Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

2

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

3

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

4

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

5

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

6

approximately 200 megawatts (MWs) of power from TCEP, making  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 200 megawatts (MWs) of power from TCEP, making approximately 200 megawatts (MWs) of power from TCEP, making it the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture. The 400-MW TCEP plant is a first-of-its-kind integrated gasification combined cycle (IGCC) poly-generation facility capable of capturing 90 percent of the carbon dioxide (CO 2 ) it produces. The $2.4-billion plant was a third round selection under DOE's Clean Coal Power Initiative

7

MagLab Audio Dictionary: Megawatt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt? Now Playing: What's a Megawatt? Enable Javascript and Flash to stream the Magnet Minute Bryon Dalton Associated Links How We Keep the World's Most Powerful Magnets in...

8

Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost  

E-Print Network [OSTI]

All POUs Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 20122013 ($) Projected Annual Cost 20132014 ($) Projected Annual Cost 20142015 ($) Legend LADWP 22,856,346 720,123 720,123 720 Attachment B Response Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 2012 2013 ($) LADWP 22

9

megatons to megawatts | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Working at NNSA Blog Home megatons to megawatts megatons to megawatts Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads...

10

Property:Com sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

sales (mwh) sales (mwh) Jump to: navigation, search This is a property of type Number. Sales to commercial consumers Pages using the property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 26,367 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 15,395 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 16,880 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 16,286 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,519 +

11

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

ScienceCinema (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2014-06-10T23:59:59.000Z

12

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

13

MagLab - MagLab Dictionary: Megawatt (Transcript)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt As explained by Bryon Dalton, Magnet Operations director. Substation This substation furnishes the MagLab with its 56 megawatts of electricity. Our magnets here at the...

14

Megawatt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Megawatt Energy Systems Megawatt Energy Systems Jump to: navigation, search Name Megawatt Energy Systems Place Zionsville, Indiana Sector Renewable Energy, Services, Solar, Wind energy Phone number 317.797.3381 Website http://www.mwenergysystems.com Coordinates 39.9508733°, -86.261937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Property:Oth sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

other consumers other consumers Pages using the property "Oth sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) C Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008 + 1,113 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December 2008 + 1,202 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 + 536 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2009 + 2,187 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2008 + 707 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2009 + 1,537 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 + 697 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008 + 880 +

16

Property:Ind sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

industrial consumers industrial consumers Pages using the property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 19,022 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 14,148 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 18,516 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 14,517 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,398 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 14,930 +

17

Property:Tot sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

all consumers all consumers Pages using the property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 104,175 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 78,855 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 93,756 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 87,806 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 87,721 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 88,236 +

18

Property:Res sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

residential consumers residential consumers Pages using the property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 58,786 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 49,312 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 58,360 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 57,003 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 52,804 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 56,047 +

19

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

20

Spallation Neutron Source reaches megawatt power  

ScienceCinema (OSTI)

The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

Dr. William F. Brinkman

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

22

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract N/A Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Citation County of Imperial Planning Department. 1979. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility. (!) : WESTEC SERVICES, INC.. Report No.: N/A. Retrieved from

23

Multi-Megawatt Power System Trade Study  

SciTech Connect (OSTI)

A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics systems capable of operating at high temperatures. The gas-Brayton systems showed an apparent specific mass advantage (3.53 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used, but reconciling differences in conservatism in the design algorithms used would make results much more comparable. Brayton systems eliminate the need to deal with two-phase working fluid flows in the microgravity environment of space.

Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

2002-02-01T23:59:59.000Z

24

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

25

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

SciTech Connect (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

26

Project X - a new multi-megawatt proton source at Fermilab  

E-Print Network [OSTI]

Project X is a multi-megawatt proton facility being developed to support intensity frontier research in elementary particle physics, with possible applications to nuclear physics and nuclear energy research, at Fermilab. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a future facility at the energy frontier.

Nagaitsev, S

2012-01-01T23:59:59.000Z

27

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

28

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

29

Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrWoodChips SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

30

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

31

Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrLogs SPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

32

Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrNaturalGas SPPurchasedEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

33

Property:Building/SPPurchasedEngyForPeriodMwhYrLogs | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrLogs SPPurchasedEngyForPeriodMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

34

Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrWoodChips SPPurchasedEngyNrmlYrMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

35

Property:Building/SPPurchasedEngyNrmlYrMwhYrOther | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOther SPPurchasedEngyNrmlYrMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

36

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtColg SPPurchasedEngyForPeriodMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

37

Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrPellets SPPurchasedEngyForPeriodMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

38

Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

39

Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOther SPPurchasedEngyForPeriodMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

40

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrPellets SPPurchasedEngyNrmlYrMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

42

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

43

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

44

Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

45

Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTownGas SPPurchasedEngyNrmlYrMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

46

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

47

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

48

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtColg SPPurchasedEngyNrmlYrMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

49

Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTownGas SPPurchasedEngyForPeriodMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

50

Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrNaturalGas SPPurchasedEngyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

51

Developing Mt. Hope: The megawatt line  

SciTech Connect (OSTI)

After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

Rodzianko, P.; Fisher, F.S.

1992-12-01T23:59:59.000Z

52

Mass Megawatts Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Megawatts Wind Power Inc Megawatts Wind Power Inc Jump to: navigation, search Name Mass Megawatts Wind Power Inc Address 95 Prescott Street Place Worcester, Massachusetts Zip 01605 Sector Wind energy Product Development of low-cost, wind energy production systems Website http://www.massmegawatts.com/ Coordinates 42.2776492°, -71.7996281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2776492,"lon":-71.7996281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Tucson Request for Proposal for 1-5 MW PV PPA  

Broader source: Energy.gov [DOE]

The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

54

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network [OSTI]

lead acid absorption solar photo- storage batteries chillerMWh) adopted solar thermal (MW) adopted heat storage (MWh)MWh) adopted solar thermal (MW) adopted heat storage (MWh)

Stadler, Michael

2010-01-01T23:59:59.000Z

55

Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

56

DOE to Debut a Dynamic 5-Megawatt Dynamometer  

Broader source: Energy.gov [DOE]

Boulder, Colorado -- As wind turbine capacity continues to grow, so does the need to test the electrical and mechanical power-producing components of those turbines. Currently, only a few test facilities worldwide have the capability to test wind turbine drivetrains with capacity ratings up to 5 megawatts--and DOE's National Wind Technology Center at the National Renewable Energy Laboratory is now one of them.

57

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

for floating turbines [4]. ..15 Figure 3.1: Floating turbine degrees of freedom [the motion of a 5 MW floating turbine subjected to ocean

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

58

The 5-megawatt power plant with 126 metre rotor diameter  

E-Print Network [OSTI]

The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut-in speed 3.5m/s Rated wind speed 13.0m/s Cut-out speed 25.0m/s onshore 30.0m/s offshore Wind zone up to DIBt 3 Type class up to IEC Ib / GL offshore type class I Rotor Diameter 126.0m Rotor area 12,469m2

Firestone, Jeremy

59

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

60

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

62

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

63

Auslegung eines 1-MW-Brennstoffzellen-Heizkraftwerks  

Science Journals Connector (OSTI)

Aufbauend auf den Ergebnissen der Machbarkeitsstudie 1,5-MW-PAFC-Heizkraftwerk, beabsichtigt die GEW, eine 1-MW-Brennstoffzellenanlage zur kombinierten Strom- und Wrmeerzeugung (Kraft-Wrme-Kopplung ... KWK...

U. Langnickel

1997-10-01T23:59:59.000Z

64

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Broader source: Energy.gov (indexed) [DOE]

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

65

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

66

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

67

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

68

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena  

E-Print Network [OSTI]

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena. For the development of a purification procedure, knowledge about the chemical state of the different elements present-components are of different origin: Gaseous impurities include oxygen, nitrogen and water. The construction materials

McDonald, Kirk

69

MARS15 study of the Energy Production Demonstrator Model for Megawatt  

E-Print Network [OSTI]

MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

McDonald, Kirk

70

bectso-10mw | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen 10-MW Demonstration of...

71

Crossroads (3 MW) | Open Energy Information  

Open Energy Info (EERE)

MW) MW) Jump to: navigation, search Name Crossroads (3 MW) Facility Crossroads (3 MW) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer Renewable Energy Systems Ltd Energy Purchaser Oklahoma Gas & Electric Location Near Canton OK Coordinates 36.019889°, -98.669894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.019889,"lon":-98.669894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ind power is one of the fastest-growing forms of ind power is one of the fastest-growing forms of new power generation in the United States. Industry growth in 2007 was an astounding 45%. New wind power installations constituted 35% of all new electric power installations. This growth is the result of many drivers, includ- ing increased economic competitiveness and favorable state policies such as Renewable Portfolio Standards. However, new wind power installations provide more than cost-competitive electricity. Wind power brings economic development to rural regions, reduces greenhouse gas production by displacing fossil fuels, and reduces water consumption in the electric power sector. The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers

73

Life cycle assessment of 50MW wind firms and strategies for impact reduction  

Science Journals Connector (OSTI)

The world today is continuously striving toward a carbon neutral clean energy technology. Hence, renewable wind power systems are increasingly receiving the attention of mankind. Energy production with structurally more promising and economically more competitive design is no more the sole criterion while installing new megawatt (MW) range of turbines. Rather important life cycle analysis (LCA) issues like climate change, ozone layer depletion, effect on surrounding environments e.g. eco-system quality, natural resources and human health emerge as dominant factors from green energy point of view. Hence, the study covers life cycle impact analysis (LCIA) of three wind farms: one onshore horizontal, one offshore horizontal, another vertical axis. It appears that vertical axis wind farm generates per unit electricity with lowest impact followed by horizontal offshore and horizontal onshore farms. The study, henceforward, discovers most adverse impact contributing materials in today's multi megawatt wind turbines and subsequently substitutes copper, the topmost impact contributor, with more eco-friendly aluminum alloys and its corresponding process routes. In this process, it reduces overall life cycle impacts up to 30% for future greener wind farms. In later stages, it compares all major electricity production technologies, viz., oil, diesel, coal, natural gas, wind, solar, biomass, nuclear, hydro plant in a common platform which demonstrates the wind farms performing the best except the hydro-kinetic ones. However, as the study suggests, offshore VAWT farm may even perform better than hydro-kinetic farms because of higher capacity factors in the high sea. Findings from the study can be deployed to harness massive scale green electricity from environmentally more clean and green turbines.

A. Rashedi; I. Sridhar; K.J. Tseng

2013-01-01T23:59:59.000Z

74

Ris-R-Report 12MW: final report  

E-Print Network [OSTI]

the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st char.): `12MW: final report' is for the project with the full title `12 MW wind turbines

75

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

76

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

77

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

78

Low frequency noise from MW wind turbines --mechanisms of generation  

E-Print Network [OSTI]

Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy 3.6MW turbine 12 3.2 Noise as function of wind speed 12 3.3 Noise as function of rotor

79

Ris-R-Report The DAN-AERO MW Experiments  

E-Print Network [OSTI]

ull scale MW size rotor s as well as o n airfoils for MW size turbine s in wind tun nels. Shear ew insight into a number of fu ndamental aerodynamic and aero-acoustic issues, important and turbulence inflow characteristics were measured on a Si emens 3.6 MW turbine with a five hole pitot tube

80

A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade  

SciTech Connect (OSTI)

The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

Taylor, Gary [PPPL

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

83

Siemens introduces 50 Hz 190 MW gas turbine  

SciTech Connect (OSTI)

According to market data for high power gas turbines compiled by Erlangen, Germany-based Siemens KWU, referring to machines above 50 MW, market demand will average approximately 22 GW per year from now to 2005, of which roughly 15 GW will be for combined-cycle plants and nearly half (11 GW) will be placed in the intermediate capacity class (M Class). Looking at the Siemens line of advanced machines for 50 Hz grids; from the V64.3A rated 70 MW one jumps to the V94.3A rated 240 MW leaving a gap of 170 MW uncovered aside from the existing model V94.2 at 159 MW. This article describes the design and specifications of Siemens new 50 Hz 190 MW gas turbines that hope to cater to this gap. 2 refs.

Chellini, R.

1997-01-01T23:59:59.000Z

84

PG&E Plans for 500 MW of PV  

Broader source: Energy.gov [DOE]

PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

85

5-MW Dynamometer Ground Breaking | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Laboratory in Golden, Colorado, broke ground for a new 5-MW dynamometer test facility. When complete, the new facility will more than double the wind turbine...

86

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection  

E-Print Network [OSTI]

0.20-2.33 (0.80) 0.35-4.09 (1.78) BPA 0.10-0.85 (0.35) 0.14-of Load M [ PSE i _ SCL 339%! BpA 032? a 042? } TPWR; 285 MWh 275 MWh 3,200 MWh BPA 68 MW 788 MW 97 MWh 478 MWh

Olsen, Daniel J.

2014-01-01T23:59:59.000Z

87

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

88

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

89

Property:Permit/License Buildout (MW) | Open Energy Information  

Open Energy Info (EERE)

Permit/License Buildout (MW) Permit/License Buildout (MW) Jump to: navigation, search Property Name Permit/License Buildout (MW) Property Type String Pages using the property "Permit/License Buildout (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 40 + MHK Projects/Algiers Light Project + 20 + MHK Projects/Anconia Point Project + 15 + MHK Projects/Ashley Point Project + 148 + MHK Projects/Avalon Tidal + 30 + MHK Projects/Avondale Bend Project + 18 + MHK Projects/BW2 Tidal + 3 + MHK Projects/Bar Field Bend + 94 + MHK Projects/Barfield Point + 114 + MHK Projects/Bayou Latenache + 50 + MHK Projects/Bondurant Chute + 152 + MHK Projects/Breeze Point + 198 + MHK Projects/Brilliant Point Project + 56 + MHK Projects/Brough Head Wave Farm + 200 +

90

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION  

SciTech Connect (OSTI)

This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

W.A. REASS; J.D. DOSS; R.F. GRIBBLE

2001-06-01T23:59:59.000Z

92

Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector  

SciTech Connect (OSTI)

Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaboration: NBI Team

2012-01-15T23:59:59.000Z

93

Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam  

SciTech Connect (OSTI)

Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotational temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.

Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2012-12-15T23:59:59.000Z

94

Gamesa Installs 2-MW Wind Turbine at NWTC  

Broader source: Energy.gov [DOE]

In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center.

95

Update on the Southwest 1000 MW CSP Initiative  

SciTech Connect (OSTI)

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.

Mancini, T.; Mehos, M.; Wilkins, F.; Morse, F.

2005-11-01T23:59:59.000Z

96

Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power  

SciTech Connect (OSTI)

The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

2014-08-01T23:59:59.000Z

97

Latest Results in SLAC 75-MW PPM Klystrons  

SciTech Connect (OSTI)

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

98

Design and analysis of megawatt-class heat-pipe reactor concepts  

SciTech Connect (OSTI)

There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

99

Navy Estimated Average Hourly Load Profile by Month (in MW)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

100

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection  

E-Print Network [OSTI]

0.12-2.47 (0.72) 0.37-3.96 (1.81) SRP 0.14-2.72 (0.72) 0.19-294 MWh 102 MWh 3,323 MWh SRP 196 MW 2,183 MW 58 MWh 1,357SPP Sierra Pacific Power Company SRP Salt River Project TEP

Olsen, Daniel J.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

102

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

UPGRADING THE AGS TO 1 MW PROTON BEAM POWER.  

SciTech Connect (OSTI)

The Brookhaven Alternating Gradient Synchrotron (AGS) is a strong focusing accelerator that is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. At this energy the maximum intensity achieved is around 7 x 10{sup 13} protons per pulse. This corresponds to an average beam power of about 0.2 MW. Future programs in high-energy physics, as for instance a neutrino factory with the AGS as the proton driver [l], may require an upgrade of the AGS to an average beam power of 1 MW, at the energy of 24 GeV. This can be achieved with an increase of the beam intensity to 1 x 1014 protons per pulse, a 1.2-GeV superconducting linac as a new injector, and by upgrading the power supply and rf systems to allow cycling at 2.5 beam pulses per second.

BRENNAN,M.J.; MARNERIS,I.; ROSER,T.; RUGGIERO,A.G.; TRBOJEVIC,D.; ZHANG,S.Y.

2001-06-18T23:59:59.000Z

105

Latest developments on the Dutch 1MW free electron maser  

Science Journals Connector (OSTI)

The FOM Institute (Rijnhuizen Netherlands) as part of their fusion technology program has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz250GHz with wall plug efficiencies of 60%. This project has been carried out as a collaborative effort with Institute of Applied Physics Nizhny Novgorod Russia Kurchatov Institute Moscow Russia Lawrence Livermore Laboratory U.S.A and CPI U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception (usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8% beam transmission (over 5 Meters) at currents as high as 8.4 Amps with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate in the next year long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible.

M. Caplan; A. G. A. Verhoeven; W. Urbanus

1999-01-01T23:59:59.000Z

106

Experience in integrated control of the multi-megawatt electron cyclotron heating system on the TCV tokamak: the first decade  

Science Journals Connector (OSTI)

The ECH system on the TCV tokamak consists of six gyrotrons (82.6?GHz/0.5?MW/2?s) used for X2 and electron Bernstein wave (EBW) ECH/ECCD with individual low-field-side launchers. Three additional gyrotrons (118?GHz/0.5?MW/2?s) are used for X3-ECH in a top-launch configuration to provide central heating of high-density plasmas, at nearly 3 times the cutoff density of X2. The X2 subsystem was installed by the end of 1999 and the X3 subsystem by the end of 2003, making 4.2?MW available for experiments. The installation work provides data related to testing, repair and reliability of a complex ECH system designed to allow the highest possible degree of automation, integration and flexibility in the experimental programme. Its effective integration into the TCV plant is evidenced by the fact that the mean time between shots when operating with ECH increases roughly in proportion to the increase in the resources required to prepare, monitor and record the experimental sessions. Each of the X2 and X3 subsystems is routinely individually operated by one person. This gives confidence that with proper layout, planning and integration, the EC systems of future fusion experiments, such as ITER, can routinely provide reliable actuators, on demand.

