Sample records for mw megawatts mwh

  1. Total Cost Per MwH for all common large scale power generation sources |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEI Community Cost Per MwH for

  2. PLANS FOR FUTURE MEGAWATT FACILITIES.

    SciTech Connect (OSTI)

    ROSER,T.

    2004-10-13T23:59:59.000Z

    Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  5. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale Up E

  6. A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...

    Office of Scientific and Technical Information (OSTI)

    A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

  7. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of...

  8. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors for3

  9. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors

  10. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10T23:59:59.000Z

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  11. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13T23:59:59.000Z

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  12. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    E-Print Network [OSTI]

    Wiser, Ryan

    2008-01-01T23:59:59.000Z

    LSE MISO M-RETS MSW MW MWh PJM POU PRC PSC PUC PV REC RPSelectric service provider PJM Generation Attributes Trackingwaste megawatt megawatt-hour PJM Interconnection publicly

  13. Economic Development Impacts of Colorado's First 1,000 Megawatts of Wind Energy

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    This fact sheet summarizes the findings of a report authored by Sandra Reategui and Suzanne Tegen of the National Renewable Energy Laboratory (NREL). A confluence of events ignited soaring growth in the number of Colorado?s wind power installations in recent years, from 291 megawatts (MW) of nameplate capacity in 2006 to 1,067 MW (nameplate capacity) in 2007. Analyzing the economic impact of Colorado?s first 1,000 MW of wind energy development not only provides a summary of benefits now enjoyed by the state?s population, but it also provides a sense of the economic development opportunities associated with other new wind project scenarios, including the U.S. Department of Energy?s 20% Wind Energy by 2030 scenario. The analysis can be used by interested parties in other states as an example of the potential economic impacts if they were to adopt 1,000 MW of wind power development.

  14. ,,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard ErrorsNumber of

  15. Chasing megawatts in combined cycle plants

    SciTech Connect (OSTI)

    Koch, J. [Power Plant Performance Specialist, Lansdowne, PA (United States); DeGeeter, S. [Ocean State Power, Harrisville, RI (United States); Haynes, C.J. [New England Power Co., Somerset, MA (United States)

    1996-05-01T23:59:59.000Z

    Combined cycle owners do not have to accept that combined cycle performance must degrade over time. Through low cost testing using existing instrumentation, a method is presented to identify causes for lost generation. A 500 MW combined cycle plant, with two STAG 207EA units, had lost 17 MW since initial operation, and found that: Gas side fouling on A four HRSG`s accounted for 8 MW of the total loss LP steam turbine efficiency was below design on one unit, contributing 3 MW Condenser air removal was poor on both units, a loss of an additional 2 MW Compressor and turbine section efficiency losses on 2 of 4 GT`s cost over 4 MW The test also revealed that the other two GT`s, both cooling towers, and one of the two steam turbines, were performing at or near design. Thus far 3 MW has been recovered, with planning underway for recovery of another 3 MW. The remaining 11 MW, though not immediately recoverable, will be the focus of planning for the next major outage. This simple method can be used at any combined cycle using existing instrumentation, with minimal intrusion on daily operations. The use of redundant measurements and uncertainty analysis assures valid and useful results.

  16. Final Environmental Impact Report: North Brawley Ten Megawatt...

    Open Energy Info (EERE)

    Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final...

  17. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08T23:59:59.000Z

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  18. Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformation SPPurchasedEngyNrmlYrMwhYrPellets Jump to: navigation,

  19. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformation SPPurchasedEngyNrmlYrMwhYrPellets Jump to:

  20. Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformation SPPurchasedEngyNrmlYrMwhYrPellets Jump

  1. Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformation SPPurchasedEngyNrmlYrMwhYrPellets JumpInformation

  2. A Threshold Autoregressive Model for Wholesale Electricity Prices

    E-Print Network [OSTI]

    A Threshold Autoregressive Model for Wholesale Electricity Prices B. Ricky Rambharat Carnegie of wholesale electricity soared to an unprecedented $7,500 per megawatt-hour (MwH) (see FERC, 1998). Models

  3. Electricity Transmission Congestion Costs: A Review of Recent Reports

    E-Print Network [OSTI]

    operator ISO-NE Independent System Operator - New England LMP Locational marginal price MW Megawatt MWh price FERC Federal Energy Regulatory Commission FTR Fixed transmission right ISO Independent system

  4. Megawatt targets for Neutrino Super-Beams

    E-Print Network [OSTI]

    McDonald, Kirk

    Station for 4 MW 27m Iron shield Iron structure /Helium vessel Machine room Service pit Storage transformers) must be underground, close to the beamline ­ The pump house may also be underground, depending ) to interact most protons Dense enough that 2 int fits in focusing system depth-of-field Radius: Rtarget = 2

  5. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  6. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01T23:59:59.000Z

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  7. Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003

    SciTech Connect (OSTI)

    anon.

    2004-03-01T23:59:59.000Z

    Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

  8. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross

    2011-02-01T23:59:59.000Z

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  9. The 5-megawatt power plant with 126 metre rotor diameter

    E-Print Network [OSTI]

    Firestone, Jeremy

    The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut and most powerful wind turbines in the world. The 5M sets new standards for the economic viability similar to conventional power plants. This in turn puts high demands on the control and regulation system

  10. Megawatts vs. Negawatts: how a little can do a lot

    SciTech Connect (OSTI)

    NONE

    2008-11-15T23:59:59.000Z

    In some quarters there is increased emphasis on overall reduction of energy usage from customers. One indication of the growing significance of negawatts is apparent at PJM Interconnection, where customers are encouraged to bid negative load into the wholesale market in direct competition with megawatts. This negative load, while not large in absolute terms relative to the 164 GW size of the PJM market, is nevertheless critical in introducing an element of price elasticity into what would otherwise be a virtually inelastic demand.

  11. Tucson Request for Proposal for 1-5 MW PV PPA

    Broader source: Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  12. Measurement of MW+ - MW- at LHC

    E-Print Network [OSTI]

    F. Fayette; M. W. Krasny; W. Placzek; A. Siodmok

    2009-06-17T23:59:59.000Z

    This paper is the second of the series of papers proposing dedicated strategies for precision measurements of the Standard Model parameters at the LHC. The common feature of these strategies is their robustness with respect to the systematic measurement and modeling error sources. Their impact on the precision of the measured parameters is reduced using dedicated observables and dedicated measurement procedures which exploit flexibilities of the collider and detector running modes. In the present paper we focus our attention on the measurement of the charge asymmetry of the W-boson mass. This measurement is of primordial importance for the LHC experimental program, both as a direct test of the charge-sign-independent coupling of the W-bosons to the matter particles and as a necessary first step towards the precision measurement of the charge-averaged W-boson mass. We propose and evaluate the LHC-specific strategy to measure the mass difference between the positively and negatively charged W-bosons, MW+ - MW-. We show that its present precision can be improved at the LHC by a factor of 20. We argue that such a precision is beyond the reach of the standard measurement and calibration methods imported to the LHC from the Tevatron program.

  13. Sandia National Laboratories: deep-water multiple-megawatt VAWT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical-axis wind turbines (VAWTs). This analysis uses a 5 MW VAWT topside design envelope created by Sandia to compare floating platform options for each turbine in the...

  14. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

  15. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    by ASME  Figure 8. Sensitivity of project returns to powerpower sales price of $98.4/MWh, the net present value (NPV) Copyright © 2009 by ASME 

  16. MARS15 study of the Energy Production Demonstrator Model for Megawatt

    E-Print Network [OSTI]

    McDonald, Kirk

    MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

  17. Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy

    SciTech Connect (OSTI)

    Reategui, S.; Tegen, S.

    2008-08-01T23:59:59.000Z

    This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

  18. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31T23:59:59.000Z

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  19. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30T23:59:59.000Z

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  20. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03T23:59:59.000Z

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  1. 10-MW Supercritical-CO2 Turbine

    Broader source: Energy.gov [DOE]

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  2. Subcontract Report NREL/SR-7A2-48318

    E-Print Network [OSTI]

    Wh kilowatt-hour LED light emitting diode MECO Maui Electric Company MWh megawatt-hour NAECA National

  3. QER- Comment of MWH Global

    Broader source: Energy.gov [DOE]

    Hello, Was looking at the calendar and curious when the “Final Meeting” is in DC for the QER? http://energy.gov/epsa/initiatives/quadrennial-energy-review-qer Thanks,

  4. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief PDF-342KB Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project...

  5. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01T23:59:59.000Z

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  6. Presented at Solar World Congress, Beijing, September 18 22 2007 PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT

    E-Print Network [OSTI]

    ,AUSTRALIA AUSTRALIA keith.lovegrove@anu.edu.au ABSTRACT Large scale solar thermal electric power generation CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove A Zawadski and J Coventy Department of Engineering, Wizard Power Pty Ltd Australian National University, Barry Drive Canberra ACT 0200 Canberra ACT

  7. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced...

  8. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect (OSTI)

    Taylor, Gary

    2014-04-01T23:59:59.000Z

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  9. PCFB Repowering Project 80 MW plant description

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This report documents the design of a 80 MW Pressurized Circulating Fluidized Bed (PCFB) boiler for the repowering of Unit 1 at the Des Moines Energy Center. Objective is to demonstrate that PCFB combined-cycle technology is cost effective and environmentally superior compared to traditional pulverized coal burning facilities.

  10. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

  11. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect (OSTI)

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01T23:59:59.000Z

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  12. Crossroads (3 MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)CriterionCrossroads (3 MW) Jump

  13. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    SciTech Connect (OSTI)

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01T23:59:59.000Z

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  14. Pulsed inductive thruster performance data base for megawatt-class engine applications

    SciTech Connect (OSTI)

    Dailey, C.L. (TRW Space and Technology Group, One Pace Park, Redondo Beach, CA 90278 (United States)); Lovberg, R.H. (University of California at San Diego, 4744 Panorama Drive, San Diego, CA 92116 (United States))

    1993-01-20T23:59:59.000Z

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse ([ital I][sub sp]) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds [ital I][sub sp] with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix.

  15. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  16. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Kossler, W J; Legg, R; Long, E; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S

    2013-01-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is ...

  17. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01T23:59:59.000Z

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  18. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  19. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation...

    Office of Environmental Management (EM)

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Beacon Power 20 MW...

  20. PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,

    E-Print Network [OSTI]

    PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui, Wie Joe and Geoff Major. Centre for Sustainable Energy Systems, Department of Engineering, Australian National University, Canberra ACT 0200, AUSTRALIA ph:+61 02 6125 8299 fax: +61 02 6125 0506 E-mail: keith

  1. Design and analysis of megawatt-class heat-pipe reactor concepts

    SciTech Connect (OSTI)

    Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

  2. Low frequency noise from MW wind turbines --mechanisms of generation

    E-Print Network [OSTI]

    Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy turbine has been simulated with a noise prediction model from NASA in US. Running the model

  3. Evaluation of the megawatt demand setter for load-follow operation of C-E's SYSTEM 80+

    SciTech Connect (OSTI)

    Choi, J.I.; Scarola, K.

    1989-01-01T23:59:59.000Z

    The Megawatt Demand Setter (MDS) is a digital supervisory control system that automatically assures that the turbine load is consistent with plant operating limits for critical parameters. The MDS is designed to avert plant trips by limiting the load demand during load transients and by reducing the turbine load if plant operating limits are approached or violated. The MDS, devised and patented by Combustion Engineering, Inc., in the 1970s for automatic load dispatching, has been installed at two plants. Those plants have since been operated in a base-load capacity, however, and have not needed to implement the load-follow capabilities of the MDS. As the percentage of electricity generated by nuclear units increases, the need to implement such load-follow capabilities will also increase. Combustion Engineering intends to incorporate improved load-follow capability in its SYSTEM 80+ nuclear steam supply system (NSSS) design. One aspect of this will be incorporation of the MDS in the design of the NUPLEX 80+ advanced control complex for system 80+. This paper presents an evaluation of two major design features of the MDS for load-follow operation based on simulation of SYSTEM 80+ plant responses.

  4. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    -scale demonstration of atmospheric fluidized bed combustion (AFBC) with the construction and operation of the 20-MW AFBC Pilot Plant. The pilot plant was built to bridge the gap between the small process development units and utility-scale demonstration plants... the operation of the pilot plant has encouraged TVA and others to move forward with utility-scale demonstration of fluidized bed combustion. TVA's operating experience at the 20-MW AFBC Pilot Plant is discussed. [NTRODUCT ION The Tennessee Valley Authority...

  5. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    costs is important. Lead-acid batteries on the other hand,with HX (MW) adopted lead acid batteries (MWh) adopted solarwith HX (MW) adopted lead acid batteries (MWh) adopted solar

  6. Operating and Maintaining a 465MW Cogeneration Plant

    E-Print Network [OSTI]

    Theisen, R. E.

