Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

2

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

3

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

green waste for use in a biomass gasification process togasification method to process some of the 1.4 million tons of wastegasification / power generation model, accessed April 2008 from http://biomass.ucdavis.edu/calculator.html 10. California Integrated Waste

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

4

Aspects of the electrical system design of the colmi 660 mw coal-fired power plant  

SciTech Connect (OSTI)

The conceptual design of the electrical systems for Mexico's Commission Federal de Electricidad (CFE) COLMI 660-MW coal-fired power plant builds on Bechtel's experience with nuclear, gas and coal-fired generating plants. The COLMI conceptual design incorporates a combination of new equipment applications and design considerations that make it more economical when compared to traditional alternatives. Also it provides a reliable state-of-the-art distribution system that is flexible enough for any unit in the 400-900 MW range. Alternative approaches were studied for the system design and equipment arrangement. This paper reviews the approach taken to arrive at the conceptual design and describes the equipment selected and the advantages they provide. Exact sizing and determination of characteristics of the equipment are not given because these were not determined during the conceptual design. These will be determined during the detailed design phase of the project.

Aguilar, J. (Bechtel Corp., Norwalk, CA (US)); Fernandez, J.H. (Comision Federal de Electricidad, Mexico, D.F. (MX))

1992-01-01T23:59:59.000Z

5

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)  

E-Print Network [OSTI]

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

Bookhagen, Bodo

6

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect (OSTI)

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

7

Discussion of the Key Problems on Designing 350 MW-Class Combined Cycle Power Plant  

Science Journals Connector (OSTI)

With adjustment of energy structure and enhancement of environmental protection standard, gas-steam combined cycle power plants will be erupt gradually, especially...gas being moved from WEST to EAST and liquefie...

Tai Lu; Sike Hu; Wenrui Wu

2007-01-01T23:59:59.000Z

8

Retrofit Project of 2100 MW Units in Yushe Power Plant, Shanxi Province Using Two Boilers-One CFB FGD  

Science Journals Connector (OSTI)

This paper takes the example of the retrofit of 2100 MW units of Yushe Power Plant in Shanxi Province, and summarizes the applications of circulation fluid bed flue gas desulphurization (CFB-FGD) adopted two bo...

Lin Fulin; Lian Egui

2009-01-01T23:59:59.000Z

9

Aging influence on exergy destruction in an operating 320MW steam power plant  

Science Journals Connector (OSTI)

Exergy analysis in power plants is a strong tool to evaluate cycle performance qualitatively. Most of previous studies applied second law approach to find optimum values for main cycle parameters. Although these researches are useful to improve the design features of future power plants they do not imply any recommendation to improve an aged unit. In This study an exergy analysis of an operating unit was performed to clear main sources of exergy destruction. Second law efficiency and exergy losses of all main components in the steam power plant which is located in the south of Iran were calculated based on present data. To find out aging influence on the plant performance outcomes were compared with design results. This comparison cleared components which affected by aging and the amount of miss performance were specified too. Boiler and high pressure turbine (HP) were the most influenced components due to aging effects. Besides the calculations were done at three loads in order to evaluate performance of components in off design conditions.

2012-01-01T23:59:59.000Z

10

Solar aided power generation of a 300MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

11

Process simulation of oxy-fuel combustion for a 300MW pulverized coal-fired power plant using Aspen Plus  

Science Journals Connector (OSTI)

Abstract This work focuses on the amounts and components of flue gas for oxy-fuel combustion in a coal-fired power plant (CFPP). The combustion process of pulverized coal in a 300MW power plant is studied using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer is obtained. The differences between the two processes are identified, and the influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas are examined by sensitivity analysis. The process simulation results show that replacing atmospheric air by a 21%O2/79%CO2 mixture leads the decrease of the flame temperature from 1789C to 1395C. The equilibrium amount of \\{NOx\\} declines obviously but the \\{SOx\\} are still at the same level. The mass fraction of CO2 in flue gas increased from 21.3% to 81.5%. The amount of \\{NOx\\} is affected sensitively by the change of temperature and the excess oxygen ratio, but the change of O2/CO2 molar fraction has a little influence to the generation of NOx. With the increasing of O2 concentration, the flame temperature and \\{NOx\\} emission enhance rapidly. When the molar fraction of O2 increases to 30%, the flame temperature is similar and the mass fraction of \\{NOx\\} is about 1/8 of that air atmosphere.

Xiaohui Pei; Boshu He; Linbo Yan; Chaojun Wang; Weining Song; Jingge Song

2013-01-01T23:59:59.000Z

12

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

13

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

14

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

15

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

16

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

17

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

18

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

19

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

20

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

22

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

23

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

24

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

25

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

26

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

27

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

28

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

29

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

30

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

31

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

32

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

33

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

34

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

35

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

36

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

37

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37W/m2K and the static pressure loss of 781Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 24g/(kWh) and saving of water at 2535t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

38

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

SciTech Connect (OSTI)

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

39

Thermodynamic and economic analysis of the different variants of a coal-fired, 460MW power plant using oxy-combustion technology  

Science Journals Connector (OSTI)

Abstract In the face of existing international provisions limiting the emissions of greenhouse gases, primarily carbon dioxide, it is necessary to introduce solutions that will allow the production of electricity from coal with high efficiency and low emissions. Oxy-combustion systems integrated with carbon capture and storage (CCS) installations may prove to be such a solution. This paper presents the main results from a thermodynamic analysis of a supercritical unit operating in oxy-combustion technology, fueled with pulverized coal with a power output of 460MW. The parameters of the live steam in the analyzed system are 600C/30MPa. To perform the numerical analyses, models of the individual components were built, including an oxygen production installation (ASU), a boiler, a steam cycle and a flue gas conditioning system (CPU). The models were built in the commercial programs GateCycle and Aspen and then integrated into the Excel environment. In this paper, different structures for an integrated oxy-type system were analyzed and compared. The auxiliary power rates were determined for individual technological installations of the oxy-combustion power plant. The highest value of this indicator, in the range between 15.65% and 19.10% was calculated for the cryogenic ASU. The total value of this index for the whole installation reaches as high as 35% for the base case. The use of waste heat from the interstage cooling of compressors in the air separation installation and flue gas conditioning system was considered as the methods of counteracting the efficiency decrease resulting from the introduction of ASU and CPU. The proposed configurations and optimization allow a significant reduction of the auxiliary power of the considered unit. In consequence, the efficiency decrease was reduced by approximately 3.5% points. An economic analysis of the different structures of the oxy-fuel system and the reference air-fired power plant was also conducted using a newly developed computational algorithm built in the Excel environment. The algorithm uses a Break Even Point (BEP) method, focusing mainly on determining a break-even price of electricity. It was found that about the profitability of this investment will mainly decide the price of emission allowances. For the assumptions made, the oxy-combustion power plant will be economically comparable with a reference plant without carbon dioxide capture when the price of allowances would be between 34 and 41/tonne. A sensitivity analysis concerning the influence of selected components of the cash flows on the break-even price of electricity was also performed. The main results of the calculations are presented in the paper.

Anna Skorek-Osikowska; Lukasz Bartela; Janusz Kotowicz; Marcin Job

2013-01-01T23:59:59.000Z

40

7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.  

E-Print Network [OSTI]

7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

Bahrami, Majid

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

42

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

43

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

44

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

45

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

46

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

47

UPGRADING THE AGS TO 1 MW PROTON BEAM POWER.  

SciTech Connect (OSTI)

The Brookhaven Alternating Gradient Synchrotron (AGS) is a strong focusing accelerator that is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. At this energy the maximum intensity achieved is around 7 x 10{sup 13} protons per pulse. This corresponds to an average beam power of about 0.2 MW. Future programs in high-energy physics, as for instance a neutrino factory with the AGS as the proton driver [l], may require an upgrade of the AGS to an average beam power of 1 MW, at the energy of 24 GeV. This can be achieved with an increase of the beam intensity to 1 x 1014 protons per pulse, a 1.2-GeV superconducting linac as a new injector, and by upgrading the power supply and rf systems to allow cycling at 2.5 beam pulses per second.

BRENNAN,M.J.; MARNERIS,I.; ROSER,T.; RUGGIERO,A.G.; TRBOJEVIC,D.; ZHANG,S.Y.

2001-06-18T23:59:59.000Z

48

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

49

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network [OSTI]

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

50

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

51

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

52

Operation experience from the 71 MW Wakamatsu PFBC Demonstration Plant  

SciTech Connect (OSTI)

In Japan, research and development of the fluidized bed combustion boiler (FBC boiler) for utility and industrial application has been initiated since 1978. At present, for the atmospheric FBC boiler, a unit of 350 MWe output is under construction at Takehara power station, and for the pressurized FBC boiler, a demonstration plant of 71 MWe output has already been installed at Wakamatsu Coal Utilization Research Center. Coal fired operation started in September 1993. Plant shakedown test is now underway. Wakamatsu PFBC Demonstration Plant is fundamentally based on the technology developed by ABB Carbon AB, a Swedish firm. However, various supplemental technologies of Japanese origin have been introduced in this project to improve environmental characteristics, plant heat rate and load controllability. For instances an ultra supercritical (USC) steam turbine and ceramic tube filters are featured in the Wakamatsu plant. The paper describes the outline of Wakamatsu PFBC Project and some major troubles which have been resolved. In addition, the report will provide an update on the operating experience of the Wakamatsu Project.

Goto, Hideki

1995-12-31T23:59:59.000Z

53

Ris-R-Report Multi-MW wind turbine power curve  

E-Print Network [OSTI]

Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

54

bectso-10mw | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen 10-MW Demonstration of...

55

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

56

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

SciTech Connect (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

57

Multi-objective optimization of solar tower power plants  

E-Print Network [OSTI]

Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

Ábrahám, Erika

58

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

59

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

60

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

62

Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report  

E-Print Network [OSTI]

. One involved design of a 480 MW power plant. The other was the design of a 8.2 MW induction generator for cogeneration. The author's activities during this period can be categorized into two major areas. First, technically oriented...

Lee, Ting-Zern Joe, 1950-

2013-03-13T23:59:59.000Z

63

Detailed design of the 2MW Demonstration Plant. Topical report, Task 2  

SciTech Connect (OSTI)

This document provides a summary of the design of the 2MW carbonate fuel cell power plant which will be built and tested under DOE cooperative agreement DE-FC2l-92MC29237. The report is divided into sections which describe the process and stack module design, and Appendices which provide additional design detail. Section 2.0 provides an overview of the program, including the project objectives, site location, and schedule. A description of the overall process is presented in Section 3.0. The design of the fuel cell stack Modules is described in Section 5.0, which discusses the design of the fuel cell stacks, multi-stack enclosures, and Stack Modules. Additional detail is provided in a report Appendix, the Final Design Criteria Summary. This is an abstract of the design criteria used in the design of the Submodules and Modules.

Not Available

1993-09-16T23:59:59.000Z

64

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

65

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

66

Development of a full-scale training simulator for an 800-MW power unit  

Science Journals Connector (OSTI)

Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are consider...

S. K. Zhuravlev; A. M. Andreev

2013-07-01T23:59:59.000Z

67

Fracture resistance of welded thick-walled high-pressure vessels in power plants. Report No. 1. Statistical analysis of defects and fracture resistance of vessel materials  

Science Journals Connector (OSTI)

1. Given the current technology for making and constructing 440- and 1000-MW power plants, the limiting defect s...

I. V. Gorynin; V. A. Ignatov; Yu. I. Zvezdin; B. T. Timofeev

1985-11-01T23:59:59.000Z

68

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

69

MW-class hybrid power system based on planar solid oxide stack technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

70

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network [OSTI]

was designed with the dispatching capability to operate as an integral part of the State electrical network and continue to provide steam to the chemical plant over the required range of 500,000 lb/hr (63 kg/s) to 1,150,000 lb/hr (145 kg/s). The steam flow... boilers. In operating as an integral part of the stat wide utility system, the plant has at times been dispatched by the electric companies to 45 percent (225~~) of design capacity. To accomplish this dispatching, deliver the required process steam...

Theisen, R. E.

71

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network [OSTI]

THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M/4" 6 2.2 12" 12" 4 3" 3" 1 2" 2" 2 Equal Tee, SW, 3000#, ANSI B-16.11 1½" 1½" 5 ASTM A105 12" 6" 4 3" 2" 2 Reducing Tee, SW, 3000#, ANSI B-16.11 1½" 3/4" 2 ASTM A105 1½" 2 3/4" 15 Threaded pipet (NPT) 1" 6

Narayanan, H.

72

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

73

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect (OSTI)

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

74

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

75

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

76

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

77

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solaren Space Solar Power Plant Solaren Space Solar Power Plant Jump to: navigation, search Name Solaren Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000 W 200,000,000,000 mW 0.2 GW References [1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

78

Solar electric power plant due to start up  

Science Journals Connector (OSTI)

In early April of this year, Solar One, a central receiver pilot plant designed to show that solar energy can be harnessed by utilities to produce electricity on a commercial scale, will begin producing power. ... With a rated maximum power output to the utility grid of 10.8 MW, Solar One is the world's largest solarpowered electrical generating facility. ...

