC) base cases. Key Words - Generic wind turbine ...

  6. Analysis of Wind Turbine Simulation Models: Assessment of Simplified...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete ... Spain, September 10-12, 2015 ANALYSIS OF WIND TURBINE SIMULATION MODELS: ASSESSMENT OF ...

  7. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Office of Environmental Management (EM)

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work ...

  8. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable ...

  9. Built-Environment Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Built-environment wind turbine projects are wind energy projects that are constructed on, in, or near buildings. These projects present an...

  10. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  11. Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd...

    Open Energy Info (EERE)

    Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA Jump to: navigation, search Name: Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd (NCWA) Place: Nantong,...

  12. Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy...

    Open Energy Info (EERE)

    Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name: Beijing Goldwind Kechuang Wind Turbine Manufacturer Place: Beijing, Beijing Municipality, China Zip:...

  13. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  14. Use of SCADA Data for Failure Detection in Wind Turbines

    SciTech Connect (OSTI)

    Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

    2011-10-01

    This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

  15. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  16. Lightning protection system for a wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P.; Petter, Jeffrey K.

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  17. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  18. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  19. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  20. Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

  1. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update Addthis Description See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Topic Wind Text Version Below is the text version for the

  2. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  3. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Eagles are Making Wind Turbines Safer for Birds PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Mitigating Wind-Radar ...

  4. Improved diffuser for augmenting a wind turbine

    DOE Patents [OSTI]

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  5. Distributed Wind Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as Italy, United Kingdom, Germany, Greece, China, Japan, Korea, ...

  6. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  7. Diffuser for augmenting a wind turbine

    DOE Patents [OSTI]

    Foreman, Kenneth M.; Gilbert, Barry L.

    1984-01-01

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  8. Seneca Nation of Indians Leverages DOE Support for Wind Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seneca Nation of Indians Leverages DOE Support for Wind Turbine Project Seneca Nation of Indians Leverages DOE Support for Wind Turbine Project April 28, 2016 - 11:19am Addthis Office of Indian Energy Chris Deschene (third from the right) was among those in attendance at a groundbreaking ceremony the Seneca Nation of Indians held for its 1.5-MW wind turbine on April 27. Photo by Ken Parker, Food Is Our Medicine. Office of Indian Energy Chris Deschene (third from the

  9. Passively cooled direct drive wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P.

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  10. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Wind TurbineRadar Interference Mitigation (TSPEAR & IFT&E) HomeStationary PowerEnergy Conversion EfficiencyWind EnergySiting and Barrier MitigationSiting: Wind TurbineRadar ...

  11. Yituo Made Wind Turbine Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yituo Made Wind Turbine Co Ltd Jump to: navigation, search Name: Yituo-Made Wind Turbine Co. Ltd. Place: Luoyang, Henan Province, China Zip: 471003 Sector: Wind energy Product: A...

  12. Small Wind Guidebook/What Size Wind Turbine Do I Need | Open...

    Open Energy Info (EERE)

    & OUTREACHSmall Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  14. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  15. Future of Condition Monitoring for Wind Turbines | OpenEI Community

    Open Energy Info (EERE)

    Future of Condition Monitoring for Wind Turbines Home > Future of Condition Monitoring for Wind Turbines > Posts by term > Future of Condition Monitoring for Wind Turbines Content...

  16. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  17. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  18. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER ...

  19. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co...

  20. NREL Wind Turbine Design Codes Certified - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Design Codes Certified August 2, 2005 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today that its wind turbine design codes-termed FAST and ADAMS-can now be used for worldwide turbine certification. Through a joint effort by the NREL and Germanischer Lloyd (GL) of Hamburg, Germany, the world's foremost certifying body for wind turbines, both codes were approved for calculating onshore wind turbine loads for design and

  1. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 17 ... SERVICE LIFE; SHEAR PROPERTIES; SILICA; TESTING; TOLERANCE; TURBINE BLADES; WIND TURBINES ...