    OPERATING AND HAINTAINING A 465MW COGENERATION PLANT -- R. E. Theisen Plant Hanager CoGen Lyondell PSE Inc. Houston, Texas ABSTRACT The on-line av ilability of the five Fr me-7E gas turbine generators installed at the 465MW Lyondell... Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140~~ st am turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs...

  7. Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace

    SciTech Connect (OSTI)

    Motchenbacher, C.A.; Grosse, I.A. [Viking Metallurgical, Verdi, NV (United States)

    1994-12-31T23:59:59.000Z

    Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

  8. Five megawatt pilot-scale demonstration of the NOXSO Process at Ohio Edison`s Toronto Power Plant

    SciTech Connect (OSTI)

    Haslbeck, J.L.; Woods, M.C.; Ma, W.T.; Harkins, S.M.; Black, J.B.; Browning, J.P.; Leonard, C.A.; Friedrich, J.J. [NOXSO Corp., Bethel Park, PA (United States)

    1995-12-31T23:59:59.000Z

    The NOXSO Process is a dry, regenerable flue gas treatment system that simultaneously removes sulfur oxides (SO{sub 2}, SO{sub 3}) and nitrogen oxides (NO{sub x}) from flue gas. Removal efficiencies of 95+% SO{sub 2}, 99% SO{sub 3}, and 80--90% NO{sub x} have been achieved. The process generates no waste. Sulfur oxides are converted to a marketable byproduct, either sulfuric acid, liquid SO{sub 2}, or elemental sulfur. Nitrogen oxides are converted to nitrogen and oxygen which are released to the atmosphere. The process is easily retrofit and is particularly applicable to high sulfur coals. Most importantly, the NOXSO Process capital and operating costs are less than conventional technology, i.e., a selective catalytic reduction unit followed by a wet scrubber. This paper covers the results of a 5 MW pilot test of the NOXSO Process at Ohio Edison`s Toronto Power Plant. The paper focuses on process design improvements that were verified in pilot plant testing. These improvements are in the area of increased pollutant removal efficiency and decreased capital and operating costs. The paper concludes with an analysis of the cost and performance of a NOXSO plant treating all of the flue gas from a 500 MW power plant burning 2.8% sulfur coal.

  9. megatons to megawatts

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter |

  10. Navy Estimated Average Hourly Load Profile by Month (in MW)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

  11. Ris-R-Report 12MW: final report

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project data were successfully compared to offshore mast data and the wind profile was extended 100 m above

  12. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect (OSTI)

    Galambos, John D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  13. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16T23:59:59.000Z

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  14. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2010-05-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  15. Puna Geothermal Venture 8MW Expantion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublic ArtTexas JumpPulteGroup8MW

  16. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 Peer NationalJonathan Silver5-MW

  17. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect (OSTI)

    Veca, Anthony R.; Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  18. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04T23:59:59.000Z

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  19. Model Validation at the 204-MW New Mexico Wind Energy Center

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01T23:59:59.000Z

    Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

  20. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    subsidy 14 for lead acid batteries is given and this bringsMWh) adopoted lead acid batteries (MWh) adopted PV (MW)thermal lead acid absorption solar photo- storage batteries

  1. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD

    SciTech Connect (OSTI)

    Ogasawara, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8463 (Japan); Kubo, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8463 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292 (Japan); Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292 (Japan); Tatematsu, Y.; Saito, T. [Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507 (Japan); Minami, R.; Kariya, T.; Imai, T. [Plasma Research Center, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2012-10-15T23:59:59.000Z

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  2. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01T23:59:59.000Z

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  3. First Edition Geologic Storage Formation Classification: Understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic energy resource and the primary source of baseload power generation in the United States, generating 1,986 million megawatt hours (MWh) in 2008. At the 2008 rate of...

  4. EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

  5. Fuel strategy for 2 MW SF-TMSR

    SciTech Connect (OSTI)

    Zhu, Zhiyong; Lin, Jun; Cao, Changqing; Zhang, Haiqing; Zhu, Tianbao; Li, Xiaoyun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No.2019 Jialuo Road, Jiading District, Shanghai 201800 (China)

    2013-07-01T23:59:59.000Z

    China has launched a series of projects for developing high performance nuclear energy systems. The 2 MW solid fuel thorium based molten salt reactor (TMSR-SF) is one of these projects, which uses TRISO fuel elements as the fuel carrier and the FLiBe molten salt (2LiF-BeF{sub 2}) as the coolant. TRISO fuel elements have been well developed in respect to manufacturing, testing experiments inside and outside reactors as well as their successful application in HTGRs. The application of LEU (low enriched uranium) spherical TRISO fuel elements in TMSR-SF can be safely conducted through careful control of temperature and power density. Although the soaking of molten salt into graphite has shown no damage to the graphite material as experienced by ORNL group in the sixties last century, the compatibility of FLiBe salt with graphite covering of the fuel elements should be tested before the application. It is expected that TMSR-SF can be an appropriate test reactor for high performance fuel element development. (authors)

  6. Ris-R-Report Multi-MW wind turbine power curve

    E-Print Network [OSTI]

    Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

  7. Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)

    SciTech Connect (OSTI)

    Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

    2011-05-01T23:59:59.000Z

    As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  8. Property:Ind sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMin Jump to:4-County Electric

  9. Property:Oth sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResultsUtility Jump to:OthC

  10. Property:Com sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to: navigation, search This is a propertyconsCom

  11. Property:Res sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisPropertycustomers.

  12. Property:Tot sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property isType" Showing 25Users

  13. Radiation protection aspects of the EURISOL Multi-MW target shielding

    E-Print Network [OSTI]

    D. Ene, J.-C. David, D. Doré, B. Rapp, D. Ridikas

    This work is focused on the approach used to assess the radiological characterisation and to support waste analysis for the multi-MW power target shielding being the most challenging both in terms of technological and safety issues.

  14. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de CV Single...

  15. Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator

    E-Print Network [OSTI]

    Anderson, James P. (James Paul), 1972-

    2005-01-01T23:59:59.000Z

    This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron ...

  16. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir...

  17. A 1-mW vibration energy harvesting system for moth flight-control applications

    E-Print Network [OSTI]

    Chang, Samuel C

    2010-01-01T23:59:59.000Z

    This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

  18. Saving Megawatts with Voltage Optimization

    E-Print Network [OSTI]

    Wilson, T.; Bell, D.

    2010-01-01T23:59:59.000Z

    that had been installed at several electric utility distribution substations in the U.S. and Canada. These systems, being operated in Conservation Voltage Regulation mode, have provided significant energy conservation where they have been installed...

  19. Nebraska Nuclear Profile - Cooper

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooper" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Missouri Nuclear Profile - Callaway

    U.S. Energy Information Administration (EIA) Indexed Site

    Callaway" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Louisiana Nuclear Profile - Waterford 3

    U.S. Energy Information Administration (EIA) Indexed Site

    Waterford 3" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  3. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  6. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Michigan Nuclear Profile - Fermi

    U.S. Energy Information Administration (EIA) Indexed Site

    Fermi" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. New Hampshire Nuclear Profile - Seabrook

    U.S. Energy Information Administration (EIA) Indexed Site

    Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. Michigan Nuclear Profile - Donald C Cook

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald C Cook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Virginia Nuclear Profile - North Anna

    U.S. Energy Information Administration (EIA) Indexed Site

    North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  15. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  16. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  17. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  18. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  19. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. California Nuclear Profile - Diablo Canyon

    U.S. Energy Information Administration (EIA) Indexed Site

    Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  5. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

  11. Tennessee Nuclear Profile - Sequoyah

    U.S. Energy Information Administration (EIA) Indexed Site

    Sequoyah" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  12. Pennsylvania Nuclear Profile - PPL Susquehanna

    U.S. Energy Information Administration (EIA) Indexed Site

    PPL Susquehanna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  14. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Florida Nuclear Profile - St Lucie

    U.S. Energy Information Administration (EIA) Indexed Site

    St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Pennsylvania Nuclear Profile - Limerick

    U.S. Energy Information Administration (EIA) Indexed Site

    Limerick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  17. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  18. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  19. South Carolina Nuclear Profile - Catawba

    U.S. Energy Information Administration (EIA) Indexed Site

    Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Virginia Nuclear Profile - Surry

    U.S. Energy Information Administration (EIA) Indexed Site

    Surry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  2. Iowa Nuclear Profile - Duane Arnold Energy Center

    U.S. Energy Information Administration (EIA) Indexed Site

    Duane Arnold Energy Center" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  3. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  4. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  8. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  9. Arizona Nuclear Profile - Palo Verde

    U.S. Energy Information Administration (EIA) Indexed Site

    Palo Verde" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. South Carolina Nuclear Profile - H B Robinson

    U.S. Energy Information Administration (EIA) Indexed Site

    H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  11. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

  14. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Ohio Nuclear Profile - Davis Besse

    U.S. Energy Information Administration (EIA) Indexed Site

    Davis Besse" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  17. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  18. Minnesota Nuclear Profile - Prairie Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  19. North Carolina Nuclear Profile - Brunswick

    U.S. Energy Information Administration (EIA) Indexed Site

    Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. New Jersey Nuclear Profile - Oyster Creek

    U.S. Energy Information Administration (EIA) Indexed Site

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  2. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  3. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  4. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  6. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. North Carolina Nuclear Profile - Harris

    U.S. Energy Information Administration (EIA) Indexed Site

    Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Pennsylvania Nuclear Profile - Three Mile Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. North Carolina Nuclear Profile - McGuire

    U.S. Energy Information Administration (EIA) Indexed Site

    McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  11. New York Nuclear Profile - James A Fitzpatrick

    U.S. Energy Information Administration (EIA) Indexed Site

    James A Fitzpatrick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Wisconsin Nuclear Profile - Kewaunee

    U.S. Energy Information Administration (EIA) Indexed Site

    Kewaunee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. South Carolina Nuclear Profile - V C Summer

    U.S. Energy Information Administration (EIA) Indexed Site

    V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  16. Ohio Nuclear Profile - Perry

    U.S. Energy Information Administration (EIA) Indexed Site

    Perry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  17. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Georgia Nuclear Profile - Edwin I Hatch

    U.S. Energy Information Administration (EIA) Indexed Site

    Edwin I Hatch" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  19. Pennsylvania Nuclear Profile - Peach Bottom

    U.S. Energy Information Administration (EIA) Indexed Site

    Peach Bottom" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Michigan Nuclear Profile - Palisades

    U.S. Energy Information Administration (EIA) Indexed Site

    Palisades" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Avista 2011 Integrated Resource Plan Clint Kalich

    E-Print Network [OSTI]

    Avista 2011 Integrated Resource Plan Clint Kalich Manager, Resource Planning & Power Supply Other #12;Conservation Avoided Cost Calculations For 1 MW Measure With Flat Delivery Item $/MWh Energy

  2. The Neutronics Design and Analysis of a 200-MW(electric) Simplified Boiling Water Reactor Core

    SciTech Connect (OSTI)

    Tinkler, Daniel R.; Downar, Thomas J. [Purdue University (United States)

    2003-06-15T23:59:59.000Z

    A 200-MW(electric) simplified boiling water reactor (SBWR) was designed and analyzed under sponsorship of the U.S. Department of Energy Nuclear Energy Research Initiative program. The compact size of a 200-MW(electric) reactor makes it attractive for countries with a less well developed engineering infrastructure, as well as for developed countries seeking to tailor generation capacity more closely to the growth of their electricity demand. The 200-MW(electric) core design reported here is based on the 600-MW(electric) General Electric SBWR core, which was first analyzed in the work performed here in order to qualify the computer codes used in the analysis. Cross sections for the 8 x 8 fuel assembly design were generated with the HELIOS lattice physics code, and core simulation was performed with the U.S. Nuclear Regulatory Commission codes RELAP5/PARCS. In order to predict the critical heat flux, the Hench-Gillis correlation was implemented in the RELAP5 code. An equilibrium cycle was designed for the 200-MW(electric) core, which provided a cycle length of more than 2 yr and satisfied the minimum critical power ratio throughout the core life.

  3. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect (OSTI)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09T23:59:59.000Z

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  4. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  5. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  6. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01T23:59:59.000Z

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  7. DIII-D electron cyclotron heating 2 MW upgrade project. Final report, FY1989--FY1997

    SciTech Connect (OSTI)

    Callis, R.W.