RUDY M. BAUM

1982-03-15T23:59:59.000Z

79

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.  

SciTech Connect (OSTI)

This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

Del Bravo, R.; Pinacci, P.; Trifilo, R.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Xenon-induced axial power oscillations in the 400MW PBMR  

Science Journals Connector (OSTI)

The redistribution of the spatial xenon concentration in the 400MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%50%100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations.

Gerhard Strydom

2008-01-01T23:59:59.000Z

82

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

83

Design and operating experience of a 40 MW, highly-stabilized power supply  

SciTech Connect (OSTI)

Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of <10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [Florida State Univ., Tallahassee, FL (United States). Nationa High Magnetic Field Laboratory; Bogdan, F.; Morris, G.C. [ABB Industrial Systems, New Berlin, WI (United States); Rumrill, R.S. [Alpha Scientific Electronics Inc., Hayward, CA (United States)

1995-07-01T23:59:59.000Z

84

br Owner br Facility br Type br Capacity br MW br Commercial...  

Open Energy Info (EERE)

Area Pauzhetskaya Geothermal Power Plant Kamchatskburgeotermiya Single Flash MW Rye Patch Geothermal Area Pianacce Geothermal Power Station Travale Radicondoli Geothermal Area...

85

IGCC demonstration plant at Nakoso Power Station, Japan  

SciTech Connect (OSTI)

The 250 MW IGCC demonstration plant at Nakoso Power Station is based on technology form Mitsubishi Heavy Industries (MHI) Ltd that uses a pressurized, air blown, two-stage, entrained-bed coal gasifier with a dry coal feed system. 5 figs., 1 tab.

Peltier, R.

2007-10-15T23:59:59.000Z

86

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

87

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

88

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Production Credit 6. Feed-in Tariff Wikipedia: The Freeen.wikipedia.org/wiki/Feed-in_Tariff] 7. Governor of theenergy incentives, and feed-in tariffs are addressed as

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

89

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

of production credits, renewable energy incentives, andand production rate. Due to the current market uncertainty for Renewable EnergyProduction Credits/Incentives The federal government has long standing incentives supporting renewable energy,

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

90

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

referred to as a directly heated gasifier. In contrast, theuses an indirectly heated gasifier. Two reactors are used: acirculates between the gasifier and combustion reactors,

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

91

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

station. In all cases waste heat sales are a criticalequipment to capture waste heat from the engine exhaust.including capturing waste heat for export, an additional $

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

92

Forecasting and Diagnostic Analysis of Plume Transport around a Power Plant  

Science Journals Connector (OSTI)

A nonreactive Lagrangian atmospheric diffusion model is used for the simulation of SO2 concentration around the As Pontes 1400-MW power plant located in northwestern Spain. This diffusion model has two kinds of input: 1) diagnostic wind fields ...

J. A. Souto; V. Prez-Muuzuri; M. deCastro; M. J. Souto; J. J. Casares; T. Lucas

1998-10-01T23:59:59.000Z

93

An update technology for integrated biomass gasification combined cycle power plant  

Science Journals Connector (OSTI)

A discussion is presented on the technical analysis of a 6.4 MWe integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers ... producing 5.85 MW electrical power in open cycle and 55...

Paritosh Bhattacharya; Suman Dey

2014-01-01T23:59:59.000Z

94

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740MW coal-fired power plant project located at latitude 28S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 2537MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

95

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

96

10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant heliostat and beam characterization system evaluation, November 1981-December 1986  

SciTech Connect (OSTI)

Test and evaluation results for the heliostats and beam characterization system at the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant are described in this report. Southern California Edison operated and maintained the plant during the five years covered by this evaluation. Therefore, the results represent what can be expected from a large number of heliostats that are operated over a long period of time in a power plant environment. The heliostats and beam characterization system were evaluated for their ability to meet performance and survival requirements. Heliostat evaluation results are reported for mirror soiling rates, mirror corrosion, wind loads, availability, maintenance requirements, tracking accuracy, beam quality, component temperatures, and operating power requirements. The heliostat beam characterization system accuracy is given for the measurement of beam quality, heliostat tracking accuracy, and power in the reflected beam. The heliostat technical specifications and design description are provided, and a detailed design description of the beam characterization system is included. 41 refs.

Mavis, C.L.

1988-05-01T23:59:59.000Z

97

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

98

NETL Water and Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

99

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

100

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

102

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

103

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

104

An integrated computer-based training simulator for the operative personnel of the 800-MW power-generating unit at the Perm District Power Station  

Science Journals Connector (OSTI)

The integrated computer-based training simulator for an 800-MW power-generating unit is described. Its capacities for training the personnel of the boiler-turbine and chemical departments are shown.

N. Yu. Pevneva; V. N. Piskov; A. N. Zenkov

2007-07-01T23:59:59.000Z

105

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

106

Experience in operating and upgrading the No. 5 unit of the Novovoronezh nuclear power plant practical base for developing a reliable source of nuclear energy  

Science Journals Connector (OSTI)

The No. 5 unit of the Novovoronezh nuclear power plant, starting commercial operations on September 26, 1980, is the first power-generating unit with a 1000 MW VVER in our country. The assimilation of its power g...

I. L. Vitkovskii

2011-03-01T23:59:59.000Z

107

Design and construction of Khanom barge mounted power plant  

SciTech Connect (OSTI)

The design and construction of 75 MW barge mounted power plant or power plant barge (PPB) which is to be installed in the southern region of Thailand is described. The PPB is being fabricated as a complete unit on its own integral hull, and will be transported in July 1988 from the fabrication site, Daewoo's Okpo Shipyard in Korea to the Khanom site. The PPB will be positioned and set on prepared foundation in a temporary pond at the site by controlled ballasting. The project design consists of two major parts; one is the system design of the power plant and the other is the design of the barge structure. This paper describes the power plant system design and the design of the barge highlighting unique design and construction concepts with regard to fabrication, transportation and installation of the PPB.

Yoon, H.W.; Sampathkumar, C.B.; Keller, J.J. (Burns and Roe, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

108

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

109

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

110

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

111

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

112

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

113

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

114

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

115

A proposal of nuclear fusion power plant equipped with SMES  

Science Journals Connector (OSTI)

When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 \\{GWh\\} SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 \\{GWh\\} class FBC is briefly designed.

Tatsuya Natsukawa; Hirokazu Makamura; Marta Molinas; Shinichi Nomura; Shunji Tsuji-Iio; Ryuichi Shimada

2000-01-01T23:59:59.000Z

116

Control of CO2 emission through enhancing energy efficiency of auxiliary power equipment in thermal power plant  

Science Journals Connector (OSTI)

Abstract This paper describes the results of energy efficiency enhancement in 23 numbers of 210MW coal fired power plants spread over India. Energy efficiency improvement of major auxiliary equipment with different plant load factors are summarized here with improved performance. The effect of plant load factor on all major auxiliary equipment and improvement in performance of auxiliary equipment are discussed in this paper. Operation of the plant at improved plant load factor reduced the specific auxiliary power from 11.23% at 70% PLF to 8.74% at 100% PLF that reduced the net auxiliary power by 9.1MU/year that is an equivalent reduction of CO2 emission by 9500t/year. Optimizing the excess air, controlling the furnace ingress, enhanced energy efficiency of individual equipment by proper maintenance, etc., improves the plant capacity and reduces the overall auxiliary power by about 1.52.1% of gross energy generation i.e., equivalent CO2 reduction of 23,00032,400t/year and release an additional power of about 3.5MW (for a typical one 210MW power plant) into grid.

Rajashekar P. Mandi; Udaykumar R. Yaragatti

2014-01-01T23:59:59.000Z

117

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

118

Raft River binary-cycle geothermal pilot power plant final report  

SciTech Connect (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

119

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

120

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from 2010-2012. The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. The immediate goal: To defer two 165 MW power plants currently planned for

122

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

123

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

124

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

125

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

126

Competitiveness of Wind Power with the Conventional Thermal Power Plants Using Oil and Natural Gas as Fuel in Pakistan  

Science Journals Connector (OSTI)

Abstract The fossil fuels mainly imported oil and natural gas are major sources of electricity generation in Pakistan. The combustion of fossil fuels in thermal power plants has greater environmental impacts like air pollution and global warming. Additionally, the import of oil is a heavy burden on the poor economy of the country. Pakistan is a country with huge renewable sources; wind energy being the major one. This paper elucidate the cost-competitiveness of wind power with the conventional thermal power plants. In this regard, Levelized estimated cost of a 15MW wind power plant is compared with three types of conventional thermal power plants, namely (i) Oil-fired thermal power plant (ii) Natural gas-fire combine cycle power plant (iii) Diesel oil- fired gas turbine cycle 100MW each. The results show that the cost of wind energy is lowest with Rs. 3/kWh. It is concluded that the wind power is cost-competitive to the conventional thermal power plants in Pakistan. The cost estimation for wind energy is lowest of all others with Rs. 3/kWh.

A. Mengal; M.A. Uqaili; K. Harijan; Abdul Ghafoor Memon

2014-01-01T23:59:59.000Z

127

Operating results of the advanced ceramic tube filter (ACTF) at Wakamatus 71 MW PFBC demonstration plant  

SciTech Connect (OSTI)

The ACTF installed at the 71 MWe pressurized fluidized bed combustion (PFBC) demonstration plant at Wakamatsu Power Station of Electric Power Development Co., Ltd. is featured by inside to outside gas flow configuration with vertically arranged tubes in three compartments. This unique configuration offers advantages in the gas cleaning system for high-temperature and high-pressure applications of commercial scale. During Phase-1 demonstration program in Wakamatsu completed in December 1997, the ACTF showed the outstanding performance in terms of dust removal efficiency, pressure drop stability and reliability. The accumulated operating time of the ACTF in Phase-1 reached more than 6,000 hours and the continuous operating time record for 785 hours has been established. The successful results of ACTF and PFBC in Phase-1 lead to a two-year extension of the demonstration program (Phase-2). In Phase-2, it is aimed to demonstrate the further reliability and the possibility of cost reduction of the ACTF. The modified configuration of the boiler in Phase-2 (elimination of the existing pre-cleaning cyclones, etc.) magnifies the inlet dust loading at the ACTF and it calls for modifications in the ACTF to make it feasible with inlet gas with much higher dust loading. The modification works are under way and will continue until July 1998. The test operation is planned to resume in August 1998. This paper reviews the operating results of the ACTF during Wakamatsu demonstration test Phase-1 and gives brief description of the Phase-2 program.

Toriyama, Akira; Higashi, Katsumi; Maeno, Hiroshi; Saito, Tsunehiro; Mori, Mineo; Hori, Junji; Tsuji, Yasujiro

1999-07-01T23:59:59.000Z

128

Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand Canyon and other Class I Areas  

E-Print Network [OSTI]

to simulate the proposed and existing power plant plumes during January 2001. Four-km MM5 wind fields wereSimulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand. Rodriguez Abstract A 1500 MW coal-fired power plant is proposed to be built by Sithe Energies Inc

Fischer, Emily V.

129

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

130

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

131

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

132

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

133

Novel integrated gas turbine solar cogeneration power plant  

Science Journals Connector (OSTI)

Concentrating solar cogeneration power plants (CSCPP) may provide a key solution for the pressing freshwater deficits in the Middle East and North Africa (MENA) region and could be used in the future for export electricity to Europe. From this standpoint the current study was undertaken to include proposed schemes of CSCPP, that would fully exploit the potential of hybrid reverse osmosis (RO)/multi effect distillation (MED) seawater desalination. Thereby, the primary objective of the present study was to identify and investigate the effectiveness and thermodynamic performance of CSCPP schemes. To satisfy this objective, detailed computational model for key components in the plant has been developed and implemented on simulation computer code. The thermal effectiveness in the computational model was characterized by the condition of attaining a maximum fuel saving in the electrical power grid (EPG). The study result shows the effectiveness of proposed CSCPP schemes. Especially the integrated gas turbine solar cogeneration power plant (IGSCP) scheme seems to be an alternative of the most effective technologies in terms of technical, economic and environmental sustainability. For the case study (IGSCP and the design number of effects 10 for low-temperature MED unit) the economical effect amount 172.3 ton fuel/year for each MW design thermal energy of parabolic solar collector array (PSCA). The corresponding decrease in exhaust gases emission (nitrogen oxides (NOx) 0.681 ton/year MW, carbon dioxides (CO2) 539.5 ton/year MW). Moreover, the increase in the output of PSCA and, subsequently, in solar power generation, will also be useful to offset the normal reduction in performance experienced by gas turbine unit during the summer season. Hence, the influence of the most important design parameters on the effectiveness of ISGPP has been discussed in this paper.

Hussain Alrobaei

2008-01-01T23:59:59.000Z

134

Binary Cycle Geothermal Demonstration Power Plant New Developments  

SciTech Connect (OSTI)

San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

Lacy, Robert G.; Jacobson, William O.