  2. International Effort Advances Offshore Wind Turbine Design Codes...

    Broader source: Energy.gov (indexed) [DOE]

    a reference model based on a 5-megawatt turbine on a floating semisubmersible foundation. ... New Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modeling Tool ...

  3. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  4. EIS-0418: PrairieWinds Project, South Dakota | Department of...

    Office of Environmental Management (EM)

    General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads. ...

  5. Variable diameter wind turbine rotor blades

    DOE Patents [OSTI]

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  6. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  7. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  8. Wind Turbine Micropitting Workshop: A Recap

    SciTech Connect (OSTI)

    Sheng, S.

    2010-02-01

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  9. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    SciTech Connect (OSTI)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  10. 2014 Sandia Wind Turbine Blade Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

  11. Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

    2014-10-01

    Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

  12. 2011_AWEA_Small_Wind_Turbine_Market_Report.pdf | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1AWEASmallWindTurbineMarketReport.pdf 2011AWEASmallWindTurbineMarketReport.pdf 2011AWEASmallWindTurbineMarketReport.pdf PDF icon 2011AWEASmallWindTurbineMark...

  13. Methods and apparatus for reducing peak wind turbine loads

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  14. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  15. Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-02-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  16. SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration showing a utility-scale wind turbine in a field. A square brown steel shed ... a green triangle) that travels from the shed to above the turbine downwind of the turbine. ...

  17. Aerodynamic and aeroacoustic for wind turbine

    SciTech Connect (OSTI)

    Mohamed, Maizi; Rabah, Dizene

    2015-03-10

    This paper describes a hybrid approach forpredicting noise radiated from the rotating Wind Turbine (HAWT) blades, where the sources are extracted from an unsteady Reynolds-Averaged-Navier Stocks (URANS) simulation, ANSYS CFX 11.0, was used to calculate The near-field flow parameters around the blade surface that are necessary for FW-H codes. Comparisons with NREL Phase II experimental results are presented with respect to the pressure distributions for validating a capacity of the solver to calculate the near-field flow on and around the wind turbine blades, The results show that numerical data have a good agreement with experimental. The acoustic pressure, presented as a sum of thickness and loading noise components, is analyzed by means of a discrete fast Fourier transformation for the presentation of the time acoustic time histories in the frequency domain. The results convincingly show that dipole source noise is the dominant noise source for this wind turbine.

  18. Methods of making wind turbine rotor blades

    DOE Patents [OSTI]

    Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  19. Shoosing the appropriate size wind turbine

    SciTech Connect (OSTI)

    Lynette, R.

    1996-12-31

    Within the past several years, wind turbines rated at 400 kW and higher have been introduced into the market, and some manufacturers are developing machines rated at 750 - 1,000+ kW. This raises the question: What is the appropriate size for utility-grade wind turbines today? The answer depends upon the site where the machines will be used and the local conditions. The issues discussed in the paper are: (1) Site-Related (a) Visual, noise, erosion, television interference, interference with aviation (b) Siting efficiency (2) Logistics (a) Adequacy of roads and bridges to accept large vehicles (b) Availability and cost of cranes for erection and maintenance (c) Capability of local repair/overhauls (3) Cost Effectiveness (a) Capital costs (1) Wind Turbine (2) Infrastructure costs (b) Maintenance costs (4) Technical/Financial Risk. 1 fig., 1 tab.

  20. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade ...

  1. Wind Turbine Manufacturing Transforms with Three-Dimensional...

    Broader source: Energy.gov (indexed) [DOE]

    (A2e) initiative is applying 3-D-printing processes to create wind turbine blade molds. ... overall, as blades represent one of the most expensive components of a wind turbine. ...

  2. Maine Project Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis ...

  3. SNL Researchers Assess Wind Turbine Blade Inspection and Repair...

    Broader source: Energy.gov (indexed) [DOE]

    A picture of several wind turbine blade panels set out on a table and held in place with metal clamps. Flaws in wind turbine blades emanating from the manufacturing process are an ...