    1997-08-01T23:59:59.000Z

    The 2 MW, 110 GHz ECH system was based on the General Atomics Proposal to the Department of Energy: DIII-D Fusion Research Program Vol. I Technical, and Vol. II Cost (GACP-72-166, July 1987 and revised). This proposal was reviewed in August 1987 by a senior technical review committee, who recommended to vigorously pursue increasing the ECH power to 6 MW. The realization of the higher frequency and power ECH on DIII-D was recognized by the committee to be important, not only for the DIII-D program, but also for future devices and the whole ECH area. Subsequently, an engineering cost and schedule review was conducted by DOE-OAK which confirmed the GA costs and schedules and recommended proceeding directly to 10 MW. However, because of budgetary constraints, in the April 1988 Field Task Proposal submission, GA proposed a phased ECH approach, Phase I being 2 MW and Phase II increasing the power to 10 MW. After review, DOE instructed GA to initiate the prototype 2 MW, 110 GHz program. The contract to procure four 500 kW, 110 GHz, 10 s gyrotrons from Varian Associates was initiated in April 1989 with final delivery by November 1990. Because of difficulties in spreading the energy of the electron beam over the collector area, the testing of the first gyrotron delayed its delivery until February 1991. The second gyrotron was able to operate for 1 s at 500 kW and 2 s at 300 kW, but failed when the cavity suffered thermal damage.

  8. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis

    E-Print Network [OSTI]

    Grujicic, Mica

    -Axis Wind-Turbine Blades M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen optimization, fatigue-life assessment, horizon- tal axis wind turbine blades 1. Introduction The depletion for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine

  9. Radiation protection aspects of the EURISOL Multi-MW target shielding

    E-Print Network [OSTI]

    Ene, D; Doré, D; Rapp, B; Ridikas, D

    This paper which will be submitted to Annals in Nuclear Energy is focused on the approach used to assess the radiological characterisation and to support waste analysis for the multi-MW power target shielding being the most challenging both in terms of technological and safety issues.

  10. Management and Organizational Behavior Section 301-08 @ 2:00 3:15 MW

    E-Print Network [OSTI]

    Young, Paul Thomas

    MGMT 301 Management and Organizational Behavior Fall 2013 Section 301-08 @ 2:00 ­ 3:15 MW Beatty organizational goals by working with, and through, people and other resources. Organizations are treated. To understand management and organizational behavior (OB) concepts associated with continuous improvement

  11. Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01T23:59:59.000Z

    In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

  12. Title: Feasibility Study for 20 MW Hybrid Solar and Wind Park in Colombia

    E-Print Network [OSTI]

    Johnson, Eric E.

    partnerships with leading U.S. solar and wind industry companies · Select the solar and wind technologies1 of 2 Title: Feasibility Study for 20 MW Hybrid Solar and Wind Park in Colombia Principal Investigator: Abbas Ghassemi Sponsor: Columbian Electric Company Summary: NMSU leads a bi-national team

  13. An All Metal High Power Circularly Polarized 100 MW RF Load

    SciTech Connect (OSTI)

    Fowkes, W.R.; Jongewaard, E.N.; Loewen, R.J.; Tantawi, S.G.; Vlieks, A.E.; /SLAC

    2011-08-30T23:59:59.000Z

    A compact RF load has been designed using a cascaded array of lossy radial RF chokes to dissipate 100 MW peak and 8 kW average power uniformly along the length of the load. Operation in the circularly polarized Te{_}11 mode assures uniform dissipation azimuthally as well.

  14. Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake

    E-Print Network [OSTI]

    Wu, Yih-Min

    Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake Yih-Min Wu a , Chien the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi

  15. Perturbation of the Izmit earthquake aftershock decaying activity following the 1999 Mw 7.2 Duzce, Turkey, earthquake

    E-Print Network [OSTI]

    ¨zce, Turkey, earthquake Guillaume Daniel,1 David Marsan,2 and Michel Bouchon1 Received 4 August 2005; revised patterns of seismicity in western Turkey, following the occurrence of the 12 November 1999 Mw 7.2 Du activity following the 1999 Mw 7.2 Du¨zce, Turkey, earthquake, J. Geophys. Res., 111, B05310, doi:10

  16. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01T23:59:59.000Z

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  17. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01T23:59:59.000Z

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  18. LBNE 1.2MW Target Conceptual Design Brian Hartsell, Kris Anderson, James Hylen

    E-Print Network [OSTI]

    McDonald, Kirk

    titanium water cooling lines. Figure 2 shows a cross section of this assembly through a graphite segment in a 1.7mm beam sigma and 10mm wide fins. 36.00 3.00 10.00 6.00 5.20 35.20 BERYLLIUM TITANIUM WATER GRAPHITE 13.37 Figure 2: 1.2MW Target Cross Section Energy Deposition Energy deposition is used

  19. A reactive contingency analysis algorithm using MW and MVAR distribution factors

    SciTech Connect (OSTI)

    Taylor, D.G.; Maahs, L.J. (Pennsylvania-New Jersey-Maryland Interconnection, Norristown, PA (US))

    1991-02-01T23:59:59.000Z

    This paper describes an algorithm that can be used in analyzing reactive power flow contingencies. This approach uses MW distribution factors (DFAX) in conjunction with newly developed VAR distribution factors (RDFAX) to solve for the post-contingency bus voltage magnitude changes of an interconnecter EHV system. A prototype version of the algorithm described in this paper is presently being tested at the Pennsylvania-New Jersey-Maryland (PJM) interconnection office.

  20. LADWP- Feed-in Tariff (FiT) Program (California)

    Broader source: Energy.gov [DOE]

    Note: LADWP accepted applications for the second 20 MW allocation of the 100 MW FiT Set Pricing Program between July 8 and July 12, 2013. This program is the first component of a 150 megawatt (MW)...

  1. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

  2. Quick assessment of the fault plane, for the recent event in Southern Greece (14 February 2008, Mw 6.9)

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Quick assessment of the fault plane, for the recent event in Southern Greece (14 February 2008, Mw.org/index.php?page=current&sub=recent&evt=20080106_GREECE), we issue a quick assessment of the fault plane for the most recent Mw6.9 earthquake in Southern Greece (20080214 at 10:09:23 UTC). Using hypocenter (H) from manual P and Swave picks from 14

  3. 10MW Class Direct Drive HTS Wind Turbine, CRADA Number CRD-08-00312

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youTheWSRC-TR-97-0100WHITE. ., .10MW Class Direct

  4. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW Demonstration

  5. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  6. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01T23:59:59.000Z

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  7. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  8. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In September 2007, the Washington Utilities and Transportation Commission (UTC) adopted interconnection standards for distributed generation (DG) systems up to 20 megawatts (MW) in capacity. The...

  9. Corporate Property Tax Reduction for New/Expanded Generating Facilities

    Broader source: Energy.gov [DOE]

    Montana generating plants producing one megawatt (MW) or more with an alternative renewable energy source are eligible for the new or expanded industry property tax reduction. This incentive...

  10. CX-005566: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    generating 1 megawatt (Mw) of electricity. The Columbus digester is creating excess biogas that has the potential to generate 275,912 gallons of gasoline equivalent (gge) each...

  11. DOE Finalizes $1.45 Billion Loan Guarantee for One of the World...

    Office of Environmental Management (EM)

    Abengoa Solar Inc.'s Solana project, the world's largest parabolic trough concentrating solar plant. Located near Gila Bend, Arizona, the 250-megawatt (MW) project is the first...

  12. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide...

  13. Interconnection Standards for Small Generators

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) adopted "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in May 2005.* The FERC's...

  14. Environmental Assessment for the Methane Energy and Agricultural...

    Broader source: Energy.gov (indexed) [DOE]

    DOEEA-1402 vi MW Megawatts NAAQS National Ambient Air Quality Standards NAS Naval Air Station NDPES National Pollution Discharge Elimination System NEPA National...

  15. August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is requested. In the January 25,2010 application, CHPEI proposed a 2,000-megawatt (MW) HVDC Voltage Source Converter controllable transmission system project, consisting of two...

  16. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,...

  17. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

  18. A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.

    SciTech Connect (OSTI)

    Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

    2006-10-01T23:59:59.000Z

    We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

  19. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01T23:59:59.000Z

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  20. 150-MW S-band klystron program at the Stanford Linear Accelerator Center

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Phillips, R.M.

    1996-07-01T23:59:59.000Z

    Two S-Band klystrons operating at 150 MW have been designed, fabricated and tested at the Stanford Linear Accelerator Center (SLAC) during the past two years for use in an experimental accelerator at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany. Both klystrons operate at the design power, 60 Hz repetition rate, 3 {micro}s pulsewidth, with an efficiency {gt} 40%, and agreement between the experimental results and simulations is excellent. The 535 kV, 700 A electron gun was tested by constructing a solenoidal focused beam stick which identified a source of oscillation, subsequently engineered out of the klystron guns. Design of the beam stick and the two klystrons is discussed, along with observation and suppression of spurious oscillations. Differences in design and the resulting performance of the Klystrons is emphasized.

  1. Small-angle scattering instruments on a 1 MW long pulse spallation source

    SciTech Connect (OSTI)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-12-01T23:59:59.000Z

    Two small-angle neutron scattering instruments have been designed and optimized for installation at a 1 MW long pulse spallation source. The first of these instruments allows access to length scales in materials from 10 to 400 {angstrom}, and the second instrument from 40 to 1200 {angstrom}. Design characteristics were determined and optimization was done using the MCLIB Monte Carlo instrument simulation package. The code has been {open_quote}benchmarked{close_quote} by simulating the {open_quote}as-built{close_quote} D11 spectrometer at ILL and a performance comparison of the three instruments was made. Comparisons were made by evaluating the scattered intensity for {delta} scatterers at different Q values for various instrument configurations needed to span a Q-range of 0.0007 - 0.44 {angstrom}{sup {minus}1}.

  2. Mineralogical study of borehole MW-206 Asarco smelter site, Tacoma, Washington

    SciTech Connect (OSTI)

    Frank, D.

    1998-10-01T23:59:59.000Z

    The mobility of metals in ground water is an important consideration for evaluating remedial options at the Asarco smelter site. Tacoma, Washington. One factor in assessing metal mobility is the degree of secondary mineralization in a slag-fill aquifer extending into the intertidal zone along the Puget Sound shoreline. Samples of aquifer material were collected for mineralogical analysis from borehole MW-206 at five-foot intervals within the slag fill from 5 to 25 feet below the ground surface, and in the underlying marine sand and gravel at 27 feet. Grab samples of slag fragments with visually apparent secondary minerals were also collected at five intermediate depths between 12 and 19 feet. Samples were analyzed by a variety of techniques including hydride generation/atomic absorption for arsenic concentration, scanning electron microscopy/electron microprobe for mineralogical texture and microanalysis, powder x-ray diffraction for mineral identification, and optical microscopy for textural observations.

  3. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  4. A Pion Production and Capture System for a 4 MW Target Station

    SciTech Connect (OSTI)

    Ding, X.; Kirk, H.; Berg, J.S.

    2010-06-01T23:59:59.000Z

    A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

  5. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    use of QECBs and clean renewable energy bonds (CREBs) in the country. This article outlines and renewable energy installations. With either QECBs or "new" CREBS,1 the Department of the Treasury provides both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis

  6. Magnitude Scaling of Early-Warning Parameters for the Mw 7.8 Tocopilla, Chile, Earthquake and Its Aftershocks

    E-Print Network [OSTI]

    Madariaga, Raúl

    early- warning systems for real-time magnitude estimation. The investigated parameters are the low system in Chile. Introduction The most critical problem for the development of an earthquake early-warningMagnitude Scaling of Early-Warning Parameters for the Mw 7.8 Tocopilla, Chile, Earthquake and Its

  7. The role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin films

    E-Print Network [OSTI]

    Bristol, University of

    in polycrystalline diamond film CVD [3,4]. While the mechanical, thermal and acoustic properties of MCD films haveThe role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin diamond Nanocrystalline Inert gas Growth Nanocrystalline diamond thin films have been deposited using

  8. Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*

    E-Print Network [OSTI]

    1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals would minimise seal losses. The widespread use of linear clearance seals in linear compressor has raised

  9. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect (OSTI)

    Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    2006-12-15T23:59:59.000Z

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  10. The lower hybrid (LH) heating and current drive system can generate 10-12 MW of microwave power

    E-Print Network [OSTI]

    Background The lower hybrid (LH) heating and current drive system can generate 10-12 MW reflecting optics · Remote vacuum window manufactured by CCFE · Industrial contract for periscope manufacture with Zemax model · Remote, IR compatible, double vacuum window with pumped interspace · 4, two colour

  11. Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler

    E-Print Network [OSTI]

    Rosendahl, Lasse

    Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate used to fire biomass for heat and power production. However, grate-firing systems are often reported and modernized. This paper presents the efforts toward a reliable baseline computational fluid dynamics (CFD

  12. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01T23:59:59.000Z

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  13. Energy Production Demonstrator for Megawatt Proton Beams

    E-Print Network [OSTI]

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01T23:59:59.000Z

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  14. Energy Production Demonstrator for Megawatt Proton Beams

    E-Print Network [OSTI]

    Vitaly S. Pronskikh; Nikolai Mokhov; Igor Novitski; Sergey I. Tyutyunnikov

    2014-07-16T23:59:59.000Z

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  15. Multi-Megawatt Power System Trade Study

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  16. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Broader source: Energy.gov (indexed) [DOE]

    MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive,...