1980-12-01T23:59:59.000Z

135

Specialized Materials and Fluids and Power Plants  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

136

Viability analysis of PV power plants in Egypt  

Science Journals Connector (OSTI)

This paper investigates, from techno-economical and environmental points of view, the feasible sites in Egypt to build a 10MW PV-grid connected power plant. Available PV-modules are assessed and a module is selected for this study. The long-term meteorological parameters for each of the 29 considered sites in Egypt from NASA renewable energy resource website (Surface meteorology and Solar Energy) are collected and analyzed in order to study the behaviors of solar radiations, sunshine duration, air temperature, and humidity over Egypt, and also to determine the compatibility of the meteorological parameters in Egypt with the safety operating conditions (SOC) of PV-modules. The project viability analysis is performed using \\{RETScreen\\} version 4.0 software through electric energy production analysis, financial analysis, and GHG emission analysis. The study show that placement of the proposed 10MW PV-grid connected power plant at Wahat Kharga site offers the highest profitability, energy production, and GHG emission reduction. The lowest profitability and energy production values are offered at Safaga site. Therefore, it is recommended to start building large-scale PV power plants projects at Wahat Kharga site.

M. EL-Shimy

2009-01-01T23:59:59.000Z

137

Submerged passively-safe power plant  

SciTech Connect (OSTI)

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J.S.

1991-12-31T23:59:59.000Z

138

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J. Stephen (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

139

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

Herring, J.S.

1993-09-21T23:59:59.000Z

140

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

142

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

143

Los Humeros III Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Contracts have already been signed with the Mexican Comision Federal de Electricidad (CFE) for the installation of an additional 25 MW Single Flash power generation unit and...

144

EIS-0377: Big Stone II Power Plant and Transmission Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

7: Big Stone II Power Plant and Transmission Project 7: Big Stone II Power Plant and Transmission Project EIS-0377: Big Stone II Power Plant and Transmission Project SUMMARY A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission line and substation upgrades and modifications that would be required to support the addition of 600 MW of capacity within the system. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2009 EIS-0377: Record of Decision Big Stone II Power Plant and Transmission Project June 1, 2009 EIS-0377: Final Environmental Impact Statement Big Stone II Power Plant and Transmission Project October 26, 2007 EIS-0377: Supplemental Draft Environmental Impact Statement

145

Nuclear power pros and cons: A comparative analysis of radioactive emissions from nuclear power plants and thermal power plants  

Science Journals Connector (OSTI)

On the basis of the public data statistics of recent years on pollution and emissions from nuclear power plants (NPPs) and thermal power plants...

V. A. Gordienko; S. N. Brykin; R. E. Kuzin

2012-02-01T23:59:59.000Z

146

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

147

Utilization of Estonian oil shale at power plants  

SciTech Connect (OSTI)

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

148

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

149

Power Plant Analyser -- A computer code for power plant operation studies  

SciTech Connect (OSTI)

This paper describes Power Plant Analyser (PPA), a computer code for power plant dynamic and steady-state performance analysis. Power Plant Analyser simulates fossil power plant systems, such as drum-type, once-through, gas turbine, and combined cycle plants in a user-friendly manner. It provides a convenient tool for power engineers to understand the complex and interrelated thermodynamic processes and operating characteristics of the plant. It can also be used for conceptual training of power plant operators, and as a test bed for control and operating strategies.

Lu, S.; Hogg, B.W. [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering] [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering

1996-12-01T23:59:59.000Z

150

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

151

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

152

Analysis of wind power ancillary services characteristics with German 250-MW wind data  

SciTech Connect (OSTI)

With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

Ernst, B.

1999-12-09T23:59:59.000Z

153

Power Plant Optimization Demonstration Projects Cover Photos:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

154

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

155

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

156

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

157

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

158

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

159

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

160

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of TMDLs on Impacts of TMDLs on Coal-Fired Power Plants April 2010 DOE/NETL-2010/1408 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

162

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

163

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

165

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

166

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

167

Wave Power Plant Inc | Open Energy Information  

Open Energy Info (EERE)

Powered Compressed Air Stations This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleWavePowerPlantInc&oldid76915...

168

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Siemens introduces 50 Hz 190 MW gas turbine  

SciTech Connect (OSTI)

According to market data for high power gas turbines compiled by Erlangen, Germany-based Siemens KWU, referring to machines above 50 MW, market demand will average approximately 22 GW per year from now to 2005, of which roughly 15 GW will be for combined-cycle plants and nearly half (11 GW) will be placed in the intermediate capacity class (M Class). Looking at the Siemens line of advanced machines for 50 Hz grids; from the V64.3A rated 70 MW one jumps to the V94.3A rated 240 MW leaving a gap of 170 MW uncovered aside from the existing model V94.2 at 159 MW. This article describes the design and specifications of Siemens new 50 Hz 190 MW gas turbines that hope to cater to this gap. 2 refs.

Chellini, R.

1997-01-01T23:59:59.000Z

171

Aluto-Langano Geotermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

System - Ethiopian Rift Valley Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ethiopian Electric Power Corporation Developer Ethiopian Electric Power...

172

Lessons learned from existing biomass power plants  

SciTech Connect (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

173

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

174

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

175

Design and development of a 6 MW peak, 24 kW average power S-band klystron  

SciTech Connect (OSTI)

A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

2011-07-01T23:59:59.000Z

176

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

177

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

178

Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

NONE

1996-01-29T23:59:59.000Z

179

An energy return on investment for a geothermal power plant on the Texas Gulf Coast.  

E-Print Network [OSTI]

??This thesis examines the energy return on investment (EROI) of a model 3 MW hybrid gas-geothermal plant on the Texas Gulf Coast. The model plant (more)

Kampa, Kyle Benjamin

2013-01-01T23:59:59.000Z

180

Desalination study of Florida Power and Light power plants  

SciTech Connect (OSTI)

This report documents the results of a project to determine the viability of converting existing power plants to large scale, dual-purpose cogeneration of power and fresh water from desalination. The work involved evaluating suitable desalination technologies, developing utility based dual-product economic methods, screening FPL plant and desalination system combinations for promising candidates, and performing three case studies in greater detail to illustrate the viability of producing water at a utility power plant. The study was motivated by the fact that certain synergisms can be obtained by combining or co-locating power and desalination plants at a common site. Economic synergisms are obtained from better use of available energy, sharing common facilities and sharing staff. In addition, environmental synergisms are achieved by using existing industrial sites, common intake/outfalls, and combining thermal with brine effluents to obtain neutral buoyance and achieve more rapid dispersion.

Labar, M.P.; Loh, G.T.; Schleicher, R.W.; Sinha, A.K. (General Atomics International Services Corp., San Diego, CA (United States))

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect (OSTI)

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

182

Brawley Power Plant Abandoned | Open Energy Information  

Open Energy Info (EERE)

Abandoned Abandoned Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Power Plant Abandoned Abstract N/A Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Brawley Power Plant Abandoned Citation California Division of Oil, Gas, and Geothermal Resources. 1985. Brawley Power Plant Abandoned. Geothermal Hot Line. 15(2):76-77. Retrieved from "http://en.openei.org/w/index.php?title=Brawley_Power_Plant_Abandoned&oldid=682727" Categories: References Uncited References Geothermal References What links here Related changes Special pages Printable version Permanent link Browse properties

183

Cost Analysis of Solar Power Plants  

Science Journals Connector (OSTI)

The factors influencing the desirability of solar power plants (SPPs), and of SPP investment decisions, will be discussed in this chapter. The numerical details presented axe based, as far as possible, on actu...

H. P. Hertlein; H. Klaiss; J. Nitsch

1991-01-01T23:59:59.000Z

184

Geothermal Power Plants Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

185

Beta Dosimetry at Nuclear Power Plants  

Science Journals Connector (OSTI)

......function of gamma dose and energy of the beta rays. Measurements...radiation and effective beta energy obtained in the working environment at nuclear power plants during the shut-down...decommissioning. The effective beta energy is most frequently between......

P. Carn; M. Lieskovsky

1991-08-01T23:59:59.000Z

186

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

187

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you domore than anybody does. ...

1947-02-17T23:59:59.000Z

188

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

189

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Rao, K.; Schaub, F. (Cooper-Bessemer, Mount Vernon, OH (United States)); Kimberley, J. (AMBAC, West Springfield, MA (United States)); Itse, D. (PSI Technology Co., Andover, MA (United States))

1993-01-01T23:59:59.000Z

190

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, K.; Schaub, F. [Cooper-Bessemer, Mount Vernon, OH (United States); Kimberley, J. [AMBAC, West Springfield, MA (United States); Itse, D. [PSI Technology Co., Andover, MA (United States)

1993-01-01T23:59:59.000Z

191

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

192

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

193

Dora-3 Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Dora-3 Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Coordinates 37.875046144284, 28.102602480794 Loading...

194

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

195

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

196

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

197

RAPID/Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

for compensation. Geothermal Power Plant in Federal Bureau of Land Management Federal Energy Regulatory Commission Geothermal Power Plant in New Mexico None NA Every person...

198

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

199

Saradambika Power Plant Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Saradambika Power Plant Pvt Ltd Jump to: navigation, search Name: Saradambika Power Plant Pvt. Ltd Place: Hyderabad, Andhra Pradesh, India Zip: 500082 Sector: Biomass Product:...

200

Modelling power output at nuclear power plant by neural networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, ... Keywords: evaluation methods, model input selection, neural networks, nuclear power plant, one-step ahead prediction

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

202

Evolution of Nuclear Power Plant Design  

Science Journals Connector (OSTI)

... research is expensive, and applied research and development on atomic energy is so expensive that expenditure should be justified either by the needs of defence or by the expectation of a ... per cent) have risen, and this rise reacts against nuclear power with its high capital cost. The result of these changes is that nuclear power from the plants which ...

CHRISTOPHER HINTON

1960-09-24T23:59:59.000Z

203

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect (OSTI)

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

204

Video camera use at nuclear power plants  

SciTech Connect (OSTI)

A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

Estabrook, M.L.; Langan, M.O.; Owen, D.E. (ENCORE Technical Resources, Inc., Middletown, PA (USA))

1990-08-01T23:59:59.000Z

205

Power Plant Dams (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

206

Calculation of MCPR (minimum critical power ratio) for BWR transients using the BNL plant analyzer  

SciTech Connect (OSTI)

The critical power ratio (CPR) is used for determining the thermal limits of boiling water reactors. In this study, critical power ratios for a series of transients run on the Brookhaven Plant Analyzer (BPA) (1) have been calculated. The transients include nominal base case simulations, simulations with variations in relief valve setpoints and the number of failed feedwater heaters, simulations at the 100% power, 75% flow point on the extended load line of the MEOD, and a simulation with partial feedwater heating. The plant represented with the BPA is a BWR/4 rated at 3293 MW with a 6.38 m (251'') vessel. Data were obtained by the Plant Analyzer Development Group at BNL from a variety of sources describing the Browns Ferry Plant.

Horak, W.C.; Diamond, D.J.

1987-06-01T23:59:59.000Z

207

Dynamic modeling of IGCC power plants  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed.

F. Casella; P. Colonna

2012-01-01T23:59:59.000Z

208

The Evolution of Nuclear Power Plant Design: Synopsis  

Science Journals Connector (OSTI)

1 April 1961 research-article The Evolution of Nuclear Power Plant Design: Synopsis Christopher Hinton

1961-01-01T23:59:59.000Z

209

Fossil Power Plant Applications of Expert Systems: An EPRI Perspective  

E-Print Network [OSTI]

the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

Divakaruni, S. M.

210

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

211

The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study  

SciTech Connect (OSTI)

Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States); Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H. [Univ. of California, San Diego, CA (United States)] [Univ. of California, San Diego, CA (United States); Koehly, C. [Karlsruhe Inst. of Technology, Karlsruhe (Germany)] [Karlsruhe Inst. of Technology, Karlsruhe (Germany); El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States); Humrickhouse, P. [Idaho National Lab., Idaho Falls, ID (United States)] [Idaho National Lab., Idaho Falls, ID (United States); Rensink, M. E.; Rognlien, T. D. [Lawrence Livermore National Lab., Livermore, CA (United States)] [Lawrence Livermore National Lab., Livermore, CA (United States); Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L. [Georgia Inst. of Technology, Atlanta, GA (United States)] [Georgia Inst. of Technology, Atlanta, GA (United States); Snyder, P. B.; St. John, H.; Turnbull, A. D. [General Atomics, La Jolla, CA (United States)] [General Atomics, La Jolla, CA (United States); Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

2014-03-05T23:59:59.000Z

212

power plant | OpenEI Community  

Open Energy Info (EERE)

plant plant Home Kyoung's picture Submitted by Kyoung(155) Contributor 12 November, 2012 - 09:17 Legal Reviews are Underway BHFS Legal review permitting power plant roadmap transmission The legal review of the Regulatory Roadmap flowcharts and supporting content is well underway and will continue for the next several months with our legal team at [www.bhfs.com Brownstein Hyatt Farber and Schreck]. The BHFS has been meeting with the NREL roadmap team during weekly 2-3 hour meetings to provide comments and suggestions on each flowchart at the federal and state levels. They have had some fantastic recommendations for updates - particularly for Sections 7 and 8 of the roadmap, pertaining to the permitting of power plants and transmission lines. Syndicate content 429 Throttled (bot load)

213

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

216

MHD power plant instrumentation and control  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) has awarded a contract to the MHD Development Corporation (MDC) to develop instrumentation and control requirements and strategies for commercial MHD power plants. MDC subcontracted MSE to do the technical development required. MSE is being assisted by Montana State University (MSU) for the topping cycle development. A computer model of a stand-alone MHD/steam plant is being constructed. The plant is based on the plant design set forth in the MDC proposal to the Federal Clean Coal Technology 5 solicitation. It consists of an MHD topping plant, a Heat Recovery Seed Recovery (HRSR) plant, and a steam turbo-generator. The model is based on the computer code used for a study of the Corette plant retrofitted with an MHD plant. Additional control strategies, based on MHD testing results and current steam bottoming plant control data, will be incorporated. A model will be devised and implemented for automatic control of the plant. Requirements regarding instrumentation and actuators will be documented. Instrumentation and actuators that are not commercially available will be identified. The role and desired characteristics of an expert system in the automated control scheme is being investigated. Start-up and shutdown procedures will be studied and load change dynamic performance will be evaluated. System response to abnormal topping cycle and off-design system operation will be investigated. This includes use of MHD topping cycle models which couple gasdynamic and electrical behavior for the study of controlling of the MHD topping cycle. A curvefitter, which uses cubic Hermitian spline interpolation functions in as many as five dimensions, allows much more accurate reproduction of nonlinear, multidimensional functions. This project will be the first to investigate plant dynamics and control using as many as seven independent variables or control inputs to the MHD topping cycle.