T.P. Goodman; the TCV team

2008-01-01T23:59:59.000Z

107

MHK Technologies/14 MW OTECPOWER | Open Energy Information  

Open Energy Info (EERE)

MW OTECPOWER MW OTECPOWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description MINIMIZE SURFACE ACTIVITIES TO REDUCE THE CAPITAL COST AND TO IMPROVE EFFICIENCY ALTERNATE WORKING FLUIDS ARE USED FOR ENHANCED POWER EFFICIENCY IN OPTEC POWER HYBRID CYCLES ARE USED TO IMPROVE POWER AND NEED WITH SUBSEA HEAT EXCHANGERS ADVANCED SUPPORTING VESSEL CONCEPT AND FREE STANDING RISER TECHNOLOGIES TO WITH STAND HARSH OCEAN ENVIRONMENT IN DEEPWATER HAD BEEN DEVELOPED FOR THIS OPTEC POWER IT IS THE ONLY RELIABLE AND PROFITABLE RENEWABLE ENERGY SOURCE FOR THE NEED OF WORLD ENERGY FOR THE NEXT DECADE DESALINATION AND HDROGEN PRODUCTION ARE LINKED TO THE POWER GENERATION OF THE OTEC POWER FOR SEVERAL BY PRODUCTS COST EFFECTIVE PRODUCTION CLEAN ENERGY AND CLEAN WATER IS THE GOAL OF OTECPOWER INC OUR 14 MW OTEC POWER COSTS 50 MILLION USD ALL EQUIPMENT HAD BEEN DESINGED AND A FEW OF THEM ARE TESTED FOR OIL AND GAS INDUSTRY APPLICATION WHICHA RE BEING USED FOR OTECPOWER A RELIABLE AND FEASIBLE OTECPOWER IS PROPOSED

108

Low Beam Voltage, 10 MW, L-Band Cluster Klystron  

SciTech Connect (OSTI)

Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.; /Fermilab; Kazakov, S.; /KEK, Tsukuba; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

2009-05-01T23:59:59.000Z

109

DeepWind-from Idea to 5 MW Concept  

Science Journals Connector (OSTI)

Abstract The DeepWind concept has been described previously on challenges and potentials, this new offshore floating technology can offer to the wind industry [1]. The paper describes state of the art design improvements, new simulation results of the DeepWind floating vertical axis wind turbine concept, which implies a high potential for cost saving. The most critical aspects of the concept are addressed in proving feasibility, and if it can be scaled up to 20 MW. Applying structural mechanics, generator, floater & mooring system, control system design, and rotor design using detailed integrated models, results have evolved to a 5 MW baseline design. This important outcome will be used as a reference for further improvements. Emphasis in this paper is made on the interplay between different components and some trade-offs. One such example is the rotational speed which largely influences the design of both the generator and the aerodynamic rotor. Another example is aerofoil design affecting energy capture, stall behaviour, structural dynamics and control design. Finally, the potential for up-scaling to 20 MW is discussed.

Uwe S. Paulsen; Helge A. Madsen; Knud A. Kragh; Per H. Nielsen; Ismet Baran; Jesper Hattel; Ewen Ritchie; Krisztina Leban; Harald Svendsen; Petter A. Berthelsen

2014-01-01T23:59:59.000Z

110

Analysis of wind power ancillary services characteristics with German 250-MW wind data  

SciTech Connect (OSTI)

With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

Ernst, B.

1999-12-09T23:59:59.000Z

111

Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing  

Broader source: Energy.gov [DOE]

Purpose, Context, Meeting Process, and Agenda for MW and RF as Enabling Technologies for Advanced Manufacturing on July 25, 2012

112

Seismic activity in the SumatraJava region prior to the December 26, 2004 (Mw =9.09.3) and March 28, 2005 (Mw =8.7) earthquakes  

E-Print Network [OSTI]

Seismic activity in the Sumatra­Java region prior to the December 26, 2004 (Mw =9.0­9.3) and March

Dmowska, Renata

113

Latest developments on the Dutch 1MW free electron maser  

SciTech Connect (OSTI)

The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

1999-05-01T23:59:59.000Z

114

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

effect (Smart effect (Smart Grid Project) (Thisted, Denmark) Jump to: navigation, search Project Name Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167°, 8.703492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.959167,"lon":8.703492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

2 MW upgrade of the Fermilab Main Injector  

SciTech Connect (OSTI)

In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

Weiren Chou

2003-06-04T23:59:59.000Z

116

5 MW pulsed spallation neutron source, Preconceptual design study  

SciTech Connect (OSTI)

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

117

Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry  

SciTech Connect (OSTI)

The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

1980-01-31T23:59:59.000Z

118

Notices  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 76, No. 112 / Friday, June 10, 2011 / Notices module would contain 2 generating units with a total combined capacity of 2.2 megawatts (MW); (5) a new switchyard containing a transformer; (6) a proposed 300-feet-long, 13-kilovolt (kV) transmission line to an existing distribution line. The proposed project would have an average annual generation of 10.6 megawatt-hours (MWh), which would be sold to a local utility. Applicant Contact: Mr. Wayne Krouse, Hydro Green Energy LLC, 5090 Richmond Avenue #390, Houston, TX 77056; phone (877) 556-6566 x709. FERC Contact: Michael Spencer, (202) 502-6093. Deadline for filing comments, motions to intervene, competing applications (without notices of intent), or notices of intent to file competing applications: 60

119

untitled  

Broader source: Energy.gov (indexed) [DOE]

BREA POWER II, LLC'S BREA POWER II, LLC'S OLINDA COMBINED CYCLE ELECTRIC GENERATING PLANT FUELED BY WASTE LANDFILL GAS, BREA, CALIFORNIA U.S. Department of Energy National Energy Technology Laboratory October 2010 DOE/EA-1744 ACRONYMS AND ABBREVIATIONS CEQA California Environmental Quality Act CFR Code of Federal Regulations CHP combined heat and power CO carbon monoxide dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency kWh kilowatt-hour mmscfd million standard cubic feet of landfill gas per day MW megawatt MWh megawatt-hour NAAQS National Ambient Air Quality Standards NEPA National Environmental Policy Act, as amended NO 2 nitrogen dioxide

120

Model Validation at the 204-MW New Mexico Wind Energy Center  

SciTech Connect (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Experimental Study on Coal Feeding Property of 600MW CFB Boiler  

Science Journals Connector (OSTI)

In the CFB boiler technology, improving the steam parameters can ... , based on the structure of commercial 600MW CFB boiler unit and similarity principle, the experiment...

H. P. Chen; L. N. Tian; Q. Du; H. P. Yang

2010-01-01T23:59:59.000Z

122

10MW Class Direct Drive HTS Wind Turbine, CRADA Number CRD-08...  

Office of Scientific and Technical Information (OSTI)

10MW Class Direct Drive HTS Wind Turbine Cooperative Research and Development Final Report CRADA Number: CRD-08-00312 NREL Technical Contact: Walter Musial CRADA Report NREL...

123

br Owner br Facility br Type br Capacity br MW br Commercial...  

Open Energy Info (EERE)

Area Pauzhetskaya Geothermal Power Plant Kamchatskburgeotermiya Single Flash MW Rye Patch Geothermal Area Pianacce Geothermal Power Station Travale Radicondoli Geothermal Area...

124

A Multi-MW Proton/Electron Linac at KEK  

E-Print Network [OSTI]

It is proposed that a multi-MW superconducting proton/electron linac (SCL) and a proton injector (PI) be built at KEK. The 3 GeV PI would serve both as an injector to the SCL and a source of proton beams that could be used to copiously produce neutrons and muons. Protons accelerated by the SCL to 20 GeV would be transferred through the KEK Tristan ring in order to create neutrino, kaon and muon beams for fixed-target experiments. At a later stage, a 60 GeV proton synchrotron could be installed inside the Tristan ring. The SCL, comprising 1.3 GHZ superconducting ILC-type rf cavities, could also accelerate polarized or unpolarized electron beams. After acceleration, electrons may traverse an XFEL undulator, or could be used to produce polarized positrons. An SCL-based synchrotron light source for applications in materials science and medicine is also envisaged. The proposed facility would be constructed using the existing KEK accelerator infrastructure.

Belusevic, Radoje

2014-01-01T23:59:59.000Z

125

Ris-R-Report Multi-MW wind turbine power curve  

E-Print Network [OSTI]

Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

126

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

127

Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak  

SciTech Connect (OSTI)

The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 {micro}H saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency.

Reass, W.A.; Wurden, G.A.

1997-10-06T23:59:59.000Z

128

Generation of 150??W average and 1??MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier  

Science Journals Connector (OSTI)

We report on the direct amplification of picosecond pulses to megawatt peak power and 150W average power using a Yb-doped rod-type fiber master oscillator power amplifier....

Zhao, Zhi; Dunham, Bruce M; Wise, Frank W

2014-01-01T23:59:59.000Z

129

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Broader source: Energy.gov (indexed) [DOE]

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

130

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

131

Study and Design of Platen Superheater of 300 MW CFB Boiler  

Science Journals Connector (OSTI)

In order to avoid overtemperature tube explosion of the platen superheater, the measurements of metal temperatures and the heat transfer coefficients of the platen superheater in a commercial 300 MW Circulating F...

Zhang Man; Lv Qinggang; Jiang Xiaoguo

2013-01-01T23:59:59.000Z

132

Mercury Emission and Removal of a 135MW CFB Utility Boiler  

Science Journals Connector (OSTI)

To evaluate characteristic of the mercury emission and removal from a circulating fluidized bed (CFB) boiler, a representative 135 MW CFB utility boiler was selected to take the ... is of majority in flue gas of ...

Y. F. Duan; Y. Q. Zhuo; Y. J. Wang; L. Zhang

2010-01-01T23:59:59.000Z

133

Development of a full-scale training simulator for an 800-MW power unit  

Science Journals Connector (OSTI)

Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are consider...

S. K. Zhuravlev; A. M. Andreev

2013-07-01T23:59:59.000Z

134

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Broader source: Energy.gov (indexed) [DOE]

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

135

EURISOL-DS MULTI-MW TARGET ISSUES: BEAM WINDOW AND TRANSVERSE FILM TARGET  

E-Print Network [OSTI]

The analysis of the EURISOL-DS Multi_MW target precise geometry (Fig.1) has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

Adonai Herrera-Martnez, Yacine Kadi

136

New two element steam turbine for 150 to 27 MW applications  

SciTech Connect (OSTI)

A modern high efficiency two element steam turbine for application in the 150 MW to 270 MW range is discussed. Innovations utilized and the experience base from which they are derived are presented. Benefits to the power producer resulting from this innovative approach are highlighted.They include reliability and efficiency improvement, delivery time reduction, and the application of design features, microprocessor control systems, and A. I. diagnostic techniques to reduce maintenance requirements, increase life, and enhance overall power plant productivity.

Martin, H.F.; Vaccarro, F.R.; Conrad, J.D. (Westinghouse Electric Corp., Orlando, FL (USA))

1989-01-01T23:59:59.000Z

137

Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

2012-01-01T23:59:59.000Z

138

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

139

Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

2012-11-09T23:59:59.000Z

140

Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System  

SciTech Connect (OSTI)

A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Park, H.; Cho, M. H.; Namkung, W. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Hosea, J.; Ellis, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Sakamoto, K.; Kajiwara, K. [Japan Atomic Energy Agency, Ibaraki (Japan); Doane, J. [General Atomics, San Diego (United States)

2011-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy  

Open Energy Info (EERE)

Solar Electric Corp aka Solar MW Energy Inc Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place Ontario, California Zip 91761 Product Plans to develop STEG plants in the Mojave desert. Coordinates 34.06457°, -117.647809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.06457,"lon":-117.647809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels  

SciTech Connect (OSTI)

Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

143

Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels  

SciTech Connect (OSTI)

Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

144

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect (OSTI)

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

145

Type II Transformation -Regeneration 2 Media -1 Liter Solution Substance []stock/MW Final Add ( )  

E-Print Network [OSTI]

Type II Transformation - Regeneration 2 Media - 1 Liter Solution Substance []stock/MW Final Add. bialaphos stock 10mg/ml 1mg/L 100ul/L Pour into 100x25mm Petri dishes in hood. 1L=30 plates. Dry plates lids

Raizada, Manish N.

146

DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC*  

E-Print Network [OSTI]

DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC* Colin H. Smith+ , Yun He an Energy Recovery Linac (ERL) is dumped at an energy close to the injection energy. This energy is chosen to be as low as possible consistent with meeting the beam quality specifications. ERLs operate with high

147

Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake  

E-Print Network [OSTI]

Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake Yih-Min Wu a , Chien the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi

Wu, Yih-Min

148

Sculpting on polymers using focused ion beam M.-W. Moon a  

E-Print Network [OSTI]

Sculpting on polymers using focused ion beam M.-W. Moon a , E.-K. Her b , K.H. Oh b , K.-R. Lee and Engineering, Seoul National University, San 56-1 Shillim, Kwanak, Seoul, 151-744, Republic of Korea c Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA A B S T R

Vaziri, Ashkan

149

Management and Organizational Behavior Section 301-08 @ 2:00 3:15 MW  

E-Print Network [OSTI]

MGMT 301 Management and Organizational Behavior Fall 2013 Section 301-08 @ 2:00 ­ 3:15 MW Beatty organizational goals by working with, and through, people and other resources. Organizations are treated factors. International as well as domestic situations are examined. Course Learning Objectives: 1

Young, Paul Thomas

150

EK 131/132 module: Introduction to Wind Energy MW 3-5  

E-Print Network [OSTI]

EK 131/132 module: Introduction to Wind Energy MW 3-5 Course. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind. Students will measure personal energy use and analyze wind turbine data from the Museum of Science's wind

151

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

152

Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?  

Science Journals Connector (OSTI)

Abstract Larger wind turbines are believed to be advantageous from an investment and installation perspective, since costs for installation and inner cabling are dependent mainly on the number of wind turbines and not their size. Analogously, scaling up the turbines may also be argued to be advantageous from an operation and maintenance (O&M) perspective. For a given total power production of the wind farm, larger wind turbines give a smaller number of individual machines that needs to be maintained and could therefore give smaller O&M costs. However, the O&M costs are directly dependent on how failure rates, spare part costs, and time needed by technicians to perform each maintenance task and will develop for larger wind turbines. A simulation study is carried out with a discrete-event simulation model for the operational phase of an offshore wind farm, comparing the O&M costs of a wind farm consisting of 5 MW turbines with a wind farm consisting of 10 MW turbines. Simulation results confirm that O&M costs decrease when replacing two 5 MW turbines by one 10 MW turbine, if the total production capacity and all other parameters are kept equal. However, whether larger wind turbines can contribute to a reduction of cost of energy from an O&M perspective is first and foremost dependent on how the failure rates and maintenance durations for such wind turbines will develop compared to 5 MW wind turbines. Based on the results of this analysis, it is concluded that higher failure rates and maintenance durations rapidly are counterbalancing the benefits of larger wind turbines.

Matthias Hofmann; Iver Bakken Sperstad

2014-01-01T23:59:59.000Z

153

Saving Megawatts with Voltage Optimization  

E-Print Network [OSTI]

that had been installed at several electric utility distribution substations in the U.S. and Canada. These systems, being operated in Conservation Voltage Regulation mode, have provided significant energy conservation where they have been installed...

Wilson, T.; Bell, D.

2010-01-01T23:59:59.000Z

154

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake  

E-Print Network [OSTI]

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake, Geophys. Res. Lett., 32, L that strain is distributed over a broad area, from the Atlas front to the offshore margin [Buforn et al., 1995

Déverchère, Jacques

155

New York Nuclear Profile - Indian Point  

U.S. Energy Information Administration (EIA) Indexed Site

Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

156

Vermont Nuclear Profile - Vermont Yankee  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

157

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

158

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

159

Connecticut Nuclear Profile - Millstone  

U.S. Energy Information Administration (EIA) Indexed Site

Millstone" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

160

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

162

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

163

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

164

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

165

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

166

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

167

Alabama Nuclear Profile - Joseph M Farley  

U.S. Energy Information Administration (EIA) Indexed Site

Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

168

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

169

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

170

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

171

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

172

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

173

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

174

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

175

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

176

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

177

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

178

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

179

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

180

Arizona Nuclear Profile - Palo Verde  

U.S. Energy Information Administration (EIA) Indexed Site

Palo Verde" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Georgia Nuclear Profile - Edwin I Hatch  

U.S. Energy Information Administration (EIA) Indexed Site

Edwin I Hatch" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

182

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

183

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

184

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

185

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

186

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

187

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

188

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

189

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

190

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

191

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

192

Georgia Nuclear Profile - Vogtle  

U.S. Energy Information Administration (EIA) Indexed Site

Vogtle" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

193

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

194

Arkansas Nuclear Profile - Arkansas Nuclear One  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

195

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

196

Florida Nuclear Profile - St Lucie  

U.S. Energy Information Administration (EIA) Indexed Site

St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

197

Alabama Nuclear Profile - Browns Ferry  

U.S. Energy Information Administration (EIA) Indexed Site

Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

198

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

199

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

200

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

South Carolina Nuclear Profile - Catawba  

U.S. Energy Information Administration (EIA) Indexed Site

Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

202

North Carolina Nuclear Profile - McGuire  

U.S. Energy Information Administration (EIA) Indexed Site

McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

203

North Carolina Nuclear Profile - Harris  

U.S. Energy Information Administration (EIA) Indexed Site

Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

204

New Hampshire Nuclear Profile - Seabrook  

U.S. Energy Information Administration (EIA) Indexed Site

Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

205

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

206

South Carolina Nuclear Profile - Oconee  

U.S. Energy Information Administration (EIA) Indexed Site

Oconee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

207

South Carolina Nuclear Profile - V C Summer  

U.S. Energy Information Administration (EIA) Indexed Site

V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

208

North Carolina Nuclear Profile - Brunswick  

U.S. Energy Information Administration (EIA) Indexed Site

Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

209

South Carolina Nuclear Profile - H B Robinson  

U.S. Energy Information Administration (EIA) Indexed Site

H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

210

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

211

Progress on 2 MW STI8 gas turbine from Pratt & Whitney Canada  

SciTech Connect (OSTI)

In 1995 Pratt & Whitney Canada announced their intention to offer industrial and marine versions of the PW100 series aircraft gas turbine widely used in turboprop applications. The new ST18 gas turbine is rated in the two megawatt range for industrial and marine applications and offers an especially compact and lightweight gas turbine for this output level. As in other aeroderivative designs from Pratt & Whitney Canada, headquartered in Longueuil, Quebec, the ST18 gas turbine features a centrifugal compressor design. The two-stage centrifugal compressor, with a unique high efficiency external pipe diffuser system connecting the low pressure and high pressure compressor, achieves an overall compression ratio of 15:1, with air flow of 7.7 kg/s. A relatively good thermal efficiency level of about 30% is achieved in this design. For exhaust emission control purposes, water injection in excess of a 1:1 ratio is utilized in the reverse flow annular combustion system to achieve less than 35 ppm NO{sub x} on natural gas fuel. This paper provides some of the design details of this gas turbine and changes made for the industrial and marine configuration. 4 figs.

