National Library of Energy BETA

Sample records for mw refusegenerated chp

  1. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview Waste CHP plants can be used in the electricity market for upward regulation by bypassing the steam turbine. The technical design for this...

  2. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167, 8.703492 Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  3. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Iron and steel mills, aluminum production, and fabricated metals manufacturing are all good candidates ... 2 35 Department of Energy 65 New Mexico New Mexico has 1,140 MW of CHP ...

  4. CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships (CHP TAPs) promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies/concepts throughout the United States. Key services of the CHP TAPs include: Market Opportunity Analyses - Supporting analyses of CHP market opportunities in diverse markets including industrial,

  5. Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Dresser Waukesha, June 2011 | Department of Energy Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE Industrial Distributed

  6. CHP Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment CHP Deployment DOE Combined Heat and Power Installation Database DOE Combined Heat and Power Installation Database The searchable combined heat and power (CHP) ...

  7. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal ...

  8. The Market for CHP in Florida, August 2008

    Broader source: Energy.gov [DOE]

    Presentation overview of CHP benefits, existing CHP installations, CHP potential, and emerging trends

  9. 2015 CHP Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 CHP Conference 2015 CHP Conference September 14, 2015 9:00AM EDT to September 15, 2015 5:00PM EDT 2015 CHP Conference...

  10. Deployment of FlexCHP System

    SciTech Connect (OSTI)

    Cygan, David

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  11. CHP Technical Assistance Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the...

  12. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA CHP Partnership Meeting, October 2002 | Department of Energy rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 This is an announcement of the 3rd Annual National CHP Roadmap Workshop which was held in conjunction with the CHP and Distributed Energy Resources for Federal Facilities Workshop, October 23-25,

  13. CHP at Post Street in Downtown Seattle

    SciTech Connect (OSTI)

    Gent, Stan

    2012-04-12

    The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steam loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.

  14. 2008 EPA CHP Partnership Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08 EPA CHP Partnership Update 2008 EPA CHP Partnership Update 2008 EPA CHP Partnership Update PDF icon meeting52508ruiz.pdf More Documents & Publications The International CHP...

  15. CHP R&D Project Descriptions

    Broader source: Energy.gov [DOE]

    The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

  16. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  17. Combined Heat and Power (CHP) Grant Program

    Broader source: Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  18. CHP Project Development Handbook (U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The ...

  19. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the ... Solutions, October 2005 5th Annual CHP Roadmap Workshop Breakout Group Results, ...

  20. IE CHP | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Product: UK power producer Scottish and Southern Energy (SSE) and UK fuel cell developer Intelligent Energy have formed a joint venture to develop fuel cell-based CHP...

  1. CHP RAC Handout_092415.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one...

  2. Combined Heat and Power (CHP) - CHP Supplies Clean and Reliable Energy

    SciTech Connect (OSTI)

    2008-10-01

    Overview of the CHP benefits, opportunity, barriers to deployment, technology development and validation.

  3. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. Advance the state-of-the-art of CHP CHP offers ...

  4. CHP Deployment Program: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment Program: AMO Technical Assistance Overview Claudia Tighe This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Combined Heat a Power (CHP): History * First developed by Thomas Edison in 1880s and is one of the world's most common form of energy recycling * Since the '70s CHP used mostly by large industrials (PURPA set the stage) * Today there are hundreds of CHP facilities in the U.S. in both industrial, institutional and

  5. Review of CHP Technologies, October 1999

    Broader source: Energy.gov [DOE]

    This report describes the leading CHP technologies, their efficiency, size, cost to install and maintain, fuels and emission characteristics.

  6. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional and Local Energy Issues, September 2006 | Department of Energy 6-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 This Action Agenda is intended to provide the situational context in which the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the upcoming year

  7. CHP Project Development Handbook (U.S. Environmental Protection Agency CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership) | Department of Energy Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The mission of the U.S. Environmental Protection Agency's (EPA's) Combined Heat and Power (CHP) Partnership is to increase the use of cost-effective, environmentally beneficial CHP projects nationwide. To accomplish this mission, the Partnership has developed resources to assist energy

  8. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  9. Breakout Session Summary Reports National CHP Workshop- One Year Later, Baltimore, October 2001

    Broader source: Energy.gov [DOE]

    Developing CHP Markets and Technologies , Eliminating Regulatory and Institute Barriers, Raising CHP Awareness

  10. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2009 | Department of Energy 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing and Urban Development's (HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for Combined Heat and Power in Multifamily Housing" describes the U.S.

  11. Gas turbine CHP leads Italy`s energy drive

    SciTech Connect (OSTI)

    Jeffs, E.

    1995-11-01

    When Italy abandoned its nuclear power program, it was the signal for the electricity market to open to industrial CHP and independent power production. This move raised energy efficiency and cut pollution, as a prelude to the privatization of the electric utility system. The Privatization of ENEL, the National Electricity Authority, is expected to happen next year, but not before a significant component of independent power generation is already in place. ENEL itself was only created in 1963 and some of the former power companies have reemerged as the leading IPP`s. Although combined cycle and IPP capacity is only 5000 MW, it is expected to increase to 15,000 MW by the year 2000. In abandoning nuclear power, Italy may have given up on an unquestionably clean thermal energy source, but an intensive drive into private power with combined cycle, repowering, and industrial CHP schemes is achieving some worthwhile improvements in energy efficiency, and a cleaner environment than what went before. 3 figs., 1 tab.

  12. California CHP Market Assessment, July 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the California Energy Commission's July 2009 Combined Heat and Power Workshop. PDF icon 2009-07-15_ICF_CHP_Market_Assessment.pdf More Documents & Publications CHP Assessment, California Energy Commission, October 2009 2008 CHP Baseline Assessment and Action Plan for the California Market CHP: Connecting the Gap between

  13. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006

  14. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, ...

  15. Enabling More Widespread Use of CHP in Light Industrial, Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems ADVANCED MANUFACTURING OFFICE Enabling More Widespread Use of CHP in Light Industrial, ...

  16. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  17. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  18. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS -...

  19. Yantai Tianli Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianli Biomass CHP Co Ltd Jump to: navigation, search Name: Yantai Tianli Biomass CHP Co Ltd Place: Yantai, Shandong Province, China Zip: 265300 Sector: Biomass Product:...

  20. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy Systems for Landfills and Wastewater Treatment ...

  1. Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in industrial energy efficiency (IEE), including C ombined Heat and Power (CHP) ... prevent otherwise economic investments in IEE and CHP from occurring. * The AdministraOon ...

  2. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  3. 5th Annual CHP Roadmap Workshop Breakout Group Results, September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from ...

  4. Federal Strategies to Increase the Implementation of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 ...

  5. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  6. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  7. Development of an Advanced Combined Heat and Power (CHP) System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System ...

  8. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Producers Ltd CHP Jump to: navigation, search Name: Clean Hydrogen Producers Ltd (CHP) Place: Geneva, Switzerland Zip: 1209 Sector: Hydro, Hydrogen, Solar Product: Swiss...

  9. State Opportunities for Action: Update of States' CHP Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon chpie0321003.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 Challenges Facing CHP: A ...

  10. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, ...

  11. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  12. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  13. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities (November 2007) More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with

  14. CHP R&D Project Descriptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP R&D Project Descriptions CHP R&D Project Descriptions The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below: Advanced Reciprocating Engine Systems Advanced Reciprocating Engine Systems (ARES) The ARES program is designed to promote separate, but parallel engine development

  15. NYSERDA's CHP Program Guide, 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NYSERDA's CHP Program Guide, 2010 NYSERDA's CHP Program Guide, 2010 As one of the nation's leading CHP supporters, the New York State Energy Research and Development Authority (NYSERDA) provides assistance to customers as well as CHP suppliers. This 2010 guide offers information on NYSERDA programs available for each stage of the project lifecycle. PDF icon nyserda_chp_program_guide.pdf More Documents & Publications NYSERDA's RPS Customer Sited Tier Fuel Cell Program Solar PV Incentive

  16. expanding_chp_in_your_state.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc Microsoft Office document icon expanding_chp_in_your_state.doc More Documents & Publications Combined Heat and Power: Expanding CHP in Your State Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps

  17. DOE CHP Technical Assistance Partnerships Handout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined heat and power (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one energy-efficient step. Highlighting the benefits of CHP as an energy resource, Executive Order 13624 established a national goal of 40 gigawatts of new

  18. HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2005 | Department of Energy 1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 Questions and Answers (Q&A) on CHP for Apartment Buildings are adapted from the "Cogeneration Manual: A practical guide for evaluating and selecting equipment to be used in multi-family housing," issued by New York City in June 1989. The manual was developed to assist managers,

  19. CHP Performance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Combined Heat and Power (CHP) systems for summer on-peak demand reduction and electricity generation. Total budget of 36,000,000 is available for the program and is...

  20. Harrods commissions new CHP station

    SciTech Connect (OSTI)

    Mullins, P.

    1994-04-01

    Three new combined heat and power (CHP) sets have recently been commissioned at Harrods, the world-famous department store in the heart of London's fashionable Knightsbridge district. The sets provide all the electricity needed by the store for lighting, heating and air-conditioning and are powered by Ruston 6RK270 turbocharged, charge-air-cooled diesel engines each producing 1392 kW at 750 r/min. These high power-to-weight ratio units were chosen in view of severe engine room space limitations. Low-grade waste heat is extracted from the engine jacket water to preheat water for three new boilers supplying some 1600 kg/h of steam for process heat to the store. The engines drive Brush BJS HW 10 100/8 alternators and are fully automatic in operation through a Regulateurs Europa control system. Some 600 sensors feed data into a Satchwell Building Management System (BMS). In the event of a breakdown, the engine control system can be switched to manual. 5 figs.

  1. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  2. Small Scale CHP and Fuel Cell Incentive Program

    Broader source: Energy.gov [DOE]

     NOTE: As of December 11, 2015, New Jersey's Clean Energy Program's has temporarily ceased accepting applications for the Combined Heat & Power and Fuel Cell Program (CHP/FC). The CHP/FC...