Lofftus, D.; Rudberg, D. [MSE Inc., Butte, MT (United States); Johnson, R.; Hammerstrom, D. [Montana State Univ., Bozeman, MT (United States)

1993-12-31T23:59:59.000Z

217

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

218

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

219

Strategies in tower solar power plant optimization  

E-Print Network [OSTI]

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

220

Automation of hydroelectric power plants  

SciTech Connect (OSTI)

This paper describes how the author's company has been automating its hydroelectric generating plants. The early automations were achieved with a relay-type supervisory control system, relay logic, dc tachometer, and a pneumatic gate-position controller. While this system allowed the units to be started and stopped from a remote location, they were operated at an output that was preset by the pneumatic control at the generating site. The supervisory control system at the site provided such information as unit status, generator breaker status, and a binary coded decimal (BCD) value of the pond level. The generating units are started by energizing an on-site relay that sets the pneumatic gate controller to a preset value above the synchronous speed of the hydroelectric generator. The pneumatic controller then opens the water-wheel wicket gates to the preset startup position. As the hydroelectric generator starts to turn, the machine-mounted dc tachometer produces a voltage. At a dc voltage equivalent to synchronous speed, the generator main breaker closes, and a contact from the main breaker starts a field-delay timer. Within a few seconds, the field breaker closes. Once the cycle is complete, a relay changes the pneumatic setpoint to a preset operating point of about 8/10 wicket gate opening.

Grasser, H.S. (Consolidated Papers, Inc., Wisconsin Rapids, WI (US))

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - advanced power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plants...

222

E-Print Network 3.0 - atomic power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plant...

223

E-Print Network 3.0 - advanced power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plant...

224

E-Print Network 3.0 - atomic power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plants...

225

Table 1. Updated estimates of power plant capital and operating costs  

U.S. Energy Information Administration (EIA) Indexed Site

Updated estimates of power plant capital and operating costs" Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced PC",1300,8800,,2934,31.18,4.47,"Y" "Single Unit Advanced PC with CCS",650,12000,,5227,80.53,9.51,"Y" "Dual Unit Advanced PC with CCS",1300,12000,,4724,66.43,9.51,"N" "Single Unit IGCC ",600,8700,,4400,62.25,7.22,"N"

226

Software/firmware design specification for 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant  

SciTech Connect (OSTI)

This Collector Subsystem Software/Firmware Design Specification exists as a stand-alone document to provide a complete description of the software and firmware employed for the operation of the 10 MWe Solar Thermal Central Receiver Pilot Plant Collector Subsystem. The software/firmware systems have the capability to allow operator control of up to 2048 heliostats in the operation of the 10 MWe Solar Thermal Central Receiver Pilot Plant at Barstow, California. This function includes the capability of operator-commanded mode control, graphic displays, status displays, alarm generation, system redundancy and interfaces to the Operational Control System (OCS), the Data Acquisition System (DAS), and the Beam Characterization System (BCS) through the OCS. The operational commands will provide for the following: (a) safe beam movement whenever automatic beam movement is required; (b) single and multiple heliostat addressing; (c) emergency heliostat movement for high-wind conditions and receiver problems; and (d) recovery for full or partial power-loss conditions. The control hardware consists of a host computer, the Heliostat Array Controller (HAC), interfaced to a group of communication controllers, the Heliostat Field Controllers (HFCs), communicating with individual processors, the Heliostat Controllers (HCs), which monitor and command a single heliostat. The system consists of two HACs and 64 HFCs with up to 32 HCs per HFC.

Ladewig, T.D.

1982-01-01T23:59:59.000Z

227

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

228

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

229

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

230

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the worlds electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

231

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect (OSTI)

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

232

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network [OSTI]

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

234

Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends  

E-Print Network [OSTI]

.................................................................................... 36 Figure 19 Result of Combustion Performance Tests after Retrofits of Thermal Power Plant IN in Finland Consisting of Four 265 MW Pulverized Coal-Fired Boilers... on to include the International Energy Agency Bioenergy Task 32 group?s draft position paper that indicates cofiring represents among the lowest risk, least expensive, most efficient, and shortest term options for renewable-based electrical power generation...

Gomez, Patsky O.

2010-01-16T23:59:59.000Z

235

Configuration management in nuclear power plants  

E-Print Network [OSTI]

Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

2003-01-01T23:59:59.000Z

236

Sustainability in the power plant choice  

Science Journals Connector (OSTI)

International literature presents several studies on the economics of power plants based on cash flows. However there are sustainability factors (e.g., environmental and social aspects, etc.) able to heavily bear on the sustainability of certain investments. This paper lists and quantifies these factors and ranks under different scenarios the following technologies: hydro, coal, oil, gas and nuclear. Then an overall multi-attribute model, based on the quality function deployment approach, delivers a weight for each factor, dividing its impact in the three different sustainability dimensions: economic, environmental and social. Finally the factor weights and their performances are coupled to obtain an overall ranking. The results show that hydroelectric plants are usually the best solution. Coal and nuclear could be a good choice even if each type of plant has its strengths and weaknesses. On the contrary, the oil and gas-fired plants are always the worst choice.

Giorgio Locatelli; Mauro Mancini

2013-01-01T23:59:59.000Z

237

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect (OSTI)

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

238

Endurance testing of a high-efficiency steam reformer for fuel cell power plants: Final report  

SciTech Connect (OSTI)

This final report documents the results from demonstration and endurance tests, conducted in 1987 and 1988, of the Haldor Topsoe Heat Exchange Reformer. The primary objectives of this EPRI project were to develop, test and verify fuel processing components suitable for use in a Westinghouse Electric Corporation 7.5-MW phosphoric acid fuel cell power plant. EPRI's project is part of a larger national program sponsored by the Department of Energy to develop the technology and systems which are technically and economically viable for electric utility power generation applications. 26 figs., 11 tabs.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1988-10-01T23:59:59.000Z

239

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Water Use in Wet FGD Systems – USR Group, Inc. Reduction of Water Use in Wet FGD Systems – USR Group, Inc. The project team demonstrates the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulfurization (FGD) systems on coal-fired boilers. Most water consumption in coal-fired power plants occurs due to evaporative water losses. For example, a 500-megawatt (MW) power plant will loose approximately 5,000 - 6,000 gallons per minute (gpm) to evaporation and 500 gpm in the wet FGD system. Installation of regenerative reheat on FGD systems is expected to reduce water consumption to one half of water consumption using conventional FGD technology. Electrostatic Precipitator Researchers are conducting pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assessing the resulting impact on air pollution control (APC) systems. The project team consists of URS Group, Inc. as the prime contractor, the Electric Power Research Institute (EPRI), Southern Company, Tennessee Valley Authority (TVA), and Mitsubishi Heavy Industries (MHI). The team is conducting an analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs. The tests are intended to determine the impact of operation at cooler flue gas temperatures on FGD water consumption, electrostatic precipitator (ESP) particulate removal (see Figure 1), SO3 removal, and Hg removal. Additionally, tests are conducted to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger.

240

Supplemental Draft Environmental Impact StatementS Big Stone II Power Plant and Transmission Project  

Broader source: Energy.gov (indexed) [DOE]

ES-1 ES-1 ES.0 Summary In May 2006, Western Area Power Administration (Western), Rural Utilities Service (RUS), and U.S. Army Corps of Engineers (USACE) issued the Big Stone II Power Plant and Transmission Project Draft Environmental Impact Statement (Draft EIS, DOE/EIS-0377). The Draft EIS described the details of constructing and operating a nominal 600-megawatt (MW), coal-fired, baseload electric generating facility and associated transmission line and substation upgrades, known as the Big Stone II Project (proposed Project). The proposed Project would be constructed by Otter Tail Corporation (dba Otter Tail Power Company (OTP)), Central Minnesota Municipal Power Agency, Great River Energy, Heartland Consumers Power District, Montana-Dakota Utilities Co., Southern Minnesota Municipal Power Agency, and

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

242

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

243

Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants  

Science Journals Connector (OSTI)

Abstract This paper proposes a methodology for the economic optimisation of the sizing of Energy Storage Systems (ESSs) whilst enhancing the participation of Wind Power Plants (WPP) in network primary frequency control support. The methodology was designed flexibly, so it can be applied to different energy markets and to include different ESS technologies. The methodology includes the formulation and solving of a Linear Programming (LP) problem. The methodology was applied to the particular case of a 50MW WPP, equipped with a Vanadium Redox Flow battery (VRB) in the UK energy market. Analysis is performed considering real data on the UK regular energy market and the UK frequency response market. Data for wind power generation and energy storage costs are estimated from literature. Results suggest that, under certain assumptions, \\{ESSs\\} can be profitable for the operator of a WPP that is providing frequency response. The ESS provides power reserves such that the WPP can generate close to the maximum energy available. The solution of the optimisation problem establishes that an ESS with a power rating of 5.3MW and energy capacity of about 3MWh would be enough to provide such service whilst maximising the incomes for the WPP operator considering the regular and frequency regulation UK markets.

Lewis Johnston; Francisco Daz-Gonzlez; Oriol Gomis-Bellmunt; Cristina Corchero-Garca; Miguel Cruz-Zambrano

2015-01-01T23:59:59.000Z

244

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

245

New two element steam turbine for 150 to 27 MW applications  

SciTech Connect (OSTI)

A modern high efficiency two element steam turbine for application in the 150 MW to 270 MW range is discussed. Innovations utilized and the experience base from which they are derived are presented. Benefits to the power producer resulting from this innovative approach are highlighted.They include reliability and efficiency improvement, delivery time reduction, and the application of design features, microprocessor control systems, and A. I. diagnostic techniques to reduce maintenance requirements, increase life, and enhance overall power plant productivity.

Martin, H.F.; Vaccarro, F.R.; Conrad, J.D. (Westinghouse Electric Corp., Orlando, FL (USA))

1989-01-01T23:59:59.000Z

246

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

247

NETL: Coal-Fired Power Plants (CFPPs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

248

Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants  

E-Print Network [OSTI]

Efficiency Improvements Efficiency improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch... that are high emitting. Energy conservation programs. Retrofitting units with partial CCS. Use of certain biomass. Efficiency improvements at higher- emitting plants.* Market-based trading programs. Building new renewables. Dispatch changes. Co...

Bremer,K.

2014-01-01T23:59:59.000Z

249

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

250

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

251

Running dry at the power plant  

SciTech Connect (OSTI)

In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

Barker, B.

2007-07-01T23:59:59.000Z

252

Aspects Regarding Design of Wind Power Plants Foundation System  

Science Journals Connector (OSTI)

During the past years wind power plants projects have become very important all over ... must be calculated for dynamic loads, especially wind charge. The article present the particularities of the wind power plants

Vasile Farcas; Nicoleta Ilies

2014-01-01T23:59:59.000Z

253

Power Plant and Industrial Fuel Use Act | Department of Energy  

Office of Environmental Management (EM)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

254

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective  

E-Print Network [OSTI]

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective prediction methods are sought for Nuclear Power Plant Failure Scenarios Using an Ensemble-based Approach J. Liu & V. Vitelli Chair

Paris-Sud XI, Université de

255

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

256

A study of a commercial MHD power plant scheme  

Science Journals Connector (OSTI)

This paper is devoted to an investigation of one of the possible process flow diagrams of MHD electrical power plants. The structure of MHD electrical power plants, the interrelation between the ... theoretical a...

S. A. Pashkov; E. V. Shishkov

1980-07-01T23:59:59.000Z

257

Unusual Condition Mining for Risk Management of Hydroelectric Power Plants  

Science Journals Connector (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information to maintain the safety of hydroelectric power plants while the plants are running. In this paper, we consider that the abnormal condition sign may be unusual condition. ...