  17. Adaptive control system for pulsed megawatt klystrons

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  18. megatons to megawatts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A en4/%2A en Officemegatons

  19. MegaWatt Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse, Wyoming: Energy ResourcesMegaWatt Solar

  20. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse, Wyoming: Energy

  1. System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

    2010-01-01T23:59:59.000Z

    We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

  2. HFIR Vessel Maximum Permissible Pressures for Operating Period 26 to 50 EFPY (100 MW)

    SciTech Connect (OSTI)

    Cheverton, R.D.; Inger, J.R.

    1999-01-01T23:59:59.000Z

    Extending the life of the HFIR pressure vessel from 26 to 50 EFPY (100 MW) requires an updated calculation of the maximum permissible pressure for a range in vessel operating temperatures (40-120 F). The maximum permissible pressure is calculated using the equal-potential method, which takes advantage of knowledge gained from periodic hydrostatic proof tests and uses the test conditions (pressure, temperature, and frequency) as input. The maximum permissible pressure decreases with increasing time between hydro tests but is increased each time a test is conducted. The minimum values that occur just prior to a test either increase or decrease with time, depending on the vessel temperature. The minimum value of these minimums is presently specified as the maximum permissible pressure. For three vessel temperatures of particular interest (80, 88, and 110 F) and a nominal time of 3.0 EFPY(100 MVV)between hydro tests, these pressures are 677, 753, and 850 psi. For the lowest temperature of interest (40 F), the maximum permissible pressure is 295 psi.

  3. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28T23:59:59.000Z

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  4. Design and analysis of a 5-MW vertical-fluted-tube condenser for geothermal applications

    SciTech Connect (OSTI)

    Llewellyn, G.H.

    1982-03-01T23:59:59.000Z

    The design and analysis of an industtial-sized vertical-fluted-tube condenser. The condenser is used to condense superheated isobutane vapor discharged from a power turbine in a geothermal test facility operated for the US Department of Energy. The 5-MW condenser has 1150 coolant tubes in a four-pass configuration with a total heat transfer area of 725 m/sup 2/ (7800 ft/sup 2/). The unit is being tested at the Geothermal Components Test Facility in the Imperial Valley of East Mesa, California. The condenser design is based on previous experimental research work done at the Oak Ridge National Laboratory on condensing refrigerants on a wide variety of single vertical tubes. Condensing film coefficients obtained on the high-performance vertical fluted tubes in condensing refrigerants are as much as seven times greater than those obtained with vertical smooth tubes that have the same diameter and length. The overall heat transfer performance expected from the fluted tube condenser is four to five times the heat transfer obtained from the identical units employing smooth tubes. Fluted tube condensers also have other direct applications in the Ocean Thermal Energy Conversion (OTEC) program in condensing ammonia, in the petroleum industry in condensing light hydrocarbons, and in the air conditioning and refrigeration industry in condensing fluorocarbon vapors.

  5. Control system for 5 MW neutral beam ion source for SST1

    SciTech Connect (OSTI)

    Patel, G.B.; Onali, Raja; Sharma, Vivek; Suresh, S.; Tripathi, V.; Bandyopadhyay, M.; Singh, N.P.; Thakkar, Dipal; Gupta, L.N.; Singh, M.J.; Patel, P.J.; Chakraborty, A.K.; Baruah, U.K.; Mattoo, S.K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India-382428 (India)

    2006-01-15T23:59:59.000Z

    This article describes the control system for a 5 MW ion source of the NBI (neutral beam injector) for steady-state superconducting tokamak-1 (SST-1). The system uses both hardware and software solutions. It comprises a DAS (data acquisition system) and a control system. The DAS is used to read the voltage and current signals from eight filament heater power supplies and 24 discharge power supplies. The control system is used to adjust the filament heater current in order to achieve an effective control on the discharge current in the plasma box. The system consists of a VME (Verse Module Eurocard) system and C application program running on a VxWorks{sup TM} real-time operating system. A PID (proportional, integral, and differential) algorithm is used to control the filament heater current. Experiments using this system have shown that the discharge current can be controlled within 1% accuracy for a PID loop time of 20 ms. Response of the control system to the pressure variation of the gas in the chamber has also been studied and compared with the results obtained from those of an uncontrolled system. The present approach increases the flexibility of the control system. It not only eases the control of the plasma but also allows an easy changeover to various operation scenarios.

  6. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Broader source: Energy.gov [DOE]

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  7. JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 119, doi:10.1002/jgrb.50117, 2013 The 2011 Mw 7.1 Van (Eastern Turkey) earthquake

    E-Print Network [OSTI]

    Mw 7.1 Van (Eastern Turkey) earthquake J. R. Elliott,1 A. C. Copley,2 R. Holley,3 K. Scharer,4 and B to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake Turkey) earthquake, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50117. 1. Introduction [2

  8. Stochastic Unit Commitment in

    E-Print Network [OSTI]

    Römisch, Werner

    the amount of installed pumped storage capacity enables the inclusion of pumped storage plants units. Its total capacity is about 13,000 megawatts (MW), including a hydro capacity of 1,700 MW

  9. Thermal-hydraulic analysis of the LANL/IPPE/EDO-GP 1-MW LBE target

    SciTech Connect (OSTI)

    He, X.; Ammerman, C.; Woloshun, K.; Li, N.

    2000-07-01T23:59:59.000Z

    The accelerator-driven transmutation of waste (ATW) concept has been proposed by the United States and other countries to transmute plutonium, higher actinides, and other environmentally hazardous fission products. One of the key components in the ATW concept is a target that, via spallation, produces neutrons to transmute nuclear waste. Since significant heat is generated during fissioning of the waste actinides, an efficient heat removal system is necessary. Liquid lead-bismuth eutectic (LBE) is an efficient coolant as well as a good spallation target for production of neutrons. The LBE coolant technology has been successfully used in Russian submarine nuclear reactors. The International Science and Technology Center (ISTC) has funded the Institute of Physics and Power Engineering (IPPE) and the Experiment and Design Organization-Gidropress (EDO-GP) of Russia to design and manufacture a pilot target (Target Circuit One-TC1) that incorporates Russian LBE technology into the ATW concept. The target will be tested in the 800-MeV, 1-mA proton beam at the Los Alamos National Laboratory (LANL) in 2 yr. These target experiments will provide valuable information on the performance of LBE as both spallation target and coolant. They will also help to design target/blanket systems for future ATW facilities. In summary, the authors have carried out thermal-hydraulic analyses for the LANL/IPPE/EDO-GP 1-MW LBE target. It is shown that the current design is suitable for the beam-on tests. The diffuser plate successfully enhances the coolant flow around the window center but still avoids generating recirculation zone downstream. The temperature range is within the proper operation range for both the LBE coolant and the structural materials.

  10. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312

    SciTech Connect (OSTI)

    Musial, W.

    2011-05-01T23:59:59.000Z

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

  11. Summary Description of BEF's Green Tag Product1 February 22, 2001

    E-Print Network [OSTI]

    ,000 megawatt hours (MWh) of electricity annually, would create no air pollution. An average fossil fuel conventional, polluting power plants with the output from a new, non-polluting renewable power plant, 7 tons of NOx, and varying amounts of CO, mercury, particulates and other pollutants. The green tags

  12. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    CARBON EMISSION RATES IN US: (lbs of CO2 per megawatt hour of electricity produced) 1,500 lbs/MWh 2, Energy CO2 Emissions by State, http://www.epa.gov/climatechange/emissions/state_energyco2inv Footprint Report ­ E-tag / tracking CO2 through supply chain · Impact of Global Warming on Hydro/ Salmon

  13. Long Island Solar Farm Project Overview

    E-Print Network [OSTI]

    Ohta, Shigemi

    Long Island Solar Farm #12;Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power and construct arrays ~ 2 years of output (88,000 MWh equivalent) Long Island Solar Farm #12;Other Pollutants

  14. Characterizing, predicting and

    E-Print Network [OSTI]

    can increase. Offshore wind farms. Increase of power : Horns RevI : 190MW , Horns RevII : 210MW production from a single multi-megawatt wind farm. Variability of wind power depends on the time and spatial-megawatt wind farm. Variability of wind power depends on the time and spatial scale. R. Girard (Mines

  15. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Intergrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.

    2012-01-01T23:59:59.000Z

    , the integrated total electricity savings from all programs are: ? Annual electricity savings is 13,354,918 MWh/year (3,723 tons-NOx/year) and ? OSD electricity savings is 36,079 MWh/day, which would be a 1,503 MW average hourly load reduction during the OSD... period (9.89 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 15,391,293 MWh/year (4,296 tons-NOx/year) and ? OSD electricity savings will be 41,691 MWh/day, which would be a...

  16. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to: navigation, searchEnergy

  17. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to: navigation,

  18. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to: navigation,Information

  19. Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to:

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to:Information

  1. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump to:InformationEnergy

  2. Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters Jump

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters JumpInformation

  4. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters JumpInformationInformation

  5. Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrinters

  6. Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrintersInformation

  7. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrintersInformationEnergy Information

  8. Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrintersInformationEnergy

  9. Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BVSPElectrtyUsePercPrintersInformationEnergyInformation

  10. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  13. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union...

  14. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

  15. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  16. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Broader source: Energy.gov [DOE]

    Primus Power is deploying a 25 MW/75 MWh EnergyFarm in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power...

  17. The Implementation of California AB 32 and its Impact on Wholesale Electricity Markets

    E-Print Network [OSTI]

    Bushnell, Jim B

    2007-01-01T23:59:59.000Z

    accurate accounting of CO2 emissions, at least from in-plants (> 75 MW) with CO2 emissions > 1500 lbs/MWh Load-with extremely low CO2 emissions. Over the entire western

  18. Design and testing of an internal mode converter for a 1.5 MW, 110 GHz gyrotron with a depressed collector

    E-Print Network [OSTI]

    Tax, David Samuel

    We report experimental results on a 1.5 MW, 110 GHz, 3 microsecond pulsed gyrotron with a single-stage depressed collector. A simplified mode converter with smooth mirror surfaces has been installed in the tube. The converter ...

  19. Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311

    SciTech Connect (OSTI)

    Wallen, R.

    2011-02-01T23:59:59.000Z

    SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

  20. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01T23:59:59.000Z

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  1. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2012-06-01T23:59:59.000Z

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  2. Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing

    SciTech Connect (OSTI)

    Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

    1990-06-01T23:59:59.000Z

    The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

  3. Dear Speaker -

    Office of Environmental Management (EM)

    1. Comparison of OECD Industrial Electricity Prices 2008 2012 USA 68MWh 66MWh Germany 130MWh 148MWh Japan 115MWh 194MWh France 104MWh 116MWh Source: OECD...

  4. STATE OF CALIFORNIA -THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMNIISSION

    E-Print Network [OSTI]

    -fired combustion turbines, two heat recovery steam generators (HRSG) and a 35MW (45MW maximum) steam turbine to 164 megawatts (MW) of electricityto the grid and process steam to the Procter and Gamble combustionturbine which is a 45MW (nominal) simple cycle peaker unit. DESCRIPTION OF PROPOSED MODIFICATION SCA

  5. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  6. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01T23:59:59.000Z

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  7. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  8. Design and testing of a 13. 75-MW converter for a superconducting magnetic-energy-storage system

    SciTech Connect (OSTI)

    Boenig, H.J.; Turner, R.D.; Neft, C.L.; Sueker, K.H.

    1981-01-01T23:59:59.000Z

    A 30 MJ superconducting magnetic energy storage system will be installed in 1982 in Tacoma, WA, to act as a transmission line stabilizer. Two 6 MVA transformers and a 5.5 kA, + 2.5 kV converter will connect the superconducting coil to the 13.8 kV bus and regulate the power flow between the coil and the three phase system. The design philosophy for the converter including its control and protection system is given in the paper. The converter has been tested with 10% overvoltage at no load, with 10% overcurrent at zero output voltage and with a watercooled resistive load of about 1 MW. These test results show that the converter will meet the expected full load operating conditions.