NONE

1997-01-01T23:59:59.000Z

212

MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

NJBPU 1 5 MW Demonstration Program NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6032,"lon":-74.3401,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

213

Heat transfer characteristics of fluidized bed heat exchanger in a 300MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

214

Aspects of the electrical system design of the colmi 660 mw coal-fired power plant  

SciTech Connect (OSTI)

The conceptual design of the electrical systems for Mexico's Commission Federal de Electricidad (CFE) COLMI 660-MW coal-fired power plant builds on Bechtel's experience with nuclear, gas and coal-fired generating plants. The COLMI conceptual design incorporates a combination of new equipment applications and design considerations that make it more economical when compared to traditional alternatives. Also it provides a reliable state-of-the-art distribution system that is flexible enough for any unit in the 400-900 MW range. Alternative approaches were studied for the system design and equipment arrangement. This paper reviews the approach taken to arrive at the conceptual design and describes the equipment selected and the advantages they provide. Exact sizing and determination of characteristics of the equipment are not given because these were not determined during the conceptual design. These will be determined during the detailed design phase of the project.

Aguilar, J. (Bechtel Corp., Norwalk, CA (US)); Fernandez, J.H. (Comision Federal de Electricidad, Mexico, D.F. (MX))

1992-01-01T23:59:59.000Z

215

Preise in CHF inkl. 8.0 % MwSt. Zrichsee AOC  

E-Print Network [OSTI]

Weissweine Preise in CHF inkl. 8.0 % MwSt. Schweiz Zürich Zürichsee AOC Riesling-Sylvaner Staatskellerei, Werner Kuster, Rheinau 2010 75 cl 46.00 Staatsschreiber Cuvée blanc Préstige AOC Pinot noir.00 Schiterberger AOC Sauvignon blanc Landolt Weine, Zürich 2010 75 cl 49.00 Teufener AOC Pinot Gris Landolt Weine

Zürich, Universität

216

50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL  

SciTech Connect (OSTI)

In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

2011-03-11T23:59:59.000Z

217

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Unit of Measure Equivalents 5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours Terawatthours (TWh) 1,000,000,000,000 (One Trillion) Watthours Gigawatthours 1,000,000 (One Million) Kilowatthours Thousand Gigawatthours 1,000,000,000(One Billion Kilowatthours U.S. Dollar 1,000 (One Thousand) Mills U.S. Cent 10 (Ten) Mills Barrel of Oil 42 Gallons

218

Experience of Implementing a PGU-200 MW Two-Boiler One-Turbine Unit at the South-West CHP  

Science Journals Connector (OSTI)

The engineering solutions for PGU-200 MW unit, the electrical distribution system layout, and the results of implementing the SPPA-T3000 control system are presented. The results of performance adjustment conf...

A. V. Chugin; M. S. Tsvetkov; R. I. Kostyuk

2014-07-01T23:59:59.000Z

219

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)  

E-Print Network [OSTI]

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

Bookhagen, Bodo

220

Experience operating a thermal configuration without a deaerator at the 330 MW unit 3 of the Kashira GRS  

Science Journals Connector (OSTI)

The operating experience gained during introduction of a configuration without a deaerator at the 330 MW unit No. 3 of the Kashira GRS is analyzed. The basic advantages of this configuration are pointed out, ...

G. D. Avrutsky; V. D. Nikanorov; I. R. Kalinowskiy

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

--H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors)  

E-Print Network [OSTI]

CARS -- H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors) CARS.W. Vannier, Inamura, A.G. Farman, Doi & J.H.C. Reiber (Editors) #1; CARS/Springer. rights reserved. Snapshot and the compositionCARS -- H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors) CARS

Wahle, Andreas

222

Xenon-induced axial power oscillations in the 400MW PBMR  

Science Journals Connector (OSTI)

The redistribution of the spatial xenon concentration in the 400MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%50%100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations.

Gerhard Strydom

2008-01-01T23:59:59.000Z

223

Fundamental investigation of Duct/ESP phenomena: 1. 7 MW pilot parametric testing results  

SciTech Connect (OSTI)

Radian Corporation was contracted to investigate duct injection and electrostatic precipitator phenomena in a 1.7-MW pilot plant constructed for this test program. This study was an attempt to resolve previous problems and to answer remaining questions with the technology using an approach which concentrated on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of the duct injection process to an existing ESP particulate collection device. (VC)

McGuire, L.M.; Brown, C.A.

1991-07-22T23:59:59.000Z

224

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect (OSTI)

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

225

A new Main Injector radio frequency system for 2.3 MW Project X operations  

SciTech Connect (OSTI)

For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

Dey, J.; Kourbanis, I.; /Fermilab

2011-03-01T23:59:59.000Z

226

MW-class hybrid power system based on planar solid oxide stack technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

227

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

SciTech Connect (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

228

Experimental Study Of A 1.5-mw, 110-ghz Gyrotron Oscillator  

E-Print Network [OSTI]

This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron cyclotron heating required in fusion devices. A short pulse gyrotron based on the industrial tube design was built at MIT for experimental studies. The experiments are the first demonstration of such high powers at 110 GHz. Using a 96 kV, 40 A electron beam, over 1.4 MW was axially extracted in the design (TE22,6) mode in 3 ?s pulses, corresponding to a microwave efficiency of 37%. The beam alpha, the ratio of transverse to axial velocity in the electron beam, was measured with a probe. At the high efficiency operating point the beam alpha was measured as 1.33. This value of alpha is less than the design value of 1.4, possibly accounting for the slightly reduced experimental efficiency. The output power and efficiency, as a function of magnetic field, beam voltage, and beam current, are in...

Anderson, J P

2005-01-01T23:59:59.000Z

229

Progress towards a 200 MW electron beam accelerator for the RDHWT/Mariah II Program.  

SciTech Connect (OSTI)

The Radiatively Driven Hypersonic Wind Tunnel (RDHWT) program requires an unprecedented 2-3 MeV electron beam energy source at an average beam power of approximately 200MW. This system injects energy downstream of a conventional supersonic air nozzle to minimize plenum temperature requirements for duplicating flight conditions above Mach 8 for long run-times. Direct-current electron accelerator technology is being developed to meet the objectives of a radiatively driven Mach 12 wind tunnel with a free stream dynamic pressure q=2000 psf. Due to the nature of research and industrial applications, there has never been a requirement for a single accelerator module with an output power exceeding approximately 500 kW. Although a 200MW module is a two-order of magnitude extrapolation from demonstrated power levels, the scaling of accelerator components to this level appears feasible. Accelerator system concepts are rapidly maturing and a clear technology development path has been established. Additionally, energy addition experiments have been conducted up to 800 kW into a supersonic airflow. This paper will discuss progress in the development of electron beam accelerator technology as an energy addition source for the RDHWT program and results of electron beam energy addition experiments conducted at Sandia National Laboratories.

Lockner, Thomas Ramsbeck; Reed, Kim Warren; Pena, Gary Edward; Schneider, Larry X.; Lipinski, Ronald J.; Glover, Steven Frank

2004-06-01T23:59:59.000Z

230

Development of 1 MW-class HTS motor for podded ship propulsion system  

Science Journals Connector (OSTI)

To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO2, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research & development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

K Umemoto; K Aizawa; M Yokoyama; K Yoshikawa; Y Kimura; M Izumi; K Ohashi; M Numano; K Okumura; M Yamaguchi; Y Gocho; E Kosuge

2010-01-01T23:59:59.000Z

231

Initial operating experience of the 12-MW La Ola photovoltaic system.  

SciTech Connect (OSTI)

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

2011-10-01T23:59:59.000Z

232

Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is  

E-Print Network [OSTI]

: hydrogen efficiency of electrolyzer (kg/MWh) d : hydrogen efficiency of fuel cell (kg/MWh) O : oxygen hydrogen production (kg) dischargeV : fuel cells hydrogen consumption (kg) hsellV : hydrogen exchange capacity (MW) STG Vmax : maximum storage level (kg) STGDISCH Pmax : maximum fuel cell power (MW) STGDISCH

Cañizares, Claudio A.

233

Definition of a 5MW/61.5m wind turbine blade reference model.  

SciTech Connect (OSTI)

A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

Resor, Brian Ray

2013-04-01T23:59:59.000Z

234

Investigation of the part-load performance of two 1. 12 MW regenerative marine gas turbines  

SciTech Connect (OSTI)

Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performance of two 1.12 MW (1,500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

Korakianitis, T.; Beier, K.J. (Washington Univ., St. Louis, MO (United States). Dept. of Mechanical Engineering)

1994-04-01T23:59:59.000Z

235

Model Validation at the 204-MW New Mexico Wind Energy Center (Poster)  

SciTech Connect (OSTI)

The objectives of this report are: (1) to investigate the impact of aggregation on a large wind farm; and (2) to explore the dynamic behaviors of the power system and the wind turbine. The methods used are: (1) use equivalencing method previously developed to simplify Taiban Mesa wind power plant; (2) use PSLF dynamic analysis to simulate the wind power plant with AWEA-proposed low voltage ride through (LVRT) used to test the systems; and (3) represent a 204-MW wind plant two ways, treat the entire wind farm feeding a large power system network as a single generator and treat each wind turbine within the wind farm as an individual generator (136 generators) feeding the large power system network.

Muljadi, E.; Butterfield, C. P.; Miller, N.; Delmerico, R.; Ellis, A.; Mechenbier, J.; Zavadil, R.; Smith, J. C.; Hochheimer, J.; Young, R.

2006-01-01T23:59:59.000Z

236

Detailed design of the 2MW Demonstration Plant. Topical report, Task 2  

SciTech Connect (OSTI)

This document provides a summary of the design of the 2MW carbonate fuel cell power plant which will be built and tested under DOE cooperative agreement DE-FC2l-92MC29237. The report is divided into sections which describe the process and stack module design, and Appendices which provide additional design detail. Section 2.0 provides an overview of the program, including the project objectives, site location, and schedule. A description of the overall process is presented in Section 3.0. The design of the fuel cell stack Modules is described in Section 5.0, which discusses the design of the fuel cell stacks, multi-stack enclosures, and Stack Modules. Additional detail is provided in a report Appendix, the Final Design Criteria Summary. This is an abstract of the design criteria used in the design of the Submodules and Modules.

Not Available

1993-09-16T23:59:59.000Z

237

Design and operating experience of a 40 MW, highly-stabilized power supply  

SciTech Connect (OSTI)

Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of <10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [Florida State Univ., Tallahassee, FL (United States). Nationa High Magnetic Field Laboratory; Bogdan, F.; Morris, G.C. [ABB Industrial Systems, New Berlin, WI (United States); Rumrill, R.S. [Alpha Scientific Electronics Inc., Hayward, CA (United States)

1995-07-01T23:59:59.000Z

238

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect (OSTI)

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

239

Southern California Edison 32MWh Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

240

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect (OSTI)

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846-2001  

E-Print Network [OSTI]

accumulated since a great earthquake in the 15th century. The Kangra rupture could fail again today in a Mw=7 uplift in the Dehra Dun region, and this supposed signal has been incorporated into a large number and the original seismograms suggest that the Kangra earthquake triggered a deep earthquake near Dehra Dun a few

Bilham, Roger

242

ATS 680 A6: Applied Numerical Weather Prediction MW, 1:00-1:50 PM, ACRC Room 212B  

E-Print Network [OSTI]

experiments using a state-of-the-art numerical weather prediction model · Discuss the strengths and weaknesses, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University PressATS 680 A6: Applied Numerical Weather Prediction Fall 2013 MW, 1:00-1:50 PM, ACRC Room 212B Course

243

Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*  

E-Print Network [OSTI]

1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C. Stevenage, U.K. Thomas M. Davis Air Force Research Laboratory Kirtland AFB, New Mexico, U.S.A ABSTRACT investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals

244

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler  

E-Print Network [OSTI]

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate, the noncontinuous biomass feeding and grate movement, the combustion instabilities inside the fuel bed used to fire biomass for heat and power production. However, grate-firing systems are often reported

Rosendahl, Lasse

245

System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler  

SciTech Connect (OSTI)

We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

2010-01-01T23:59:59.000Z

246

Modelling of NO{sub x} reduction strategies applied to 350 MW(e) utility boilers  

SciTech Connect (OSTI)

A computational fluid dynamics model has been combined with a NO{sub x} chemistry post-processor to predict the formation and destruction of nitric oxide in three-dimensional furnaces burning pulverized fuel. The model considers the complex interaction of turbulent flow, heat transfer, combustion, and NO{sub x} reaction chemistry. Lagrangian particle dynamics are used to track burning pulverized coal particles through the computational cells. Fuel nitrogen is released in proportion to the burnout of the particle. A range of combustion NO{sub x} reduction strategies has been applied to two 350 MW(e) utility boilers burning different coals. A medium volatile bituminous coal is fired using low NO{sub x} burners in one furnace and a sub-bituminous coal is burnt using conventional swirl burners in a different furnace. The strategies include: burner out of service, overfire air, reduction in excess air, change in particle size, and fuel reburn. In general NO{sub x} predictions are better for the sub-bituminous coal than for the medium volatile bituminous coal. Typical NO{sub x} prediction errors are {+-} 10 percent.

Visona, S.P.; Singh, B. [AUSTA Electric, Brisbane (Australia); Stanmore, B.R. [Dept. of Chemical Engineering, Brisbane (Australia)

1997-07-01T23:59:59.000Z

247

Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler  

Science Journals Connector (OSTI)

Abstract In this paper, systematic experimental investigation on the heat flux distribution inside the furnace of a 300MW CFB boiler was presented. Detailed experimental setup and measurement techniques were presented and a finite element method approach was applied to determine the heat flux. The heat flux profile on the rear wall along the horizontal direction shows a significant imbalance at different boiler loads. As a result of the non-uniform layout of the heating surfaces, which is the essential reason, as well as the imbalance and deviation of the temperature field, solid suspension density and solid flow rate, the central section of the furnace possesses higher heat flux distribution compared to the side sections. The heat flux is also found to increase with the increasing boiler load and decrease as the height increases. Heat flux near the roof, where the solid suspension density is rather small, is found to decrease remarkably revealing less heat absorption in this area. In addition, an empirical model of heat transfer coefficient is revised using the average data at different boiler loads. A mechanism heat transfer model based on the membrane water-wall configuration is proposed and validated with the heat flux profile obtained from the measurement. The model provides good accuracy for correlating 85% of the data within 10%.

Ruiqing Zhang; Hairui Yang; Nan Hu; Junfu Lu; Yuxin Wu

2013-01-01T23:59:59.000Z

248

A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

2011-11-28T23:59:59.000Z

249

Diagnosis of a turbocharging system of 1MW internal combustion engine  

Science Journals Connector (OSTI)

A diagnostic procedure is presented purposely for the turbocharging system of 1MW internal combustion engine (I.C.E.) and specifically, for the filters and compressor modules. This study is part of a wider research activity, concerning the development of a diagnosis system dedicated to the cogenerative I.C.E. installed at the Engineering Faculty in Perugia. Firstly a 1-D thermodynamic model of the CHP engine working fluid was developed to simulate failure conditions of the turbocharging groups, which are not directly replicable on the I.C.E. to avoid plant stoppage. This model is able to simulate the degradation in performance of the engine components. It also takes into account the effect of compensation which the regulation system activates in case of efficiency loss or failure relative to filters or compressors. In order to identify and assess such failures, the fuzzy logic was chosen as the tool for the diagnosis system design. The developed diagnosis system displayed a good reliability degree with the 1-D thermodynamic model results, for operating conditions in correspondence of bad performance either on behalf of the filters or the compressor. Moreover, the procedure can be implemented in the plant monitoring system and provides in real-time diagnosis results about the status of the components and the need of maintenance, on the basis of few parameters already measured on the I.C.E.

L. Barelli; G. Bidini; F. Bonucci

2013-01-01T23:59:59.000Z

250

Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core  

SciTech Connect (OSTI)

In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% /sup 235/U) is presented. In order to assess the performance of the core with the LEU (< 20%) fuel replacement, while keeping fuel element geometry nearly unchanged, several different /sup 235/U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial /sup 235/U content is 195 g /sup 235/U/SFE and 9.7 g /sup 235/U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE.

Pazirandeh, A.; Bartsch, G.

1987-01-01T23:59:59.000Z

251

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

252

CFD-based design load analysis of 5MW offshore wind turbine  

Science Journals Connector (OSTI)

The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM respectively ). In CFD method the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

T. T. Tran; G. J. Ryu; Y. H. Kim; D. H. Kim

2012-01-01T23:59:59.000Z

253

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

254

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

255

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-07-30T23:59:59.000Z

256

REL-1001/6-001 FW MW 14:30-15:45 Religion & Identity in Contemporary Canada Colorado REL-1002/6-050 FW MW 17:30-18:45 Exploring Religion: The World s Religions Janzen  

E-Print Network [OSTI]

Colorado REL-3/4940/3-001 W TH 14:30-17:15 Topics in Modern Western Culture Colorado ( &( &( &( & REL-2703REL-1001/6-001 FW MW 14:30-15:45 Religion & Identity in Contemporary Canada Colorado REL-1002:30-11:20 Religion & Pop Culture Colorado REL-2402/3-001 F MWF 10:30-11:20 Fundamentalisms in Global Perspective

Martin, Jeff

257

Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 * NREL/TP-620-33177 3 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates B.G. Swezey National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 June 2003 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates

258

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

259

Study on the Portable and Integrated Type Pore Plate Flow Measureing Device for Condensate Water of 300MW Steam Turbine  

Science Journals Connector (OSTI)

In order to insure the accuracy of steam turbine thermal test in power plant, the flowrate measurement accuracy of condensate water should be insured. In this paper, the portable and integrated type flow measuring device for condensate water of 300MW steam turbine flow is designed, which is based on the condensate water parameters and the specific pipeline conditions at the exit of the No. 5 low pressure heater for 300MW unit. A integration of non standard differential pressure orifice flow meter is designed in this paper Through calibration in standard experimental system, the reason of the large error is that the flow field is disturbed by the origin plate type downward welding connecting flanges. Then the welding neck flanges is designed for the connecting flanges. The distribution of connecting flanges of flow field is weaken, and the measurement accuracy can meet the demand of steam turbine thermal test.