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2006-12-01T23:59:59.000Z

258

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

259

How a Geothermal Power Plant Works (Simple) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

260

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Cecil. E. A. , Research on Dry-Type Cooling _T_o_w_e_r~s~f~oTower Type Wet-Cooled Power Plant Solar-Power Plant Dry-Cool

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S309S313 High-Power Pulse Transformer for a 1.5-MW Magnetron of KSTAR LHCD  

E-Print Network [OSTI]

Transformer for a 1.5-MW Magnetron of KSTAR LHCD Microwave Application Sung-Duck Jang, Yoon-Gyu Son and Jong-power magnetron. The high power pulse transformer has the function of transferring pulse energy from a pulsed power source to a high-power load. A pulse transformer producing a pulse with a peak voltage of 45 k

262

Loan Guarantee Recipient Awarded Power Plant of the Year  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, a DOE loan guarantee recipient, won 2014 Plant of the Year from POWER Magazine.

263

Geothermal Power Plants Meeting Water Quality and Conservation Standards  

Broader source: Energy.gov [DOE]

U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

264

World's Largest Concentrating Solar Power Plant Opens in California  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

265

Modeling mercury in power plant plumes  

SciTech Connect (OSTI)

Measurements of speciated mercury (Hg) downwind of coal-fired power plants suggest that the Hg{sup II}/(Hg{sup 0} + Hg{sup II}) ratio decreases significantly between the point of emission and the downwind ground-level measurement site, but that the SO{sub 2}/(Hg{sup 0} + Hg{sup II}) ratio is conserved. The authors simulated nine power plant plume events with the Reactive & Optics Model of Emissions (ROME), a reactive plume model that includes a comprehensive treatment of plume dispersion, transformation, and deposition. The model simulations fail to reproduce such a depletion in Hg{sup II}. A sensitivity study of the impact of the Hg{sup II} dry deposition velocity shows that a difference in dry deposition alone cannot explain the disparity. Similarly, a sensitivity study of the impact of cloud chemistry on results shows that the effect of clouds on Hg chemistry has only minimal impact. Possible explanations include Hg{sup II} reduction to Hg{sup 0} in the plume, rapid reduction of Hg{sup II} to Hg{sup 0} on ground surfaces, and/or an overestimation of the Hg{sup II} fraction in the power plant emissions. The authors propose that a chemical reaction not included in current models of atmospheric mercury reduces Hg{sup II} to Hg{sup 0} in coal-fired power plant plumes. The incorporation of two possible reduction pathways for Hg{sup II} shows better agreement between the model simulations and the ambient measurements. These potential Hg{sup II} to Hg{sup 0} reactions need to be studied in the laboratory to investigate this hypothesis. Because the speciation of Hg has a significant effect on Hg deposition, models of the fate and transport of atmospheric Hg may need to be modified to account for the reduction of Hg{sup II} in coal-fired power plant plumes if such a reaction is confirmed in further experimental investigations. 31 refs., 2 figs., 6 tabs.

Kristen Lohman; Christian Seigneur; Eric Edgerton; John Jansen [Atmospheric & Environmental Research, Inc., San Ramon, CA (United States)

2006-06-15T23:59:59.000Z

266

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

267

Hybrid Modeling and Control of a Hydroelectric Power Plant  

E-Print Network [OSTI]

Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

Ferrari-Trecate, Giancarlo

268

Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant  

Science Journals Connector (OSTI)

Abstract Lignite-based polygeneration system has been considered as a feasible technology to realize clean and efficient utilization of coal resources. A newly polygeneration system has been proposed, featuring the combination of a 2נ300MW circulating fluidized bed (CFB) power plant and atmospheric pressure fluidized bed pyrolyzers. Xiaolongtan lignite is pyrolyzed in pyrolyzers. Pyrolyzed volatiles are further utilized for the co-generation of methanol, oil, and electricity, while char residues are fired in CFB boilers to maintain the full load condition of boilers. Detailed system models were built, and the optimum operation parameters of the polygeneration plant were sought. Technical and economic performances of optimum design of the polygeneration plant were analyzed and compared with those of the conventional CFB power plant based on the evaluation of energy and exergy efficiency, internal rate of return (IRR), and payback period. Results revealed that system efficiency and the IRR of the polygeneration plant are ca. 9% and 14% points higher than those of the power plant, respectively. The study also analyzed the effects of market fluctuations on the economic condition of the polygeneration plant, and found that prices of fuel, material, and products have great impacts on the economic characteristics of the polygeneration plant. Polygeneration plant is more economic than CFB power plant even when prices fluctuate within a wide range. This paper provides a thorough evaluation of the polygeneration plant, and the study indicates that the proposed polygeneration plant has a bright prospect.

Zhihang Guo; Qinhui Wang; Mengxiang Fang; Zhongyang Luo; Kefa Cen

2014-01-01T23:59:59.000Z

269

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

270

Sathyam Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Sathyam Power Pvt Ltd Jump to: navigation, search Name: Sathyam Power Pvt Ltd Place: Rajasthan, India Sector: Biomass Product: Plans to set up 27.5MW biomass power plant....

271

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugn-Cruz; S. Snchez-Delgado; M.R. Rodrguez-Snchez; M. Venegas

2014-01-01T23:59:59.000Z

272

Magnetohydrodynamic (MHD) power plant interface engineering  

SciTech Connect (OSTI)

This report summarizes the results of EPRI Research Project 2466-10. The objective of this project was to identify the preliminary interface requirements and characteristics for a coal-fired magnetohydrodynamic retrofit power plant located at the Scholz Generating Station, Sneads, Florida. An initial building arrangement has been developed and incorporated into the plot plan of the Scholz Generating Station. An MHD process flow diagram was generated and integrated with the existing plant process flow diagram. The electrical interface schematic for the MHD system was also developed. A preliminary list of process flow, electrical, and physical interfaces was produced and the respective interface requirements defined. The existing facilities were inspected and the necessary modifications imposed by the MHD system have been identified. 6 refs., 24 figs., 11 tabs.

Van Bibber, L.E.; Wiseman, D.A. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Advanced Energy Systems Div.); Cuchens, J.W. (Southern Electric International, Birmingham, AL (USA))

1990-07-01T23:59:59.000Z

273

(Nuclear power plant control and instrumentation technology)  

SciTech Connect (OSTI)

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

274

CFD analysis for solar chimney power plants  

Science Journals Connector (OSTI)

Abstract Solar chimney power plants are investigated numerically using ANSYS Fluent and an in-house developed Computational Fluid Dynamics (CFD) code. Analytical scaling laws are verified by considering a large range of scales with tower heights between 1m (sub-scale laboratory model) and 1000m (largest envisioned plant). A model with approximately 6m tower height is currently under construction at the University of Arizona. Detailed time-dependent high-resolution simulations of the flow in the collector and chimney of the model provide detailed insight into the fluid dynamics and heat transfer mechanisms. Both transversal and longitudinal convection rolls are identified in the collector, indicating the presence of a RayleighBnardPoiseuille instability. Local separation is observed near the chimney inflow. The flow inside the chimney is fully turbulent.

Hermann F. Fasel; Fanlong Meng; Ehsan Shams; Andreas Gross

2013-01-01T23:59:59.000Z

275

Relative Movements for Design of Commodities in Nuclear Power Plants  

Broader source: Energy.gov [DOE]

Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

276

Single stage rankine and cycle power plant  

SciTech Connect (OSTI)

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

277

Fuel Cell Power Plant Experience Naval Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

278

NSR and the Power Plant Improvement Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

279

Power System Frequency Control Characteristics as a Function of Nuclear Power Plant Participation  

Science Journals Connector (OSTI)

When the participation of nuclear power plants in electric power system increases then they have to be ... take an increasing part in the frequency and power control of the power system. However there are specifi...

Z. Domachowski

1988-01-01T23:59:59.000Z

280

Tribology in coal-fired power plants  

Science Journals Connector (OSTI)

Material wear and degradation is of great importance to the economy of South Africa especially within the mining, agriculture, manufacturing and power generation fields. It has been found that unexpected and high rates of fly-ash erosion occur at certain sections of power plants, this is particularly evident at the Majuba power station. The loss of small amounts of material due to erosion can be enough to cause serious damage and significantly reduce the working lifetime of, for, e.g. hopper liners. This study investigated the long-term solid particle erosion of a range of oxide and nitride-fired SiC-based ceramics and alumina with the aim of reducing erosive wear damage in power plants. This entailed carrying out experimental tests on an in-house built erosion testing machine that simulate the problems encountered in the industry. The target materials were eroded with 125180?m silica sand at shallow and high impact angles. The surface wear characteristics were studied using both light and scanning electron microscopy (SEM). The results obtained indicate that the erosion rates of the materials remain fairly constant from the onset. It was found that prolonged exposure to erosion results in the progressive removal of the matrix and subsequent loss of unsupported SiC particulates. The fact that the particles were relatively small did not have a significant effect on the erosion rate. This would explain the observed constant rates of erosion for longer periods. These behaviours can be further explained in terms of the composition and mechanical properties of the erodents and target ceramics.

D.O. Moumakwa; K. Marcus

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni

2012-03-01T23:59:59.000Z

282

Optical Performance of a Heliostat in the DAHAN Solar Power Plant  

Science Journals Connector (OSTI)

Abstract This study analyzes the characteristics of the heliostat beams in response to various heliostat adjustment methods and the changes of the beam characteristics with time. The measurements are compared with theoretical values predicted by a model of a 1 MW solar power plant's solar flux distribution based on Monte Carlo ray tracing. The appropriateness of the centroid method and the geometric centre method to determine the heliostat beam geometry and centre are evaluated based on comparisons with heliostat beam grey images taken in the DAHAN solar power plant. The results show that alignment of the heliostat by these two alignment method are both acceptable even though the predictions have some differences with the measurements. The geometric centre method more accurately calculates the spot centre because this method eliminates the effect of saturation on the beam characteristics and more exactly analyzes the total energy reflected into the receiver.

Feihu Sun; Zhifeng Wang; Minghuan Guo; Qiang Yu; Fengwu Bai

2014-01-01T23:59:59.000Z

283

Optimal Endogenous Carbon Taxes Electric Power Supply Chains with Power Plants  

E-Print Network [OSTI]

Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants Anna Nagurney for the determination of optimal carbon taxes applied to electric power plants in the con- text of electric power supply portion of such policy inter- ventions directed at the electric power industry. The general framework

Nagurney, Anna

284

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

285

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

286

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

287

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

288

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blae Gjorgiev; Andrija Volkanovski; Duko Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

289

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect (OSTI)

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

290

Task report No. 3. Systems analysis of organic Rankine bottoming cycles. [Fuel cell power plant  

SciTech Connect (OSTI)

A model was developed that predicts the design performance and cost of a Fuel Cell/Rankine cycle powerplant. The Rankine cycle utilizes the rejected heat of an 11.3 MW phosphoric acid fuel cell powerplant. Improvements in the total plant heat rate and efficiency of up to 10% were attainalbe, using ammonia as the working fluid. The increase in total plant cost divided by the increase in total plant power ranged from $296/kW to $1069/kW for the cases run, and was a strong function of ambient temperature. The concept appears to be capable of producing substantial energy savings in large fuel cell powerplants, at reasonable costs. However, a much more detailed study that includes such factors as duty cycle, future cost of fuel and site meteorology needs to be done to prove the design for any potential site.

Bloomfield, D.; Fried, S.

1980-12-01T23:59:59.000Z

291

A simplified method for the evaluation of the performance of coal fired power plant with carbon capture  

Science Journals Connector (OSTI)

Abstract This paper presents a study of carbon capture systems based on chemical absorption and stripping with amines in pulverized coal fired power plants. The technical feasibility is shown for a 90% CO2 removal on 100% of the exhaust gas flow rate. A simplified method to calculate the performance penalty in comparison with the original power plant is presented including the effect of coal ultimate analysis. The method is verified with data from an existing 75MW coal fired power plant. The economic analysis is presented in terms of cost of electricity and cost of carbon capture and the results are that the cost of electricity nearly doubles in comparison with the reference plant, whereas the cost of captured CO2 is considerably higher than the actual cost of CO2 in the carbon trading markets.

Umberto Desideri; Marco Antonelli

2014-01-01T23:59:59.000Z

292

Evaluation of Calcium Looping as Carbon Capture Option for Combustion and Gasification Power Plants  

Science Journals Connector (OSTI)

Abstract Power generation is one of the industrial sectors with major contribution to greenhouse gas emissions (especially CO2). For climate change mitigation, a special attention is given to the reduction of CO2 emissions by applying capture and storage techniques in which CO2 is captured from energy-intensive processes and then stored in suitable safe geologic locations. Carbon capture and storage (CCS) technologies are expected to play a significant role in the coming decades for curbing the greenhouse gas emissions and to ensure a sustainable development of power generation and other energy-intensive industrial sectors (e.g. cement, metallurgy, petro-chemical etc.). Among various carbon capture options, chemical looping systems are very promising options for intrinsically capture CO2 with lower cost and energy penalties. This paper evaluates calcium looping process as a promising carbon capture option to be applied in the most important coal- based power generation technologies. Combustion technology (Pulverized Fuel - PF) operated in both sub-critical and super- critical steam conditions were evaluated. Also, the gasification technology using an oxygen-blown entrained-flow gasifier was evaluated. As benchmark options, the same power generation technologies were evaluated without CCS. The power plant case studies investigated in the paper produces around 545 560 MW net power with at least 90% carbon capture rate. The modeling and simulation of the whole power generation schemes produced the input data for quantitative technical and environmental evaluations of power plants with carbon capture (similar power plant concept without CCS was used as reference for comparison). Mass and energy integration tools were used to assess the integration aspects of calcium looping unit into the whole power plant design, to optimize the overall efficiency and to evaluate the main sources of energy penalty for carbon capture.