  3. Modular CHP System for Utica College: Design Specification, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paper, April 2008 A Case for Commissioning of CHP Systems - Presentation, April 2008 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007

  4. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  5. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. PDF icon CHP and Bioenergy Systems for Landfills and

  6. CHP: Enabling Resilient Energy Infrastructure - Presentations from April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Webinar | Department of Energy - Presentations from April 2013 Webinar CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as an energy resource in the United States, the Obama Administration is supporting a National goal to achieve 40 gigawatts (GW) of new, cost-effective CHP by 2020. This set of presentations from an April 2013 webinar discusses the role for CHP

  7. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  8. CHP: A Clean Energy Solution, August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and useful thermal energy from a single fuel source. This paper provides a foundation for national discussions on effective ways to reach the 40 GW target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the

  9. New CHP Technical Assistance Partnerships Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Technical Assistance Partnerships Launched New CHP Technical Assistance Partnerships Launched October 21, 2013 - 12:00am Addthis Since 2003, the Energy Department has supported a set of regional centers to help organizations understand how combined heat and power (CHP) can improve their bottom lines and lower energy bills. Today, the Advanced Manufacturing Office announced the launch of seven regional CHP Technical Assistance Partnerships, the next generation of these centers. Located in

  10. 330 kWe Packaged CHP System with Reduced Emissions

    SciTech Connect (OSTI)

    Plahn, Paul; Keene, Kevin; Pendray, John

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  11. Accelerating CHP Deployment, United States Energy Association (USEA),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2011 | Department of Energy Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United States Energy Association (USEA) has attempted to be as inclusive and comprehensive as possible considering the diverse interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP deployment that are directed at

  12. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  13. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  14. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  15. Deployment of FlexCHP System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cygan Gas Technology Institute U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Goal  Develop a cost-effective gas turbine based CHP system that improves overall efficiency and meets California Air Resources Board (CARB) 2007 emission standards without catalytic exhaust gas treatment - on target  Objectives  Achieve

  16. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tariff Practices, 2006 | Department of Energy Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily, to

  17. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effective Energy Solutions for a Sustainable Future, December 2008 CHP: Effective Energy Solutions for a Sustainable Future, December 2008 Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its

  18. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of

  19. State Opportunities for Action: Update of States' CHP Activities (ACEEE),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2003 | Department of Energy Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 American Council for an Energy-Efficient Economy (ACEEE) report brings up to date the review of state policies with regard to CHP that ACEEE completed in 2002. The report describes the current activities of states with programs during the initial survey and also reviews new

  20. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy 5 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop will set its priorities for the upcoming year and complete its goals. PDF icon 2005_nyc.pdf More Documents

  1. CHP Assessment, California Energy Commission, October 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Assessment, California Energy Commission, October 2009 CHP Assessment, California Energy Commission, October 2009 This California Energy Commission report quantifies the long-term market penetration potential for combined heat and power (CHP) and the degree to which CHP can reduce potential greenhouse gas (GHG1) emissions in support of the California Global Warming Solutions Act of 2006 (AB 32) (Assembly Bill 32, Núñez, Chapter 488, Statutes of 2006). The report also examines how

  2. CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 Presentation on CHP Integrated with Packaged Boilers, given by Carlo Castaldini of CMCE, Inc., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon packaged_boilers_castaldini.pdf More Documents & Publications CHP Integrated with Burners for

  3. CHP Research and Development - Presentation by Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory, June 2011 | Department of Energy Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge National Lab, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_rd_edwards.pdf More Documents

  4. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMISSIONS - CASE STUDY, 2015 | Department of Energy SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 Frito-Lay North America, Inc., a division of PepsiCo, in cooperation with the Energy Solutions Center, demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. CHP is reducing the energy costs and environmental

  5. 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from the 5th Annual Combined Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach PDF icon 2004_austin.pdf More Documents & Publications Metrics for Measuring Progress Toward Implementation

  6. Consensus Action Items from CHP Roadmap Process, June 2001 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consensus Action Items from CHP Roadmap Process, June 2001 Consensus Action Items from CHP Roadmap Process, June 2001 This paper discusses three main objectives in the CHP roadmapping process: raising CHP awareness, eliminating regulatory and institutional barriers, and developing CHP markets and technologies. All levels of government are addressed including state, regional, and federal. PDF icon Consensus Action Items from 2001 CHP Roadmap.pdf More Documents & Publications

  7. 2008 CHP Baseline Assessment and Action Plan for the California Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Market 2008 CHP Baseline Assessment and Action Plan for the California Market This 2008 report provides an updated baseline assessment and action plan for combined heat and power (CHP) in California and identifies hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_california_2008.pdf More Documents & Publications 2008 CHP Baseline Assessment and Action Plan for the

  8. ITP Distributed Energy: The International CHP/DHC Collaborative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Arizona, California, New Mexico, Oregon, Utah, Montana, ... chemicals, refining and steel) which had high and ... CHP and small power production from renewables by ...

  9. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 ...

  10. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  11. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - ...

  12. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    SciTech Connect (OSTI)

    Tidball, Rick

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  13. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document presents the scorecard for the United States. PDF icon chpprofileunitedstates.pdf More Documents & Publications CHP in the Midwest - Presentation from the July ...

  14. Database (Report) of U.S. CHP Installations Incorporating Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 The primary ...

  15. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 This 2003 ...

  16. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores ...

  17. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting ...

  18. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  19. Breakout Session Summary Reports National CHP Workshop - One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2001 One year following the Roadmap, this report from the Baltimore meeting ... More Documents & Publications 5th Annual CHP Roadmap Workshop Breakout Group Results, ...

  20. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop ...

  1. CHP in the Midwest - Presentation from the July 2010 Advancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the ...

  2. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, ...

  3. Opportunities for CHP at Wastewater Treatment Facilities: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon epawwtfopportunities.pdf More Documents & Publications 2008 EPA CHP Partnership Update Biogas Technologies and Integration with Fuel Cells Biomass Program Perspectives ...

  4. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability purposes, as well ...

  5. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008

    Broader source: Energy.gov [DOE]

    The paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, MA; Danbury, CT).

  6. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  7. CHP Education and Outreach Guide to State and Federal Government...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This ...

  8. Data Collection and Analyses of the CHP System at Eastern Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

  9. ITP Industrial Distributed Energy: 5th Annual CHP RoadmapWorkshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fuels" * Design tariffs as CHP friendly * Support the U.S. Green Building ... makers with the information needed to create CHP-friendly regulations and policies. ...

  10. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  11. 2008 CHP Baseline Assessment and Action Plan for the Nevada Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 08 CHP Baseline Assessment and Action Plan for the Nevada Market 2008 CHP Baseline Assessment and Action Plan for the Nevada Market The purpose of this report is to assess the current status of combined heat and power (CHP) in Nevada and to identify the hurdles that prevent the expanded use of CHP systems. The report summarizes the CHP "landscape" in Nevada, including the current installed base of CHP systems, the potential future CHP market, and the status of

  12. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  13. The Micro-CHP Technologies Roadmap, December 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Micro-CHP Technologies Roadmap, December 2003 The Micro-CHP Technologies Roadmap, December 2003 On June 11-12, 2003, in Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power (CHP) and residential buildings industries explored solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). This document, The Micro-CHP Technologies Roadmap, is a result of this

  14. 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hawaii Market 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market The purpose of this 2008 report is to provide an updated baseline assessment and action plan for combined heat and power (CHP) in Hawaii and to identify the hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_hawaii_2008.pdf More Documents & Publications Renewable Power Options for Electricity

  15. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility data and estimate paybacks. This paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, Mass.; Danbury, Conn.). ...

  16. U.S. Department of Energy CHP Technical Assistance Partnerships

    Broader source: Energy.gov [DOE]

    This informational brochure on the Combined Heat and Power Technical Assistance Partnerships provides a summary of the key services the CHP TAPs offer as well as contact information for each region.

  17. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  18. CHP Industrial Bottoming and Topping Cycle with Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrates the CHP bottoming cycle. 3 In a bottoming cycle, which is also referred to as Waste Heat to Power (WHP), fuel is first used to provide thermal input to a furnace or...

  19. Flexible CHP System with Low NOx, CO and VOC Emissions

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will develop a FlexCHP-65 system that incorporates new burner technology into a 65 kW microturbine and 100 HP heat recovery boiler.

  20. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report, March 2013 | Department of Energy for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability

  1. A Case for Commissioning of CHP Systems - Presentation, April 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Commissioning of CHP Systems - Presentation, April 2008 A Case for Commissioning of CHP Systems - Presentation, April 2008 This presentation details four example case studies. A San Francisco hotel was retrofitted with a "packaged" microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted

  2. CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 | Department of Energy CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This presentation, "Industrial/Commercial/Institutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John Cuttica, Midwest Clean Energy Application Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE

  3. 5-MW Dynamometer Ground Breaking

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) National Renewable Energy Laboratory in Golden, Colorado, broke ground for a new 5-MW dynamometer test facility.

  4. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  5. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  6. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  7. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  8. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems. PDF icon

  9. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for

  10. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  11. Federal Strategies to Increase the Implementation of CHP in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States, June 1999 | Department of Energy Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 The federal government is committed to increasing the penetration of CHP technologies in the United States. This 1999 paper discusses the goal to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for

  12. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Important Lessons Learned, September 2005 | Department of Energy Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Cooling, Heating and Power (CHP) system integration is advancing. The U.S. Department of Energy partnered with industry to accelerate CHP system integration. This is an announcement for a webcast that provided detailed information on

  13. The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies, July 2008 | Department of Energy The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)/District Heat and Cooling (DHC) policy efforts that takes into account three criteria: the effectiveness of past policies in developing the CHP/DHC

  14. Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

    Broader source: Energy.gov [DOE]

    A draft white paper discussing the barriers to combine heat and power (CHP) with renewable portfolio standards

  15. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP Systems Corp., Capstone Turbine Corporation, Johnston Boiler Company, and Inland Empire Foods has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine

  16. CHP Opportunities at U.S. Colleges and Universities, November 2003 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities at U.S. Colleges and Universities, November 2003 CHP Opportunities at U.S. Colleges and Universities, November 2003 DOE worked with the International District Energy Association (IDEA) to identify and prioritize combined heat and power (CHP) opportunities at U.S. colleges and universities. PDF icon chp_markets_colleges.pdf More Documents & Publications The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 Guide

  17. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  18. Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 This report defines the opportunity for CHP in three specific commercial building market segments: smaller educational facilities, smaller healthcare facilities, and data centers/server farms/telecom switching centers. Major issues affecting each of these markets are explored in the report in detail to provide guidance on the