  9. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28T23:59:59.000Z

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  10. Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report

    SciTech Connect (OSTI)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

    1980-08-01T23:59:59.000Z

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

  11. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The 2011 Mw 7.1 Van (Eastern Turkey) Earthquake -1

    E-Print Network [OSTI]

    Cambridge, University of

    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The 2011 Mw 7.1 Van (Eastern Turkey, 2012, 5:45pm D R A F T #12;X - 2 ELLIOTT ET AL.: 2011 VAN EARTHQUAKE, EASTERN TURKEY moment and source.: 2011 VAN EARTHQUAKE, EASTERN TURKEY X - 3 Interferograms from the ENVISAT satellite were derived from

  12. Representative Syllabus for P140 Prof. Sandra Shapshay P140 M/W 11:15pm-12:05pm Woodburn Hall 009

    E-Print Network [OSTI]

    Indiana University

    Representative Syllabus for P140 Prof. Sandra Shapshay P140 M/W 11:15pm-12:05pm Woodburn Hall 009-10:30am, SY 021 Syllabus: P140 Introduction to Ethics Welcome to Introduction to Ethics. This is a lecture

  13. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  14. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

    2006-11-01T23:59:59.000Z

    , the following results were determined for energy-code compliant new residential single- and multi-family construction in non-attainment and affected counties built in 2004: ? The annual savings in 2005 amounted to 348,794 megawatt hours (MWh... would have been 1,799 MWh/day and 1,210 million Btu (MBtu) of natural gas, resulting in peak-OSD NOx emissions reductions of 1.26 tons (2007 eGRID). ? Beginning in 2005, the Laboratory worked with the TCEQ to integrate NOx emissions reductions (i...

  15. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I – Summary ReportAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    -family construction in both non-attainment and affected counties built in 2004: ? The annual savings in 2004 amounted to 233,806 megawatt hours (MWh) of electricity and 667,945 million Btus of natural gas. The resultant annual NOx reductions were 346 tons.... ? On the peak day (August 19, 1999, baseline in the historical air quality model), the savings would have been 1,317 MWh/day and 1,148 million Btus of natural gas, resulting in peak-day NOx emissions reductions of 1.89 tons. ? Cumulative NOx reductions...

  16. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. III – AppendixAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    , the following results were determined for energy-code compliant new residential single and multi-family construction in both non-attainment and affected counties built in 2004. ? The annual savings in 2004 amounted to 233,806 megawatt hours (MWh...) of electricity and 667,945 million Btus of natural gas. The resultant annual NOx reductions were 346 tons. ? On the peak day (August 19, 1999, baseline in the historical air quality model), the savings would have been 1,317 MWh/day and 1,148 million Btus...

  17. Operation of the NRCh constriction of boilers in 300 MW energy units during combustion of anthracite dust

    SciTech Connect (OSTI)

    Kaminskii, V.P.; Mironov, S.N.

    1982-03-01T23:59:59.000Z

    Operation of the furnace constriction of boilers in 300 MW units during combustion of anthracite dust with liquid slag removal now requires special attention on the part of both operating personnel at thermal power plants and designers. The reason behind this is charring of the studs and carborundum mass on the roof portion of the constriction with subsequent exposure of the tubes; external high-temperature corrosion of the tubes on the roof portion and on the upper incline of the constriction with subsequent tapering of the tube walls to 1.5 mm and their breaking; the presence of corrosion-fatigue destruction of the tube walls in the upper incline of the constriction with formation of scale, transverse deep grooves and fissures on the front side of the tubes. Overall, at the present time the constriction is a point of failure that requires intensified control and greater repair costs to replace damaged sections of the heating surfaces. In conjunction with this, complex analysis of operation of the constriction has been carried out.

  18. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26T23:59:59.000Z

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  19. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect (OSTI)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31T23:59:59.000Z

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  20. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    E-Print Network [OSTI]

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01T23:59:59.000Z

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  1. PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky

    E-Print Network [OSTI]

    Deng, Xunming

    PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C start-up efforts at the 2MW Sovlux photovoltaic production line. Triple-junction solar cells with higher than 10% initial effXency were producedin this production line with subcell yield up to 96

  2. 2006 INTEGRATED ENERGY POLICY REPORT UPDATE

    E-Print Network [OSTI]

    electricity. By comparison, since 2002 more than 1,500 MW of new wind capacity has been installed in Texas,936 megawatts of renewable capacity. However, only 242 megawatts of those renewable contracts represent new generating capacity over the next four years beyond what is already under contract. Chapter 2, "Midcourse

  3. Evaluating GHGs in the Seattle City Light IRP

    E-Print Network [OSTI]

    Megawatts - Solar PV - Wind 2 - Wind - Waste Wood Biomass - Geothermal - Hydro Efficiency - Landfill GasMegawatts - RECs (aMW) - Solar PV - Wind - Waste Wood Biomass - Geothermal - Hydro Efficiency - Landfill Gas1 Evaluating GHGs in the Seattle City Light IRP Greenhouse Gas & the Regional Power System

  4. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01T23:59:59.000Z

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  5. 1010 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 A Scalable 515 Gbps, 1475 mW Low-Power I/O

    E-Print Network [OSTI]

    Palermo, Sam

    1010 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 A Scalable 5­15 Gbps, 14­75 mW Low-Power I/O Transceiver in 65 nm CMOS Ganesh Balamurugan, Member, IEEE, Joseph Kennedy, Member, IEEE'Mahony, Bryan Casper, and Randy Mooney, Member, IEEE Abstract--We present a scalable low-power I/O transceiver

  6. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu. [JSC 'Interavtomatka' (Russian Federation); Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V. [JSC 'Reftinskaya GRES' (Russian Federation)

    2009-03-15T23:59:59.000Z

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  7. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

    2009-01-01T23:59:59.000Z

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  8. Blackouts: des vrits qui drangent Prof. Damien Ernst Universit de Lige

    E-Print Network [OSTI]

    Ernst, Damien

    sur les 385 MW de la TGV de Vilvoorde (partie turbine à gaz de la centrale). 100 MW de charge sont un coût inférieur aux centrales au gaz (prix du combustible en 2014 pour 1 MWh d'électricité produite au charbon : ± 25 contre ± 50 quand le gaz est utilisé). § Des marchés qui ne rémunèrent pas la

  9. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    with hydro generation. In 2012, around 49,600 MWh of non-hydro generation, including wind generation by displacement would be split roughly 50/50 between power customers and wind generators · Now termed In the spring of 2012 BPA displaced approximately 70 MW-months (about 50,000 MW-hrs) of wind generation 2012

  10. Appendix C: Regional Economic Freight Profiles Table of Contents

    E-Print Network [OSTI]

    Texas at Austin, University of

    , and a number of turbine engineering offices taking root in city business parks. One of the largest wind power 735 megawatts (MW) of electricity and helped Texas overtake California in total installed wind power capacity. The wind plant consists of 291 1.5- MW wind turbines from General Electric and 130 2.3-MW wind

  11. Comprises over of Energy Resources

    E-Print Network [OSTI]

    into fuels including gasoline. Like coal, it can be burned in power plants, but its high sulfur and heavy to 1% of the region's energy resources. Hydro- power 46% Coal 18% Energy Efficiency 16% Natural Gas 11) Energy Efficiency (4,633 MW) Coal (5,396 MW) Hydropower (13,401.8 MW) Dispatched Average Megawatts

  12. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.

    2013-01-01T23:59:59.000Z

    for this purpose. In 2012, the integrated total electricity savings from all programs are: ? Annual electricity savings is 16,413,917 MWh/year (4,609 tons-NOx/year) and ? OSD electricity savings is 44,366 MWh/day, which would be a 1,849 MW average hourly... load reduction during the OSD period (12.35 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 17,661,268 MWh/year (4,959 tons-NOx/year) and ? OSD electricity savings...

  13. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) 

    E-Print Network [OSTI]

    Degelman, Larry; Mukhopadhyay, Jaya; McKelvey, Kathy; Montgomery, Cynthia; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Gilman, Don; Yazdani, Bahman; Culp, Charles; Haberl, Jeff

    2009-01-01T23:59:59.000Z

    GRID database, which had been specially prepared for this purpose. In 2008, the cumulative total annual electricity savings from all programs is 20,380,240 MWh/year (12, 727 tons-NOx/year). The total cumulative OSD electricity savings from all programs... is 48,602 MWh/day, which would be a 2,025 MW average hourly load reduction during the OSD period (31.38 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 32,736,151 MWh/year (20,395 tons-NOx/year). The total...

  14. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Gilman, D.; Baltazar, J. C.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.; Liu, Z.

    2010-01-01T23:59:59.000Z

    specially prepared for this purpose. In 2009, the cumulative total annual electricity savings from all programs is 25,585,081 MWh/year (15,327 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 70,442 MWh/day, which would... be a 2,935 MW average hourly load reduction during the OSD period (40.72 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 31,979,929 MWh/year (19,314 tons-NOx/year). The total cumulative OSD electricity savings...

  15. New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

  16. Structured Finance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competitive resource portfolio of 8,506 average annual megawatts (aMW) that provides wholesale electricity (primarily low-cost hydropower) to a population of more than 12 million...

  17. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  18. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  20. Representing energy technologies in top-down economic models using bottom-up information

    E-Print Network [OSTI]

    example (e.g., a 500 megawatt coal fired power plant, or a 1-MW wind turbine). The technologies production may be treated as a single sector with capital, labor, material, and fuel inputs. Continuous

  1. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity...

  2. Renewable Auction Mechanism (RAM)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ...

  3. Microsoft Word - Connecting Variable Generating Resources to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Background The Bonneville Power Administration (BPA) has about 1,700 megawatts of wind power operating on its system today. Wind power in BPA's system is set to reach 3,000 MW by...

  4. EIS-0354: Ivanpah Energy Center, NV

    Broader source: Energy.gov [DOE]

    Ivanpah Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric power generating station in southern Clark County, Nevada.

  5. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Projects (Larger than 10 MWs) Large-Scale Renewable Energy Projects (Larger than 10 MWs) Renewable energy projects larger than 10 megawatts (MW) are...

  6. Department of Energy Offers Conditional Loan Guarantee Commitments...

    Office of Environmental Management (EM)

    commitment for a loan guarantee to AV Solar Ranch 1, LLC to support the Antelope Valley Solar Ranch 1 project. The 230 megawatt (MW) project will be located in the Antelope...

  7. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

  8. New Hampshire Electric Co-Op- Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to $0.25 per DC...

  9. President Obama Announces $1.45 Billion Conditional Commitment...

    Broader source: Energy.gov (indexed) [DOE]

    will add 250 megawatts (MW) of capacity to the electrical grid using parabolic trough solar collectors and an innovative six-hour thermal energy storage system-the first of its...

  10. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In March 2008, the Florida Public Service Commission (PSC) adopted interconnection rules for renewable-energy systems up to two megawatts (MW) in capacity. The PSC rules apply only to the state's...

  11. Renewable Energy Property Tax Assessment

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes. Additionally, low impact hydro, geothermal, and biomass facili...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW)...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Rhode Island allows net metering for systems up to five megawatts (MW) in capacity that are designed to generate up to 100% of the electricity that a home or other facility uses. Systems that...

  14. EIS-0486: Notice of Intent and Notice of Potential Floodplain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an...

  15. EIS-0486: DOE Notice of Availability of Draft Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an...

  16. Renewable Auction Mechanism (RAM) (California)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation...

  17. EA-1791: Final Environmental Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to design, permit, construct, and operate a 2.5-Megawatt (MW) Clipper Liberty wind turbine and an associated 34.5-kilovolt (kV) low-voltage transmission line at the...

  18. Microsoft Word - Conergy DRAFT EA 1876 7.20.2011.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 Megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in...

  19. EIS-0343: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, OR

  20. 2010 Solar Technologies Market Report, November 2011, Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENA Middle East and North Africa MG-Si metallurgical-grade silicon MNGSEC Martin Next Generation Solar Energy Center MOU memorandum of understanding MT metric ton MW megawatt...

  1. Alternative Energy Law (AEL)

    Broader source: Energy.gov [DOE]

    Iowa requires its two investor-owned utilities (MidAmerican Energy and Alliant Energy Interstate Power and Light) to own or to contract for a combined total of 105 megawatts (MW) of renewable...

  2. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30T23:59:59.000Z

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  3. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  4. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  5. Transmission of Megawatt Relativistic Electron Beams through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R.

    High-power, relativistic electron beams from energy-recovering linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration ...

  6. Modal Dynamics and Stability of Large Multi-megawatt Deepwater...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and O&M, while maintaining or increasing energy production. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution...

  7. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  8. Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Arizona State University; Arizona State University; JLAB; MIT; College of William and Mary, JLAB; MIT; JLAB; JLAB; MIT; MIT; Hampton University; MIT; JLAB; MIT; JLAB; MIT; MIT; JLAB; MIT; JLAB; JLAB

    2013-10-01T23:59:59.000Z

    High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering research in fundamental and applied research. A major design consideration for these new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jeff#11;erson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.