Yong Li; Jia-yong Wang

2012-01-01T23:59:59.000Z

260

EIS-0447: EPA Notice of Availability of Draft Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

a new 1000-megawatt (MW) electric transmission system from the Canadian Province of Quebec to New York City. EIS-0447-DEIS-EPANOA-2013.pdf More Documents & Publications...

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIS-0447: DOE Notice of Availability of Draft Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

a new 1000-megawatt (MW) electric transmission system from the Canadian Province of Quebec to New York City. This DOE notice of availability incorrectly identifies the close of...

262

Blade Testing Trends (Presentation), NREL (National Renewable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industry support. * Field Testing o Small to megawatt-scale turbines (more than 10 MW installed) o Demonstrates advances in control systems and innovative technologies. *...

263

RidgenoseSolarInterconnectionProject  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and maintaining a 100-megawatt (MW) photovoltaic solar power facility, consisting of solar panels, mounting structures, access roads, an electrical collection system, a...

264

CX-005566: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

generating 1 megawatt (Mw) of electricity. The Columbus digester is creating excess biogas that has the potential to generate 275,912 gallons of gasoline equivalent (gge) each...

265

Geothermal Exploration Policy Mechanisms: Lessons for the United...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITC investment tax credit KfW Kreditanstalt fr Wiederaufbau Bankengruppe of Germany MOL Hungarian Oil and Gas Company MW megawatts (electric) NEDO New Energy Development...

266

President Obama Announces $400 Million Conditional Commitment...  

Office of Environmental Management (EM)

840 megawatts (MW) of new solar power annually. The project is expected to reach full capacity by 2013. Including the conditional commitment announced today, the Department has...

267

President Obama Announces $1.45 Billion Conditional Commitment...  

Office of Environmental Management (EM)

power generating facility. The Solana, Arizona plant will add 250 megawatts (MW) of capacity to the electrical grid using parabolic trough solar collectors and an innovative...

268

Energy Secretary Moniz Dedicates World's Largest Concentrating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

curbs greenhouse gas emissions, and fosters American innovation." Ivanpah has the capacity to generate 392 megawatts (MW) of clean electricity -- enough to power 94,400 average...

269

Department of Energy Offers $90.6 Million Conditional Commitment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alamosa Solar Generating Project, a 30 megawatt (MW) net capacity High Concentration Solar Photovoltaic (HCPV) generation project located in south-central Colorado near the city...

270

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

271

EA-1796: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

project, a nominal 400-megawatt (MW) solar energy generating facility consisting of a solar field of ground-mounted photovoltaic (PV) panels, an electrical collection system...

272

CX-001506: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

to generate up to 1 megawatt (MW) of electricity at a municipal solid waste landfill). DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-001506.pdf More Documents & Publications...

273

EIS-0354: Draft Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric power generating station in southern Clark County, Nevada. The facility...

274

New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009  

Broader source: Energy.gov [DOE]

This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

275

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",27638,13 " Electric Utilities",23008,8 " Independent Power Producers & Combined Heat and Power",4630,23 "Net Generation (megawatthours)",125180739,11 " Electric Utilities",107852560,5 " Independent Power Producers & Combined Heat and Power",17328179,20 "Emissions (thousand metric tons)" " Sulfur Dioxide",385,4 " Nitrogen Oxide",120,4 " Carbon Dioxide",116283,5 " Sulfur Dioxide (lbs/MWh)",6.8,4 " Nitrogen Oxide (lbs/MWh)",2.1,12 " Carbon Dioxide (lbs/MWh)",2048,4

276

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",18424,22 " Electric Utilities",460,43 " Independent Power Producers & Combined Heat and Power",17964,6 "Net Generation (megawatthours)",65682494,23 " Electric Utilities",-186385,50 " Independent Power Producers & Combined Heat and Power",65868878,6 "Emissions (thousand metric tons)" " Sulfur Dioxide",14,40 " Nitrogen Oxide",15,41 " Carbon Dioxide",19160,37 " Sulfur Dioxide (lbs/MWh)",0.5,45 " Nitrogen Oxide (lbs/MWh)",0.5,48 " Carbon Dioxide (lbs/MWh)",643,43

277

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",26392,15 " Electric Utilities",20115,14 " Independent Power Producers & Combined Heat and Power",6277,16 "Net Generation (megawatthours)",111750957,12 " Electric Utilities",91232664,11 " Independent Power Producers & Combined Heat and Power",20518293,17 "Emissions (thousand metric tons)" " Sulfur Dioxide",33,33 " Nitrogen Oxide",57,17 " Carbon Dioxide",55683,15 " Sulfur Dioxide (lbs/MWh)",0.7,43 " Nitrogen Oxide (lbs/MWh)",1.1,31 " Carbon Dioxide (lbs/MWh)",1099,35

278

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "NERC Region(s)",,"SERC/SPP" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",26744,14 " Electric Utilities",16471,17 " Independent Power Producers & Combined Heat and Power",10272,10 "Net Generation (megawatthours)",102884940,16 " Electric Utilities",51680682,19 " Independent Power Producers & Combined Heat and Power",51204258,8 "Emissions (thousand metric tons)" " Sulfur Dioxide",126,15 " Nitrogen Oxide",75,11 " Carbon Dioxide",58706,14 " Sulfur Dioxide (lbs/MWh)",2.7,21 " Nitrogen Oxide (lbs/MWh)",1.6,21 " Carbon Dioxide (lbs/MWh)",1258,27

279

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",27674,12 " Electric Utilities",25553,6 " Independent Power Producers & Combined Heat and Power",2121,34 "Net Generation (megawatthours)",128678483,10 " Electric Utilities",121251138,3 " Independent Power Producers & Combined Heat and Power",7427345,34 "Emissions (thousand metric tons)" " Sulfur Dioxide",131,14 " Nitrogen Oxide",57,16 " Carbon Dioxide",73241,13 " Sulfur Dioxide (lbs/MWh)",2.2,31 " Nitrogen Oxide (lbs/MWh)",1,34 " Carbon Dioxide (lbs/MWh)",1255,28

280

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",3990,44 " Electric Utilities",3035,36 " Independent Power Producers & Combined Heat and Power",955,42 "Net Generation (megawatthours)",12024564,44 " Electric Utilities",8589208,37 " Independent Power Producers & Combined Heat and Power",3435356,40 "Emissions (thousand metric tons)" " Sulfur Dioxide",7,45 " Nitrogen Oxide",4,48 " Carbon Dioxide",1213,49 " Sulfur Dioxide (lbs/MWh)",1.2,39 " Nitrogen Oxide (lbs/MWh)",0.8,43 " Carbon Dioxide (lbs/MWh)",222,50

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "NERC Region(s)",,"MRO/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",7857,38 " Electric Utilities",7647,30 " Independent Power Producers & Combined Heat and Power",210,50 "Net Generation (megawatthours)",36630006,36 " Electric Utilities",36242921,30 " Independent Power Producers & Combined Heat and Power",387085,50 "Emissions (thousand metric tons)" " Sulfur Dioxide",65,24 " Nitrogen Oxide",40,30 " Carbon Dioxide",24461,34 " Sulfur Dioxide (lbs/MWh)",3.9,12 " Nitrogen Oxide (lbs/MWh)",2.4,9 " Carbon Dioxide (lbs/MWh)",1472,19

282

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "NERC Region(s)",,"MRO/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",12543,32 " Electric Utilities",11732,20 " Independent Power Producers & Combined Heat and Power",812,45 "Net Generation (megawatthours)",47923762,32 " Electric Utilities",45270047,24 " Independent Power Producers & Combined Heat and Power",2653716,44 "Emissions (thousand metric tons)" " Sulfur Dioxide",41,30 " Nitrogen Oxide",46,26 " Carbon Dioxide",36321,26 " Sulfur Dioxide (lbs/MWh)",1.9,33 " Nitrogen Oxide (lbs/MWh)",2.1,13 " Carbon Dioxide (lbs/MWh)",1671,14

283

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",14261,29 " Electric Utilities",10846,27 " Independent Power Producers & Combined Heat and Power",3415,28 "Net Generation (megawatthours)",55126999,27 " Electric Utilities",41142684,26 " Independent Power Producers & Combined Heat and Power",13984316,26 "Emissions (thousand metric tons)" " Sulfur Dioxide",16,37 " Nitrogen Oxide",15,42 " Carbon Dioxide",10094,40 " Sulfur Dioxide (lbs/MWh)",0.6,44 " Nitrogen Oxide (lbs/MWh)",0.6,47 " Carbon Dioxide (lbs/MWh)",404,48

284

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "NERC Region(s)",,"MRO/RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",29831,11 " Electric Utilities",21639,10 " Independent Power Producers & Combined Heat and Power",8192,14 "Net Generation (megawatthours)",111551371,13 " Electric Utilities",89666874,13 " Independent Power Producers & Combined Heat and Power",21884497,16 "Emissions (thousand metric tons)" " Sulfur Dioxide",254,6 " Nitrogen Oxide",89,6 " Carbon Dioxide",74480,11 " Sulfur Dioxide (lbs/MWh)",5,8 " Nitrogen Oxide (lbs/MWh)",1.8,19 " Carbon Dioxide (lbs/MWh)",1472,20

285

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "NERC Region(s)",,"SERC/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",21739,18 " Electric Utilities",20360,12 " Independent Power Producers & Combined Heat and Power",1378,39 "Net Generation (megawatthours)",92312989,18 " Electric Utilities",90176805,12 " Independent Power Producers & Combined Heat and Power",2136184,46 "Emissions (thousand metric tons)" " Sulfur Dioxide",233,8 " Nitrogen Oxide",56,18 " Carbon Dioxide",78815,10 " Sulfur Dioxide (lbs/MWh)",5.6,6 " Nitrogen Oxide (lbs/MWh)",1.3,26 " Carbon Dioxide (lbs/MWh)",1882,7

286

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",16495,24 " Electric Utilities",11719,21 " Independent Power Producers & Combined Heat and Power",4775,19 "Net Generation (megawatthours)",80788947,20 " Electric Utilities",56719755,18 " Independent Power Producers & Combined Heat and Power",24069192,13 "Emissions (thousand metric tons)" " Sulfur Dioxide",105,20 " Nitrogen Oxide",49,23 " Carbon Dioxide",74283,12 " Sulfur Dioxide (lbs/MWh)",2.9,20 " Nitrogen Oxide (lbs/MWh)",1.3,25 " Carbon Dioxide (lbs/MWh)",2027,5

287

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Petroleum" "Net Summer Capacity (megawatts)",790,51 " Independent Power Producers & Combined Heat and Power",790,46 "Net Generation (megawatthours)",199858,51 " Independent Power Producers & Combined Heat and Power",199858,51 "Emissions (thousand metric tons)" " Sulfur Dioxide",1,49 " Nitrogen Oxide","*",51 " Carbon Dioxide",191,50 " Sulfur Dioxide (lbs/MWh)",8.8,2 " Nitrogen Oxide (lbs/MWh)",4,3 " Carbon Dioxide (lbs/MWh)",2104,1 "Total Retail Sales (megawatthours)",11876995,43 " Full Service Provider Sales (megawatthours)",3388490,50

288

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "NERC Region(s)",,"--" "Primary Energy Source",,"Petroleum" "Net Summer Capacity (megawatts)",2536,47 " Electric Utilities",1828,40 " Independent Power Producers & Combined Heat and Power",708,47 "Net Generation (megawatthours)",10836036,45 " Electric Utilities",6416068,38 " Independent Power Producers & Combined Heat and Power",4419968,38 "Emissions (thousand metric tons)" " Sulfur Dioxide",17,36 " Nitrogen Oxide",21,36 " Carbon Dioxide",8287,42 " Sulfur Dioxide (lbs/MWh)",3.4,16 " Nitrogen Oxide (lbs/MWh)",4.3,2 " Carbon Dioxide (lbs/MWh)",1686,13

289

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "NERC Region(s)",,"RFC/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",20453,21 " Electric Utilities",18945,16 " Independent Power Producers & Combined Heat and Power",1507,38 "Net Generation (megawatthours)",98217658,17 " Electric Utilities",97472144,7 " Independent Power Producers & Combined Heat and Power",745514,48 "Emissions (thousand metric tons)" " Sulfur Dioxide",249,7 " Nitrogen Oxide",85,7 " Carbon Dioxide",93160,7 " Sulfur Dioxide (lbs/MWh)",5.6,5 " Nitrogen Oxide (lbs/MWh)",1.9,15 " Carbon Dioxide (lbs/MWh)",2091,3

290

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "NERC Region(s)",,"SPP" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",21022,20 " Electric Utilities",16015,18 " Independent Power Producers & Combined Heat and Power",5006,17 "Net Generation (megawatthours)",72250733,22 " Electric Utilities",57421195,17 " Independent Power Producers & Combined Heat and Power",14829538,24 "Emissions (thousand metric tons)" " Sulfur Dioxide",85,21 " Nitrogen Oxide",71,12 " Carbon Dioxide",49536,17 " Sulfur Dioxide (lbs/MWh)",2.6,24 " Nitrogen Oxide (lbs/MWh)",2.2,11 " Carbon Dioxide (lbs/MWh)",1512,17

291

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",3389,46 " Electric Utilities",55,48 " Independent Power Producers & Combined Heat and Power",3334,29 "Net Generation (megawatthours)",5627645,50 " Electric Utilities",30059,46 " Independent Power Producers & Combined Heat and Power",5597586,36 "Emissions (thousand metric tons)" " Sulfur Dioxide",13,41 " Nitrogen Oxide",5,47 " Carbon Dioxide",4187,45 " Sulfur Dioxide (lbs/MWh)",5.2,7 " Nitrogen Oxide (lbs/MWh)",1.9,16 " Carbon Dioxide (lbs/MWh)",1640,15 "Total Retail Sales (megawatthours)",11605932,44

292

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",11421,34 " Electric Utilities",8713,29 " Independent Power Producers & Combined Heat and Power",2708,33 "Net Generation (megawatthours)",35146248,38 " Electric Utilities",23710917,34 " Independent Power Producers & Combined Heat and Power",11435331,29 "Emissions (thousand metric tons)" " Sulfur Dioxide",7,44 " Nitrogen Oxide",15,40 " Carbon Dioxide",17020,38 " Sulfur Dioxide (lbs/MWh)",0.4,46 " Nitrogen Oxide (lbs/MWh)",1,37 " Carbon Dioxide (lbs/MWh)",1068,37 "Total Retail Sales (megawatthours)",33772595,33

293

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",36636,7 " Electric Utilities",26639,3 " Independent Power Producers & Combined Heat and Power",9998,11 "Net Generation (megawatthours)",137576941,8 " Electric Utilities",120425913,4 " Independent Power Producers & Combined Heat and Power",17151028,21 "Emissions (thousand metric tons)" " Sulfur Dioxide",265,5 " Nitrogen Oxide",79,10 " Carbon Dioxide",82592,8 " Sulfur Dioxide (lbs/MWh)",4.2,10 " Nitrogen Oxide (lbs/MWh)",1.3,28 " Carbon Dioxide (lbs/MWh)",1324,25

294

Developing and Financing Renewable Energy Projects in Indian Country  

Broader source: Energy.gov (indexed) [DOE]

Presenter: Presenter: Robert Springer, National Renewable Energy Laboratory (NREL) RES2012 CONFERENCE LAS VEGAS, NEVADA MARCH 1, 2012 Context Technically, Indian lands have enough renewable energy resource to produce:  1 billion megawatt-hours (MWh) of wind (about 148,000 homes)  7 billion MWh of solar photovoltaics (PV)  4 trillion MWh of biomass There are a number of barriers constraining this potential including: * Infrastructure and transmission; * Project development capacity; * Project financing options; * Permitting barriers; * Expertise; * Other Project Development & Finance Project Development & Project Finance Finance? "and then" Finance Or? Hey that doesn't make sense!