  19. U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), September 2003 | Department of Energy CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 This 2003 chart of U.S. CHP installations incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC) was prepared by the Cool Solutions Company of Lisle, Illinois, for UT-Battelle,

  20. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gas Technology Institute (GTI), June 2011 | Department of Energy Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio

  1. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production in Texas, April 2011 | Department of Energy Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 This report is an examination of the possible impacts, implications, and practicality of increasing the amount of electrical energy produced from combined heat and power (CHP) facilities

  2. 2011 Industrial Distributed Energy and CHP R&D Portfolio Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Assistance » Combined Heat & Power Deployment » 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced Manufacturing Office met with research partners in June 2011 to review the status of projects in the Combined Heat and Power (CHP)/Industrial Distributed Energy portfolio. An agenda, summary report, and the following presentations from the meeting are available

  3. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  4. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  5. Database (Report) of U.S. CHP Installations Incorporating Thermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 | Department of Energy Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 The primary objective of this project was to develop a database of combined heat and power (CHP) installations incorporating TES and/or TIC systems, throughout

  6. CHP Education and Outreach Guide to State and Federal Government, Updated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This toolkit provides information for those who wish to educate their legislative representatives in the states and the federal government about combined heat and power (CHP). It was compiled in October 2000 and updated October 2005. PDF icon chp_education_and_outreach_guide.pdf More

  7. CHP Market Potential in the Western States, September 2005 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Potential in the Western States, September 2005 CHP Market Potential in the Western States, September 2005 This 2005 report summarizes the combined heat and power (CHP) market potential for eight Western States - Alaska, Arizona, California, Hawaii, Idaho, Nevada, Oregon, and Washington. This is the final summary report of a series of reports designed to assist the U.S. Department of Energy in defining the CHP opportunity in the Western United States. PDF icon

  8. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP Industrial Distributed ...

  9. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, in collaboration with Cummins Engine Business Unit, is ... The project will result in the highest-efficiency and lowest-emissions system for a CHP ...

  10. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Broader source: Energy.gov [DOE]

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  11. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of CHP in Light Commercial Hot Water Applications 2016 Building Technologies Office Peer Review Kris L. Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation 2 ...

  12. QCI Exam Test-Taking Tips from Community Housing Partners (CHP)

    Broader source: Energy.gov [DOE]

    This document contains a list of tips for taking the Quality Control Inspector (QCI) Home Energy Professional Certification Exam, provided by Community Housing Partners (CHP).

  13. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011 CHP/ Industrial Distributed Energy R&D Portfolio Review, held on June 1-2, 2011, in Washington, D.C. This report provides presentation summaries, closing remarks, and the agenda. PDF icon distributedenergy_summaryreport2011.pdf More Documents & Publications CHP Integrated

  14. A.O. Smith: Demonstrate Underutilized Micro-CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A.O. Smith: Demonstrate Underutilized Micro-CHP A.O. Smith: Demonstrate Underutilized Micro-CHP The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used. The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used.

  15. SEE Action IEE-CHP Webinar 1: Combined Heat and Power: A Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and oxidation catalysts for CO and organic HAPs control 4 Potential Opportunity for CHP? Compliance with MACT limits will be expensive for many coal and oil units - some...

  16. Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009

    Broader source: Energy.gov [DOE]

    EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

  17. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology ...

  18. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 11 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP/ Industrial Distributed Energy R&D Portfolio Review meeting held in Washington, D.C. on June 1-2, 2011. PDF icon portfolio_review_2011_06_agenda.pdf More Documents & Publications 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Advance Patent Waiver W(A)2010-065 Advanced

  19. 4th Annual CHP Roadmap Breakout Group Results, September 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 4th Annual CHP Roadmap Breakout Group Results, September 2003 4th Annual CHP Roadmap Breakout Group Results, September 2003 This document consists of the breakout group results from the 4th annual Combined Heat and Power (CHP) Roadmap Workshop. Key issues and actions include: work with NARUC to sponsor and organize a report and workshop on utility barriers to CHP and DG, ways to overcome these barriers, and model rates and rules; create a methodology to monetize non-traditional

  20. Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ie111.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 State Opportunities for Action: ...

  1. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  2. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999

    Broader source: Energy.gov [DOE]

    Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

  3. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plants November 7, 2007 Example ADG Installations - Wastewater Treatment Plants z Metro Wastewater Reclamation District in Denver, Colorado - 7 MW of electricity produced from ...

  4. ITP Industrial Distributed Energy: CHP and Bioenergy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... generate relatively high NOx emissions z Lean-burn technologies are used with larger ... power z SC Johnson's Waxdale Manufacturing Facility in Racine, WI - 3.5 MW ...

  5. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  6. Fort Yukon Gets Fired Up Over Biomass CHP Project

    Energy Savers [EERE]

    Gets Fired Up Over Biomass CHP Project In 2005, the Native Village of Fort Yukon sought a less costly fuel than diesel to heat common buildings, as well as a water system that could operate at -60˚F. As village leaders researched the options, they investigated biomass as a potential resource and learned about sustainable forest management practices. DOE funded the Council of Athabascan Tribal Governments (CATG)-a 10-tribe consortium-to study a regional wood energy program in 2007. The following

  7. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  8. Field Scale Test and Verification of CHP System at the Ritz Carlton, San

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Francisco, August 2007 | Department of Energy Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 DOE, the Gas Technology Institute, Oak Ridge National Laboratory, and UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort® 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton in San Francisco. This National

  9. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, June 2011 | Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2,

  10. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  11. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications, April 2005 | Department of Energy Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 The objective of this paper is to summarize the development status of air-cooled lithium bromide (LiBr)-water absorption chillers to guide future efforts to develop chillers for combined heat and power (CHP) applications in light-commercial buildings. The key

  12. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal

  13. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed...

  14. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report PDF-8.2MB ((June 1995) CCT Reports: Project ...

  15. ITP Industrial Distributed Energy: Database of U.S. CHP Installations...

    Office of Environmental Management (EM)

    Database of U.S. CHP Installations Incorporating Prepared for: UT-Battelle, Oak Ridge National Laboratory sheet 1 of 5 Thermal Energy Storage (TES) andor Turbine Inlet Cooling ...

  16. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  17. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine and a heat recovery boiler. ...

  18. HUD Combined Heat and Power (CHP) Guide #3, September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Combined Heat and Power (CHP) Guide #3, September 2010 HUD Combined Heat and Power (CHP) Guide #3, September 2010 This Level 2 analysis tool for multifamily buildings will help an owner determine whether to invite proposals for design of a system and for a financial analysis. This 2010 guide provides an introduction to the software program, with a description of its development and advice on how it can be used. PDF icon chpguide3.pdf More Documents & Publications Promoting

  19. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  20. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  1. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  2. Ormat's North Brawley plant with 17MW short of its 50MW potential...

    Open Energy Info (EERE)

    Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI...

  3. Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999

    Broader source: Energy.gov [DOE]

    This report is a summary document based on discussions at the CHP Vision Workshop held in Washington, DC, June 8-9, 1999

  4. Lesson Learned from Technical and Economic Performance Assessment and Benefit Evaluation of CHP-FCS

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Brooks, Kriston P.; Srivastava, Viraj; Pilli, Siva Prasad; Foster, Nikolas AF

    2014-08-22

    Recent efforts and interest in combined heat and power (CHP) have increased with the momentum provided by the federal government support for penetration of CHP systems. Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and utilize the heat normally wasted in power generation for useful heating or cooling with lower emissions compared to alternative sources. A recent study investigated the utilization of CHP-FCSs in the range of 5 to 50KWe in various commercial building types and geographic locations. Electricity, heating, and water heating demands were obtained from simulation of the U.S. Department of Energy (DOE) commercial reference building models for various building types. Utility rates, cost of equipment, and system efficiency were used to examine economic payback in different scenarios. As a new technology in the early stages of adoption, CHP-FCSs are more expensive than alternative technologies, and the high capital cost of the CHP-FCSs results in a longer payback period than is typically acceptable for all but early-adopter market segments. However, the installation of these units as on-site power generators also provide several other benefits that make them attractive to building owners and operators. The business case for CHP-FCSs can be made more financially attractive through the provision of government incentives and when installed to support strategic infrastructure, such as military installations or data centers. The results presented in this paper intend to provide policy makers with information to define more customized incentives and tax credits based on a sample of building types and geographic locations in order to attract more business investment in this new technology.

  5. 550 MW | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  6. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  7. Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation

    SciTech Connect (OSTI)

    Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

    2010-03-01

    This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

  8. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  9. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  10. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  11. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  12. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  13. Data Collection and Analyses of the CHP System at Eastern Maine Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center - Final Report, June 2008 | Department of Energy Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 This 2008 report describes the Eastern Maine Medical Center's installation of a Centaur 50 gas turbine and performance data for one year from December 2006 to November 2007. The turbine has a nameplate rating of 4,570 kW and can

  14. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective

    SciTech Connect (OSTI)

    Kelly, J.

    2003-10-10

    DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

  16. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Broader source: Energy.gov [DOE]

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  17. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  18. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  19. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  20. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 0 + MHK ProjectsADM 5 + 1 + MHK ProjectsAWS II + 1 + MHK Projects...

  1. Property:Permit/License Buildout (MW) | Open Energy Information

    Open Energy Info (EERE)

    (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 40 + MHK ProjectsAlgiers Light Project + 20 + MHK ProjectsAnconia Point...

  2. A 75 MW S-Band Klystron

    SciTech Connect (OSTI)

    Ferguson, Patrick; Read, Michael; Ives, Robert Lawrence; Marsden, David

    2013-12-16

    This program performed computational and preliminary mechanical design for a klystron producing 75 MW at 2.856 GHz using periodic permanent magnet (PPM) focusing. The performance specifications achieved were those for the Matter-Radiation Interactions in the Extremes (MaRIE) project at Los Alamos National Laboratory. The klystron is designed to provide 10 microsecond pulses at 60 Hz with 56 dB gain. The PPM-Focusing eliminates requirements for solenoids and their associated power supplies, cooling systems, interlocks, control and diagnostic instrumentation, and maintenance. The represents a significant in both acquisition and operating costs. It also increases reliability by eliminating many potential failure modes.