  9. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  10. Megawatt targets (and horn) for Neutrino Super-Beams

    E-Print Network [OSTI]

    McDonald, Kirk

    wide Water cooling tube Fits within the horn without touching. 2 int. length long; narrow so pions get arrangement Subdivided subdivided monolithic Cooling Water (forced convection) Helium (natural convection enough ( 2 interaction lengths ) to interact most protons Dense enough that 2 lint fits in focusing

  11. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

  12. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29T23:59:59.000Z

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  13. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive Jump to: navigation,

  14. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

  15. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEACEnergy

  16. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdahoExceptions toPhotovoltaicsExternalOpportunity

  17. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department of

  18. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlantLong Island HTSProject Mgt

  19. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat Is aResidentialWorking With

  20. Mass Megawatts Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View

  1. Next Generation Electric Machines: Megawatt Class Motors FOA Informational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter Newsletter Better BuildingsAttics andWebinar

  2. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04T23:59:59.000Z

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  3. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  4. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO{sub 3} thin films

    SciTech Connect (OSTI)

    Kharade, Rohini R., E-mail: k_rohini@in.com [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune, MH (India)] [Centre for Materials Characterization, National Chemical Laboratory, Pune, MH (India); Patil, P.S. [Thin Film Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)] [Thin Film Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Bhosale, P.N., E-mail: p_n_bhosale@rediffmail.com [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India)

    2012-07-15T23:59:59.000Z

    Graphical abstract: Electrochromic intercalation and deintercalation of Li{sup +} ions and electrons is facilitated by providing hexagonal tunnel, trigonal cavity and square window which allows easy and fast insertion and extraction of ions. Highlights: ? Novel two step MW-SGS is first time employed to prepare WO{sub 3} thin films. ? MW-SGS is simple and cost effective technique for preparation of nanostructures. ? Petal-like hexagonal WO{sub 3} nanodisks were successfully deposited. ? O/W ratio calculated by XPS studies is 2.89. ? Good electrochromic performance suggests practical usability of proposed technique. -- Abstract: Use of domestic microwave oven is first time employed for chemical deposition of nanocrystalline hexagonal WO{sub 3} (h-WO{sub 3}) thin films. Low cost precursors like sodium tungstate, hydrochloric acid, oxalic acid and potassium sulfate signifies cost effectiveness of this thin film fabrication route. Scanning electron microscopy images reveal formation of petal like nanodisks. A number of analytical techniques were used to characterize the WO{sub 3} petal like nanodisks, including X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy, FT-IR spectroscopy, Raman scattering spectroscopy, UV–visible spectrophotometry and cyclic voltammetry (CV). The X-ray photoelectron spectroscopic studies revealed 2.89 O/W atomic ratio. The electrical transport studies on WO{sub 3} thin films show semiconducting behavior with n-type semiconductivity. The value of determined coloration efficiency is 57.90 cm{sup 2}/C. The mechanism of Li{sup +} intercalation and deinercalation in h-WO{sub 3} matrix is proposed for enhanced electrochromism.

  5. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  6. BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

    E-Print Network [OSTI]

    such as electric transmission lines and natural gas and water pipelines. PLEASE TAKE NOTICE that the Energy all applications to construct and operate thermal electric power plants, 50 MW and greater to construct and operate a nominal 100-megawatt (MW) intermediate/peaking load, electrical generating facility

  7. EIS-0333: Maiden Wind Farm Project, Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA’s proposed action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer’s proposed Maiden Wind Farm.

  8. EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania

    Broader source: Energy.gov [DOE]

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

  9. California Energy Commission Media Office POWER PLANT FACT SHEET

    E-Print Network [OSTI]

    California Energy Commission Media Office POWER PLANT FACT SHEET Updated: 12/4/2012 (Includes: Lodi has licensed or given small power plant exemptions to 78 power plants, totaling 29,156* megawatts (MW). Fifty-four licensed power plants are in operation, producing 17,737 MW. Since Governor Brown took office

  10. Notice of Data Request and Issues Resolution Workshop for the

    E-Print Network [OSTI]

    . If approved, each solar plant would generate 250 megawatts (MW), for a total net output of 750 MW and would of each solar field. Each solar plant would utilize approximately 85,000 heliostats. PARTICIPATION PleaseNotice of Data Request and Issues Resolution Workshop for the Rio Mesa Solar Electric Generating

  11. Basic Integrative Models for Offshore Wind Turbine Systems 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16T23:59:59.000Z

    were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity...

  12. Suggested performance specifications of standard modular controls for the automation of small hydro electric facilities. [Plant capacities from 50 kW to 15 MW

    SciTech Connect (OSTI)

    Beckwith, R.W.

    1980-06-01T23:59:59.000Z

    These specifications are made available by the Department of Energy for the voluntary use by any person, corporation or governmental body in the writing of purchase specifications for the automatic control of small hydro generating stations, i.e., hydro plants ranging in size from 50 kW to 15 MW. It is believed that the use of these specifications will permit competition among capable vendors and, at the same time, assure proper and reliable operation of both the automation hardware and software purchased. The specifications are detailed to a degree which should assure the interchangeability of hardware and software from various suppliers. This also increases the likelihood that spare parts and service will be available for many years. The specifications are written in modules, each of which can be included or excluded for ease of editing to match a particular application. Brief but detailed instructions are included for such editing. An extensive appendix gives the alternatives which were considered and reasons for the various choices specified.

  13. TFE design package final report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. A TFE for a megawatt class system is described. Only six cells are considered for simplicity; a megawatt class TFE would have many more cells, the exact number dependent on optimization trade studies.

  14. A Threshold Autoregressive Model for Wholesale Electricity Prices

    E-Print Network [OSTI]

    A Threshold Autoregressive Model for Wholesale Electricity Prices B. Ricky Rambharat, Department the price of wholesale electricity soared to an unprecedented level of $7,500 per MwH (see [14-order threshold autoregressive model (TAR(1)) for wholesale electricity prices. (For discussion of TAR models, see

  15. Rhaglen Ynni Gwynt Wind Energy Programme

    E-Print Network [OSTI]

    electricity consumption in kW hours (695,000 x 0.2636) x 8,760)/4,066 = 394,699 "... currently estimated Programme Background (page) This target would power the average Welsh household electricity consumption, rated at 2 MW, produces an average of 4.6 million units (4,618 MWh) of electricity each year, which

  16. Developing a Motor Management Policy at BASF 

    E-Print Network [OSTI]

    Zickefoose, B.; Theising, T. R.

    2001-01-01T23:59:59.000Z

    the company. BASF draws a 240MW electrical power load. Accepting that 70% (industry standards range from 63 to 75% for BASF's businesses) of this load was consumed by rotating equipment and assuming an average cost of$401MWh at 8400 hours of annual operation...

  17. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    ,000 MWH/yr) #12;2 3 Project Performance: ·Annual & monthly energy production and capacity factor Wind energy production values are expected to vary from year-to-year. Maximum 15-Minute Standard Total on 135 MW installed capacity Judith Gap Wind Energy Production Summary 6 0:00 4:00 8:00 12:00 16:00 20

  18. NW Investor Owned Utility Perspective: Climate Policy and the WCI

    E-Print Network [OSTI]

    /MWh ID OR WA Electricity CO2 Emissions Carbon Emissions by Generation Carbon Emissions by Consumption #12 I -- 126 MW Boardman Carbon Capture Pilot Project Pipe CO2 emission stream into algae tanks DispatchPrice NetRevenue Market Price Sets Price NetRevenue NetRevenue CO2 Price Impacts Electric Market

  19. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    diesel generators. Adding a 2-MW, 4-MWh storage system, a fast static switch, and a power factor cor-Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin and Renewable Generation Eduardo Alegria, Member, IEEE, Tim Brown, Member, IEEE, Erin Minear, Member, IEEE

  20. D A R G A N M . W . F R I E R S O N D E P A R T M E N T O F A T M O S P H E R I C S C I E N C E S

    E-Print Network [OSTI]

    Frierson, Dargan

    ensure that the wind is blowing somewhere Solar power tends to be complementary to wind in midlatitudes ! Turbines ­ 127 ! Power output ­ 229 MW at peak capacity; 642,000 MWh annual output (est.), enough to meet? (probably not if placed away from "migration zones)" Requires large area" Cons" #12;Solar Power #12;Solar

  1. 2446 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DECEMBER 2005 A 50-MS/s (35 mW) to 1-kS/s (15 W) Power

    E-Print Network [OSTI]

    Johns, David A.

    2446 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DECEMBER 2005 A 50-MS/s (35 mW) to 1-kS/s (15 W) Power Scaleable 10-bit Pipelined ADC Using Rapid Power-On Opamps and Minimal Bias Current Variation Imran Ahmed, Student Member, IEEE, and David A. Johns, Fellow, IEEE Abstract--A novel rapid power

  2. Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies

    E-Print Network [OSTI]

    Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

    2004-01-01T23:59:59.000Z

    of Production Area [GJ (MBtu)] Electric Consumption [MWh (MBtu)] Refrigerating Machines Pumps, Fans 2002 COP[-] Turbo Screw Iced-thermalSystem WholeSystem Figure3. Relation Between Cooling Water Temperature and the COP of Refrigerating machine and System 0 2 4... Production Area (North) Production Area (South) Water Treatment Plant 21Cells Unit (14.1MW) Turbo Refrigerating Machines (1.4MW, 2units/ 4.2MW,6units) Screw Refrigerating Machines (0.8MW, 2units) Iced-thermal Storage Tank (28.5GJ, 2units) HEX for Additional...

  3. 20to2-3T5m2+5: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet Optimization Research Engineering (M.O.R.E.), LLC; 1/26/2014

    E-Print Network [OSTI]

    McDonald, Kirk

    Optimization Research Engineering (M.O.R.E.), LLC; 1/26/2014 Fig. 1. On-axis field profiles of 20-T magnets20to2-3T5m2+5: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet of 16-cm I.R. The copper magnet generates 5 T at 8.6 MW with five tightly-nested two-layer coils

  4. IDS120M20to2T5m: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet Optimization Research Engineering (M.O.R.E.), LLC; 1/21/2014

    E-Print Network [OSTI]

    McDonald, Kirk

    Optimization Research Engineering (M.O.R.E.), LLC; 1/21/2014 Fig. 1. On-axis field profile of 20-T magnet of 16IDS120M20to2T5m: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet-cm inner radius. The copper magnet generates 5 T at 8.6 MW with five tightly-nested two-layer coils

  5. 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

  6. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  7. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01T23:59:59.000Z

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  8. EIS-0447: Champlain Hudson Power Express Transmission Line Project, New York

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of a DOE proposal to grant a Presidential permit to Champlain Hudson Power Express, Inc., to construct, operate, maintain, and connect a new 1000-megawatt (MW) electric transmission system across the U.S.-Canada border in northeastern New York State. The proposed transmission line would run from the Canadian Province of Quebec to New York City.

  9. 851 S.W. Sixth Avenue, Suite 1100 Portland, Oregon 97204-1348

    E-Print Network [OSTI]

    showing For 6,000 megawatts (MW) of installed wind capacity (close to current status), analysis indicates system simulation results is still narrowly focused; in that wind capacity was added without load growth focused; in that wind capacity was added without load growth and no SW s assumed. However, some

  10. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    power plants and all related facilities, such as electric transmission lines and natural gas and water and generator lube oil systems, (4) a 0.3 mile undergrounded transmission line from the project to the Pala an Application for Certification (AFC) for the Orange Grove Project (OGP), a 96 megawatt (MW) electric generation

  11. California's Summer 2004 Electricity Supply and Demand Outlook

    E-Print Network [OSTI]

    to be 750 megawatts (MW) lower because of ongoing repairs to the Pacific Northwest DC transmission line, 2, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulation

  12. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  13. STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    (RNS), and is based on the amount of current electric generation from renewable resources) that is generated from renewable generation resources instead of the capacity (megawatt ­ MW) of these facilitiesSTATE OF CALIFORNIA -- NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY

  14. RENEWABLE ENERGY RESEARCH August 2010

    E-Print Network [OSTI]

    . The demonstration will address the integration issues for new wind power, large-scale energy storage, demand, battery storage sized at 2 megawatt (MW), demand response initiatives, and solar thermal to generate up-and-play" energy resources. · Techniques for deploying smart grid battery storage and monitoring battery

  15. NREL is a national laboratory of the U.S. Department of Energy, Office

    E-Print Network [OSTI]

    solar manufacturer in the world to produce more than 1,000 megawatts (MW) of solar panels in a single plant. Most solar cells and panels sold throughout the world depend on silicon semiconductors to work Technology Holds the Key for World's Largest Solar Manufacturer In a long-term collaboration

  16. Raser Geothermal Unit To Feed Power to Anaheim by October

    Broader source: Energy.gov [DOE]

    Raser Technologies has recently flow tested one of three production wells at its US $33 million, 10-megawatt (MW) Beaver County, Utah geothermal project and now expects to deliver electricity to the city of Anaheim, CA in October, two months earlier than the contract target.

  17. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  18. Cost-aware Cooperative Resource Provisioning for Heterogeneous Workloads in Data Centers

    E-Print Network [OSTI]

    Shi, Weisong

    1 Cost-aware Cooperative Resource Provisioning for Heterogeneous Workloads in Data Centers Jianfeng-scale deployments [20] [29]. However, high-scale data center cost is very high, e.g., it was reported in Amazon [29] that the cost of a hosting data center with 15 megawatt (MW) power facility is high as $5.6 M per month. High

  19. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa.