Calin-Cristian Cormos; Letitia Petrescu

2014-01-01T23:59:59.000Z

293

Power/desal plant evolves to meet changing needs  

SciTech Connect (OSTI)

This article reviews the design and operation of a dual purpose power/desalination plant in the Virgin Islands. The topics of the article include a description of the original plant design and operation, combined-cycle integration with existing power/desalination plant, system design, operating experience and incorporation of the St. Croix design at St. Thomas.

Atkins, T.E.; Rothgeb, G.

1993-08-01T23:59:59.000Z

294

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

295

Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint  

SciTech Connect (OSTI)

This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

2014-07-01T23:59:59.000Z

296

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault of Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 2006a; Zio

Boyer, Edmond

297

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED? COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

298

Risk-based decision making method for maintenance policy selection of thermal power plant equipment  

Science Journals Connector (OSTI)

This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement.

F.G. Carazas; G.F.M. Souza

2010-01-01T23:59:59.000Z

299

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

production plants, and steam methane reforming (SMR) systemsproduction via steam methane reforming, (e) power plant FGD

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

300

Unsupervised neural network for forecasting alarms in hydroelectric power plant  

Science Journals Connector (OSTI)

Power plant management relies on monitoring many signals that represent the technical parameters of the real plant. The use of neural networks (NN) is a novel approach that can help to produce decisions when i...

P. Isasi-Viuela; J. M. Molina-Lpez

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

302

Fuel Cell Power Plant Experience Naval Applications | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20118wolak.pdf More...

303

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

304

North Brawley Power Plant Asset Impairment Analysis | Open Energy  

Open Energy Info (EERE)

North Brawley Power Plant Asset Impairment Analysis North Brawley Power Plant Asset Impairment Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Asset Impairment Analysis Author Giza Singer Even Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer Even. North Brawley Power Plant Asset Impairment Analysis [Internet]. [updated 2012;cited 2012]. Available from: http://www.sec.gov/Archives/edgar/data/1296445/000119312512118396/d316623dex991.htm Retrieved from "http://en.openei.org/w/index.php?title=North_Brawley_Power_Plant_Asset_Impairment_Analysis&oldid=682476" Categories: References

305

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

306

Investment Decisions for Baseload Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment Decisions for Investment Decisions for Baseload Power Plants January 29, 2010 402/012910 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

307

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

308

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

309

ANALYSIS FOR AN ECONOMICALLY SUITABLE COAL TO PUTTALAM COAL POWER STATION TO RUN THE PLANT IN FULL LOAD CAPACITY.  

E-Print Network [OSTI]

?? Sri Lanka is an island at the Indian Ocean with 65234 km2 and it has a power demand of 2000 MW. The hydro power (more)

Weerathunga, Lahiru

2014-01-01T23:59:59.000Z

310

Power plant report (EIA-759), current (for microcomputers). Data file  

SciTech Connect (OSTI)

The purpose of Form EIA-759, formerly FPC-4, Power Plant Report, is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data diskette contains data collected by the survey. Specific ownership code, prime mover code, fuel code, company code, plant name, current capacity, fuel name, old capacity, effective date - month/year, status, multistate code, current year, generation, consumption, stocks, electric plant code, and NERC code are included.

NONE

1992-08-01T23:59:59.000Z

311

Benchmarking Variable Cost Performance in an Industrial Power Plant  

E-Print Network [OSTI]

and deploy a tool that can help plants benchmark operating performance. This paper introduces a benchmarking methodology designed to meet this need. The "Energy Conversion Index" (ECn ratios the "value" of utilities exported from the power plant... Index" (ECl) methodology ratios the ''value'' of utilities exported from the power plant to the actual cost of the fuel and . electricity required to produce them, generating a single number or "index." ECI is a powerful technique because...

Kane, J. F.; Bailey, W. F.

312

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the Worlds First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the Worlds First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov

2014-05-01T23:59:59.000Z

313

NEPA Process for Geothermal Power Plants in the Deschutes National...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NEPA Process for Geothermal Power Plants in the Deschutes National Forest EIS at Newberry...

314

The Chena Hot Springs 400kw Geothermal Power Plant: Experience...  

Open Energy Info (EERE)

efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the Chena...

315

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network [OSTI]

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

316

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

317

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

Kengy Barty

2012-02-17T23:59:59.000Z

318

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

319

Insights for Quantitative Risk Assessment of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Traditional techniques of risk analysis have been fitted for the application to combined cycle power plants and the results of several...

Gabriele Ballocco; Andrea Carpignano

2004-01-01T23:59:59.000Z

320

Sandia National Laboratories: character-izing solar-power-plant...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers [EERE]

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

322

North Brawley Geothermal Power Plant Project Overview | Open...  

Open Energy Info (EERE)

Project Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Geothermal Power Plant Project Overview Author PCL Construction...

323

Construction Underway on First Geothermal Power Plant in New Mexico  

Broader source: Energy.gov [DOE]

New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

324

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

325

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

326

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

327

RAPID/BulkTransmission/Power Plant | Open Energy Information  

Open Energy Info (EERE)

BulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk...

328

Suginoi Hotel Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234, 131.47605371632 Loading map... "minzoom":false,"mapp...

329

Performance evaluation and economic analysis of a gas turbine power plant in Nigeria  

Science Journals Connector (OSTI)

Abstract In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 20012010. The thermal power station consists of nine gas turbine units with total capacity of 301MW (9נ31.5MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 510%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411TWh with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O & M) personnel regularly, improvement in O & M practices, proper spare parts inventory and improvement in general housekeeping of the plant. From technical point of view, performance of the plant can be improved by retrofitting with a gas turbine air inlet cooling system, heat recovery system or adding modifications (inter-cooling or regeneration) to the simple gas turbine units.

S.O. Oyedepo; R.O. Fagbenle; S.S. Adefila; S.A. Adavbiele

2014-01-01T23:59:59.000Z

330

Optimal Placement of Wind Power Plants for Delivery Loss Minimization  

Science Journals Connector (OSTI)

In this chapter we investigate how to minimize power delivery losses in the distribution system on ... We show that strategically placing and utilizing new wind power plants can lead to significant loss reduction...

Masoud Honarvar Nazari

2013-01-01T23:59:59.000Z

331

Can New Nuclear Power Plants be Project Financed?  

E-Print Network [OSTI]

This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

Taylor, Simon

332

Salton Sea Power Plant Recognized as Most Innovative Geothermal Project  

Broader source: Energy.gov [DOE]

The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

333

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

334

Feasibility study of a solar chimney power plant in Jordan  

Science Journals Connector (OSTI)

A solar chimney power plant system is theoretically designed for ... by mathematical software. The actual values of solar irradiation in Jordan are used in the ... simulation to predict the power output of the solar

Aiman Al Alawin; Omar Badran; Ahmad Awad; Yaser Abdelhadi

2012-10-01T23:59:59.000Z

335

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

336

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

337

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

338

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

339

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

340

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Land Use Requirements of Modern Wind Power Plants in the United States  

SciTech Connect (OSTI)

This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

2009-08-01T23:59:59.000Z

342

Generation of 150??W average and 1??MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier  

Science Journals Connector (OSTI)

We report on the direct amplification of picosecond pulses to megawatt peak power and 150W average power using a Yb-doped rod-type fiber master oscillator power amplifier....

Zhao, Zhi; Dunham, Bruce M; Wise, Frank W

2014-01-01T23:59:59.000Z

343

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

344

Obero Brasileira Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Place: Brazil Sector: Solar Product: Joint venture developing a 50MW solar thermal power plant worth BRL 500m (USD 289m) in Coremas, Paraiba. References: Obero...

345

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

346

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan to Compare Efficiency Investments to Power Plants Jonathan Koomey, Arthur H. Rosenfeld, and Ashok Gadgil

347

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

348

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

349

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

350

Integration of the steam cycle and CO2 capture process in a decarbonization power plant  

Science Journals Connector (OSTI)

Abstract A new integrated system with power generation and CO2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO2 removal with low energy penalty and economic cost.

Gang Xu; Yue Hu; Baoqiang Tang; Yongping Yang; Kai Zhang; Wenyi Liu

2014-01-01T23:59:59.000Z

351

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

352

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

353

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

354

Zebra Mussel control experiences at Detroit Edison Harbor Beach Power Plant  

SciTech Connect (OSTI)

The Detroit Edison Co. Harbor Beach Power Plant on Lake Huron in Michigan`s thumb and is comprised of one 100 MW coal-fired unit. Zebra mussels first were discovered during a routine inspection of the plant screen house in August 1991. The initial population of 5 mussels/m{sup 2} increased to 650 mussels/m{sup 2} by March 1992. During this eight-month period the plant began to experience problems with zebra mussels clogging small coolers, check valves, and miscellaneous service water connections. Although the mussels had not affected the unit`s availability, it was evident that they soon might if left uncontrolled. A treatment program was devised in 1992 to eliminate the mussels living in the screen house and inside the plant. Targeted in-plant systems included the condenser cooling supply lines, plant service water system, and plant fire fighting system. An oxygen scavenger (sodium sulfate) was used in conjunction with thermal treatment (saturated steam) to asphyxiate and heat the mussels over a several day period. Inspection dives in the screen house before and after treatment as well as subsequent in-plant equipment inspections have revealed the treatment to be successful. Complete mortality was achieved in the screen house and in-plant systems. By April, 1993, the zebra mussel colony had re-established itself in the plant screen house to a level of 400 mussels/m{sup 2}. In October 1993, the colony had grown to 2,600 mussels/m{sup 2}. A second treatment was scheduled and completed on October 18--21, 1993. Thermal treatment was used alone during this treatment episode in which 100% mortality again wax achieved. Test bags, an in-line viewport, and post treatment dive inspections confirmed that the treatment was completely successful. Population monitoring and treatments continue on a regular basis.

Harwood, D.B.; Buda, D.J. [Detroit Edison Co., Harbor Beach, MI (United States)

1994-12-31T23:59:59.000Z

355

Carbon Dioxide Emissions from Coal-Fired Power Plants in Greece in Relation to Mined Lignite Quality  

Science Journals Connector (OSTI)

Carbon dioxide emissions were shown to vary with the calorific value and carbonate content of lignite burned at three large power plants. ... The annual carbon dioxide emissions, Q, in a lignite-fired power plant can be calculated on the basis of the total carbon mass balance, using the following formula:(18)Specific emission factor, Qs, expressed in tons of CO2 generated per MW h is given bywhere Q is the annual CO2 emissions (in tons), Qs is the specific CO2 emissions (in tons MW?1 h?1), L is the annual lignite consumption (in tons/year), CL is the total carbon content of lignite on an as-received basis (%), W is the annual production of bottom ash ( in tons/year), CW is the total carbon content of bottom ash on an as-received basis (%), F is the annual production of fly ash (in tons/year), CF is the total carbon content of fly ash on an as-received basis (%), and E is the annual production of electricity ( in MW h). ... The carbon dioxide emitted as a product of combustion of coal (fossil fuels) is currently responsible for over 60% of the enhanced greenhouse effect. ...

Despina Vamvuka; Michael Galetakis

2009-12-04T23:59:59.000Z

356

Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis  

Science Journals Connector (OSTI)

Abstract In the present paper the performance of solar chimney power plants based on second law analysis is investigated for various configurations. A comparison is made between the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP). The appropriate entropy generation number and second-law efficiency for solar chimney power plants are proposed in this study. Results show that there is the optimum collector size that provides the minimum entropy generation and the maximum second-law efficiency. The second-law efficiency of both systems increases with the increasing of the system height. The study reveals the influence of various effects that change pressure and temperature of the systems. It was found that SSCPP is thermodynamically better than CSCPP for some configurations. The results obtained here are expected to provide information that will assist in improving the overall efficiency of the solar chimney power plant.

Atit Koonsrisuk

2013-01-01T23:59:59.000Z

357

Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant  

Science Journals Connector (OSTI)

This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7ha/MW for large scale solar thermal storage system to run the plant for 24h.