295

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "NERC Region(s)",,"RFC/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",21417,19 " Electric Utilities",20968,11 " Independent Power Producers & Combined Heat and Power",450,49 "Net Generation (megawatthours)",82348625,19 " Electric Utilities",79816049,15 " Independent Power Producers & Combined Heat and Power",2532576,45 "Emissions (thousand metric tons)" " Sulfur Dioxide",138,13 " Nitrogen Oxide",33,31 " Carbon Dioxide",48196,18 " Sulfur Dioxide (lbs/MWh)",3.7,14 " Nitrogen Oxide (lbs/MWh)",0.9,40 " Carbon Dioxide (lbs/MWh)",1290,26

296

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "NERC Region(s)",,"MRO/WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",3623,45 " Electric Utilities",2994,37 " Independent Power Producers & Combined Heat and Power",629,48 "Net Generation (megawatthours)",10049636,46 " Electric Utilities",8682448,36 " Independent Power Producers & Combined Heat and Power",1367188,47 "Emissions (thousand metric tons)" " Sulfur Dioxide",12,43 " Nitrogen Oxide",12,43 " Carbon Dioxide",3611,47 " Sulfur Dioxide (lbs/MWh)",2.6,23 " Nitrogen Oxide (lbs/MWh)",2.6,8 " Carbon Dioxide (lbs/MWh)",792,41

297

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" Texas" "NERC Region(s)",,"SERC/SPP/TRE/WECC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",108258,1 " Electric Utilities",26533,4 " Independent Power Producers & Combined Heat and Power",81724,1 "Net Generation (megawatthours)",411695046,1 " Electric Utilities",95099161,9 " Independent Power Producers & Combined Heat and Power",316595885,1 "Emissions (thousand metric tons)" " Sulfur Dioxide",430,2 " Nitrogen Oxide",204,1 " Carbon Dioxide",251409,1 " Sulfur Dioxide (lbs/MWh)",2.3,28 " Nitrogen Oxide (lbs/MWh)",1.1,32 " Carbon Dioxide (lbs/MWh)",1346,22

298

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",7986,37 " Electric Utilities",6931,31 " Independent Power Producers & Combined Heat and Power",1056,41 "Net Generation (megawatthours)",48119254,31 " Electric Utilities",44738543,25 " Independent Power Producers & Combined Heat and Power",3380711,42 "Emissions (thousand metric tons)" " Sulfur Dioxide",67,23 " Nitrogen Oxide",61,15 " Carbon Dioxide",45703,21 " Sulfur Dioxide (lbs/MWh)",3.1,19 " Nitrogen Oxide (lbs/MWh)",2.8,7 " Carbon Dioxide (lbs/MWh)",2094,2

299

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" Wisconsin" "NERC Region(s)",,"MRO/RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",17836,23 " Electric Utilities",13098,19 " Independent Power Producers & Combined Heat and Power",4738,20 "Net Generation (megawatthours)",64314067,24 " Electric Utilities",45579970,22 " Independent Power Producers & Combined Heat and Power",18734097,18 "Emissions (thousand metric tons)" " Sulfur Dioxide",145,12 " Nitrogen Oxide",49,25 " Carbon Dioxide",47238,19 " Sulfur Dioxide (lbs/MWh)",5,9 " Nitrogen Oxide (lbs/MWh)",1.7,20 " Carbon Dioxide (lbs/MWh)",1619,16

300

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "NERC Region(s)",,"MRO/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",14592,28 " Electric Utilities",11282,24 " Independent Power Producers & Combined Heat and Power",3310,30 "Net Generation (megawatthours)",57508721,26 " Electric Utilities",46188988,21 " Independent Power Producers & Combined Heat and Power",11319733,30 "Emissions (thousand metric tons)" " Sulfur Dioxide",108,18 " Nitrogen Oxide",50,22 " Carbon Dioxide",47211,20 " Sulfur Dioxide (lbs/MWh)",4.1,11 " Nitrogen Oxide (lbs/MWh)",1.9,14 " Carbon Dioxide (lbs/MWh)",1810,10

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "NERC Region(s)",,"FRCC/SERC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",59147,3 " Electric Utilities",50853,1 " Independent Power Producers & Combined Heat and Power",8294,13 "Net Generation (megawatthours)",229095935,3 " Electric Utilities",206062185,1 " Independent Power Producers & Combined Heat and Power",23033750,15 "Emissions (thousand metric tons)" " Sulfur Dioxide",160,11 " Nitrogen Oxide",101,5 " Carbon Dioxide",123811,2 " Sulfur Dioxide (lbs/MWh)",1.5,37 " Nitrogen Oxide (lbs/MWh)",1,35 " Carbon Dioxide (lbs/MWh)",1191,31

302

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",13697,31 " Electric Utilities",937,42 " Independent Power Producers & Combined Heat and Power",12760,8 "Net Generation (megawatthours)",42804824,34 " Electric Utilities",802906,43 " Independent Power Producers & Combined Heat and Power",42001918,10 "Emissions (thousand metric tons)" " Sulfur Dioxide",35,31 " Nitrogen Oxide",17,38 " Carbon Dioxide",20291,36 " Sulfur Dioxide (lbs/MWh)",1.8,34 " Nitrogen Oxide (lbs/MWh)",0.9,39 " Carbon Dioxide (lbs/MWh)",1045,38

303

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",4180,43 " Electric Utilities",1132,41 " Independent Power Producers & Combined Heat and Power",3048,32 "Net Generation (megawatthours)",22195912,42 " Electric Utilities",3979333,41 " Independent Power Producers & Combined Heat and Power",18216579,19 "Emissions (thousand metric tons)" " Sulfur Dioxide",34,32 " Nitrogen Oxide",6,46 " Carbon Dioxide",5551,43 " Sulfur Dioxide (lbs/MWh)",3.4,17 " Nitrogen Oxide (lbs/MWh)",0.6,46 " Carbon Dioxide (lbs/MWh)",551,47

304

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",32417,9 " Electric Utilities",23642,7 " Independent Power Producers & Combined Heat and Power",8775,12 "Net Generation (megawatthours)",152150512,6 " Electric Utilities",122766490,2 " Independent Power Producers & Combined Heat and Power",29384022,12 "Emissions (thousand metric tons)" " Sulfur Dioxide",218,10 " Nitrogen Oxide",66,14 " Carbon Dioxide",79375,9 " Sulfur Dioxide (lbs/MWh)",3.2,18 " Nitrogen Oxide (lbs/MWh)",1,36 " Carbon Dioxide (lbs/MWh)",1150,33

305

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "NERC Region(s)",,"MRO" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",14715,27 " Electric Utilities",11547,22 " Independent Power Producers & Combined Heat and Power",3168,31 "Net Generation (megawatthours)",53670227,29 " Electric Utilities",45428599,23 " Independent Power Producers & Combined Heat and Power",8241628,32 "Emissions (thousand metric tons)" " Sulfur Dioxide",57,27 " Nitrogen Oxide",44,27 " Carbon Dioxide",32946,29 " Sulfur Dioxide (lbs/MWh)",2.3,27 " Nitrogen Oxide (lbs/MWh)",1.8,18 " Carbon Dioxide (lbs/MWh)",1353,21

306

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Presenters: Presenters: Samuel Booth, NREL Matthew Ferguson, Reznick Group TRIBAL LEADER FORUM EXPLORING THE BUSINESS LINK OPPORTUNITY: TRANSMISSION & CLEAN ENERGY DEVELOPMENT IN THE WEST DENVER, COLORADO FEBRUARY 7-8, 2012 Presentation Overview * Context & Objective * Overview of Renewable Energy: - Project Development - Project Financing * Questions Context Indian lands have enough renewable energy resource to produce:  1.3 million megawatt- hours (MWh) of wind (about 148,000 homes)  9.2 million MWh of solar photovoltaics (PV)  4 million MWh of biomass There are a number of barriers constraining this potential including: * Infrastructure & transmission; * Project development capacity; * Project financing options;

307

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "NERC Region(s)",,"SPP/WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",8130,36 " Electric Utilities",6345,33 " Independent Power Producers & Combined Heat and Power",1785,36 "Net Generation (megawatthours)",36251542,37 " Electric Utilities",30848406,33 " Independent Power Producers & Combined Heat and Power",5403136,37 "Emissions (thousand metric tons)" " Sulfur Dioxide",15,38 " Nitrogen Oxide",56,19 " Carbon Dioxide",29379,31 " Sulfur Dioxide (lbs/MWh)",0.9,42 " Nitrogen Oxide (lbs/MWh)",3.4,5 " Carbon Dioxide (lbs/MWh)",1787,11

308

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "NERC Region(s)",,"MRO/RFC/SERC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",44127,5 " Electric Utilities",4800,35 " Independent Power Producers & Combined Heat and Power",39327,3 "Net Generation (megawatthours)",201351872,5 " Electric Utilities",12418332,35 " Independent Power Producers & Combined Heat and Power",188933540,3 "Emissions (thousand metric tons)" " Sulfur Dioxide",232,9 " Nitrogen Oxide",83,8 " Carbon Dioxide",103128,6 " Sulfur Dioxide (lbs/MWh)",2.5,25 " Nitrogen Oxide (lbs/MWh)",0.9,38 " Carbon Dioxide (lbs/MWh)",1129,34

309

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",1782,49 " Electric Utilities",7,50 " Independent Power Producers & Combined Heat and Power",1775,37 "Net Generation (megawatthours)",7738719,47 " Electric Utilities",10827,47 " Independent Power Producers & Combined Heat and Power",7727892,33 "Emissions (thousand metric tons)" " Sulfur Dioxide","*",50 " Nitrogen Oxide",3,49 " Carbon Dioxide",3217,48 " Sulfur Dioxide (lbs/MWh)","*",50 " Nitrogen Oxide (lbs/MWh)",0.8,42 " Carbon Dioxide (lbs/MWh)",916,39

310

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "NERC Region(s)",,"--" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",2067,48 " Electric Utilities",1889,39 " Independent Power Producers & Combined Heat and Power",178,51 "Net Generation (megawatthours)",6759576,48 " Electric Utilities",6205050,40 " Independent Power Producers & Combined Heat and Power",554526,49 "Emissions (thousand metric tons)" " Sulfur Dioxide",3,46 " Nitrogen Oxide",16,39 " Carbon Dioxide",4125,46 " Sulfur Dioxide (lbs/MWh)",1,41 " Nitrogen Oxide (lbs/MWh)",5.2,1 " Carbon Dioxide (lbs/MWh)",1345,23 "Total Retail Sales (megawatthours)",6247038,50

311

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",45575,4 " Electric Utilities",455,44 " Independent Power Producers & Combined Heat and Power",45120,2 "Net Generation (megawatthours)",229752306,2 " Electric Utilities",1086500,42 " Independent Power Producers & Combined Heat and Power",228665806,2 "Emissions (thousand metric tons)" " Sulfur Dioxide",387,3 " Nitrogen Oxide",136,2 " Carbon Dioxide",122830,3 " Sulfur Dioxide (lbs/MWh)",3.7,13 " Nitrogen Oxide (lbs/MWh)",1.3,27 " Carbon Dioxide (lbs/MWh)",1179,32

312

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "NERC Region(s)",,"MRO/WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",5866,41 " Electric Utilities",2340,38 " Independent Power Producers & Combined Heat and Power",3526,27 "Net Generation (megawatthours)",29791181,41 " Electric Utilities",6271180,39 " Independent Power Producers & Combined Heat and Power",23520001,14 "Emissions (thousand metric tons)" " Sulfur Dioxide",22,35 " Nitrogen Oxide",21,35 " Carbon Dioxide",20370,35 " Sulfur Dioxide (lbs/MWh)",1.6,35 " Nitrogen Oxide (lbs/MWh)",1.6,22 " Carbon Dioxide (lbs/MWh)",1507,18

313

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "NERC Region(s)",,"MRO" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",6188,40 " Electric Utilities",4912,34 " Independent Power Producers & Combined Heat and Power",1276,40 "Net Generation (megawatthours)",34739542,39 " Electric Utilities",31343796,32 " Independent Power Producers & Combined Heat and Power",3395746,41 "Emissions (thousand metric tons)" " Sulfur Dioxide",116,17 " Nitrogen Oxide",52,21 " Carbon Dioxide",31064,30 " Sulfur Dioxide (lbs/MWh)",7.3,3 " Nitrogen Oxide (lbs/MWh)",3.3,6 " Carbon Dioxide (lbs/MWh)",1971,6 "Total Retail Sales (megawatthours)",12956263,42

314

Retrofit Project of 2100 MW Units in Yushe Power Plant, Shanxi Province Using Two Boilers-One CFB FGD  

Science Journals Connector (OSTI)

This paper takes the example of the retrofit of 2100 MW units of Yushe Power Plant in Shanxi Province, and summarizes the applications of circulation fluid bed flue gas desulphurization (CFB-FGD) adopted two bo...

Lin Fulin; Lian Egui

2009-01-01T23:59:59.000Z

315

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

316

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering Engine With 6-Mb Embedded DRAM  

E-Print Network [OSTI]

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering digital assistant (PDA) in which the power has to be supplied by batteries. Since the lithium battery

Yoo, Hoi-Jun

317

An integrated computer-based training simulator for the operative personnel of the 800-MW power-generating unit at the Perm District Power Station  

Science Journals Connector (OSTI)

The integrated computer-based training simulator for an 800-MW power-generating unit is described. Its capacities for training the personnel of the boiler-turbine and chemical departments are shown.

N. Yu. Pevneva; V. N. Piskov; A. N. Zenkov

2007-07-01T23:59:59.000Z

318

Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311  

SciTech Connect (OSTI)

SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

Wallen, R.

2011-02-01T23:59:59.000Z

319

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 9, SEPTEMBER 2007 2021 A 0.2-mW 2-Mb/s Digital Transceiver Based  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 9, SEPTEMBER 2007 2021 A 0.2-mW 2-Mb/s Digital rate of 1.1 10 7, dissipating only 0.2 mW from a 1-V supply generated by a 1.5-V battery. Index Terms body, corresponding to 1­2 m. Moreover, it should be powered by a very small battery in order

Yoo, Hoi-Jun

320

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

322

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

323

Property:PotentialCSPCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPCapacity PotentialCSPCapacity Jump to: navigation, search Property Name PotentialCSPCapacity Property Type Quantity Description The nameplate capacity technical potential from CSP for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

324

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

325

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

326

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

327

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

328

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

329

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

330

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

331

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

332

Property:PotentialRooftopPVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVCapacity PotentialRooftopPVCapacity Jump to: navigation, search Property Name PotentialRooftopPVCapacity Property Type Quantity Description The nameplate capacity technical potential from Rooftop PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

333

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

334

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

335

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

336

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

337

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

338

Comprises over of Energy Resources  

E-Print Network [OSTI]

to 1% of the region's energy resources. Hydro- power 46% Coal 18% Energy Efficiency 16% Natural Gas 11 Coke* (45.6 MW) Biomass (395.4 MW) Nuclear (1,054.9 MW) Wind (1,129.7 MW) Natural Gas (3,180.6 MW) Energy Efficiency (4,633 MW) Coal (5,396 MW) Hydropower (13,401.8 MW) Dispatched Average Megawatts

339

Energy Production Demonstrator for Megawatt Proton Beams  

E-Print Network [OSTI]

A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

Vitaly S. Pronskikh; Nikolai Mokhov; Igor Novitski; Sergey I. Tyutyunnikov

2014-07-16T23:59:59.000Z

340

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transmission planning for Indian power grid: a mixed integer programming approachp  

E-Print Network [OSTI]

) time-block (peak, intermediate, base) l index for transmission line voltage level (400, 220 and 132 kV transmission line, Rs/km LCAP power carrying capacity of an inter-state tie line for a particular voltage class, MW LF transmission loss factor per unit power transfer per km line length, MWh/MWh- km LGTH length

Dragoti-?ela, Eranda

342

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...our questions. The specifications we developed for the...SMR [160 megawatts-thermal (MW th ), 45 MW e...from NuScale. Specifications for the...valves, piping, insulation, instrumentation...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

343

NREL: Technology Deployment - Disaster Resiliency and Recovery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

locally generated wind power. The Greensburg Wind Farm consists of 10 1.25-megawatt (MW) wind turbines that supply 12.5 MW of renewable power to the town-enough to power every...

344

Characterizing, predicting and  

E-Print Network [OSTI]

can increase. Offshore wind farms. Increase of power : Horns RevI : 190MW , Horns RevII : 210MW production from a single multi-megawatt wind farm. Variability of wind power depends on the time and spatial-megawatt wind farm. Variability of wind power depends on the time and spatial scale. R. Girard (Mines

345

Design and development of a 6 MW peak, 24 kW average power S-band klystron  

SciTech Connect (OSTI)

A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

2011-07-01T23:59:59.000Z

346

Evaluation of component performance in the TVA 20 MW FBC after 12,000 hours of operation  

SciTech Connect (OSTI)

During its first three years of operation (July, 1982 through July, 1985), the 20 MW AFBC boiler has been involved in four major campaigns of testing. The fuel used during all of these tests has been Kentucky No. 9, an eastern subbituminous coal with a sulfur content of approximately 4.1%. Two different sulfur sorbents have been used: Reed limestone (from July, 1982 through May, 1984) and Fredonia limestone. The superficial gas velocity through the bed has been 2.4 m/s for more than 90% of the operating time; the velocities used in the tests have ranged from 1.2 to 3.0 m/sec. Results of periodic inspections and measurements of the various boiler components, along with the evaluation of coupon materials exposed in the boiler, are discussed.

Not Available

1986-04-01T23:59:59.000Z

347

Comparison of the combustion behavior of Orimulsion{trademark} and heavy fuel oil in 70 MW flames  

SciTech Connect (OSTI)

Results of an experimental study are shown in this publication to compare the combustion behavior of heavy fuel oil (HFO) and Orimulsion in 70 MW flames. The investigation was carried out with the use of the combustion test rig at the International Combustion Limited in Derby, UK. The main objective of this test work was to quantify the extent of differences in flame properties, particulate and gaseous emissions of Orimulsion and HFO. Under identical combustion conditions, axial profiles of flame temperature and radiation heat flux were determined at 70 MW thermal input and 1% O{sub 2} for both fuels. Gas compositions at flame tail and furnace exit were obtained to estimate flame length and emission of gaseous pollutants. Stack concentration, carbon content, size and chemical composition of fly ash were also measured. The effect of excess air level on exit NOx and CO concentration were studied. Results of detailed flame measurements and the parametric study have shown that orimulsion fuel can be burnt with 99.97% efficiency at 1% exit O{sub 2} with a modified burner system of Dunamenti Power Station. However, significant implications of Orimulsion firing were observed. Gas temperature data and CO concentrations at flame tail have indicated a 1.5--2 m longer flame for Orimulsion. At flame tail, gas temperature in the Orimulsion flame was higher by 100 C than that for HFO. Lower radiant heat flux was measured in the near burner region for Orimulsion. Higher SO{sub 3}, SO{sub 2} and lower NOx emission were found when firing Orimulsion. Despite the higher ash content of Orimulsion, its combustion resulted in smaller particulate emission, which might be due to fly ash deposition in the furnace.

Barta, L.E. [Inst. for Energy, Budapest (Hungary); Horvath, G. [Hungarian Power Companies, Ltd., Budapest (Hungary); Allen, J.W.; Darar, J.S.; Wright, J.A. [International Combustion Ltd., Derby (United Kingdom). Rolls Royce Industrial Power Group; Szederkenyi, S.

1996-12-31T23:59:59.000Z

348

Fact Sheet: Wind Firming EnergyFarm (October 2012)  

Broader source: Energy.gov [DOE]

Primus Power is deploying a 25 MW/75 MWh EnergyFarm in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power...

349

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

350

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Broader source: Energy.gov (indexed) [DOE]

3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery 3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

351

Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El MayorCucapah earthquake revealed by InSAR  

E-Print Network [OSTI]

Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor rocks [Dorsey, 2010]. Previous studies have docu- mented triggered slip on faults in the Imperial Valley of seismic waves. [3] In this study we document triggered slip on faults in the Imperial Valley associated

Fialko, Yuri

352

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller  

E-Print Network [OSTI]

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller Magnetics and Information Science Center, Washington University, St. Louis, MO 63130 Tel: (314) 935-4767; Fax (314) 935-7500; email: rsi@ee.wustl.edu Magnetic force microscopy (MFM

O'Sullivan, Joseph A.

353

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back-projection of P, PP,  

E-Print Network [OSTI]

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back projected to the source region to image locations of coherent short-period seismic wave radiation. Several in North America (P), Japan (PKIKP), and Europe (PP), as well as a global configuration of stations

Madariaga, Raúl

354

IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 32, NO. 12, DEC 1997 1 A 12mW Wide Dynamic Range CMOS Front-End  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 32, NO. 12, DEC 1997 1 A 12mW Wide Dynamic Range CMOS into their products. For many of these hand-held devices, one of the primary concerns is battery life. Thus

Lee, Thomas H.