  20. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa.2,1,"AK",213,"Alaska Electric Light&Power

  1. Health physics considerations in 131I production at a one megawatt TRIGA reactor

    E-Print Network [OSTI]

    Flora, Jason Todd

    1993-01-01T23:59:59.000Z

    hcnrcne Rl I 0 n1 tn c lttstrous. Inctal Violet-Itlack 7553562 NN1575000 3-1 0. 1 ppm 0. 1 pptn Tc 449. 5 989. 8 12 7. 6 I Omm 520"C tnsolnhlc In 11;IlCr Rriule Sih ert -3Vlutc 13494809 5VY2625000 3 O. l mg m' TcO, 733 1245 159. 6...~ Tc 1 17 dass 128m Te ~ lc 58 dars 127m IT 127 Te~ Te 109 der s 129m 'I e 34 da) s 131m IT 131 Te~ Te 30 hours P ? 127 I 9. 1 hours P ? 129 I 09 11))u p 131 I zc uuu P ? 129 Xc 17. 18)0, 000 )cars p 13 lm I I 131 Xe ~ Xc 8 05...

  2. GSA Issues New Request for Proposals to Bring 3 Megawatts of...

    Office of Environmental Management (EM)

    a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed by the selected bidder that will bring approximately 3...

  3. A multi-reactor configuration for multi-megawatt spacecraft power supplies

    E-Print Network [OSTI]

    George, Jeffrey Alan

    1989-01-01T23:59:59.000Z

    capacity may be required for round trip missions. Mission analyses were carried out for an unmanned Mars Cargo Mission and compared with both single reactor and conventional chemical rocket concepts. Interplanetary trajectories utilizing throttled... ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER I. INTRODUCTION II. MULTI-REACTOR CONFIGURATIONS III. THE HYDRA MULTI-REACTOR CONFIGURATION IV. HYDRA SYSTEM ANALYSIS V, MARS CARGO MISSION ANALYSIS VI, CONCLUSIONS...

  4. Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility

    E-Print Network [OSTI]

    Good, R.

    manufacturing facility constraints 4. Mechanical problems 5. Electrical problems 6. Control system/instrumentation problems The commissioning and start up had to be coordinated with existing Plant operations. As a result of the Project Team's efforts...

  5. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven Alan; Rochau, Gary Eugene; Fuller, Robert Lynn [Barber-Nichols, Inc., Arvada, CO

    2013-11-01T23:59:59.000Z

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  6. An 800-MeV superconducting LINAC to support megawatt proton operations at Fermilab

    E-Print Network [OSTI]

    Derwent, Paul; Lebedev, Valeri

    2015-01-01T23:59:59.000Z

    Active discussion on the high energy physics priorities in the US carried out since summer of 2013 resulted in changes in Fermilab plans for future development of the existing accelerator complex. In particular, the scope of Project X was reduced to the support of the Long Base Neutrino Facility (LBNF) at the project first stage. The name of the facility was changed to the PIP-II (Proton Improvement Plan). This new facility is a logical extension of the existing Proton Improvement Plan aimed at doubling average power of the Fermilab's Booster and Main Injector (MI). Its design and required R&D are closely related to the Project X. The paper discusses the goals of this new facility and changes to the Project X linac introduced to support the goals.

  7. reduced demand for power by nearly 1,500 megawatts through investments in energy

    E-Print Network [OSTI]

    are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air and state water laws, as well as with recommendations in the biological opinions. The amendments describe

  8. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting. |October 3, 2012YOUR BUSINESS GSA

  9. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehiclesof

  10. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29,of Energy DOE site facility mgt

  11. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production

  12. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilersPlantof Energy TheDepartment of Energy Test

  13. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect (OSTI)

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01T23:59:59.000Z

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  14. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    Biomass, Biogas, Landfill gas, Sewage gas, Geothermal)€/MWh; Sewage and landfill gas: 45-60 €/MWh; Wind OnshoreMWh; Landfill-, Sewage- & Landfill gas: 64.5-74.4 €/MWh; PV:

  15. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x 200 MWh Cost 30 x 200 MWh LOAD Settlement 200 MWh - 200 MWh 0 in any scenario, so load is not impacted. 8,000 - 6,000 2,000 GEN Note: Profit on the bilateral is not...

  16. 1 MW SYSTEM Klystron Block Diagram

    E-Print Network [OSTI]

    amplification · Focusing magnet power supplies · Vacuum pump controllers · Filament power supplies · Cooling for Klystron #12;Water Cooling #12;Transmitter Control Rack #12;HV Tank #12;HV Power Supply · Both designs have water monitoring · Cooling air fans and monitoring Provides Monitoring and Support Functions

  17. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29T23:59:59.000Z

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  18. bectno-180mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Dec 1993) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: 180-MWe Demonstration of Advanced Tangentially Fired Combustion...

  19. 10 MW Supercritical CO2 Turbine Project

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. 550 MW | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. Home

  1. bectno-180mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing Coal(tm): An Integrated Approach to CleanSNOX(tm)

  2. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing Coal(tm): An Integrated ApproachSelective Catalytic3

  3. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  4. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  5. Data summary report for M.W. Kellog zinc titanite test series: ZTSC-01, ZTSC-02, ZTSC-03, ZTSC-04, ZTSC-05, ZTSC-06, ZTSC-07, ZTSC-08, ZTMC-01, ZTMC-02, ZTMC-03, ZTMC-05. CRADA 92-008 Final report

    SciTech Connect (OSTI)

    Everett, C.E.; Monaco, S.J.

    1994-05-01T23:59:59.000Z

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. Task 1 of the CRADA agreement was to conduct fixed-bed zinc titanate sorbent testing. The results of Task 1 testing are presented in this report.

  6. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard [MIT

    2014-12-24T23:59:59.000Z

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  7. ISIS~1985 0.16MW SNS~2006 1.4MW

    E-Print Network [OSTI]

    Katsumoto, Shingo

    was installed in the No.1 experimental hall. 2005/09/26: Decay tanks for primary cooling system were installed into the shutter mechanism Construction site views #12;36 MLF Building Construction Progress 2007/02/15 View from

  8. Ormat's North Brawley plant with 17MW short of its 50MW potential | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-Tax Charge for Impairment

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4. System planning studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    Potomac Electric Power Company and Acres American Incorporated have been performing a three year DOE/EPRI/PEPCO sponsored program for preliminary design of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) power plants. This report presents both the costs of the CAES and UPH plant designs which were developed, and the results of economic evaluations performed for the PEPCO system. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  10. EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right?of?way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

  11. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell1. Average

  12. Progress on the 140 KV, 10 Megawatt Peak, 1 Megawatt Average Polyphase Quasi-Resonant Bridge, Boost Converter/Modulator for the Spallation Neutron Source (SNS) Klystron Power System

    E-Print Network [OSTI]

    Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.

    2000-01-01T23:59:59.000Z

    This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...

  13. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    SciTech Connect (OSTI)

    Erika Bailey

    2011-07-07T23:59:59.000Z

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  14. Demand Relief and Weather Sensitivity in Large California Commercial Office Buildings

    E-Print Network [OSTI]

    Kinney, S.; Piette, M. A.; Gu, L.; Haves, P.

    2001-01-01T23:59:59.000Z

    an aggregate reduction of 1 Megawatt (MW) during a curtailment period, for any number of meters, can participate as a load aggregator in the California Independent System Operator (ISO) Summer Demand Reduction Program (DRP; see Load Reduction Incentives). The U... ISO Summer Demand Relief Program is offering an incentive of $20,000 per MW each month in addition to $500 per MWhour for actual curtailment. Participants who fail to meet the target will be paid on a sliding scale, and must achieve at least 25...

  15. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  16. Analysis of the socioeconomic impacts of the development of two 525 megawatt power generating stations at Calaveras Lake, Texas

    E-Print Network [OSTI]

    Arneson, Lynn A

    1988-01-01T23:59:59.000Z

    Existing Operations Local Expenditures 24. Total Personal Income Effects 60 25. CPS Existing Operations at Calaveras Lake Estimated Total Income Distribution 62 26. Estimated Ad Valorem Tax Revenues 63 27. Estimated Average Annual Retail Sales.... Local Operations and Naintenance Expenditures 34. Personal Income Effects, Operations 77 35. Projected Residential Distribution of CPS Operations Inmigrant Employees 79 36. Estimated Annual Average Retail Sales and Sales Tax Revenues from Operations...

  17. A Review of the Monitoring of Market Power The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems

    E-Print Network [OSTI]

    Twomey, Paul; Green, Richard J; Neuhoff, Karsten; Newbery, David

    2006-03-14T23:59:59.000Z

    over the spot or forward cost of fuel used (either gas or coal respectively) in plant of standardised thermal efficiency. In classifying the various methods of detecting market power a useful distinction is between techniques that are applied ex... , and the extra production costs of inefficient dispatch will almost surely be considerably greater than this. For example, changing the merit order to cause a switch in a marginal plant of 1000 MW running 5000 hours per year that costs 2 euros/MWh more, amounts...

  18. Trigen Dispersed Energy Services for the Mid-Sized Industrial and Commercial Market 

    E-Print Network [OSTI]

    McIntire, M. E.

    1997-01-01T23:59:59.000Z

    quality improvements, the 1996 MCU represents a 30% to -W% price reduction versus other 3 MW plants. (Figure 8.) ?ti';,= 'J! EJ'Jdfidt'j ;J:; ,J rU/Jf;ij'J/J fJ! }}'=,Jt'Ji/J:( '-;'J!JY~f:ti'Jf):JJ 3'Jjj"=1{ Ejfj'.,,?;:tlJ~J:::: 1';% $/MWh Gas$3....00/MMBtu Return on Assets 15% ? -~.. , . MMBtu/hr Figure 8. Price of Electricity as a FWlction of Heat Sink Recent competitive pressures have driven the cost per kilowatt of large combined cycle plants down to 121 ESL-IE-97-04-20 Proceedings...

  19. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEI Community Cost Per MwH

  20. Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis

    SciTech Connect (OSTI)

    Lauren M. Boldon; Piyush Sabharwall

    2014-08-01T23:59:59.000Z

    Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity increases along with the LCOE, the projects may become unprofitable. This is the case at the LCOE of $103 $109/MW, in which the NPV became negative. The IRR increased with increasing electricity price. Three cases, electric only base, storage—compressed air energy storage or pumped hydro, and hydrogen production, were performed incorporating SMRs into a nuclear wind natural gas hybrid energy system for the New York West Central region. The operational costs for three cases were calculated as $27/MWh, $25/MWh, and $28/MWh, respectively. A 3% increase in profits was demonstrated for the storage case over the electric only base case.

  1. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01T23:59:59.000Z

    and 0.282 MWh of coal generation. Estimates from the IVand 0.308 MWh of coal generation is offset by each MWh offour of the models (coal generation, gas generation, ‘other’

  2. Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    in terms of 20-year levelized LCOE) for both the StrategicITC Loss Loss Results: Strategic Flip LCOE Delta ($/MWh) ($/Results: Cooperative LLC LCOE Delta ($/MWh) ($/MWh) Total

  3. MIXED MODE DELAMINATION OF GLASS FIBER/POLYMER MATRIX COMPOSITE MATERIALS

    E-Print Network [OSTI]

    .........................................................................................................1 DEMANDS FOR MEGAWATT WIND TURBINE BLADES ....................................................1 2

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    81 Residential Sales (MWh) 647 Residential Consumers 290 Commercial Revenue(Thousand ) 168.985 Commercial Sales (MWh) 2306 Commercial Consumers 81 Industrial Revenue (Thousand )...

  5. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND...

  6. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Residential Revenue(Thousand ) 5629 Residential Sales (MWh) 49312 Residential Consumers 35980 Commercial Revenue(Thousand ) 2031 Commercial Sales (MWh) 15395 Commercial Consumers...

  7. Luke AFB 15 MW Solar Array Challenges and Lessons Learned

    Broader source: Energy.gov (indexed) [DOE]

    Legal Authorities to be used by the project FAR Part 41 (utility service contract) Arizona Public Service (APS) is electrical service provider Utility Law...

  8. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    carbon (char) from the gasifier to the combustor and heatfrom the combustor back to the gasifier. One advantage ofexhaust stream of the Char Combustor (R-2). The biomass is

  9. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract This handbook outlines the requirements for hydropower licenses issued by the Federal Energy Regulatory Commission. Author Federal Energy...