V. Siva Reddy; S.C. Kaushik; S.K. Tyagi

2012-01-01T23:59:59.000Z

358

Technical and Economical Performance of Parabolic Trough Collector Power Plant under Algerian Climate  

Science Journals Connector (OSTI)

Parabolic trough solar technology has been proven at nine commercial Solar Electric Generating System (SEGS) power plants that are operating in the California Mojave desert. Simulation using different models when planning this kind of projects and choose the best site for this technology minimizes the risks of these projects. For this purpose, a detailed performance model of the 30 MW SEGS VI parabolic trough power plant was created in the TRNSYS simulation environment using the Solar Thermal Electric Component model library. Both solar and power cycle performance were modeled, but natural gas-fired hybrid operation was not. Good agreement between model predictions and plant measurements was found, with errors usually less than 10%. Also, an economical study has been established to determine the best site, based on the cost of electricity generation. The result shows that Bechar's site is the best site for this technology because of its lowest levelzed electricity cost and its high irradiance level. While the model could be improved, it demonstrates the capability to perform detailed analysis for this technology.

Abdelkader Zaaraoui; Mohamed Lamine Yousfi; Noureddine Said

2012-01-01T23:59:59.000Z

359

An assessment of mercury emissions and health risks from a coal-fired power plant  

SciTech Connect (OSTI)

Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

Fthenakis, V.M.; Lipfert, F.; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Analytical Sciences Div.

1994-12-01T23:59:59.000Z

360

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Economical load distribution in power networks that include hybrid solar power plants  

Science Journals Connector (OSTI)

With respect to the growing share of renewable resources in secure provision of electrical energy, proper utilization of hybrid power plants is of great importance. Therefore, an optimal production planning for operation of these power plants is evidently necessary. Generally, economical load distribution refers to determination of an optimal point in production that fully provides for the total network load. In other words, the economical load distribution refers to cost minimization of the produced electrical power for satisfying the total network demand, with consideration of the actual constraints in the power system. To serve this purpose, several methods have been in use, but with the entry of power plants that use renewable energy resources, necessary steps should be taken to ensure their optimal use. However, economical optimization and sufficient reliability in serving concurrent demands are the two-fold objectives of the electrical power system and need to be considered simultaneously. Therefore, in analyzing the share of renewable energy resources in the total electrical power network, both their economical advantages and their reliable level of production should be considered. Presently, many countries show interest in using hybrid solar power plants and fossil fuel power plants. In this research, the problem of augmenting power networks with solar power plants and finding their optimal production point is dealt with. Some models for the production cost functions of these power plants are presented and discussed.

Mohammad Taghi Ameli; Saeid Moslehpour; Mehdi Shamlo

2008-01-01T23:59:59.000Z

362

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

363

Minnesota Power Plant Siting Act (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Siting Act (Minnesota) Power Plant Siting Act (Minnesota) Minnesota Power Plant Siting Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a

364

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

365

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Office of Environmental Management (EM)

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

366

The design of solar chimney power plant for sustainable power generation.  

E-Print Network [OSTI]

??The solar chimney power plant (SCPP) also known as solar updraft tower is a nonconcentrating solar thermal technology, which employs both solar and wind energy (more)

Asante, David

2014-01-01T23:59:59.000Z

367

On Line Power Plant Performance Monitoring  

E-Print Network [OSTI]

in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit... ? Analyze current plant?eQuipment status and diagnostics for preventive maintenance and equipment damage ? Provide current energy management and system dispatch operation information ? Capability for plant and equipment acceptance and periodic...

Ahner, D. J.; Priestley, R. R.

368

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use Photo of a Temperate Wetland. Photo of a Temperate Wetland Applied Ecological Services, Inc. (AES) will study the use of restored wetlands to help alleviate the increasing stress on surface and groundwater resources from thermoelectric power plant cooling requirements. The project will develop water conservation and cooling strategies using restored wetlands. Furthermore, the project aims to demonstrate the benefits of reduced water usage with added economic and ecological values at thermoelectric power plant sites, including: enhancing carbon sequestration in the corresponding wetlands; improving net heat rates from existing power generation units; avoiding limitations when low-surface

369

The 2001 Power Plant Improvement Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2001 Power Plant Improvement Initiative 2001 Power Plant Improvement Initiative The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to issue "a general request for proposals for the commercial scale demonstration of technologies to assure the reliability of the nation's energy supply from existing and new electric generating facilities...." The Congress transferred $95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation for proposals under the program it called the "Power Plant Improvement Initiative" (PPII). By the April 19, 2001, deadline, 24 candidate projects

370

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

371

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

372

Preconstruction of the Honey Lake Hybrid Power Plant  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

Not Available

1988-04-30T23:59:59.000Z

373

Preconstruction of the Honey Lake Hybrid Power Plant: Final report  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

Not Available

1988-04-30T23:59:59.000Z

374

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

375

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

376

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

377

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

378

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

379

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Membrane for CO 2 Capture and Power Generation DE-FE0007634 Hossein Ghezel-Ayagh FuelCell Energy, Inc. 2013 NETL CO 2 Capture Technology Meeting July 10, 2013 Pittsburgh, PA FuelCell Energy, Inc. 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Premier developer of stationary fuel cell products, with >40 years of experience Headquarters in Danbury, CT (USA), international presence in USA, Canada, Germany (Fraunhofer, IKTS) and South Korea (Posco) Delivering Direct FuelCell ® (DFC ® ) power plants for On-Site Power and Utility Grid

380

The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2  

SciTech Connect (OSTI)

The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall {beta}N reaches {approximately} 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about {approximately} 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MA can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over {rho} {approximately} 0.2-0.6 with 20 MW. The pedestal density is {approximately} 0.65x10{sup 20}/m{sup 3} and the temperature is {approximately} 9.0 keV. The H98 factor is 1.25, n/n{sub Gr} = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.

Kessel, C. E.

2014-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

382

Annual performance analysis of the solar chimney power plant in Sinkiang, China  

Science Journals Connector (OSTI)

Abstract To obtain more accurate prediction of the annual performance of solar chimney power plants (SCPPs), a comprehensive theoretical model is developed by taking into account the hourly variation of solar radiation. The effects of the collector and chimney radii on the power output of the SCPP are analyzed, and the results reveal that a limitation on the maximum collector radius exists for the maximum attainable power output of the SCPP. Then four designs of 100MW \\{SCPPs\\} with different combinations of collector and chimney radii are proposed and the most cost effective one is chosen from among the four SCPPs. The annual power output of the chosen SCPP in the Hami region is estimated at an interval of 1h for a whole year. The results indicate that the power generation of SCPP presents obvious seasonal variation. Furthermore, the use of 14% of the unused land in the Hami region for the installation of \\{SCPPs\\} would satisfy the annual power requirement for the whole of the Sinkiang region.

Peng-hua Guo; Jing-yin Li; Yuan Wang

2014-01-01T23:59:59.000Z

383

A Survey of Power Plant Designs  

E-Print Network [OSTI]

is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin;Sustainable Energy, MIT 2005. #12;Allen Fossil Plant is on the Mississippi River five miles southwest (TVA), http://www.tva.gov #12;Coal fired Plant Otpco.com Fuel handling (1) Rotary dumper (2) Storage

Ervin, Elizabeth K.

384

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect (OSTI)

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

385

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

386

Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia A review  

Science Journals Connector (OSTI)

Climate change and depletion of natural resources are serious issues that have potential impact on the economic and social development of countries. In this perspective, the governments world-wide are mobilizing initiatives to exploit renewable energy sources to mitigate increasing demand of energy, volatile fuel prices, and environmental concerns. Renewable energy (wind/solar) based power system is a nature-friendly option for power production to foster sustainable development challenges. In the present study, the economic feasibility of development of 75MW wind power plants (wind farms) in the coastal locations of the Kingdom of Saudi Arabia (K.S.A.) has been studied/reviewed by analyzing long-term wind speed data. Attention has been focused on four coastal locations (Al-Wajh, Jeddah, Yanbu and Jizan) covering the west coast. In general, long-term data indicates that the yearly average wind speed of K.S.A. varies from 3.0 to 4.5m/s at 10m height. The wind farms simulated consist of different combinations of 600kW commercial wind machines (50m hub-height). NREL's (HOMER Energy's) HOMER software has been employed to perform the techno-economic assessment. The study presents monthly variations of wind speed, cumulative frequency distribution (CFD) profiles of wind speed, monthly and yearly amount of energy generated from the 75MW wind farms (50m hub-height) at different coastal locations of K.S.A., cost of generating energy (COE, $/kWh), capacity factor (%), etc. The CFD indicates that the wind speeds are less than 3m/s for 45%, 53%, 41%, and 52% of the time during the year at Al-Wajh, Jeddah, Yanbu and Jizan respectively. This implies that wind electric conversion systems (WECS) will not produce energy for about 4153% of the time during the year. The annual energy produced by 75MW wind farms (50m hub-height) has been found to be 107,196, 81,648, 135,822, and 80,896MWh at Al-Wajh, Jeddah, Yanbu and Jizan respectively. The cost of wind-based electricity by using 600kW (50m hub-height) commercial WECS has been found to be 0.0536, 0.0704, 0.0423, and 0.0711 US$/kWh for Al-Wajh, Jeddah, Yanbu and Jizan respectively. Also, attempt has been made to determine the capacity factor (CF) of wind-based power plants, the CF has been found to vary from 12% to 21% for different locations of the Kingdom.

S.M. Shaahid; L.M. Al-Hadhrami; M.K. Rahman

2013-01-01T23:59:59.000Z

387

Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process  

Science Journals Connector (OSTI)

In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SOx, NOx, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making.

Gang Xu; Yong-ping Yang; Shi-yuan Lu; Le Li; Xiaona Song

2011-01-01T23:59:59.000Z

388

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

389

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

390

Effect of the shutdown of a large coal fired power plant on ambient mercury species  

E-Print Network [OSTI]

Effect of the shutdown of a coal-fired power plant on urbanof the shutdown of a large coal-fired power plant on ambientof the shutdown of a large coal-fired power plant on ambient

Wang, Yungang

2014-01-01T23:59:59.000Z

391

Investigation into the Probable Cause of Failure of Economizer Tube of a Thermal Power Plant  

Science Journals Connector (OSTI)

In this investigation, we examined the probable cause of failure of a welded joint of a economizer tube of a 210MW thermal power ... scanning electron microscopic (SEM) examination of the economizer tube were ca...

Atanu Saha; H. Roy; A. K. Shukla

2010-06-01T23:59:59.000Z

392

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

393

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Sauder Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sauder Power Plant Biomass Facility Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio Coordinates 41.5719341°, -84.1435136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5719341,"lon":-84.1435136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Stowe Power Production Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Stowe Power Production Plant Biomass Facility Stowe Power Production Plant Biomass Facility Jump to: navigation, search Name Stowe Power Production Plant Biomass Facility Facility Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2290075,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Drexel University is conducting research with the overall objective of developing technologies to reduce freshwater consumption at coal-fired power plants. The goal of this research is to develop a scale-prevention technology based on a novel filtration method and an integrated system of physical water treatment in an effort to reduce the amount of water needed for cooling tower blowdown. This objective is being pursued under two coordinated, National Energy Technology Laboratory sponsored research and development projects. In both projects, pulsed electrical fields are employed to promote the precipitation and removal of mineral deposits from power plant cooling water, thereby allowing the water to be recirculated for longer periods of time before fresh makeup water has to be introduced into the cooling water system.

397

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Impaired Water as Cooling Water in Coal-Based Power Plants – Nalco Company Example of Pipe Scaling The overall objective of this project, conducted by Nalco Company in partnership with Argonne National Laboratory, is to develop advanced-scale control technologies to enable coal-based power plants to use impaired water in recirculating cooling systems. The use of impaired water is currently challenged technically and economically due to additional physical and chemical treatment requirements to address scaling, corrosion, and biofouling. Nalco's research focuses on methods to economically manage scaling issues (see Figure 1). The overall approach uses synergistic

398

Nove Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Nove Power Plant Biomass Facility Nove Power Plant Biomass Facility Jump to: navigation, search Name Nove Power Plant Biomass Facility Facility Nove Power Plant Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

402

Feasibility study of a VirtualPower Plant for Ludvika.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of avirtual power plant (VPP) in centralSweden and part of a project withInnoEnergy Instinct and STRI. The VPPconsists (more)

Lundkvist, Johanna

2013-01-01T23:59:59.000Z

403

Fuel Cell Power Plants Biofuel Case Study- Tulare, CA  

Broader source: Energy.gov [DOE]

Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

404

EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010  

Broader source: Energy.gov [DOE]

Presentation to the Electricity Advisory Committe on October 29, 2010by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

405

Characteristics of an Economically Attractive Fusion Power Plant  

E-Print Network [OSTI]

Characteristics of an Economically Attractive Fusion Power Plant Farrokh Najmabadi University: Assessment Based on Attractiveness & Feasibility Periodic Input from Energy Industry Goals and Requirements Scientific & Technical Achievements Evaluation Based on Customer Attributes Attractiveness Characterization

406

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

407

Analytic model of solar power plant with a Stirling engine  

Science Journals Connector (OSTI)

An analytic model is proposed of a solar power plant (SPP) with a Stirling engine that is based on the isothermal model of the Stirling engine (SE) working process and is improved...