  3. CHP Industrial Bottoming and Topping Cycle with Energy Information Administration Survey Data

    U.S. Energy Information Administration (EIA) Indexed Site

    CHP Industrial Bottoming and Topping Cycle with Energy Information Administration Survey Data Paul Otis, August 14, 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. DISCUSSION PAPER SERIES August 2015 Paul Otis | U.S.

  4. CHP in the Midwest - Presentation from the July 2010 Advancing Renewables

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Midwest Conference | Department of Energy in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference This presentation by Recycled Enegy Development (RED) from the "Advancing Renewables in the Midwest Conference" held on July 15, 2010, proposes policy changes that could make the Midwest and the United States a world leader in reducing

  5. 3 MW Solid Rotating Target Design

    SciTech Connect (OSTI)

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  6. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the power capacity of the prime-mover, but flattened out at around 2 kW power output suggesting that a low power engine like the one tested is a good choice. (5) Reverse metering, that is, power returned to the electric grid when produced in excess of the local load, increased the primary energy savings significantly when using a 3kW to 5kW system with high fuel-to-electric efficiency. (6) In view of the current interest in plug-in electric or hybrid vehicles, the impact of night-time recharging on the micro-CHP operation was considered. Obviously, it will reduce the amount reverse metered and without reverse-metering, the primary energy savings were increased significantly. (7) The micro-CHP systems can contribute to the decrease of the carbon emissions of the local utility even with the use of diesel fuel and much more so with biodiesel use.

  7. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect (OSTI)

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  8. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  9. Northern Cheyenne Tribe30 MW Wind Energy Development Grant

    Energy Savers [EERE]

    4 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Renewable Energy Development on Tribal lands Joe Little Coyote, Sr., Tribal Planner Dale Osborn, President Distributed Generation Systems, Inc. (Disgen) Contractor 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Discussion Outline Project Overview Objectives Project Location Project Participants Requested Technical Support 10-18-04 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Overview *

  10. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  11. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  12. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for ...

  13. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  14. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  15. Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  16. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    Open Energy Info (EERE)

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  17. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312 Citation Details In-Document Search Title: 10MW Class Direct Drive HTS Wind Turbine: ...

  18. Spallation Neutron Source Power Level Exceeds 1 MW (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Spallation Neutron Source Power Level Exceeds 1 MW Citation Details In-Document Search Title: Spallation Neutron Source Power Level Exceeds 1 MW No abstract prepared. Authors: Ekkebus, Allen E [1] + Show Author Affiliations ORNL Publication Date: 2010-01-01 OSTI Identifier: 985278 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Neutron News; Journal Volume: 21; Journal Issue: 1 Research Org: Oak Ridge National Laboratory

  19. Aquantis 2.5MW Ocean Current Generation Device | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device File 12aquantisawpdaalexfleming.pptx ...

  20. Low Beam Voltage, 10 MW, L-Band Cluster Klystron

    SciTech Connect (OSTI)

    Teryaev, V.; Yakovlev, V.P.; Kazakov, S.; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

    2009-05-01

    Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

  1. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  2. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Broader source: Energy.gov [DOE]

    Purpose, Context, Meeting Process, and Agenda for MW and RF as Enabling Technologies for Advanced Manufacturing on July 25, 2012

  3. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab November 18, 2014, 2:00pm to 3:00pm Colloquia MBG Auditorium COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective Dr. Michael Bell Princeton Plasma Physics Laboratory "The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond

  4. Latest developments on the Dutch 1MW free electron maser

    SciTech Connect (OSTI)

    Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

    1999-05-01

    The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

  5. SC Johnson Waxdale Plant

    SciTech Connect (OSTI)

    2010-01-01

    This is a combined heat and power (CHP) project profile on a 6.4 MW CHP application at SC Johnson Waxdale Plant in Racine, Wisconsin.

  6. East Kansas Agri-Energy, LLC

    SciTech Connect (OSTI)

    2007-12-01

    This is a combined heat and power (CHP) project profile on a 1.6 MW CHP application at East Kansas Agri-Energy, LLC in Garnett, Kansas.

  7. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use of CHP systems under 5 MW. The control systems and technologies are increasing market penetration of CHP systems in the light industrial, commercial, and institutional markets. ...

  8. One Market Plaza

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1.5 MW CHP system at One Market Plaza in San Francisco, California.

  9. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  10. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  11. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

  12. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013) | Department of Energy Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, PA for Hazle Spindle LLC. The plant will provide frequency regulation services to grid operator PJM Interconnection. For more information about how OE performs research

  13. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy...

    Open Energy Info (EERE)

    NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  14. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National ... Leishman, J. G., "Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines," ...

  15. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  16. Development of a 50 MW Multiple Beam Klystron

    SciTech Connect (OSTI)

    Ives, R Lawrence; Ferguson, Patrick; Read, Michael; Collins, George

    2007-10-31

    The goal of this program was to develop a 50 MW, multiple beam klystron at 11.424 GHz. The device uses eight electron guns and beam lines to achieve the required power level at a beam voltage of 190 kV, consistent with solid state power supplies. The electron gun operates with confined flow focusing, which is unique among current multiple beam sources, and allows operation at power levels consistent with producing 10s of MWs of pulsed RF power. The circuit consists of a ring resonator input cavity, eight sets of buncher cavities, and a ring resonator output cavity. The RF output power is coupled into four rectangular waveguides equally spaced around the klystron. Eight individual collectors absorb the spent beam power in each beam. The klystron operates in a solenoid. The principle challenges in the design included development of the beam optics using confined flow focusing, shaping of the magnetic field in the gun region to avoid beam spiraling, coupling input power equally to all eight beam lines from a single input, and obtaining the required frequency and Q in the output cavity. The mechanical design was particularly complex due to the large parts count, number of braze and weld joints, and close proximity of the beam lines that limited access. Addressing vacuum leaks and cold testing the complex structures was particularly troublesome. At the conclusion of the program, the klystron is experiencing several vacuum leaks that are under repair. Efforts will continue to seal and test the klystron.

  17. Fuel strategy for 2 MW SF-TMSR

    SciTech Connect (OSTI)

    Zhu, Zhiyong; Lin, Jun; Cao, Changqing; Zhang, Haiqing; Zhu, Tianbao; Li, Xiaoyun

    2013-07-01

    China has launched a series of projects for developing high performance nuclear energy systems. The 2 MW solid fuel thorium based molten salt reactor (TMSR-SF) is one of these projects, which uses TRISO fuel elements as the fuel carrier and the FLiBe molten salt (2LiF-BeF{sub 2}) as the coolant. TRISO fuel elements have been well developed in respect to manufacturing, testing experiments inside and outside reactors as well as their successful application in HTGRs. The application of LEU (low enriched uranium) spherical TRISO fuel elements in TMSR-SF can be safely conducted through careful control of temperature and power density. Although the soaking of molten salt into graphite has shown no damage to the graphite material as experienced by ORNL group in the sixties last century, the compatibility of FLiBe salt with graphite covering of the fuel elements should be tested before the application. It is expected that TMSR-SF can be an appropriate test reactor for high performance fuel element development. (authors)

  18. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center. The turbine will be the fourth multimegawatt wind turbine to be

  19. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    SciTech Connect (OSTI)

    Aymar, Galen; Eisen, Edward; Stockwell, Brad; Begum, rasheda; Lenci, Steve; Eisner, Rick; Cesca, Eugene

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  20. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS Eaton Corporation - Arden, NC A 15 kilovolt (kV) SiC variable-speed drive will be integrated with a ...

  1. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  2. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  3. Evaluation of a 1000 MW Commercial Ultra Super-Critical Coal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of instantaneous O2 mass fraction in a hypothetical commercial scale 1000 MW, Ultra Super-Critical (USC) coal boiler Large eddy simulation prediction of instantaneous O2 mass...

  4. A miniaturized mW thermoelectric generator for nw objectives: continuous,

    Office of Scientific and Technical Information (OSTI)

    autonomous, reliable power for decades. (Technical Report) | SciTech Connect Technical Report: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. Citation Details In-Document Search Title: A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades. We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a

  5. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Energy Savers [EERE]

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  6. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  7. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect (OSTI)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  8. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  9. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  10. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  11. Tucson Request for Proposal for 1-5 MW PV PPA

    Broader source: Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  12. CHP Awards Announced

    SciTech Connect (OSTI)

    2010-05-01

    The U.S. Department of Energy Industrial Technologies Program has selected six projects for financial awards under the "Combined Heat and Power Systems Technology Development and Demonstration" solicitation (DE-FOA-0000016).

  13. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  14. Sicangu Lakota Oyate, Hihan Sapa Wapaha, Tate Woilagyapi Project - 30 MW Wind Energy Facility

    Energy Savers [EERE]

    Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) 30 MW Wind Energy Facility Phil Two Eagle, Director Ken Haukaas, Project Manager Resource Development Office Dale Osborn, President Distributed Generation Systems, Inc. (DISGEN) www.disgenonline.com Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) Project Objectives 1. Complete all the development

  15. Multi-Mission Capable, High g Load mW RPS

    SciTech Connect (OSTI)

    John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

    2007-05-23

    Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

  16. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  17. 50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL

    SciTech Connect (OSTI)

    Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

    2011-03-11

    In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

  18. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  19. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect (OSTI)

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  20. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect (OSTI)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  1. The R and D progress of 4 MW EAST-NBI high current ion source

    SciTech Connect (OSTI)

    Xie, Yahong Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-15

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  2. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)

    SciTech Connect (OSTI)

    McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

    2013-04-01

    In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  3. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  4. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  5. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect (OSTI)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  6. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl; Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  7. A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read

    2008-06-19

    This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined that development could not be achieved within the funding constraints of a Phase II program.

  8. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  9. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  10. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  11. High-power targets: experience and R&D for 2 MW

    SciTech Connect (OSTI)

    Hurh, P.; Caretta, O.; Davenne, T.; Densham, C.; Loveridge, P.; Simos, N.; /Brookhaven

    2011-03-01

    High-power particle production targets are crucial elements of future neutrino and other rare particle beams. Fermilab plans to produce a beam of neutrinos (LBNE) with a 2.3 MW proton beam (Project X). Any solid target is unlikely to survive for an extended period in such an environment - many materials would not survive a single beam pulse. We are using our experience with previous neutrino and antiproton production targets, along with a new series of R&D tests, to design a target that has adequate survivability for this beamline. The issues considered are thermal shock (stress waves), heat removal, radiation damage, radiation accelerated corrosion effects, physics/geometry optimization and residual radiation.