355

Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location  

Broader source: Energy.gov [DOE]

Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

356

Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow  

E-Print Network [OSTI]

The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

2013-01-01T23:59:59.000Z

357

Process simulation of oxy-fuel combustion for a 300MW pulverized coal-fired power plant using Aspen Plus  

Science Journals Connector (OSTI)

Abstract This work focuses on the amounts and components of flue gas for oxy-fuel combustion in a coal-fired power plant (CFPP). The combustion process of pulverized coal in a 300MW power plant is studied using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer is obtained. The differences between the two processes are identified, and the influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas are examined by sensitivity analysis. The process simulation results show that replacing atmospheric air by a 21%O2/79%CO2 mixture leads the decrease of the flame temperature from 1789C to 1395C. The equilibrium amount of \\{NOx\\} declines obviously but the \\{SOx\\} are still at the same level. The mass fraction of CO2 in flue gas increased from 21.3% to 81.5%. The amount of \\{NOx\\} is affected sensitively by the change of temperature and the excess oxygen ratio, but the change of O2/CO2 molar fraction has a little influence to the generation of NOx. With the increasing of O2 concentration, the flame temperature and \\{NOx\\} emission enhance rapidly. When the molar fraction of O2 increases to 30%, the flame temperature is similar and the mass fraction of \\{NOx\\} is about 1/8 of that air atmosphere.

Xiaohui Pei; Boshu He; Linbo Yan; Chaojun Wang; Weining Song; Jingge Song

2013-01-01T23:59:59.000Z

358

Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine  

Science Journals Connector (OSTI)

The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.

Tae Won Song; Jeong Lak Sohn; Tong Seop Kim; Sung Tack Ro

2006-01-01T23:59:59.000Z

359

Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

NONE

1996-01-29T23:59:59.000Z

360

A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.  

SciTech Connect (OSTI)

This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

Del Bravo, R.; Pinacci, P.; Trifilo, R.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Competitive auction mechanisms for the promotion renewable energy technologies: The case of the 50MW photovoltaics projects in Cyprus  

Science Journals Connector (OSTI)

Abstract There are a range of policy frameworks and support mechanisms to promote the penetration of renewable energy technologies into the energy mix assembled by the governments and regulatory bodies around the world. The three dominant and most common support schemes that have also been implemented within the EU and proven successful in the past include the competitive auctions, the Feed-in Tariff scheme (FiT), and Tradable Green Certificates (TGCs). This study reviews the use of the competitive auction mechanism for the promotion of power generation from renewable energy technologies. The process of the specific policy instrument as well as its pros and cons are introduced. Successful and failed case studies from countries that have already incorporated this mechanism into their renewable energy technologies development policies are also presented. Among these cases is the Cyprus auction procurement for the licensing of 50MW of photovoltaic power plants, conducted in January 2013, which is thoroughly elaborated in this paper. The timeline of the bids is presented, and the auction winner strategy is tracked and examined. A discussion is also presented on the feasibility of the awarded projects. Eventually, the entire auction procurement procedure is evaluated to expose the defects of the mechanism and to offer some recommendations for the viability of the process.

Angeliki Kylili; Paris A. Fokaides

2015-01-01T23:59:59.000Z

362

Experience with the operation, maintenance and utilisation of the 3 MW TRIGA Mark-II research reactor of Bangladesh  

Science Journals Connector (OSTI)

The 3 MW TRIGA (Training, Research, Isotope, General Atomics) Mark-II research reactor of the Bangladesh Atomic Energy Commission (BAEC) has been operating at Atomic Energy Research Establishment (AERE), Savar, Dhaka, since September 1986. Since its commissioning, the reactor has been used in various fields of research and utilisation, such as Neutron Activation Analysis (NAA), Neutron Radiography (NRG), Neutron Scattering (NS), manpower training and education, and production of radioisotopes for medical applications. The reactor facility encountered a couple of incidents, which were successfully handled by BAEC personnel. In some cases, the help of experts from various local organisations/institutions as well as from the International Atomic Energy Agency (IAEA) was obtained. The upgrading of the Safety Analysis Report (SAR) of the reactor facility was completed in 2005 as per the format of the IAEA Safety Guide, SG-35-G1. The cooling system of the reactor as well as some parts of the instrumentations used in the reactor systems were also upgraded/modified during this period. The paper highlights the experience with the operation, maintenance and utilisation of the research reactor for the last 21 years. It also presents some of the modification and upgrading works carried out to enhance the operational safety of the research reactor.

M.A. Zulquarnain; M.M. Haque; M.A. Salam; M.S. Islam; P.K. Saha; M.A. Sarder; A. Haque; M.A.M. Soner; M.M. Uddin; M.M. Rahman; I. Kamal; M.N. Islam; S.M. Hossain

2009-01-01T23:59:59.000Z

363

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved.  

E-Print Network [OSTI]

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors;CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) © CARS

Paris-Sud XI, Université de

364

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved. Segmentation of microcalcification in X-ray mammograms  

E-Print Network [OSTI]

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights

Joskowicz, Leo

365

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber CARS/Springer. All rights reserved.  

E-Print Network [OSTI]

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors is extracted based on the #12;CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J

Louisville, University of

366

Dear Speaker -  

Energy Savers [EERE]

Industrial Electricity Prices 2008 2012 USA 68MWh 66MWh Germany 130MWh 148MWh Japan 115MWh 194MWh France 104MWh 116MWh Source: OECD Electricity Statistics 2013...

367

Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a four-helical bundle fold  

SciTech Connect (OSTI)

To extend the structural coverage of proteins with unknown functions, we targeted a novel protein family (Pfam accession number PF08807, DUF1798) for which we proposed and determined the structures of two representative members. The MW1337R gene of Staphylococcus aureus subsp. aureus Rosenbach (Wood 46) encodes a protein with a molecular weight of 13.8 kDa (residues 1-116) and a calculated isoelectric point of 5.15. The lin2004 gene of the nonspore-forming bacterium Listeria innocua Clip11262 encodes a protein with a molecular weight of 14.6 kDa (residues 1-121) and a calculated isoelectric point of 5.45. MW1337R and lin2004, as well as their homologs, which, so far, have been found only in Bacillus, Staphylococcus, Listeria, and related genera (Geobacillus, Exiguobacterium, and Oceanobacillus), have unknown functions and are annotated as hypothetical proteins. The genomic contexts of MW1337R and lin2004 are similar and conserved in related species. In prokaryotic genomes, most often, functionally interacting proteins are coded by genes, which are colocated in conserved operons. Proteins from the same operon as MW1337R and lin2004 either have unknown functions (i.e., belong to DUF1273, Pfam accession number PF06908) or are similar to ypsB from Bacillus subtilis. The function of ypsB is unclear, although it has a strong similarity to the N-terminal region of DivIVA, which was characterized as a bifunctional protein with distinct roles during vegetative growth and sporulation. In addition, members of the DUF1273 family display distant sequence similarity with the DprA/Smf protein, which acts downstream of the DNA uptake machinery, possibly in conjunction with RecA. The RecA activities in Bacillus subtilis are modulated by RecU Holliday-junction resolvase. In all analyzed cases, the gene coding for RecU is in the vicinity of MW1337R, lin2004, or their orthologs, but on a different operon located in the complementary DNA strand. Here, we report the crystal structures of MW1337R and lin2004, which were determined using the semiautomated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), part of the National Institute of General Medical Sciences Protein Structure Initiative.

Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Deller, Marc; Duan, Lian; Elias, Ylva; Elsliger, Marc-Andr; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Koesema, Eric; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L.; Spraggon, Glen; Trout, Christina V.; ban den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Wolf, Guenter; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (Scripps); (SSRL); (JCSG); (UCSD); (Burnham)

2009-08-28T23:59:59.000Z

368

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Steven T. Derenne

2006-04-28T23:59:59.000Z

369

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-10-26T23:59:59.000Z

370

Numerical investigations of combustion and emissions of syngas as compared to methane in a 200MW package boiler  

Science Journals Connector (OSTI)

Abstract During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting \\{NOx\\} emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngasair combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H2, 50% CO:50% H2 and 33% CO:67% H2. The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and \\{NOx\\} emissions. \\{NOx\\} emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H2 syngas composition had the lowest emissions with the best combustion characteristics.

Mohamed A. Habib; Esmail M.A. Mokheimer; Sofihullahi Y. Sanusi; Medhat A. Nemitallah

2014-01-01T23:59:59.000Z

371

A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer  

SciTech Connect (OSTI)

A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

Samuel, E.A.; Murphy, K.R.; Demian, A.

1989-11-01T23:59:59.000Z

372

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

373

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect (OSTI)

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

374

TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOXECON Retrofit for Mercury and TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009) Project Description Wisconsin Electric Power Company (We Energies) has designed, installed, operated, and evaluated the TOXECON process as an integrated mercury, particulate matter, SO 2 , and NO X emissions control system for application on coal-fired power generation systems. TOXECON is a process in which sorbents, including powdered activated

375

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

SciTech Connect (OSTI)

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

376

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Broader source: Energy.gov (indexed) [DOE]

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

377

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

378

500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application  

SciTech Connect (OSTI)

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

379

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect (OSTI)

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

380

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

Steven Derenne; Robin Stewart

2009-09-30T23:59:59.000Z

382

Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project  

SciTech Connect (OSTI)

Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

2010-06-16T23:59:59.000Z

383

Customer reponse to day-ahead wholesale market electricity prices: Case study of RTP program experience in New York  

E-Print Network [OSTI]

Price ($/MWh) Conservation Adjusted Demand Response (MW) The elasticitiesDemand Response (MW) To estimate the peak-period price response of SC-3A customers as a group, the elasticitiesresponse capability, and quantitatively through the estimation of price elasticity using demand

2004-01-01T23:59:59.000Z

384

Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies  

Science Journals Connector (OSTI)

...1.5 per m2 ) CdTe Roadmap (29) Poly-Si Module...21% Wafer Silicon Roadmap (33) Poly-silicon wafer...120 m Wafer Silicon Roadmap (33) Materials efficient...MWh/yr Annual natural gas consumptiona 8900 0 MMBtu...Nominal capacity wind turbine 2.5 MW 5 MW Lifetime...

Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin A. Heath; Joseph D. Bergesen; Andrea Ramirez; Mabel I. Vega; Lei Shi

2014-01-01T23:59:59.000Z

385

The Treatment of Risk in the DWR Long-term Contracts Section 11: Appendices Appendix E. DWR Non-Renewable Contract Summaries  

E-Print Network [OSTI]

Excused Outages. Fuel Price Risk Seller bears fuel price risk. Scheduling Risk Buyer responsible Allegheny Energy Supply Company, LLC Fuel Natural gas Rated Capacity (MW) 150 to 1,000 MW Contract Length at Redondo, Ellis, Alamitos (pg. 30-55) Purchase Option None Contract Price Total Price = $61.00 / MWh (pg

Kammen, Daniel M.

386

Initial tests and operation of a 110 GHz, 1 MW gyrotron with evacuated waveguide system on the DIII-D tokamak  

SciTech Connect (OSTI)

A gyrotron producing nominally 1 MW at 110 GHz has been installed at the DIII-D tokamak and operated in a program of initial tests with a windowless evacuated transmission line. The alignment and first test operation were performed in an air environment at atmospheric pressure. Under these conditions, the tube produced rf output in excess of 800 kW for pulse lengths greater than 10 msec and power near 500 kW for pulse lengths of about 100 msec into a free space dummy load. The gyrotron was operated into evacuated corrugated waveguide in the full power parameter regime for pulse lengths of up to 500 msec injecting greater than 0.5 MW into DIII-D for a preliminary series of experiments. Generated powers greater than 900 kW were achieved. A parasitic oscillation at various frequencies between 20 and 100 MHz, which was generated during the pulsing of the gyrotron electron beam, was suppressed somewhat by a capacitive filter attached to the gyrotron itself. Addition of a magnetic shield intended to alter the magnetic field geometry below the cathode eliminated internal tube sparks. Rework of the external power and interlock circuitry to improve the immunity to electromagnetic interference was also done in parallel so that the fast interlock circuitry could be used. The latest results of the test program, the design of the free space load and other test hardware, and the transmission line will be presented.

Lohr, J.; Ponce, D.; Tooker, J.F. [and others

1996-08-01T23:59:59.000Z

387

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

SciTech Connect (OSTI)

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

388

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37W/m2K and the static pressure loss of 781Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 24g/(kWh) and saving of water at 2535t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

389

Solar Industry Scorches Records  

Office of Energy Efficiency and Renewable Energy (EERE)

A new report indicates photovoltaic (PV) installations continued their impressive growth in 2013, increasing 41% over 2012 to 4,751 megawatts (MW) of installed power in the United States.

390

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

391

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

incentives, or higher should logistics preclude the use of megawatt (MW)-scale wind turbines (for additional detail on wind power costs in the USVI see Section 3.0 and...

392

A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes  

Broader source: Energy.gov [DOE]

Starting in 2012, researchers tried placing spotlights downwind from the 2.5-megawatt (MW) wind turbine in Rosemount, Minnesota. The research team was attempting to study turbulent airflow around a turbine in the field.

393

Hydrogen and Fuel Cells Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 2011 Fuel Cell Market Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key Countries: 2008-2010 Fuel cell market continues to...

394

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system for a CHP project less than 1 megawatt (MW) in size. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions More Documents & Publications Low-Cost...

395

Low-Cost Packaged Combined Heat and Power System | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

396

Muon science in J-PARC  

Science Journals Connector (OSTI)

The intensity of proton accelerator has attained to the order to mega-watt, and several MW-class proton accelerators start to operate in the world. J-PARC is a complex of three accelerators, and generates a varie...

Naritoshi Kawamura; Shunsuke Makimura; Koichiro Shimomura

2009-11-01T23:59:59.000Z

397

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

398

Alternative Energy Law (AEL)  

Broader source: Energy.gov [DOE]

Iowa requires its two investor-owned utilities (MidAmerican Energy and Alliant Energy Interstate Power and Light) to own or to contract for a combined total of 105 megawatts (MW) of renewable...

399

EIS-0345: Plymouth Generating Facility Project  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's decision to approve Plymouth Energy, L.L.C. proposed 307-megawatt (MW), natural gas-fired, combined cycle power generation facility to interconnect into BPAs regional transmission system.

400

Raser Receives Third Party Analysis on Well Field | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GeothermEx reported that well 24-34 indicated 3.6 megawatts (MW) net at the well depth level Raser plans to produce, with temperatures in excess of 280 degrees F. GeothermEx's...

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Wind Research - NREL, Collaborators Complete Gearbox of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can increase reliability, decrease mass, improve efficiency, and reduce the cost of wind energy. In addition, the design can scale up to ratings as high as 10 megawatts (MW) while...

402

Scaling Up Nascent Photovoltaics AT Home | Department of Energy  

Office of Environmental Management (EM)

the solar panels. The modules from the plant will supply more than 300 megawatts (MW) of electricity to California consumers through agreements with San Diego Gas and Electric as...

403

Competitive Funding Solicitations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(Lyndon B. Johnson Space Center in Houston, Texas): This 13.7 megawatt (MW) combined heat and power (CHP) system at the center is expected to net more than 29 million in...

404

Assisting Federal Facilities with Energy Conservation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Lyndon B. Johnson Space Center in Houston, Texas): This 13.7 megawatt (MW) combined heat and power (CHP) system at the center is expected to net more than 29 million in...

405

Microsoft Word - Conergy DRAFT EA 1876 7.20.2011.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 Megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in...

406

EIS-0343: Draft Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Corporation (PERC), proposes to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon, near the city of...

407

EIS-0343: EPA Notice of Availability of the Final Environmental...  

Broader source: Energy.gov (indexed) [DOE]

Klamath County, Oregon Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined-Cycle Electric Generating Plant, Right-of-Way Permit cross Federal Land under the...

408

EIS-0343: Final Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Resources Company (PERC), proposes to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon near the city of...

409

Net Metering  

Broader source: Energy.gov [DOE]

Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005 and 2007. Systems up to one megawatt (MW) in capacity that generate electricity...