I. A. Tursunbaev

2007-03-01T23:59:59.000Z

408

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

409

Numerical Investigation of Solar Chimney Power Plant in UAE  

Science Journals Connector (OSTI)

This paper presents a numerical simulation results for a steady air flow inside a solar chimney power plant. A standard k-epsilon turbulence model is used to model a prototype solar chimney that was built in Al A...

Mohammad O. Hamdan; Saud Khashan

2014-01-01T23:59:59.000Z

410

Simulation Calculation on Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

It is unpractical to establish a Solar Chimney Power Plant System (SCPPS) used to ... flow field of the SCPPS which caused by solar radiation intensity have been analyzed. The calculated ... as well as the differ...

HuiLan Huang; Hua Zhang; Yi Huang; Feng Lu

2007-01-01T23:59:59.000Z

411

Operation and Maintenance Methods in Solar Power Plants  

Science Journals Connector (OSTI)

A solar chimney power plant has a high chimney (tower), with a height of up ... , the roof curves upward to join the chimney, creating a funnel. The sun heats ... is absorbed by the water within the dark solar pa...

Mustapha Hatti

2014-01-01T23:59:59.000Z

412

Marsh Road Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Marsh Road Power Plant Biomass Facility Marsh Road Power Plant Biomass Facility Jump to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County, California Coordinates 37.4337342°, -122.4014193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4337342,"lon":-122.4014193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

How Gas Turbine Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

414

Salton Sea Power Plant Recognized as Most Innovative Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis The first power plant to be built in the Salton Sea area in 20 years was recognized in December by...

415

Novel Dry Cooling Technology for Power Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

416

The Industrial Power Plant Management System - An Engineering Approach  

E-Print Network [OSTI]

THE INDUSTRIAL POWER PLANT MANAGEMENT SYSTEM AN ENGINEERING APPROACH Seppo E. Aarnio, Heikki J. Tarvainen and Valentin Tinnis EKONO Oy, Helsinki, Finland EKONO Inc., Bellevue, Washington ABSTRACT Based on energy studies in over 70 plants... in Finland. The results of the optimization calculations are used for two types of operations guidance. The first duty of the operators is to adjust the determined set points for the most economic loading, fuel firing and purchasing of power. This is done...

Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

1979-01-01T23:59:59.000Z

417

Power Plant Report (EIA-759): Historic, 1989. Data file  

SciTech Connect (OSTI)

The purpose of the form is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data tape contains data collected by the survey. Specific Ownership Code, Prime Mover Code, Fuel Code, Company Code, Plant Name, Current Capacity, Fuel Name, Old Capacity, Effective Date - Month/Year, Status, Multistate Code, Current Year, Generation, Consumption, Stocks, Electric Plant Code, and NERC Code are included.

Not Available

1989-01-01T23:59:59.000Z

418

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

419

Nuclear Power Plants and Their Fuel as Terrorist Targets  

Science Journals Connector (OSTI)

...applied to terrorism. To tell...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make a huge...believe nuclear power is being...operation of nuclear facilities...applied to terrorism. To...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make...believe nuclear power is being...

Douglas M. Chapin; Karl P. Cohen; W. Kenneth Davis; Edwin E. Kintner; Leonard J. Koch; John W. Landis; Milton Levenson; I. Harry Mandil; Zack T. Pate; Theodore Rockwell; Alan Schriesheim; John W. Simpson; Alexander Squire; Chauncey Starr; Henry E. Stone; John J. Taylor; Neil E. Todreas; Bertram Wolfe; Edwin L. Zebroski

2002-09-20T23:59:59.000Z

420

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Turbine repair at Nesjavellir geothermal power plant: An Icelandic case study  

Science Journals Connector (OSTI)

Abstract During a quadrennial inspection of a 30MW Mitsubishi steam turbine at Nesjavellir geothermal power plant, corrosion products were found on the last set of labyrinth packing in the gland seal system which resulted in erosion corrosion of the turbine rotor. The rotor had worn by approximately 8mm. Because of the tight timeframe of the overhaul, it was decided to repair this failure on site using the experience of the staff and domestic industry. Labyrinth seals were built by a domestic machine shop, decreasing cost and shutdown time dramatically. This article describes the occurring failure and how it was repaired within days with cooperation between the energy company and domestic industry. It further discusses probable causes for such failure and how it may be prevented. The article describes in essence how valuable it can prove to build maintenance knowledge domestically in the geothermal sector.

R.S. Atlason; A. Gunnarsson; R. Unnthorsson

2015-01-01T23:59:59.000Z

422

Condensate system modelling in real time for a training power plant simulator  

Science Journals Connector (OSTI)

In this paper, the basis of the models of the condensate water and the air cooled condenser are presented. The models are part of a full scope simulator of a 450 MW combined cycle power plant. The simulator is executed in real time and is intended to be a support for the training of the operators of the Comisión Federal de Electricidad (the Mexican utility company). The simulator is presently in the final acceptance tests stage and is programmed to be in commercial operation in 2010. Here, are included a summary of the modelling methodology used to develop the referred models and the mathematical fundaments used to obtain the main equations. The tendencies of selected variables during a transient are displayed and analysed in order to probe the validity of the new generic models.

Yadira Mendoza-Alegría; Edgardo J. Roldán-Villasana

2011-01-01T23:59:59.000Z

423

Ivanpah: World's Largest Concentrating Solar Power Plant  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Departments Loan Programs Office (LPO).

424

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

425

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

426

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

427

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

SciTech Connect (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

428

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS  

E-Print Network [OSTI]

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS Independent Component Analysis nc Normal conditions NPP Nuclear Power Plant PCA Principal Component Analysis

Paris-Sud XI, Université de

429

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

430

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect (OSTI)

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

431

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

432

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1"  

E-Print Network [OSTI]

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1" Bill Bottom 2 Alex Young 3 of conventional thermal (fossil fuel and nuclear), geo- thermal, wind and solar power plants. There are several be dependent on conventional thermal power plants to generate electricity. These power plants are powered

Standiford, Richard B.

433

Modelling Power Output at Nuclear Power Plant by Neural Networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. N...

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-01-01T23:59:59.000Z

434

The 2001 Power Plant Improvement Initiative  

Broader source: Energy.gov [DOE]

When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to...

435

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network [OSTI]

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

436

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

437

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

DOE Orders Mirant Power Plant to Operate Under Limited DOE Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

438

Running Dry at the Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Running Dry at the Power Plant Running Dry at the Power Plant Running Dry at the Power Plant Securing sufficient supplies of fresh water for societal, industrial, and agricultural uses while protecting the natural environment is becoming increasingly difficult in many parts of the United States. Climate variability and change may exacerbate the situation through hotter weather and disrupted precipitation patterns that promote regional droughts. Achieving long- term water sustainability will require balancing competing needs effectively, managing water resources more holistically, and developing innovative approaches to water use and conserva- tion. Utility companies-which use substantial amounts of water for plant cooling and other needs-are doing their part by pursuing water-conserving

439

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

440

Malavi Power Plant Ltd MPPL pltd | Open Energy Information  

Open Energy Info (EERE)

Malavi Power Plant Ltd MPPL pltd Malavi Power Plant Ltd MPPL pltd Jump to: navigation, search Name Malavi Power Plant Ltd. (MPPL pltd) Place Bangalore, India Zip 560 001 Sector Biomass Product Biomass/biogas project developer and plant operator. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimization of Technical Diagnostics Procedures for Hydroelectric Power Plants  

Science Journals Connector (OSTI)

In this paper, a mathematical model is proposed for determination of the optimal solution for the maintenance system of a specific steel structure the hydraulic power plant. The aim is to obtain the maximum efficiency of the plant within existing conditions and limitations. The objective of a mathematical model is to select the diagnostics parameters, which define knowledge of the permissible reliability level and certain analytic expression, which corresponds to precisely described state of hydroelectric power plant components assembly. Model of technical diagnostics procedures optimization represents a specific approach to problems of preventive maintaining according to state. It is related to the concept of state parameters change, which represents a basis for obtaining the optimal solution for procedures of technical diagnostics. It also creates direct relations between the law of the state parameter changes and reliability of the considered power plant components.

D. Nikoli?; R.R. Nikoli?; B. Krsti?; V. Lazi?; I.. Nikoli?; I. Krsti?; V. Krsti?

2012-01-01T23:59:59.000Z

442

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan

2007-01-01T23:59:59.000Z

443

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

444

The Salton Sea 10 MWe power plant, unit 1  

SciTech Connect (OSTI)

The Southern California Edison Company's Salton Sea Geothermal Electric Project is the second of two flashsteam projects located in the Imperial Valley of California to successfully demonstrate the feasibility of utilizing steam from highly saline geothermal fluids for electric power generation. The objective of Edison's Power Plant Unit 1 program at the Salton Sea KGRA is to develop design, operating, and economic criteria for commercial geothermal developments in the Imperial Valley of California. The Edison plant is designed specifically for utilization of geothermal steam and employs principles found in conventional fossil-fueled electric generating plants. This plant serves as a model of a full scale commercial plant, using systems and components which likely will be utilized in large scale follow-on units.

Moss, W.E.; Whitescarver, O.D.; Yamasaki, R.N.

1982-10-01T23:59:59.000Z

445

Investigation of valve failure problems in LWR power plants  

SciTech Connect (OSTI)

An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

None

1980-04-01T23:59:59.000Z

446

GV1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

GV1 Solar Power Plant GV1 Solar Power Plant Jump to: navigation, search Name GV1 Solar Power Plant Facility GV1 Sector Solar Facility Type Concentrating Solar Power Developer Greenvolts Location Tracy, California Coordinates 37.7396513°, -121.4252227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7396513,"lon":-121.4252227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tonopah Airport Solar Power Plant Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

450

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management Sandia National Laboratories (SNL) is conducting a regional modeling assessment of non-traditional water sources for use in thermoelectric power plants. The assessment includes the development of a model to characterize water quantity and quality from several sources of non-traditional water, initially focused within the Southeastern United States. The project includes four primary tasks: (1) identify water sources, needs, and treatment options; (2) assess and model non-traditional water quantity and quality; (3) identify and characterize water treatment options including an assessment of cost; and (4) develop a framework of metrics, processes, and modeling aspects that can be applied to other regions of the United States.

451

Solar Millenium Palen Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palen Solar Power Plant Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Owner BrightSource Developer Solar Millenium, LLC Location Palen, California Coordinates 33.695923°, -115.225468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.695923,"lon":-115.225468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

455

Starwood Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Starwood Solar I Solar Power Plant Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar Power Developer Lockheed Martin/Starwood Energy Location Harquahala Valley, Arizona Coordinates 33.45729°, -113.1619359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.45729,"lon":-113.1619359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

458

SEGS IX Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

IX Solar Power Plant IX Solar Power Plant Jump to: navigation, search Name SEGS IX Solar Power Plant Facility SEGS IX Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Carrizo Energy Solar Farm Solar Power Plant Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility Type Concentrating Solar Power Developer Ausra CA II Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

462

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility Type Concentrating Solar Power Developer NextEra Energy Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4937274,"lon":-118.8596804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

SEGS IV Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name SEGS IV Solar Power Plant Facility SEGS IV Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

SES Solar Two Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Project Solar Power Plant Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar Power Developer Stirling Energy Systems, Tessera Solar Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

SEGS VIII Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

VIII Solar Power Plant VIII Solar Power Plant Jump to: navigation, search Name SEGS VIII Solar Power Plant Facility SEGS VIII Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Ridgecrest Solar Power Plant Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Ridgecrest, California Coordinates 35.6224561°, -117.6708966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6224561,"lon":-117.6708966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

SciTech Connect (OSTI)

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

471

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

472

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

473

Computational and experimental test of self starting regimes for the in-house needs of the PGU-450 steam-gas unit at the Kaliningrad TTs-2 Heating and Power Plant during supply disruptions  

Science Journals Connector (OSTI)

The major stages of a computational test of the self starting regimes for the in-house needs of unit No. 1 of the 450 MW steam-gas unit at the Kaliningrad TTs-2 Heating and Electric Power Plant during supply ...

S. N. Sakharov; V. A. Kuzmichev

2008-05-01T23:59:59.000Z

474

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

475

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

476

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

76 per MW -hr. e The electricity cost for the proposed solarelectric energy and electricity costs are therefore onlyplants are an identical Electricity costs are $87 per MW -hr

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

477

Fusion power plant for water desalination and reuse  

Science Journals Connector (OSTI)

Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ?0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ?6?000?000 m3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity.

A.A. Borisov; A.V. Desjatov; I.M. Izvolsky; A.G. Serikov; V.P. Smirnov; Yu.N. Smirnov; G.E. Shatalov; S.V. Sheludjakov; N.N. Vasiliev; E.P. Velikhov

2001-01-01T23:59:59.000Z

478

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

Doctor, S. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

2007-03-21T23:59:59.000Z

479

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

480

Regulatory guidance for lightning protection in nuclear power plants  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6007 (United States); Antonescu, C. E. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Regulatory Guidance for Lightning Protection in Nuclear Power Plants  

SciTech Connect (OSTI)

Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

Kisner, Roger A [ORNL; Wilgen, John B [ORNL; Ewing, Paul D [ORNL; Korsah, Kofi [ORNL; Antonescu, Christina E [ORNL

2006-01-01T23:59:59.000Z

482

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

483

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

484

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current