  12. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  13. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect (OSTI)

    Smith, Kevin Arthur [ORNL; Primm, Trent [ORNL

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  17. Final Report 200 MW L-Band Annular Beam Klystron for Accelerators

    SciTech Connect (OSTI)

    Read, Michael; Ferguson, Patrick; Ives, Lawrence; Song, Liqun; Carlsten, Bruce; Fazio, Michael

    2009-02-11

    This program developed a 200 MW, 1.3 GHz, Annular Beam Klystron (ABK) for accelerator systems. An ABK provides lower impedance than a conventional klystron, making it possible to produce higher RF powers with lower voltages. With a higher power per unit, fewer klystrons would be required for a large accelerator. Lower voltage also simplifies and reduces the cost of the power supply system. Both features will significantly lower the cost of an RF system. This device operates at 475 kV. The klystron uses a magnetron injection gun producing 1100 A in one microsecond pulses. Power is extracted into fundamental rectangular waveguide through two output windows. The predicted gain is approximately 45 dB with estimated efficiency of 45%. The klystron was assembled, but no facility was available for testing. Consequently, no high power performance measurements are available. Because the assembled klystron is approximately 15 feet long, it was disassembled for storage. It can be reassembled should a use materialize.

  18. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  19. Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean Earthquake

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Delorey, A. A.; Johnson, P. A.; Chao, K.; Obara, K.

    2015-10-02

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascadingmore » fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less

  20. Recent Performance and Ignition Tests of the pulsed SNS H- Source for 1-MW Neutron Production

    SciTech Connect (OSTI)

    Stockli, Martin P; Han, Baoxi; Murray, Jr, S N; Pennisi, Terry R; Piller, Chip; Santana, Manuel; Welton, Robert F

    2015-01-01

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H- beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ~0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H- beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation.

  1. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  2. SP Newsprint

    SciTech Connect (OSTI)

    2009-11-01

    This is a combined heat and power (CHP) project profile on a 45 MW steam turbine at SP Newsprint in Dublin, Georgia.

  3. UNC Chapel Hill

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 32 MW cogeneration plant at UNC Chapel Hill in North Carolina.

  4. Transamerica Pyramid Building

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1 MW CCHP system at the Transamerica Pyramid Building in San Francisco, California.

  5. Fort Bragg

    SciTech Connect (OSTI)

    2009-11-01

    This is a combined heat and power (CHP) project profile on a 5 MW combustion turbine at Fort Bragg in North Carolina.

  6. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency's preliminary screening exercise and shows the screens for the feasibility screening tool, computer software prepared for HUD by the Oak Ridge National Laboratory (ORNL). ...

  7. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... However, as natural gas prices have decreased and in many regions and ... The chemical manufacturing sector is the second largest consumer of energy in the industrial market. ...

  8. APPENDXD.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

  9. APPEND.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    106 Energy Information AdministrationPetroleum Supply Monthly 107 Energy Information AdministrationPetroleum Supply Monthly...

  10. PSADEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alcohol. The family name of a group of organic chemical compounds composed of carbon, ... A generic term applied to a group of organic chemical compounds composed of carbon, ...

  11. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Power Outage Cost Estimates Superstorm Sandy o Nearly 20 billion in losses from ... (unavailability of gas in NJ post Sandy) Emergency Preparedness & Planning o ...

  12. PSADEFS.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 16,225 14,883 16,627 15,979 16,802 16,447 16,891

  13. PSMSUMRY.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    inventory" on the stock graphs are the lower end of the demonstrated operational inventory range updated for known and definable changes in the petroleum delivery system....

  14. HEATRESV.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Terminal Woodbridge, NJ 1,000 Williams Energy Services New Haven, CT 500 Motiva Enterprises LLC New Haven, CT 250 Motiva Enterprises LLC Providence, RI 250 Total 2,000 Source:...

  15. PSMNOTES.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7....

  16. PSMDEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a...

  17. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    SciTech Connect (OSTI)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-11-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 {times} 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  18. LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM Scott Kuszamaul 1 , Abraham Ellis 1 , Joshua Stein 1 , and Lars Johnson 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 SunPower Corporation, Richmond, CA, USA ABSTRACT Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery

  19. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  20. Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

  1. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  4. Producing Persistent, High-Current, High-Duty-Factor H- Beams for Routine 1 MW Operation of SNS

    SciTech Connect (OSTI)

    Stockli, Martin P; Han, Baoxi; Hardek, Thomas W; Kang, Yoon W; Murray Jr, S N; Pennisi, Terry R; Piller, Chip; Santana, Manuel; Welton, Robert F

    2012-01-01

    Since 2009, SNS has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of ~50 mA H- ions from the ion source with a ~5% duty factor. The 50 mA are achieved after an initial dose of ~3 mg of Cs and heating the Cs collar to ~170 C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H- beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 C.

  5. Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Solyak, N.A.; Yakovlev, V.P.; Hirschfield, J.L.; Kazakevich, G.M.; LaPointe, M.A.; /Yale U.

    2009-05-01

    A preliminary design and current status are presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as its RF driver an XK-5 S-band klystron (2.856 GHz). The multiplier is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities, a principal example being a TE{sub 711} rotating mode cavity running at 20 GHz. The design that is described uses a 250 kV, 20 A injected laminar electron beam. With 8.5 MW of S-band drive power, 4.4 MW of 20-GHz output power is predicted. The design uses a gun, magnetic coils, and beam collector from an existing waveguide 7th harmonic multiplier. The gun has been re-conditioned and the desired operating parameters have been achieved.

  6. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  7. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  8. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  9. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    SciTech Connect (OSTI)

    Amann, John; Arnold, Ray; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz; /CERN

    2012-07-05

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

  10. Metal wastage analysis of carbon steel tubes from TVA 20 MW AFBC (atmospheric fluidized-bed combustion)

    SciTech Connect (OSTI)

    Natesan, K.

    1987-11-01

    Evaporator tubes of carbon steel material, obtained from the TVA 20 MW AFBC test facility, were examined for deposit formation and metal wastage. Three different regions of the tube sections were analyzed using electron diffraction and several electron-optical techniques. The results showed that excessive metal wastage in one of the locations can be attributed to erosive wear of chlorine impregnated iron oxide scales. The results also showed that corrosion accelerating elements such as Cl, S, and K act independent of each other on the carbon steel evaporator tubes and it is imperative to characterize the local environment in the vicinity of the tube banks for understanding the complex deposition/corrosion phenomena that occur in FBC systems. 2 refs., 11 figs., 1 tab.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  12. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. PDF icon chp_large.pdf More Documents & Publications CHP Assessment, California Energy Commission, October

  13. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Final report

    SciTech Connect (OSTI)

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.; Smith, L.

    1994-02-01

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emission reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.

  14. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  15. Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    SciTech Connect (OSTI)

    1996-01-29

    Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

  16. A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.

    SciTech Connect (OSTI)

    Del Bravo, R.; Pinacci, P.; Trifilo, R.

    1998-07-01

    This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

  17. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  18. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant

    SciTech Connect (OSTI)

    Radosevich, L.G.

    1988-03-01

    This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

  19. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  20. Recent performance and ignition tests of the pulsed SNS H{sup −} source for 1-MW neutron production

    SciTech Connect (OSTI)

    Stockli, Martin P. Han, B. X.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R. F.

    2015-04-08

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H{sup −} beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ∼0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H{sup −} beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation. At the request of the authors and the Proceedings Editor this article has been updated to include References 3–13, which were present in the author’s original submission but were lost during manuscript processing in the Proceedings Editor's office. The updated article was published on 5 May 2015.

  1. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  2. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu.; Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V.

    2009-03-15

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  3. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  4. 500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application

    SciTech Connect (OSTI)

    Chu, Tak Sum; Anderson, Scott; Barty, Christopher; Gibson, David; Hartemann, Fred; Marsh, Roark; Siders, Craig; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  5. 500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION

    SciTech Connect (OSTI)

    Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

    2010-05-12

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  6. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert; Peek, Georgianne Huff

    2009-01-01

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  7. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  8. TABLE31.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 3,325 144 1,717 1,024 693 108 1,954 Minnesota ......0 0 2,862 152 1,806 1,225 581 106 1,636 Minnesota ......

  9. TABLE56.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2,153 0 2,153 1,884 1,514 370 Normal ButaneButylene ... 0 0 0 527 415 112 IsobutaneIsobutylene...

  10. TABLE39.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 0 0 0 Ecuador ... 4,535 0 0 0 0 0 0 540 0 0 Japan ... 0 0 0 0 0 825 0 0 0 0 Korea, Republic of...

  11. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ...... 0 433 0 344 ...

  12. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ...... 0 433 157 978 ...

  13. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ......

  14. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Total Stocks, All Oils (excluding Crude Oil) ...... 172,408 157,248 ... 44,670 2,743 7,263 120,085 Natural Gas Processing Plant ......

  15. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 965 1,163 174 206 1,543 Asphalt and Road Oil ......Processing Gain(-) or Loss(+) a ...... -1,912 -33 -1,945 ...

  16. TABLE52.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. W Withheld to avoid...

  17. TABLES5.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    a Stocks are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. b A negative number...