410

Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

2009-05-04T23:59:59.000Z

411

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,83,83,83,800,1,2 6893,36894,36894,83,83,83,800,1,2 "Entergy",36894,36895,36895,93,93,93,800,1,2 "Entergy",36895,36896,36896,83,78.5,80.83,7200,9,4 "Entergy",36896,36899,36899,78,67,74.25,3200,4,5 "Entergy",36899,36900,36900,57,54,55.5,1600,2,4 "Entergy",36900,36901,36901,53,53,53,1600,1,2 "Entergy",36902,36903,36903,67.5,65,66.5,4000,5,3 "Entergy",36903,36906,36906,52.5,48,50.25,1600,2,3 "Entergy",36907,36908,36908,52,45,48.86,8800,11,4 "Entergy",36908,36909,36909,56,51,51.95,16800,21,6 "Entergy",36909,36910,36910,50,48.5,49.33,24000,30,7 "Entergy",36910,36913,36913,56.5,54,55.25,11200,13,7 "Entergy",36913,36914,36914,63,57,58.38,6400,8,3 "Entergy",36914,36915,36915,61.5,42,55.75,15200,19,9

412

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,180,158,161.65,26400,33,22 449,39450,39450,180,158,161.65,26400,33,22 "NEPOOL MH DA LMP",39450,39451,39451,123,108,114.27,36800,46,28 "NEPOOL MH DA LMP",39451,39454,39454,77,75.5,76.31,21600,26,17 "NEPOOL MH DA LMP",39454,39455,39455,68.25,66,67.1,41600,51,26 "NEPOOL MH DA LMP",39455,39456,39456,69.5,68,68.71,21600,27,18 "NEPOOL MH DA LMP",39456,39457,39457,81,74,75.75,30400,35,17 "NEPOOL MH DA LMP",39457,39458,39458,75,69.75,71.18,24800,31,19 "NEPOOL MH DA LMP",39458,39461,39461,80.5,77,79.38,17600,19,17 "NEPOOL MH DA LMP",39461,39462,39462,102,95,98.76,52000,64,24 "NEPOOL MH DA LMP",39462,39463,39463,90.5,87.5,88.59,34400,43,25 "NEPOOL MH DA LMP",39463,39464,39464,85,83.5,84.21,20800,26,14

413

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,43,42.5,42.75,5.17,1600,2,4 815,39818,39818,43,42.5,42.75,5.17,1600,2,4 "ERCOT-South",39818,39819,39819,40,39.5,39.88,-2.87,3200,4,3," " "ERCOT-South",39819,39820,39820,39,38,38.73,-1.15,8800,9,9 "ERCOT-South",39820,39821,39821,41.5,39,39.82,1.09,8800,11,9 "ERCOT-South",39821,39822,39822,38.75,37.5,38.03,-1.79,6400,8,10 "ERCOT-South",39822,39825,39825,43.5,43.5,43.5,5.47,800,1,2 "ERCOT-South",39825,39826,39826,55,50.5,52.95,9.45,8800,11,12,,," " "ERCOT-South",39826,39827,39827,45.5,43.5,44.44,-8.51,14400,18,18 "ERCOT-South",39827,39828,39828,45,44.25,44.68,0.24,12000,14,12 "ERCOT-South",39828,39829,39829,44,42.75,43.18,-1.5,8000,10,10 "ERCOT-South",39833,39834,39834,33,32.5,32.75,-10.43,9600,12,8

414

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.5,53.4,53.98,5.44,3200,4,7 54.5,53.4,53.98,5.44,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,47.25,48.27,-5.71,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53.5,54.75,6.48,4800,6,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",97,87,89.96,35.21,20800,18,16 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.25,51,53.71,-36.25,16800,19,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,46,46.33,-7.38,17600,22,17

415

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 "Nepool MH Da Lmp",39818,39819,39819,67,65,66.22,0.78,39200,46,22 "Nepool MH Da Lmp ",39819,39820,39820,65,63.25,63.83,-2.39,20000,24,18 "Nepool MH Da Lmp ",39820,39821,39821,67.5,65.75,66.47,2.64,28000,33,16 "Nepool MH Da Lmp ",39821,39822,39822,78.5,76,77.31,10.84,21600,27,16 "Nepool MH Da Lmp ",39822,39825,39825,100,90,94.19,16.88,28800,35,19 "Nepool MH Da Lmp ",39825,39826,39826,81,72.75,74.76,-19.43,36000,44,24 "Nepool MH Da Lmp ",39826,39827,39827,101,98,99.83,25.07,16000,20,18 "Nepool MH Da Lmp",39827,39828,39828,130,117,120.32,20.49,40000,50,27 "Nepool MH Da Lmp ",39828,39829,39829,120,106,109.76,-10.56,72800,91,35

416

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 "SP 15",39450,39451,39452,70,63,68.49,291200,275,37 "SP 15",39451,39454,39454,75,68,69.2,140000,326,39 "SP 15",39454,39455,39455,73.25,69,71.52,144800,329,37 "SP 15",39455,39456,39456,72.25,70.25,71.32,198000,425,35 "SP 15",39456,39457,39457,73.75,70.75,72.79,157600,351,37 "SP 15",39457,39458,39459,70.25,67.25,68.46,226400,268,33 "SP 15",39458,39461,39461,75,73.25,73.77,184000,366,38 "SP 15",39461,39462,39462,78.25,75,75.77,110800,235,34 "SP 15",39462,39463,39464,88,77.5,79.42,323200,351,36 "SP 15",39463,39465,39466,79,74.25,77.52,259200,302,36 "SP 15",39464,39468,39468,84.45,77,82.35,126400,287,36

417

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.55,54.05,54.37,1.9,8800,20,11 54.55,54.05,54.37,1.9,8800,20,11 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",53.25,52.75,53.09,-1.28,35200,64,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,51.25,51.51,-1.58,13600,28,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.5,53.25,54.08,2.57,65600,71,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.15,50.8,51.01,-3.07,27600,53,19 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50.75,50,50.18,-0.83,23200,39,11

418

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,62,55,55.98,10400,13,10 084,39085,39085,62,55,55.98,10400,13,10 "NEPOOL MH DA LMP",39085,39086,39086,54.75,52.75,53.53,30400,38,20 "NEPOOL MH DA LMP",39086,39087,39087,56,55,55.35,24800,31,19 "NEPOOL MH DA LMP",39087,39090,39090,58,56.5,57.08,8000,10,12 "NEPOOL MH DA LMP",39090,39091,39091,58.75,57.25,57.86,34400,41,19 "NEPOOL MH DA LMP",39091,39092,39092,60.5,59,59.8,20800,25,19 "NEPOOL MH DA LMP",39092,39093,39093,65,63.5,64.04,13600,16,15 "NEPOOL MH DA LMP",39093,39094,39094,61.25,59.75,60.82,15200,19,14 "NEPOOL MH DA LMP",39094,39097,39097,62,59,60.95,16800,21,16 "NEPOOL MH DA LMP",39097,39098,39098,69.25,67,68.25,22400,28,15 "NEPOOL MH DA LMP",39098,39099,39099,89,84.5,86.33,34400,43,26

419

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

53.5,48,50.93,,13600,17,11 53.5,48,50.93,,13600,17,11 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,52.75,55,4.07,31200,39,15 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.5,49.5,50.38,-4.62,3200,4,4 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,49.5,51.25,0.87,19200,24,12 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,45.25,45.8,-5.45,21600,27,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43,39.5,41.3,-4.5,10400,13,8

420

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 "Mid Columbia Peak",41247,41248,41248,28.5,27,27.86,0.1,79200,187,26 "Mid Columbia Peak",41248,41249,41249,28,23.5,27.02,-0.84,76000,170,25 "Mid Columbia Peak",41249,41250,41251,23.25,21.25,22.44,-4.58,159200,191,23 "Mid Columbia Peak",41250,41253,41253,25.25,21.25,23.45,1.01,74800,176,25 "Mid Columbia Peak",41253,41254,41254,23.75,20.75,22.51,-0.94,92800,209,26 "Mid Columbia Peak",41254,41255,41255,24.5,23,23.84,1.33,100800,222,27 "Mid Columbia Peak",41255,41256,41256,28,25.5,26.88,3.04,80800,182,26 "Mid Columbia Peak",41256,41257,41258,27.75,26.5,27.13,0.25,152000,171,25 "Mid Columbia Peak",41257,41260,41260,25.75,23.25,24.43,-2.7,76000,180,25

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

38.75,37.25,37.95,-2.02,13600,17,14 38.75,37.25,37.95,-2.02,13600,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,40,42.39,4.44,10000,25,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,37.75,38.26,-4.13,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.25,37.25,38.46,0.2,7600,19,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,38,38.93,0.47,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38.25,36.5,37.29,-1.64,13600,17,17

422

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,37.45,33.75,35.69,28800,36,19 623,37624,37624,37.45,33.75,35.69,28800,36,19 "PJM West",37624,37627,37627,48,47,47.58,28800,32,20 "PJM West",37627,37628,37628,50.5,48,49.53,33600,42,19 "PJM West",37628,37629,37629,47,44.25,45.39,35200,44,20 "PJM West",37629,37630,37630,39,37,37.73,27200,33,19 "PJM West",37630,37631,37631,43.5,41.75,42.44,25600,27,17 "PJM West",37631,37634,37634,64,56.5,58.31,20800,26,19 "PJM West",37634,37635,37635,56,54.8,55.52,19200,24,19 "PJM West",37635,37636,37636,56.5,54.9,55.51,28000,33,19 "PJM West",37636,37637,37637,53,50.25,51.89,32000,40,22 "PJM West",37637,37638,37638,54,52,52.63,30400,38,23 "PJM West",37638,37641,37641,48.25,47,47.48,26400,33,17

423

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,33.75,32.5,33.23,10400,13,12 258,37259,37259,33.75,32.5,33.23,10400,13,12 "NEPOOL",37259,37260,37260,36.25,35,35.98,24800,31,18 "NEPOOL",37260,37263,37263,34,33.25,33.66,8800,11,12 "NEPOOL",37263,37264,37264,34,33.5,33.67,10400,13,11 "NEPOOL",37264,37265,37265,32.6,31,32.04,9600,11,13 "NEPOOL",37265,37266,37266,29.5,28.7,29.1,10400,13,11 "NEPOOL",37266,37267,37267,29.25,28.25,28.75,12000,15,12 "NEPOOL",37267,37270,37270,31,30,30.24,16800,17,13 "NEPOOL",37270,37271,37271,30.5,29.75,30.09,30400,36,15 "NEPOOL",37271,37272,37272,29.5,28.65,28.98,23200,28,15 "NEPOOL",37272,37273,37273,30.4,29.8,30.02,32800,39,16 "NEPOOL",37273,37274,37274,30,29.1,29.37,11200,14,15 "NEPOOL",37274,37277,37277,30,29.25,29.72,6400,8,9

424

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,89,82.75,86.08,20.49,214400,242,55 182,40183,40183,89,82.75,86.08,20.49,214400,242,55 "PJM Wh Real Time Peak",40183,40184,40184,80.65,74.5,77.16,-8.92,270400,295,56 "PJM Wh Real Time Peak",40184,40185,40185,80.5,77.5,78.92,1.76,93600,111,47 "PJM Wh Real Time Peak",40185,40186,40186,86,78.25,80.64,1.72,278400,316,62 "PJM Wh Real Time Peak",40186,40189,40189,82.75,72,80.64,0,81600,98,36 "PJM Wh Real Time Peak",40189,40190,40190,73,65.75,67.86,-12.78,178400,205,50 "PJM Wh Real Time Peak",40190,40191,40191,55.25,53,53.89,-13.97,162400,180,50 "PJM Wh Real Time Peak",40191,40192,40192,49.75,48,48.84,-5.05,97600,109,45 "PJM Wh Real Time Peak",40192,40193,40193,46.25,43.5,44.65,-4.19,99200,117,46 "PJM Wh Real Time Peak",40193,40196,40196,46,44.95,45.38,0.73,59200,71,35

425

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 "ERCOT-South",38748,38749,38749,57,57,57,-0.5,800,1,2 "ERCOT-South",38751,38754,38754,59,59,59,2,1600,2,3 "ERCOT-South",38786,38789,38789,48,48,48,-11,800,1,2 "ERCOT-South",38803,38804,38804,52.5,50.5,51.06,3.06,6400,8,7 "ERCOT-South",38804,38805,38805,54.75,54.75,54.75,3.69,3200,2,3 "ERCOT-South",38805,38806,38806,55.25,53.5,54.21,-0.54,4800,6,5 "ERCOT-South",38806,38807,38807,58,58,58,3.79,800,1,2,,,,," " "ERCOT-South",38810,38811,38811,60,60,60,2,800,1,2 "ERCOT-South",38811,38812,38812,64,64,64,4,800,1,2 "ERCOT-South",38812,38813,38813,63,62.5,62.63,-1.37,3200,4,6 "ERCOT-South",38813,38814,38814,62,62,62,-0.63,800,1,2

426

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 "PJM Wh Real Time Peak",40547,40548,40548,49.25,47.45,48.14,-0.57,64000,67,40 "PJM Wh Real Time Peak",40548,40549,40549,53.5,51.5,52.27,4.13,55200,66,37 "PJM Wh Real Time Peak",40549,40550,40550,60.5,57,58.43,6.16,80000,93,39 "PJM Wh Real Time Peak",40550,40553,40553,63.5,57,60.43,2,105600,124,41 "PJM Wh Real Time Peak",40553,40554,40554,69.5,64.25,66.98,6.55,128800,145,44 "PJM Wh Real Time Peak",40554,40555,40555,72.25,62,67.54,0.56,158400,194,51 "PJM Wh Real Time Peak",40555,40556,40556,84,75,80.13,12.59,92800,116,46 "PJM Wh Real Time Peak",40556,40557,40557,89.5,80.5,84.09,3.96,108800,133,42 "PJM Wh Real Time Peak",40557,40560,40560,57.55,55,56.11,-27.98,88800,105,40

427

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 "SP-15 Gen DA LMP Peak",40183,40184,40184,51.75,50.5,51.01,-0.84,61600,115,25 "SP-15 Gen DA LMP Peak",40184,40185,40185,53,50.5,51.39,0.38,59600,115,24 "SP-15 Gen DA LMP Peak",40185,40186,40187,58.5,55,56.79,5.4,394400,381,29 "SP-15 Gen DA LMP Peak",40186,40189,40189,51.25,50.75,51,-5.79,59200,116,26 "SP-15 Gen DA LMP Peak",40189,40190,40190,50.25,49,49.8,-1.2,53600,102,25 "SP-15 Gen DA LMP Peak",40190,40191,40192,51.5,50.75,51.12,1.32,59200,61,19 "SP-15 Gen DA LMP Peak",40191,40193,40194,49,48.25,48.35,-2.77,77600,71,20 "SP-15 Gen DA LMP Peak",40192,40196,40196,50.5,50,50.3,1.95,38800,71,18 "SP-15 Gen DA LMP Peak",40193,40197,40197,51.35,50,50.93,0.63,66800,84,19

428

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43,43,43,4800,6,6 084,39085,39085,43,43,43,4800,6,6 "Entergy",39085,39086,39086,40,34,38.3,4000,5,6 "Entergy",39086,39087,39087,38,37,37.5,1600,2,2 "Entergy",39087,39090,39090,41,41,41,800,1,2 "Entergy",39090,39091,39091,49,46,48.14,5600,6,6 "Entergy",39091,39092,39092,48,48,48,2400,3,4 "Entergy",39092,39093,39093,49,47,48,1600,2,3 "Entergy",39093,39094,39094,45,44,44.5,1600,2,4 "Entergy",39094,39097,39097,51,47,49.33,2400,3,5 "Entergy",39097,39098,39098,58.5,53.5,56.06,6400,8,8 "Entergy",39098,39099,39099,62,56,58.97,7200,9,9 "Entergy",39099,39100,39100,54.5,53,53.6,4000,5,5 "Entergy",39100,39101,39101,50.75,50,50.15,4000,5,9 "Entergy",39101,39104,39104,55,53,54,2400,3,3

429

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,55.25,54,54.67,7.01,27200,29,18 546,40547,40547,55.25,54,54.67,7.01,27200,29,18 "Nepool MH DA LMP",40547,40548,40548,50,48.75,49.39,-5.28,14400,16,14 "Nepool MH DA LMP",40548,40549,40549,54.25,53,53.44,4.05,24800,31,23 "Nepool MH DA LMP",40549,40550,40550,55.5,53.25,54.05,0.61,84800,80,24 "Nepool MH DA LMP",40550,40553,40553,65.5,64.75,65.01,10.96,21600,25,18 "Nepool MH DA LMP",40553,40554,40554,71,68.5,69.33,4.32,15200,18,17 "Nepool MH DA LMP",40554,40555,40555,79,72,77.51,8.18,68800,85,29 "Nepool MH DA LMP",40555,40556,40556,100.5,88,94.96,17.45,40000,49,23 "Nepool MH DA LMP",40556,40557,40557,92.25,87,87.7,-7.26,25600,31,23 "Nepool MH DA LMP",40557,40560,40560,66,63.5,65.03,-22.67,28000,30,17

430

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,41,39,40.13,6.73,12000,14,13 355,38356,38356,41,39,40.13,6.73,12000,14,13 "PJM Wh Real Time Peak",38356,38357,38357,41,40,40.57,0.44,13600,15,15 "PJM Wh Real Time Peak",38357,38358,38358,44,42,43.23,2.66,30400,35,16 "PJM Wh Real Time Peak",38358,38359,38359,46.25,44,45.07,1.84,17600,22,12 "PJM Wh Real Time Peak",38359,38362,38362,39.5,38.75,39.17,-5.9,9600,12,11 "PJM Wh Real Time Peak",38362,38363,38363,45,41.5,43.31,4.14,26400,32,17 "PJM Wh Real Time Peak",38363,38364,38364,44,41.25,41.8,-1.51,16000,19,15 "PJM Wh Real Time Peak",38364,38365,38365,39.5,38.5,39.1,-2.7,10400,13,13 "PJM Wh Real Time Peak",38365,38366,38366,51.5,47,48.26,9.16,57600,58,17 "PJM Wh Real Time Peak",38366,38369,38369,65,63,63.48,15.22,23200,21,14

431

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

34.5,34.5,34.5,3.21,1600,2,3 34.5,34.5,34.5,3.21,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35.75,35.5,35.58,1.08,2400,3,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.5,36,36.25,0.67,4000,5,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36,36.13,-0.12,3200,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,43.5,43.75,7.62,3200,4,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.25,43.75,44.04,0.29,5600,7,8

432

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 "ERCOT-South",40912,40913,40913,28,27.25,27.72,1.09,8000,9,7 "ERCOT-South",40913,40914,40914,25.75,25.75,25.75,-1.97,2400,3,4 "ERCOT-South",40914,40917,40917,27,27,27,1.25,1600,2,4 "ERCOT-South",40919,40920,40920,31,31,31,4,800,1,2 "ERCOT-South",40920,40921,40921,30.25,30.25,30.25,-0.75,800,1,2 "ERCOT-South",40925,40926,40926,25.5,25.5,25.5,-4.75,800,1,2 "ERCOT-South",40926,40927,40927,23.25,23.25,23.25,-2.25,800,1,2 "ERCOT-South",40931,40932,40932,24.5,24.5,24.5,1.25,800,1,2 "ERCOT-South",40932,40933,40933,26,25.75,25.96,1.46,4800,6,4 "ERCOT-South",40933,40934,40934,28,27,27.5,1.54,1600,2,4 "ERCOT-South",40934,40935,40935,29,28.75,28.88,1.38,1600,2,4

433

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

68.5,66,67.29,5.05,28400,71,21 68.5,66,67.29,5.05,28400,71,21 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.5,63.85,-3.44,27200,66,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,61.75,63.39,-0.46,80800,99,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,63.5,64.58,1.19,49200,107,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,64,64.98,0.4,32400,81,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,62.25,63.26,-1.72,78400,96,25

434

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.75,63,64.97,4.97,29600,55,25 65.75,63,64.97,4.97,29600,55,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.25,59,61.4,-3.57,106400,109,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,59.25,60.22,-1.18,45600,102,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.5,61.75,62.26,2.04,40400,86,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",64.2,62,62.52,0.26,38400,75,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.45,62,63.19,0.67,45200,87,27

435

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 "PJM-West Real Time Peak",41277,41278,41278,37,36,36.53,-6.11,19200,23,23 "PJM-West Real Time Peak",41278,41281,41281,36.5,36,36.17,-0.36,41600,48,32 "PJM-West Real Time Peak",41281,41282,41282,33.05,32.5,32.61,-3.56,20800,26,18 "PJM-West Real Time Peak",41282,41283,41283,33.75,32.5,32.91,0.3,37600,43,30 "PJM-West Real Time Peak",41283,41284,41284,31,30.25,30.64,-2.27,26400,31,26 "PJM-West Real Time Peak",41284,41285,41285,29.9,29.25,29.66,-0.98,38400,26,23 "PJM-West Real Time Peak",41285,41288,41288,32.5,31.5,32.14,2.48,40000,50,28 "PJM-West Real Time Peak",41288,41289,41289,37.5,34.5,36.5,4.36,64800,74,35