  4. Mandan, Hidatsa, and Arikara Nation - Utility Scale Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANDAN, HIDATSA, & ARIKARA NATION Utility Wind Scale Turbine Demonstration Project on the ... (AOC) 1550 60 Hz, 66 kW wind turbine on tribal land to provide power to a ...

  5. Argonne Researchers Shine "Light" on Origins of Wind Turbine...

    Broader source: Energy.gov (indexed) [DOE]

    root cause of failures to wind turbine drivetrain components, such as bearings and gears. ... The results of this work will be presented at the DOE-sponsored Wind Turbine Tribology ...

  6. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  7. File:Wind-turbine-economics-student.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-student.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-student.pdf Size of this preview: 463 599...

  8. File:Wind-turbine-economics-teacher.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-teacher.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-teacher.pdf Size of this preview: 463 599...

  9. File:Wind-turbine-economics-lp.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-lp.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-lp.pdf Size of this preview: 463 599 pixels. Other...

  10. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments [OSTI]

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  11. Offshore Ambitions for the Vertical-Axis Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambitions for the Vertical-Axis Wind Turbine - Sandia Energy Energy Search Icon Sandia ... Offshore Ambitions for the Vertical-Axis Wind Turbine HomeEnergy, News, News & Events, ...

  12. Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark - Sandia Energy Energy Search ... Twitter Google + Vimeo GovDelivery SlideShare Sandia Wind-Turbine Blade Flaw Detection ...

  13. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  14. Dynamic stall on wind turbine blades

    SciTech Connect (OSTI)

    Butterfield, C.P.; Simms, D.; Scott, G. ); Hansen, A.C. )

    1991-12-01

    Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

  15. Modal Dynamics of Large Wind Turbines with Different Support Structures

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2008-07-01

    This paper presents modal dynamics of floating-platform-supported and monopile-supported offshore wind turbines.

  16. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  17. Wind Turbine Blade Testing System Using Base Excitation - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search Wind Turbine Blade Testing System Using Base Excitation Base Excitation Test System (B.E.T.S.) National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Recently, there has been a rapidly growing demand for renewable energy, including wind energy. To meet this demand, wind turbine designers are working to provide blade designs that allow a turbine connected to the wind turbine blades or to the rotor to

  18. NREL Readies New Wind Turbine Drivetrain for Commercialization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Readies New Wind Turbine Drivetrain for Commercialization NREL Readies New Wind Turbine Drivetrain for Commercialization May 18, 2015 - 3:52pm Addthis Illustration of a wind turbine drivetrain with a transparent case that shows the internal gears. In February, engineers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) assembled the innovative, medium-speed, medium-voltage wind turbine drivetrain that was the result of a study funded by DOE's

  19. Establishment of Small Wind Turbine Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.

    2011-09-16

    This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

  20. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    SciTech Connect (OSTI)

    Huso, Manuela M. P.; Hayes, John P.

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  1. Duration Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  2. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  3. Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-05-01

    This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  4. Sandia's 2016 Wind Turbine Blade Workshop Beings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Wind Turbine Blade Workshop Beings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  5. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  6. How Do Wind Turbines Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics » How Do Wind Turbines Work? How Do Wind Turbines Work? Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click on the image to see an animation of wind at work. Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main

  7. New Funding Opportunity to Develop Larger Wind Turbine Blades | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Funding Opportunity to Develop Larger Wind Turbine Blades New Funding Opportunity to Develop Larger Wind Turbine Blades March 16, 2015 - 2:47pm Addthis The Energy Department today announced $1.8 million in funding for the development of larger wind turbine blades that will help capture more power from wind resources and increase the efficiency of wind energy systems. This funding will support the research and development of technological innovations to improve the manufacturing,

  8. Wind Turbine System State Awareness - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System State Awareness Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryResearchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading. DescriptionResearchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind

  9. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  10. Root region airfoil for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.