  18. VOL2NOTE.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    B Explanatory Notes The following Explanatory Notes are provided to assist in understanding and interpreting the data presented in this publication. * Note 1. Petroleum Supply Reporting System * Note 2. Monthly Petroleum Supply Reporting System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7. Frames Maintenance * Note 8. Descriptive Monthly Statistics * Note 9. Practical

  19. table01.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  20. table02.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 202,756 - 258,506 1,851 12,065 0 443,902 7,146 0 880,184 Natural Gas Liquids and LRGs ............ 55,963 15,419 7,378 - -15,412 - 14,810 2,118 77,244 79,784 Pentanes Plus .................................... 9,388 - 1,185 - 1,137 - 4,282 461 4,693 6,852 Liquefied Petroleum Gases ................ 46,575 15,419 6,193 - -16,549 - 10,528 1,657

  1. table03.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 6,541 - 8,339 60 389 0 14,319 231 0 Natural Gas Liquids and LRGs ........... 1,805 497 238 - -497 - 478 68 2,492 Pentanes Plus .................................... 303 - 38 - 37 - 138 15 151 Liquefied Petroleum Gases ................ 1,502 497 200 - -534 - 340 53 2,340 Ethane/Ethylene ............................ 636 24 18 - -55 - 0 0 734

  2. table04.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District I-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ........................................... 824 - 53,357 -2,000 -89 5,262 0 46,830 0 0 16,235 Natural Gas Liquids and LRGs ........ 829 569 1,233 - 4,737 -869 - 252 24 7,961 5,223 Pentanes Plus ................................ 79 - 0 - 0 7 - 0 1 71 19 Liquefied Petroleum Gases ............ 750 569 1,233 - 4,737 -876 - 252 24 7,889 5,204 Ethane/Ethylene ........................ 262

  3. table05.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2

  4. table06.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7,308 - 27,686 -2,263 59,993 -3,449 0 105,005 1,168 0 70,132 Natural Gas Liquids and LRGs ......... 8,763 2,756 3,599 - 265 -6,499 - 3,820 752 17,310 23,020 Pentanes Plus ................................... 1,146 - 42 - 519 214 - 769 455 269 1,988 Liquefied Petroleum Gases ............... 7,617 2,756 3,557 - -254 -6,713 - 3,051 297 17,041 21,032 Ethane/Ethylene ............................ 2,909 0 12 - -2,215 -110 - 0 0 816 2,868 Propane/Propylene ....................... 3,095 3,602 2,661 - 968

  5. table07.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene

  6. table08.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    106,453 - 157,490 -279 -53,603 7,143 0 202,918 0 0 717,193 Natural Gas Liquids and LRGs ........ 39,438 10,759 2,005 - -2,109 -6,438 - 7,105 885 48,541 46,872 Pentanes Plus .................................. 5,820 - 1,031 - -167 925 - 2,057 0 3,702 4,603 Liquefied Petroleum Gases .............. 33,618 10,759 974 - -1,942 -7,363 - 5,048 885 44,839 42,269 Ethane/Ethylene ........................... 15,603 751 544 - 3,485 -1,605 - 0 0 21,988 14,111 Propane/Propylene ....................... 11,268

  7. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54

  8. table10.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1,049 - 6,332 1,608 -4,050 -23 0 14,962 0 0 12,816 Natural Gas Liquids and LRGs ......... 4,049 -11 536 - -2,893 -15 - 595 6 1,095 1,354 Pentanes Plus ................................... 771 - 112 - -352 -8 - 163 5 371 219 Liquefied Petroleum Gases ............... 3,278 -11 424 - -2,541 -7 - 432 (s) 725 1,135 Ethane/Ethylene ............................ 950 0 0 - -1,270 0 - 0 0 -320 213 Propane/Propylene ....................... 1,473 284 233 - -705 -50 - 0 (s) 1,335 439 Normal Butane/Butylene

  9. vol2app.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0

    A District Descriptions and Maps The following are the Refining Districts which make up the Petroleum Administration for Defense (PAD) Dis- tricts. PAD District I East Coast: District of Columbia and the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New Jersey, Delaware, Maryland, Virginia, North Carolina, South

  10. vol2fron.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

  11. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. PAD District IV-Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ........................................... 356 - 204 52 -131 -1 0 483 0 0 Natural Gas Liquids and LRGs ........ 131 (s) 17 - -93 (s) - 19 (s) 35 Pentanes Plus .................................. 25 - 4 - -11 (s) - 5 (s) 12 Liquefied Petroleum Gases .............. 106 (s) 14 - -82 (s) - 14 (s) 23 Ethane/Ethylene ........................... 31 0 0 - -41 0 - 0 0 -10

  12. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. PAD District V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................ 67,121 - 13,641 4,786 -2,251 3,132 0 74,187 5,978 0 63,808 Natural Gas Liquids and LRGs ........ 2,884 1,346 5 - 0 -1,591 - 3,038 451 2,337 3,315 Pentanes Plus ................................... 1,572 - 0 - 0 -1 - 1,293 (s) 280 23 Liquefied Petroleum Gases .............. 1,312 1,346 5 - 0 -1,590 - 1,745 450 2,058 3,292 Ethane/Ethylene

  13. TABLE13.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PAD District V - Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ............................................ 2,165 - 440 154 -73 101 0 2,393 193 0 Natural Gas Liquids and LRGs ........ 93 43 (s) - 0 -51 - 98 15 75 Pentanes Plus ................................... 51 - 0 - 0 (s) - 42 (s) 9 Liquefied Petroleum Gases .............. 42 43 (s) - 0 -51 - 56 15 66 Ethane/Ethylene ............................ (s) 0 0 - 0 0 - 0 0 (s)

  14. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I .......................................................................................... 824 27 Florida ................................................................................................. 523 17 New York ............................................................................................. 19 1 Pennsylvania

  15. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids

  16. TABLE16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ................................................................... 44,047 2,783 46,830 70,320 12,891 21,794 105,005 Natural Gas Liquids ................................................. 252 0 252 2,613 131 1,076 3,820 Pentanes Plus ....................................................... 0 0 0 202 45 522 769 Liquefied Petroleum Gases ................................... 252 0 252 2,411 86

  17. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ........................................... 576 -7 569 2,415 -51 392 2,756 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Ethane ............................................................... W W W W W W W Ethylene ............................................................ W W W W W W W Propane/Propylene

  18. TABLE18.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil .................................................................... 14,835 511 15,346 8,591 1,779 2,386 12,756 Petroleum Products .................................................. 53,526 2,604 56,130 37,545 10,689 14,376 62,610 Pentanes Plus .......................................................... 0 0 0 4 209 225 438 Liquefied Petroleum Gases ......................................

  19. TABLE19.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Percent Refinery Yield of Petroleum Products by PAD and Refining Districts, a January 1998 Liquefied Refinery Gases ............................................ 1.2 -0.3 1.1 3.4 -0.4 1.9 2.6 Finished Motor Gasoline b ............................................ 49.1 39.8 48.6 51.6 54.9 50.0 51.7 Finished Aviation Gasoline c ........................................ 0.1 0.0 0.1 0.0 0.1 0.1 0.0 Naphtha-Type Jet Fuel ................................................ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

  20. TABLE20.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0. Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ................................................................... 53,357 48,515 139,013 3,980 13,641 258,506 8,339 Natural Gas Liquids ...................................................... 1,233 3,599 2,005 536 5 7,378 238 Pentanes Plus ............................................................ 0 42 1,031 112 0 1,185 38 Liquefied Petroleum Gases ........................................ 1,233 3,557 974

  1. TABLE21.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, a January 1998 Arab OPEC .................................. 53,500 1,139 2,258 115 625 0 0 1,267 0 0 Algeria ...................................... 0 1,139 1,174 115 0 0 0 824 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 7,822 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 44,568 0 1,084 0 625 0 0 443 0 0 Other

  2. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. PAD District I-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,171 845 0 115 625 0 0 824 0 0 Algeria ....................................... 0 845 0 115 0 0 0 824 0 0 Saudi Arabia .............................. 6,171 0 0 0 625 0 0 0 0 0 Other OPEC .................................. 13,975 0 280 588 1,644 776 715 2,024 3 0 Nigeria ....................................... 8,825 0 0 0 0 0 0 166 0 0 Venezuela

  3. TABLE23.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,253 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 4,966 0 0 0 0 0 0 0 0 0 Other OPEC .................................. 4,136 0 0 0 0 0 0 0 0 0 Nigeria ...................................... 540 0 0 0 0 0 0 0 0 0 Venezuela ................................. 3,596 0 0

  4. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 38,701 294 2,258 0 0 0 0 443 0 0 Algeria ....................................... 0 294 1,174 0 0 0 0 0 0 0 Kuwait ........................................ 5,270 0 0 0 0 0 0 0 0 0 Saudi Arabia .............................. 33,431 0 1,084 0 0 0 0 443 0 0 Other OPEC .................................. 41,555 0 1,652 0 0 0 0 0 0 0 Nigeria

  5. TABLE25A.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    PAD District V PAD District IV January 1998 Non OPEC .................................... 3,980 424 0 0 13 0 140 0 0 0 Canada ..................................... 3,980 424 0 0 13 0 140 0 0 0 Total .............................................. 3,980 424 0 0 13 0 140 0 0 0 Arab OPEC .................................. 2,409 0 0 0 0 0 0 0 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,299 0 0 0 0 0 0 0 0 0 Saudi Arabia

  6. TABLE26.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ............................................................................................... 1,481 1,458 4,361 7,300 Delaware .................................................................................................. 0 0 305 305 Florida ...................................................................................................... 0 0 635 635 Maine

  7. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ....................................................................... 0 1,168 0 0 5,978 7,146 231 Natural Gas Liquids ...................................................... 24 752 885 6 451 2,118 68 Pentanes Plus ............................................................. 1 455 0 5 (s) 461 15 Liquefied Petroleum Gases ......................................... 24 297 885 (s) 450 1,657 53 Ethane/Ethylene

  8. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    8. Exports of Crude Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus Gases Gasoline Jet Fuel Kerosene Oil Fuel Oil January 1998 Argentina .............................................. 0 0 0 1 0 0 1 1 Australia ............................................... 0 0 (s) (s) 0 0 1 0 Bahama Islands ................................... 0 0 21 1 1 (s) 54 (s) Bahrain

  9. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Net Imports of Crude Oil and Petroleum Products into the United States by Country, (Thousand Barrels per Day) January 1998 Arab OPEC .................................. 1,726 37 20 0 (s) 41 -3 (s) 296 391 2,116 Algeria ...................................... 0 37 0 0 0 27 0 0 252 316 316 Iraq ........................................... 36 0 0 0 0 0 0 0 0 0 36 Kuwait ....................................... 252 0 0 0 0 0 0 (s) (s) (s) 252 Qatar ........................................ 0 0 0 0 0 0

  10. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ............. 16,235 70,132 717,193 12,816 63,808 880,184 Refinery ......................................................................... 15,346 12,756 45,731 2,186 21,772 97,791 Tank Farms and Pipelines ............................................. 869 56,269 94,262 9,834 29,940 191,174 Leases ........................................................................... 20 1,107 13,770 796 961 16,654 Strategic Petroleum Reserve *a ...................................... 0 0 563,430 0 0 563,430