  10. Why Cogeneration? 24MW of local renewable energy

    E-Print Network [OSTI]

    Recycled Cardboard Wood Chips Sawdust #12;Power Boiler #10 Improve combustion efficiency by installing a new overfire system to increase firing efficiency Construct a new Dry Electrostatic Precipitator (ESP to increase sulfur dioxide (SO2) removal efficiency Reduce the amount of Reprocessed Fuel Oil (RFO) by 1

  11. Optically Isolated HVIGBT Based MW Cascade Inverter Building...

    Broader source: Energy.gov (indexed) [DOE]

    Sensor 22.5KV 3" Solid Conductor Sensor 34.5KV Overhead Sensor Pole-Mounted Electro-Optics Benefits for Customer: - Complete Data Acquisition, Processing, Storage (up to 1...

  12. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    fed to the engine is composed of hydrogen, carbon monoxide,engine/generator to produce power. This gas is composed mainly of hydrogen,

  13. INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT

    E-Print Network [OSTI]

    Narayanan, H.

    A105, SS 304 TRIM 7 Y type Strainer, 150# RF, ANSI B16.5 6" 4 BODY : ASTM A216 WCB, SS 304 INTERNALS Y type Strainer, 800# SW, ANSI B16.11 1½" 2 BODY : ASTM A105, SS 304 INTERNALS GLOBE VALVE Gate Body : ASTM A216 WCB, SS 304 Trim Check Valve, SW, 800#, 1" 1 Body : ASTM A105, SS 304 Trim 7 Strainers

  14. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    facilities that use biomass, waste, or renewable resources (Renewable Power Purchase and Sale Agreement, Accessed May 2008 from www.sce.com 9. The California Biomassrenewable projects. Southern California Edison (SCE) has one such program for biomass

  15. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Department, Miramar Landfill – Refuse Disposal Fees, [Waste Board Management, Active Landfills Profile forWest Miramar Sanitary Landfill, accessed June 2008 http://

  16. Design of a 465 MW Combined Cycle Cogeneration Plant

    E-Print Network [OSTI]

    Leffler, D. W.

    STEAM TUR8JNE GENERAIOR ELECTRICAl, POWER OUIPUI GAS TURBINE GENERAIORS ~==3:=:J PROCESS CONDENSATE TOIAl fUEl 90 MillION BBl./'l'R NEI ELECTRICAl GENERATION 46$.000 KW LOSSES Sl,\\OF JUHINPUI NfTHEAT . 10 PROCESS 43% EFFICIENT... energy efficiency within this operating envelope, the following design .features are incorporated: extraction-induction-condensing steam turbine modulating inlet guide vanes on the gas turbine~ supplementary firing on two boilers steam augmentation...

  17. Ris-R-Report The DAN-AERO MW Experiments

    E-Print Network [OSTI]

    and the industrial partners LM Glasfiber, Sie mens Wind Power, Vestas Wind Systems A/S and the utility company DONG correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high

  18. A Design Study ofa 1MW Stall Regulated Rotor

    E-Print Network [OSTI]

    of special tailored airfoils has been found to be around 4% on the annual energy production and 1 55 4.8 Summary 56 5 Comparison with LM 24.0 59 5.1 Assumptions 59 5.2 Geometry 60 5.3 Annual energy production and loads 62 5.4 Materia

  19. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Edison, Renewable Power Purchase and Sale Agreement,utilities selling retail power to purchase from the small,

  20. Operating and Maintaining a 465MW Cogeneration Plant 

    E-Print Network [OSTI]

    Theisen, R. E.

    1988-01-01T23:59:59.000Z

    on availability was caused by the (1) interior boiler duct modifications which will be discussed later, (2) the small, miscellaneous, boiler valves which experienced many socket-weld failures, and (3) the several-day outages required to install steam power... augmentation on each machine. The many small valve failures evidently was a result of improper positioning of the pipe in the valve socket while welding. The pipes were inserted flush against the interior socket shoulders during welding, and because...

  1. Design of a 465 MW Combined Cycle Cogeneration Plant 

    E-Print Network [OSTI]

    Leffler, D. W.

    1986-01-01T23:59:59.000Z

    STEAM TUR8JNE GENERAIOR ELECTRICAl, POWER OUIPUI GAS TURBINE GENERAIORS ~==3:=:J PROCESS CONDENSATE TOIAl fUEl 90 MillION BBl./'l'R NEI ELECTRICAl GENERATION 46$.000 KW LOSSES Sl,\\OF JUHINPUI NfTHEAT . 10 PROCESS 43% EFFICIENT... energy efficiency within this operating envelope, the following design .features are incorporated: extraction-induction-condensing steam turbine modulating inlet guide vanes on the gas turbine~ supplementary firing on two boilers steam augmentation...

  2. Georgia Power Compnay Three 30 MW Renewable Projects

    Office of Environmental Management (EM)

    not been finalized or previously constructed, including changes in labor costs and productivity factors, adverse weather conditions, shortages and inconsistent quality of...

  3. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    production credits, renewable energy incentives, and feed-instanding incentives supporting renewable energy, startingincentive structure to encourage the adoption of renewable energy

  4. cmulGTensor File: cmulGtensor.mw

    E-Print Network [OSTI]

    Ablamowicz, Rafal

    alegbras using a graded tensor poduct. The graded tensor product is exported from the Bigebra package

  5. MHK Projects/40MW Lewis project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump to:2MHKMHKMHKReturn to theproject

  6. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    CHP plants can be used in the electricity market for upward regulation by bypassing the steam turbine. The technical design for this purpose must ensure that factors such as...

  7. 10-MW Supercritical-CO2 Turbine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    National Renewable Energy Laboratory is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  8. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name

  9. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name2 Jump to:

  10. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-MInformation

  11. Activation of 200 MW refusegenerated CHP upward regulation effect (Smart

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers toAclaraFacing Jump to:Grid

  12. Activation of 200 MW refusegenerated CHP upward regulation effect (Smart

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers toAclaraFacing Jump

  13. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to:DeploymentSector Jump to:Camera

  14. MHK Technologies/14 MW OTECPOWER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:VicksburgOTECPOWER < MHK

  15. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.docThe4 Conference,EvolutionAdvanced

  16. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute for Advanced StudyPrinceton

  17. ccpi2 285mw Orlando finaleis | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 Mesaba EnergyFinal

  18. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc Jump to:Ind

  19. Property:Permit/License Buildout (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/Riverline Conditions Jump to:Permit/License

  20. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, search Property NameInstalled Capacity

  1. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is setSimulatedDescription

  2. Maintaining Low Oxygen (O2) in Coal Fueled Utility Boilers Using CO Instrumentation

    E-Print Network [OSTI]

    Hopkins, D.; Downing, T.

    and the annual fuel savings possible from this 02 reduction. Unit til 1.8 a pulverized coal fired, 565 MW, CE boiler system placed in service July 27, 1982. Complete and safe combustion in this boiler is maintained by continuously monitoring 02 and CO...Il at Muleshoe, Texas. This is a 565 :Megawatt unit utilizing a Combustion Engineering boiler firing sub-bituminous Wyoming coal thrQugh six elevations of tilting tangential nozzles. The boiler is balanced draft with two air preheaters. Environmental...

  3. Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants

    E-Print Network [OSTI]

    Kalina, A. L.

    for the advanced gas turbine 700lF, manufactured by the General Electric Company. According to data provided by EPRI, the most advanced Rankine bottoming cycle, with a double pressure boiler and reheating, can produce, using the heat exhaust of this turbine..., 169.2 megawatts. If a triple pressure Rankine Cycle is used as a bottoming cycle, the gross output can reach, according to EPRI, 182.6 MW. This performance has been taken as a baseline for comparison with the performance of System 6, which has...

  4. Cogeneration System Analysis Summary Reports for Texas Woman’s University, Denton, Texas

    E-Print Network [OSTI]

    Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

    1985-01-01T23:59:59.000Z

    obtained from the waste heat of the prime mover (a gas turbine or a diesel engine). The overall efficiency of the Cogeneration system ranges from 70 to 85 percent. This efficiency is compared with that of approximately 35 percent for a conventional power... of the Cogeneration system was assumed to be 20 years. Also, long-term bond interest was assumed to be 8 percent in the net present value (NPV) analysis. The optimum system for TWU was found to be a 3.7 MW (megawatt) gas turbine with a heat recovery steam generator...

  5. Cogeneration System Analysis Summary Reports for Texas Woman’s University, Denton, Texas 

    E-Print Network [OSTI]

    Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

    1985-01-01T23:59:59.000Z

    of the Cogeneration system was assumed to be 20 years. Also, long-term bond interest was assumed to be 8 percent in the net present value (NPV) analysis. The optimum system for TWU was found to be a 3.7 MW (megawatt) gas turbine with a heat recovery steam generator.... The gas turbine system could be installed at one of various sites on the campus. The installed cost would be Findings approximately $850/KW or about $3,145,000. The electricity ? generated by the Cogeneration system would cost about 6.14

  6. EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed wind project. This EIS has been cancelled.

  7. Quantification of Energy and Emissions Saved in Energy Efficiency/ Renewable Energy (EE/RE) Programs in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    /PCA) PUC-SB5 (MWh/PCA) Wind-ERCOT (MWh/PCA) SECO (MWh/PCA) SEER13-Single Family (MWh/County) SEER13- Multifamily (MWh/County) INTEGRATED NOx SAVINGS: Process Flow Diagram of the NOx Emissions Reduction Calcs. p. 85 Energy Systems Laboratory © 2011... Laboratory © 2011 • Texas Emission Reduction Plan (TERP) – Emissions reductions in Texas counties – Energy efficiency codes support and training LEGISLATURE DIRECTED RESEARCH p. 13 Energy Systems Laboratory © 2011 Legislation passed to reduce energy...

  8. A Follow-up Study on the Persistence of Savings from the Retrocommissioning of Ten Buildings on a University Campus: Preliminary Results

    E-Print Network [OSTI]

    Claridge, D. E.; Toole, C.

    2007-09-11T23:59:59.000Z

    ) / yr Saving (%) 2002 Use (MMBtu) (MWh) / yr Saving (%) 2000 Use (MMBtu) (MWh) / yr Saving (%) Use (MMBtu) (MWh) / yr Saving (%) Use (MMBtu) (MWh) / yr Saving (%) Use (MMBtu) (MWh) / yr Saving (%) 1999 Blocker Eller O&M G... persisted to a high degree, with a few notable exceptions. The chilled water and hot water savings for the Blocker Building have degraded substantially to less than half the 1997 savings, though electricity savings increased by 4%. The Eller O...

  9. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19T23:59:59.000Z

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  10. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled Nameplate Capacity of

  11. Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst Hirst Enterprises, Inc. P.O.Modal

  12. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906Feet) Year JanCubic Feet)2,445 25,536Spencer

  13. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906Feet) Year JanCubic Feet)2,445

  14. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01T23:59:59.000Z

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  15. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01T23:59:59.000Z

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  16. New England electricity supply outlook: Summer 1998 -- and beyond

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    New England is in the third summer of a protracted electricity supply shortage that began with the shutdown of a substantial quantity of nuclear generating capacity, particularly the 2,630 megawatts (MW) from the three Millstone units located in Connecticut and owned and operated by Northeast Utilities. This report was prepared in response to a request from Senator Christopher Dodd and Senator Joseph Lieberman, both of Connecticut, that the Department of Energy provide an update of its June 1997 report, New England Electricity Supply Outlook, Summer 1997--and Beyond, which examines measures that might be taken to ease the supply shortage, particularly measured to relieve transmission constraints that restrict the import of electricity into Connecticut. In the interval since the 1997 report, three changes have occurred in the region`s overall electric supply context that are particularly significant: the Millstone 3 nuclear unit (1,150 MW) has been put back into service at full capacity; electricity demand is higher, due primarily to regional economic growth. The region`s projected 1998 peak demand is 22,100 MW, 1,531 MW higher than the region`s 1997 peak; and many new additions to the region`s generating capacity have been announced, with projected completion dates varying between 1999 and 2002. If all of the announced projects were completed--which appears unlikely--the total additions would exceed 25,000 MW. A small number of new transmission projects have also been announced.

  17. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell1.

  18. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters1",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1"

  19. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

  20. A Green Prison: The Santa Rita Jail Campus Microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Lai, Judy

    2012-01-22T23:59:59.000Z

    A large microgrid project is nearing completion at Alameda County’s twenty-two-year-old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources (DER) including an eight-year old 1.2 MW PV array, a five-year old 1 MW fuel cell with heat recovery, and considerable efficiency investments. A current US$14 M expansion adds a 2 MW-4 MWh Li-ion battery, a static disconnect switch, and various controls upgrades. During grid blackouts, or when conditions favor it, the Jail can now disconnect from the grid and operate as an island, using the on-site resources described together with its back-up diesel generators. In other words, the Santa Rita Jail is a true microgrid, or ?grid, because it fills both requirements, i.e. it is a locally controlled system, and it can operate both grid connected and islanded. The battery’s electronics includes Consortium for Electric Reliability Technology (CERTS) Microgrid technology. This enables the battery to maintain energy balance using droops without need for a fast control system.