  11. TABLE31.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD January 1998 PAD District I ........................................ 39,875 16,226 269 23,380 3,520 46,977 15,022 31,955 15,736 2,460 Connecticut ....................................... 1,625 1,625 0 0 131 4,252 999 3,253 70 W Delaware, D.C., Maryland ................. 2,413 1,906 0 507 169 2,677 869 1,808 2,331 W Florida ............................................... 6,051 0 0 6,051 115 2,063 1,131

  12. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ........................................................ 0 433 0 344 978 772 0 0 58,118 Petroleum Products ...................................... 8,045 76 0 3,328 6,928 2,885 0 100,331 23,625 Pentanes Plus ............................................ 0 0 0 0 159 0 0 0 549 Liquefied Petroleum Gases ........................ 0 0 0 1,093 5,010 262 0 3,644 4,920 Unfinished Oils

  13. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ........................................................ 0 433 157 978 772 0 58,118 Petroleum Products ...................................... 7,922 0 1,760 5,765 2,885 73,877 20,560 Pentanes Plus ............................................ 0 0 0 159 0 0 549 Liquefied Petroleum Gases ........................ 0 0 1,093 5,010 262 3,310 4,920 Motor Gasoline Blending Components ...... 0 0 1 0 0

  14. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 187 0 0 0 0 Petroleum Products ................................................ 123 76 0 1,568 1,163 0 26,454 414 Liquefied Petroleum Gases ................................... 0 0 0 0 0 0 334 0 Unfinished Oils ...................................................... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ................. 0 32 0 0 0 0 381 0 Finished Motor Gasoline ....................................... 0 0 0 808 38 0 15,816 255 Reformulated

  15. TABLE35.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Barrels) January 1998 Crude Oil .................................................................. 344 433 -89 62,087 2,094 59,993 Petroleum Products ................................................ 103,659 8,121 95,538 34,597 13,141 21,456 Pentanes Plus ....................................................... 0 0 0 678 159 519 Liquefied Petroleum Gases ................................... 4,737 0 4,737 6,111 6,365 -254 Ethane/Ethylene ............................................... 0 0 0

  16. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  17. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  18. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,512 5 2,517 1,355 82 326 1,763 Heavy Gas Oils ......638 42 680 282 125 94 501 Distillate Fuel Oil ......

  19. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... On December 6, 1991, the U.S. Department of Commerce approved a license to export 25,000 barrels per day of California heavy crude oil (less than 20 degrees API gravity) to Pacific ...

  20. TABLES3.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 265 0 988 988 213 207 0 0 February ... 248 0 709 709 290 279 0 0 March ... 347 75 813 813 184 179 0 0 April...

  1. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Supply Monthly, September 2004 2 Table S1. Crude Oil and Petroleum Products Overview, 1988 - Present (Continued) (Thousand Barrels...

  2. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Annual 1998, Volume 2 a Based on crude oil input and net reruns of unfinished oils. b Based on total finished motor gasoline output minus net input of motor gasoline blending ...

  3. vol2app.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 557 Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 558...

  4. TABLE26.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ......

  5. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ...... 53,357 48,515 139,013 ...

  6. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ...... 38,701 294 2,258 0 0 0 0 443 0 0 ...

  7. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ...... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ...

  8. TABLE25A.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Persian Gulf e ...... 2,409 0 0 0 0 0 0 0 0 0 (Thousand Barrels) Table 25. PAD Districts IV and V-Imports of Crude Oil and Petroleum Products by Country of ...

  9. Solar and CHP Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    This exemption was originally set to expire July 1, 2002, but it was extended for three more three years. In May 2005, the exemption was made permanent upon the enactment of H.B. 805.

  10. TABLE01.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    residual fuel oil, jet fuel, and liquefied petroleum gases. e Crude oil stocks in the Strategic Petroleum Reserve include non-U.S. stocks held under foreign or commercial...

  11. TABLE45.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and the U.S. Bureau of the Census. July 2004 Crude Oil a ......

  12. TABLES8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S8. PropanePropylene Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  13. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, Source: Energy Information Administration (EIA) Form EIA-814, "Monthly Imports Report." July...

  14. TABLES10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0.Other Petroleum Products Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive...

  15. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  16. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Note: Refer to Appendix A for Refining District descriptions. Source: Energy Information...

  17. TABLES6.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S6. Residual Fuel Oil Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  18. TABLE55.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Source: Energy Information Administration (EIA) Form EIA-817, "Monthly Tanker and Barge Movement Report." July 2004 Crude Oil ......

  19. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  20. TABLES2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    understated final values by approximately 50 thousand barrels per day. This causes the preliminary values of unaccounted for crude oil to overstate the final values by...

  1. TABLE38.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OPEC ... 72,086 1,138 9,203 1,472 417 19 404 571 0 74 Angola ... 1,474 0 80 0 0 0 0 0 0 0 Argentina...

  2. TABLE43.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 484,763 6,867 55,661 7,548 1,560 117 3,523 6,432 0 1,005 Angola ... 20,829 285 1,577 0 0 0 0 0 0 0 Argentina...

  3. TABLE35.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 160,260 4,335 13,631 15,344 16,656 2,431 7,861 9,379 5 217 Angola ... 11,020 0 80 0 0 0 0 383 0 0 Argentina...

  4. TABLE41.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 182,217 6,992 9,071 75,369 86,125 7,090 53,663 46,617 402 911 Angola ... 33,919 0 0 0 0 0 0 443 0 0 Argentina...

  5. TABLE44.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 89,852 349 4,995 9,344 4,244 10,635 2,403 6,068 0 0 Angola ... 2,803 0 0 0 0 0 0 0 0 0 Argentina...

  6. TABLE36.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 25,055 559 3,328 12,017 15,173 1,142 6,883 7,565 5 117 Angola ... 5,371 0 0 0 0 0 0 383 0 0 Argentina...

  7. TABLE40.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,064,030 35,714 70,087 92,261 92,427 18,179 62,792 59,916 402 1,986 Angola ... 63,341 285 1,577 0 0 0 0 443 0 0 Argentina...

  8. TABLE25.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  9. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  10. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  11. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... barrels): Alaska: State - 6,171; California: State - 1,870; Louisiana: State - ... Division estimates based on Form EIA-182, "Domestic Crude Oil First Purchase Report" data. ...

  12. TABLE47.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    240 1,264 Chile ... 0 0 0 (s) 0 0 1 0 China, People's Republic of ... 0 (s) 511 (s) 0 0 0 (s) China, Taiwan...

  13. TABLE48.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Chile ... 0 0 0 1 148 0 1,543 280 China, People's Republic of ... 805 5 1,488 15 0 0 7 113 China, Taiwan...

  14. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... estimates IGATE-E IAC, ESA,and MNI Databases Database Schema** 45 tables-MySQL ... system (DBMS) and refers to the organization of data as a blueprint of how a database is ...

  15. CHP Emissions Reduction Estimator | Open Energy Information

    Open Energy Info (EERE)

    Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Softwaremodeling tools User Interface:...

  16. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids...

  17. CHP/Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Gas turbines also have very low emissions compared to other fossil-fuel based systems. Fuel Cell - these plants primarily produce power using Oil, Distillate Fuel Oil, Jet Fuel,...

  18. TABLE37.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  19. TABLE42.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  20. TABLE02.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Report," EIA-811, "Monthly Bulk Terminal Report," EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," EIA-814, "Monthly Imports Report,"...

  1. TABLE35.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sources: Energy Information Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," and EIA-817, "Monthly Tanker and...

  2. Advanced CHP Control Algorithms: Scope Specification

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  3. TABLE50.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (s) 8 Ecuador ... 201 (s) 0 0 -8 14 0 (s) (s) 6 207 Egypt ... 0 (s) (s) 0 0 0 -3 (s) 6 4 4 France...

  4. TABLE49.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 10 Ecuador ... 249 0 0 0 -14 22 0 (s) -2 6 256 Egypt ... 0 0 0 0 0 0 0 (s) 0 (s) (s) France...

  5. TABLE28.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0 0 0 0 0 0 0 Netherlands Antilles ...... 0 0 0 0 0 0 133 298 New Zealand ...... 0 0 (s) (s) 0 0 0 0 Nigeria ...

  6. table01.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ......... -1 (s) (9) Other Stock Change (Withdrawal (+), Addition (-)) ......... -10,214 -329 (13) Crude Input to Refineries ......

  7. table06.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  8. table04.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  9. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  10. table07.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  11. table03.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Production Production Imports Oil a Change b Losses Inputs Exports Supplied c Energy ...

  12. table08.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  13. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  14. table10.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  15. VOL2NOTE.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... were added to the monthly survey frames: 2 motor gasoline blenders, 30 bulk terminal operators, 3 pipeline operators, 3 crude oil stock holders, and 1 tanker and barge operator. ...

  16. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  17. table02.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Ending Production Production Imports Oil a Change b Losses Inputs Exports Supplied c ...

  18. table05.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  19. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  20. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, July 2004 Liquefied Refinery Gases ... 2,082 70...

  1. TABLE46.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, a Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of...

  2. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  3. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  4. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  5. TABLE29.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0 0 0 0 (s) 0 0 11 7 17 17 Romania ...... 0 0 0 ... 0 0 0 0 (s) 0 0 6 14 19 19 Romania ...... 0 0 0 ...

  6. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 0 0 0 0 0 0 0 0 0 0 Romania ...... 0 0 ... 175 0 303 0 0 478 478 0 15 15 Romania ...... 0 0 0 ...

  7. TABLE21.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 0 0 0 0 0 0 0 0 0 0 Romania ...... 0 0 0 ... 247 0 303 0 0 550 550 0 18 18 Romania ...... 0 0 0 ...

  8. TABLES7.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S7. Jet Fuel Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b A negative number indicates a decrease...

  9. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons and oxygenates. c Based on finished aviation gasoline output minus net input of...

  10. TABLE51.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 14,487 13,929 47,253 1,928 21,142 98,739 Tank Farms and Pipelines ... 1,116 47,924 95,765 8,448 22,759...

  11. TABLE04.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 111 Liquefied Petroleum Gases ... 1,522 833 304 - 515 - 179 48 1,916 EthaneEthylene ... 676 19 (s) - 58 - 0 0 637 PropanePropylene...

  12. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 87 Liquefied Petroleum Gases ... 1,024 520 188 - 118 326 - 103 13 1,408 EthaneEthylene ... 470 19 0 - 149 41 - 0 0 597 PropanePropylene...

  13. TABLE10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases ... 8,283 4,453 2,498 - -812 4,359 - 982 273 8,808 33,507 EthaneEthylene ... 3,675 0 10 - -1,947 532 - 0 0 1,206 2,198...

  14. TABLE12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19 8 - 41 1 3 Liquefied Petroleum Gases ... 267 144 81 - -26 141 - 32 9 284 EthaneEthylene ... 119 0 (s) - -63 17 - 0 0 39 PropanePropylene...

  15. TABLE05.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    177 2 134 Liquefied Petroleum Gases ... 1,519 711 246 - 78 - 216 46 2,137 EthaneEthylene ... 672 22 (s) - 6 - 0 0 688 PropanePropylene...

  16. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases ... 5,600 259 136 - -4,993 59 - 289 37 617 1,387 EthaneEthylene ... 2,663 0 0 - -2,659 -1 - 0 0 5 324 Propane...

  17. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 31,742 16,128 5,819 - 3,652 10,099 - 3,198 394 43,650 64,754 EthaneEthylene ... 14,583 586 0 - 4,606 1,266 - 0 0 18,509 17,206...

  18. TABLE03.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 323,489 151,432 52,487 - 16,623 - 45,943 9,726 455,116 111,040 EthaneEthylene ... 143,173 4,697 93 - 1,314 - 0 0 146,649 19,729...

  19. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    17 2 - 43 1 4 Liquefied Petroleum Gases ... 269 112 94 - (s) 14 - 43 6 412 EthaneEthylene ... 117 0 (s) - -51 -1 - 0 0 68 PropanePropylene...

  20. TABLES9.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Explanatory Note 4. - Not Applicable. Notes: * Liquefied petroleum gases includes ethaneethylene, propanepropylene, normal butanebutylene, and isobutaneisobutylene. *...

  1. TABLE08.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases ... 15 69 31 - 69 37 - 5 3 140 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  2. TABLE09.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - 0 - 0 (s) - 0 2 1 Liquefied Petroleum Gases ... 15 56 45 - 98 5 - 4 3 201 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  3. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    99 0 110 Liquefied Petroleum Gases ... 1,015 462 99 - 52 61 - 120 21 1,426 EthaneEthylene ... 471 22 (s) - 129 8 - 0 0 614 PropanePropylene...

  4. TABLE06.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Gases ... 467 2,152 958 - 2,153 1,136 - 162 97 4,335 7,396 EthaneEthylene ... 17 11 0 - 0 0 - 0 0 28 0 PropanePropylene...

  5. TABLE07.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gases ... 3,152 11,938 9,601 - 20,805 1,160 - 858 563 42,915 7,396 EthaneEthylene ... 161 52 0 - 0 0 - 0 0 213 0 PropanePropylene...

  6. Local Power Empowers: CHP and District Energy

    Broader source: Energy.gov [DOE]

    This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy.

  7. Recent Publications in CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Gas: Saves Energy, Lowers Costs - Case Study, 2 pp*, July 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 4 pp*, May ...

  8. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, a Represents the PAD District in which the material entered the United States and not necessarily...

  9. TABLE23.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily...

  10. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V - Daily Average Supply and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the...

  11. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 315 4 319 202 52 301 555 Other HydrocarbonsHydrogenOxygenates ... 769 0 769 18 29 0 47 Other HydrocarbonsHydrogen...

  12. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 12,842 139 12,981 2,033 -1,275 513 1,271 Other HydrocarbonsHydrogenOxygenates ... 2,590 120 2,710 1,976 686 438 3,100 Other HydrocarbonsHydrogen...

  13. TABLES4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S4. Finished Motor Gasoline Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b Beginning in 1993,...

  14. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

  15. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  16. Navajo Nation Navajo-Hopi Land Commission Feasibility Study for 4,000 MW of Renewable Power at the Paragon-Bisti Ranch

    Energy Savers [EERE]

    4,000 MW of Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO March 25, 2014   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974.  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside certain lands for the benefit of relocatees. HISTORY  HISTORY   Paragon-Bisti Ranch is one of the selected lands :  Located in northwestern New Mexico.  22,000 acres of land  Benefits

  17. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and...

  20. Producing persistent, high-current, high-duty-factor H{sup -} beams for routine 1 MW operation of Spallation Neutron Source (invited)

    SciTech Connect (OSTI)

    Stockli, Martin P.; Han, B. X.; Hardek, T. W.; Kang, Y. W.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.

    2012-02-15

    Since 2009, the Spallation Neutron Source (SNS) has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of {approx}50 mA H{sup -} ions from the ion source with a {approx}5% duty factor. The 50 mA are achieved after an initial dose of {approx}3 mg of Cs and heating the Cs collar to {approx}170 deg. C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H{sup -} beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 deg. C.

  1. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  2. HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be used in multi-family housing," issued by New York City in June 1989. The manual was developed to assist managers, owners and boards of multi-family buildings in ...

  3. Low NO{sub x} combustion system with DSVS{trademark} rotating classifier retrofit for a 630 MW{sub e} cell burner unit

    SciTech Connect (OSTI)

    Bryk, S.A.; Maringo, G.J.; Shah, A.I.; Madden, V.F.

    1996-12-31

    New England Power Company`s (NEP) 630 MW{sub e} Brayton Point Unit 3 is a universal pressure (UP) type supercritical boiler originally equipped with pulverized coal (PC) fired cell burners. In order to comply with the Phase 1 NO{sub x} emissions requirements under Title I of the 1990 Clean Air Act Amendments, the unit has been retrofitted with a low NO{sub x} staged combustion system during the spring 1995 outage. The unit was restarted in early May 1995 and was operating under the State Compliance emission levels by the end of the month. Additional optimization testing was performed in August, 1995. The retrofit scope consisted of replacing the cell burners with low NO{sub x} DRB-XCL{reg_sign} type PC/oil burners and overfire air ports within the existing open windbox, with no change in the firing pattern. A 70% NO{sub x} reduction from baseline levels was achieved while maintaining acceptable unburned carbon (UBC) and carbon monoxide (CO) emission levels. To maintain low UBC levels, the scope included modifying the MPS-89 pulverizers by replacing the existing stationary classifiers with the B and W DSVS{trademark} (Dynamically Staged Variable Speed) two stage rotating classifiers. The DSVS{trademark} classifiers provide higher fineness for UBC control without derating the mill capacity. This paper will describe the project and discuss the retrofit emissions data. The paper will conclude with recommendations for retrofitting other similarly designed units.

  4. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Togore, Sam; Turhollow Jr, Anthony F

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  5. Experimental Characterization of a Grid-Loss Event on a 2.5-MW Dynamometer Using Advanced Operational Modal Analysis: Preprint

    SciTech Connect (OSTI)

    Helsen, J.; Weijtjens, W.; Guo, Y.; Keller, J.; McNiff, B.; Devriendt, C.; Guillaume, P.

    2015-02-01

    This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) through the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.

  6. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  7. Menominee Tribal Enterprises (MTE) Biomass CHP District Energy System

    Energy Savers [EERE]

    The Menominee Nation once occupied 9.5 million acres of land * The present Menominee Reservation was established in 1854 with 234,000 acres. * The Menominee hunted, fished and harvested wild rice on their reservation. MTE Menominee Tribal Enterprises The Menominee Nation * The Menominee retained their island of timber & community by perseverance of their own tenacity, federal protection and fortuitous circumstance. MTE Menominee Tribal Enterprises The Menominee Nation * 95% of the

  8. Combined Heat and Power (CHP): Essential for a Cost Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In March 2011, a federal Clean Energy Standard (CES) was put forth as an approach to advancing a new national energy policy. This white paper discusses the CES concept. PDF icon ...

  9. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  10. CHP: A Technical & Economic Compliance Strategy - SEE Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Toxic Standards for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters, February 2013 Boiler Maximum Achievable Control Technology (MACT) Technical ...

  11. FIGS-1&2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Jet Fuel Source: Energy Information Administration, Petroleum Supply Monthly, Table S1. See Summary Statistics Table and Figure Sources. Source: Energy Information...

  12. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy in end-use sectors by forming partnerships with industry consortia in the ... materials to affected industries, stakeholder groups, utilities and in state and ...

  13. Clean Energy Solutions Large Scale CHP and Fuel Cells Program...

    Broader source: Energy.gov (indexed) [DOE]

    the program has been managed by the NJ Board of Public Utilities (BPU) as a part of its Clean Energy Program. Applications should be directed to NJ BPU instead of NJ Economic...

  14. 330 kWe Packaged CHP System with Reduced Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kevin Keene - Cummins Power Generation Kevin.Keene@cummins.com 763-574-5966 U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Increase the adoption rate for high-efficiency small- scale Combined Heat and Power systems via development of a flexible, containerized 330 kWe unit.  Simplifies installation  Reduces total cost of

  15. Commissioning of CHP Systems- White Paper, April 2008

    Broader source: Energy.gov [DOE]

    This paper details four example case studies: San Francisco hotel was retrofitted with a “packaged” microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted with two reciprocating engine generators and a hot water recovery system; and a state-of-the-art hospital in Austin, Texas, was retrofitted with a combustion turbine, heat recovery steam generator, absorption and electric chillers, and thermal storage.

  16. FIG-9&10.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S9. Residual Fuel Oil Supply and Disposition, Figure S10. Residual Fuel Oil Ending Stocks, 0 300 600 900 1,200 1,500 0 300 600 900 1,200 1,500 Jul Aug Sep Oct Nov Dec Jan Feb Mar...

  17. FIGS-3&4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S3. Crude Oil Supply and Disposition, Figure S4. Crude Oil Ending Stocks, 1 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 Jul Aug...

  18. FIGS-7&8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S7. Distillate Fuel Oil Supply and Disposition, Figure S8. Distillate Fuel Oil Ending Stocks, 0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000 Jul Aug Sep Oct Nov...

  19. FIG15&16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Liquefied Petroleum Gases Supply and Disposition, Figure S16. Liquefied Petroleum Gases Ending Stocks, Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2003 2004 Months 0...

  20. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The International CHPDHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHPDHC Collaborative - Advancing Near-Term Low Carbon ...