436

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,100.5,95,97,19.88,33600,42,27 182,40183,40183,100.5,95,97,19.88,33600,42,27 "Nepool MH DA LMP",40183,40184,40184,95,90,92.96,-4.04,39200,49,25 "Nepool MH DA LMP",40184,40185,40185,94,83,86.45,-6.51,33600,42,30 "Nepool MH DA LMP",40185,40186,40186,90,81.5,83.19,-3.26,47200,53,27 "Nepool MH DA LMP",40186,40189,40189,91,88.75,89.88,6.69,42400,53,30 "Nepool MH DA LMP",40189,40190,40190,71,67.75,68.95,-20.93,78400,95,30 "Nepool MH DA LMP",40190,40191,40191,61.25,58.75,59.99,-8.96,52800,64,31 "Nepool MH DA LMP",40191,40192,40192,56.25,54.75,55.33,-4.66,71200,82,32 "Nepool MH DA LMP",40192,40193,40193,53.75,53,53.36,-1.97,44000,55,25 "Nepool MH DA LMP",40193,40196,40196,55.75,54.75,55.64,2.28,21600,25,12

437

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 "Indiana Rt Peak",41247,41248,41248,34,33.5,33.75,2.25,1600,2,3 "Indiana Rt Peak",41248,41249,41249,37.25,37,37.13,3.38,8000,10,9 "Indiana Rt Peak",41249,41250,41250,34.25,33.25,33.67,-3.46,2400,3,6 "Indiana Rt Peak",41250,41253,41253,38.25,37,37.5,3.83,12800,16,13 "Indiana Rt Peak",41253,41254,41254,37.75,37.5,37.63,0.13,1600,2,4 "Indiana Rt Peak",41254,41255,41255,34,34,34,-3.63,2400,3,4 "Indiana Rt Peak",41255,41256,41256,32.25,32,32.19,-1.81,3200,4,6 "Indiana Rt Peak",41256,41257,41257,31,31,31,-1.19,1600,2,3 "Indiana Rt Peak",41257,41260,41260,33,32,32.5,1.5,1600,2,4 "Indiana Rt Peak",41260,41261,41261,33.9,33.5,33.66,1.16,3200,4,7

438

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 "Indiana",40912,40913,40913,31,30.45,30.73,-3.65,4800,6,7 "Indiana",40913,40914,40914,31,28.75,30.27,-0.46,20000,25,14 "Indiana",40917,40918,40918,29.05,29,29.03,-1.24,1600,2,4 "Indiana",40918,40919,40919,29.5,28.5,29.02,-0.01,5600,7,8 "Indiana",40919,40920,40920,32.25,30.75,31.59,2.57,6400,8,7 "Indiana",40920,40921,40921,35,33.25,33.92,2.33,30400,37,19 "Indiana",40921,40924,40924,29.5,29,29.25,-4.67,1600,2,4 "Indiana",40924,40925,40925,31.5,29.75,30.52,1.27,7200,9,8 "Indiana",40925,40926,40926,30.25,29.5,30,-0.52,3200,4,6 "Indiana",40926,40927,40927,33.75,32,32.61,2.61,13600,17,16 "Indiana",40927,40928,40928,33.5,32.5,33,0.39,9600,12,12

439

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

37.25,35.5,36.16,3.13,27200,25,16 37.25,35.5,36.16,3.13,27200,25,16 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",32,31,31.63,-4.53,12800,15,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",26.25,25.5,25.86,-5.77,7200,7,10 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,38.5,39.21,13.35,20000,24,13 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,45,46.51,7.3,27200,32,19 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,42,42.79,-3.72,39200,46,20

440

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

26,25.25,25.71,-1.15,6800,16,15 26,25.25,25.71,-1.15,6800,16,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",24,23.25,23.63,-2.08,14400,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",23.85,22,23.36,-0.27,8800,22,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.85,19.25,20.77,-2.59,10000,25,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.75,20,21.32,0.55,9600,23,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.25,19,20.42,-0.9,7200,16,14

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40.5,40.35,40.43,2.67,3200,8,3 40.5,40.35,40.43,2.67,3200,8,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,40.85,40.97,0.54,2000,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-4.72,3200,1,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.05,39,39.02,2.77,1200,2,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-2.77,3200,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.75,36.5,36.63,0.38,1600,4,3

442

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,31,27.5,29.51,108000,101,28 258,37259,37259,31,27.5,29.51,108000,101,28 "PJM West",37259,37260,37260,28.25,26.95,27.38,107200,96,32 "PJM West",37260,37263,37263,26.7,26.25,26.45,102400,106,29 "PJM West",37263,37264,37264,26.25,25.45,25.75,87200,81,27 "PJM West",37264,37265,37265,24.85,24.2,24.45,53600,58,27 "PJM West",37265,37266,37266,23.6,22.5,23.05,88000,87,25 "PJM West",37266,37267,37267,23.05,22.75,22.91,72000,79,24 "PJM West",37267,37270,37270,25.1,24.55,24.88,75200,82,29 "PJM West",37270,37271,37271,23.65,22.6,23.44,47200,44,22 "PJM West",37271,37272,37272,23.05,22.85,22.95,42400,47,21 "PJM West",37272,37273,37273,23.6,23.1,23.33,68000,76,27 "PJM West",37273,37274,37274,23.8,23.3,23.47,72800,73,28

443

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

50.25,49,49.68,2.51,19200,46,20 50.25,49,49.68,2.51,19200,46,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.5,48.5,49.1,-0.58,18000,43,18 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.25,47,48.32,-0.78,27200,63,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55,50.5,52.65,4.33,23200,29,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,46.5,47.18,-5.47,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,44.75,45.82,-1.36,13600,28,18

444

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

8,50.33,2.26,87200,193,30 8,50.33,2.26,87200,193,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.5,48.4,-1.93,70400,154,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,46.48,-1.92,62000,146,28 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,51.48,5,90400,108,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,45.53,-5.95,38800,94,28

445

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 "SP-15 Gen DA LMP Peak",41247,41248,41248,43,42,42.36,-1.51,36800,59,23 "SP-15 Gen DA LMP Peak",41248,41249,41249,40.25,39.75,40,-2.36,17200,24,11 "SP-15 Gen DA LMP Peak",41249,41250,41251,37,36.5,36.56,-3.44,31200,28,13 "SP-15 Gen DA LMP Peak",41250,41253,41253,41.25,40,40.84,4.28,12000,26,16 "SP-15 Gen DA LMP Peak",41253,41254,41254,39.5,38.5,39.08,-1.76,12400,26,15 "SP-15 Gen DA LMP Peak",41254,41255,41255,39.45,39,39.11,0.03,15600,26,13 "SP-15 Gen DA LMP Peak",41255,41256,41256,43.75,42,43.02,3.91,16000,32,20 "SP-15 Gen DA LMP Peak",41256,41257,41258,43,40.5,42.17,-0.85,38400,32,18 "SP-15 Gen DA LMP Peak",41257,41260,41260,42,41.5,41.62,-0.55,6400,10,11

446

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

7,49.6,0.49,22400,56,24 7,49.6,0.49,22400,56,24 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54,56.09,6.49,29200,73,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,60.07,3.98,28400,71,26 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50,55.19,-4.88,32800,41,20 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,56.14,0.95,20800,52,22

447

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 "ERCOT-South",39086,39087,39087,42.5,42.25,42.38,-0.87,1600,2,4 "ERCOT-South",39087,39090,39090,43.25,43.25,43.25,0.87,800,1,2 "ERCOT-South",39090,39091,39091,45,45,45,1.75,800,1,2 "ERCOT-South",39091,39092,39092,44.5,44.5,44.5,-0.5,800,1,2,,,," " "ERCOT-South",39099,39100,39100,62,62,62,17.5,3200,4,6 "ERCOT-South",39100,39101,39101,56.5,56,56.17,-5.83,2400,3,5 "ERCOT-South",39101,39104,39104,55,55,55,-1.17,800,1,2 "ERCOT-South",39104,39105,39105,57.25,57,57.08,2.08,2400,3,4 "ERCOT-South",39105,39106,39106,59,58,58.54,1.46,4800,6,5 "ERCOT-South",39106,39107,39107,58,57.75,57.81,-0.73,3200,4,5 "ERCOT-South",39107,39108,39108,54.5,54.5,54.5,-3.31,800,1,2

448

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

720,38721,38721,69,68,68.6,1.54,74400,63,23 720,38721,38721,69,68,68.6,1.54,74400,63,23 "PJM Wh Real Time Peak",38721,38722,38722,74.25,69,70.77,2.17,68000,68,33 "PJM Wh Real Time Peak",38722,38723,38723,77.75,73.5,76.91,6.14,61600,70,35 "PJM Wh Real Time Peak",38723,38726,38726,74,69,70.06,-6.85,55200,57,22 "PJM Wh Real Time Peak",38726,38727,38727,63,61.75,62.52,-7.54,60800,72,29 "PJM Wh Real Time Peak",38727,38728,38728,55,51,53.51,-9.01,68800,55,30 "PJM Wh Real Time Peak",38728,38729,38729,50.5,49,49.37,-4.14,56000,55,25 "PJM Wh Real Time Peak",38729,38730,38730,50.6,49.5,50.17,0.8,54400,55,25 "PJM Wh Real Time Peak",38730,38733,38733,63.5,59,60.85,10.68,36800,37,23 "PJM Wh Real Time Peak",38733,38734,38734,65,64,64.63,3.78,12000,10,13

449

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,74,72,73,1600,2,4 449,39450,39450,74,72,73,1600,2,4 "Entergy",39450,39451,39451,64,64,64,800,1,2 "Entergy",39451,39454,39454,47.5,46.5,47,2400,3,3 "Entergy",39454,39455,39455,41.5,41,41.17,2400,3,3 "Entergy",39455,39456,39456,43,43,43,800,1,2 "Entergy",39456,39457,39457,52,49,50.33,2400,3,5 "Entergy",39457,39458,39458,49,49,49,800,1,2 "Entergy",39458,39461,39461,67,67,67,800,1,2 "Entergy",39461,39462,39462,73,73,73,800,1,2 "Entergy",39462,39463,39463,69,68,68.33,2400,3,5 "Entergy",39463,39464,39464,70,64,68,2400,3,3 "Entergy",39464,39465,39465,65,65,65,1600,2,2 "Entergy",39465,39468,39468,79,75,76.67,2400,3,5 "Entergy",39468,39469,39469,74,73,73.7,4000,5,8

450

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8720,38721,38721,51,50,50.625,3200,4,4 8720,38721,38721,51,50,50.625,3200,4,4 "Entergy",38721,38722,38722,56.5,53.5,55.3,4000,5,7 "Entergy",38722,38723,38723,60,60,60,5600,6,5 "Entergy",38723,38726,38726,59,58,58.5,1600,2,3 "Entergy",38726,38727,38727,55.5,53,54.1,4000,5,5 "Entergy",38727,38728,38728,53.5,52,53.0938,6400,8,9 "Entergy",38728,38729,38729,49,46,47.6667,9600,11,8 "Entergy",38729,38730,38730,49,47.5,48.0417,4800,6,7 "Entergy",38730,38733,38733,54.25,54.25,54.25,800,1,2 "Entergy",38733,38734,38734,53.75,53.75,53.75,800,1,2 "Entergy",38734,38735,38735,62,58,60.1,4000,5,6 "Entergy",38735,38736,38736,60,58,58.875,4800,4,5 "Entergy",38736,38737,38737,55,50,53.1944,7200,9,8

451

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,32.5,29,30.16,20800,26,20 623,37624,37624,32.5,29,30.16,20800,26,20 "Entergy",37624,37627,37627,36.75,34.75,35.54,28800,27,18 "Entergy",37627,37628,37628,38,35.5,36.31,45600,53,26 "Entergy",37628,37629,37629,35,31.25,33.69,26400,33,21 "Entergy",37629,37630,37630,33.55,32.75,33.19,22400,26,20 "Entergy",37630,37631,37631,37.75,34.5,35.51,36000,45,24 "Entergy",37631,37634,37634,43.75,38.25,41.62,36800,46,20 "Entergy",37634,37635,37635,42.5,38,40.72,17600,22,18 "Entergy",37635,37636,37636,43,42,42.61,16800,21,17 "Entergy",37636,37637,37637,43,41.25,42.02,12000,15,15 "Entergy",37637,37638,37638,50,44.15,45.85,8800,10,13 "Entergy",37638,37641,37641,41,39.25,40.1,31200,29,16 "Entergy",37641,37642,37642,41.75,38,40.09,25600,27,15

452

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.75,40,42.24,2.81,10000,25,19 43.75,40,42.24,2.81,10000,25,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40,38.75,39.35,-2.89,12400,31,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,41.5,43.54,4.19,16000,38,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,42.25,43.09,-0.45,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,40,40.64,-2.45,20000,25,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,41,41.35,0.71,14000,34,17

453

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6894,36895,36895,74.5,74,74.25,1600,2,3 6894,36895,36895,74.5,74,74.25,1600,2,3 "NEPOOL",36899,36900,36900,83,81,82,1600,2,3 "NEPOOL",36900,36901,36901,89,88,88.67,2400,3,3 "NEPOOL",36901,36902,36902,77.5,73,75.25,1600,2,3 "NEPOOL",36902,36903,36903,75.75,75.75,75.75,800,1,2 "NEPOOL",36903,36906,36906,75,74,74.5,2400,3,3 "NEPOOL",36906,36907,36907,80,76.5,77.75,3200,4,3 "NEPOOL",36907,36908,36908,79.5,76,78.38,3200,4,4 "NEPOOL",36908,36909,36909,75.5,74.5,75,3200,3,4 "NEPOOL",36909,36910,36910,71.75,70.75,71.25,1600,2,3 "NEPOOL",36910,36913,36913,74.75,74,74.4,4000,5,3 "NEPOOL",36914,36915,36915,67.5,66.5,67,2400,3,3 "NEPOOL",36915,36916,36916,67,65.75,66.33,2400,3,2 "NEPOOL",36916,36917,36917,65,61.25,63.38,3200,4,3

454

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,47,48.2,3.37,9600,24,17 1,47,48.2,3.37,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53,55.36,7.17,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.2,55,57.22,1.85,9200,23,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.25,49,50.04,-7.18,8400,21,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,43.5,44.24,-5.8,26400,28,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,50,51.46,7.22,7600,19,15

455

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

48,45.75,46.49,-0.96,30000,63,25 48,45.75,46.49,-0.96,30000,63,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.5,45,46.75,0.26,31600,79,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51,45,45.83,-0.92,40000,50,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.25,47.75,48.43,2.6,26000,51,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.75,49.25,50.5,2.07,27200,68,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,51.5,52.02,1.52,46400,55,20

456

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62,66.21,-0.74,44400,109,30 62,66.21,-0.74,44400,109,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60,64.12,-2.09,45200,113,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,60.9,-3.22,99200,123,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,63.2,2.3,50400,114,31 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.98,-0.22,48800,122,31

457

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.25,42,42.63,4.13,1600,2,4 43.25,42,42.63,4.13,1600,2,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.65,42.65,42.65,0.02,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.25,44,44.86,2.21,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,45.75,46.08,1.22,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,45,45,-1.08,4000,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.75,44.75,44.75,-0.25,1600,2,4

458

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,56.85,56.25,56.7,6400,7,7 355,38356,38356,56.85,56.25,56.7,6400,7,7 "NEPOOL MH DA LMP",38356,38357,38357,55.25,55,55.0833,2400,3,3 "NEPOOL MH DA LMP",38357,38358,38358,59,59,59,800,1,2 "NEPOOL MH DA LMP",38358,38359,38359,57.5,57,57.25,2400,3,5 "NEPOOL MH DA LMP",38359,38362,38362,55.5,55.5,55.5,3200,4,6 "NEPOOL MH DA LMP",38362,38363,38363,58.75,58,58.575,9600,11,10 "NEPOOL MH DA LMP",38363,38364,38364,57.75,57.5,57.625,1600,2,4 "NEPOOL MH DA LMP",38364,38365,38365,55.75,55.25,55.4688,12800,15,11 "NEPOOL MH DA LMP",38365,38366,38366,58.5,58.25,58.4583,4800,5,6 "NEPOOL MH DA LMP",38366,38369,38369,92,85,88.7143,5600,7,8 "NEPOOL MH DA LMP",38369,38370,38370,97.5,97,97.1667,2400,3,5

459

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

22.6,23.25,-1.53,6400,14,16 22.6,23.25,-1.53,6400,14,16 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18.25,18.97,-4.28,6400,8,9 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,19.32,0.35,5600,14,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",17,17.24,-2.08,7200,12,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,18.61,1.38,7200,17,17

460

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,38.5,38,38.29,10400,13,11 988,37991,37991,38.5,38,38.29,10400,13,11 "Entergy",37991,37992,37992,56,50.5,51.79,15200,19,13 "Entergy",37992,37993,37993,60,56,58.95,12000,15,9 "Entergy",37993,37994,37994,55,51,52.44,16800,21,14 "Entergy",37994,37995,37995,43,40.5,41.28,7200,9,9 "Entergy",37995,37998,37998,45,39,40.86,5600,7,8 "Entergy",37998,37999,37999,39.5,38,38.42,8000,10,7 "Entergy",37999,38000,38000,39,36,37.48,10400,12,9 "Entergy",38000,38001,38001,40.25,38,38.66,14400,17,10 "Entergy",38001,38002,38002,39,36.25,36.98,10400,12,9 "Entergy",38002,38005,38005,39,37,37.44,13600,12,9 "Entergy",38005,38006,38006,55,48,52.64,5600,7,10 "Entergy",38006,38007,38007,54,47,50.58,12000,15,11

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.25,63,64.48,0.53,9600,12,15 65.25,63,64.48,0.53,9600,12,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,57,57.68,-6.8,20000,23,13 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58,57,57.45,-0.23,8800,9,9 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57,55.75,56.53,-0.92,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,56,56.46,-0.07,10400,13,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59.25,56.75,58.09,1.63,20000,25,17

462

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

7988,37991,37991,62,62,62,800,1,2 7988,37991,37991,62,62,62,800,1,2 "NEPOOL MH DA LMP",37991,37992,37992,70,69,69.5,1600,2,2 "NEPOOL MH DA LMP",37992,37993,37993,75.25,72,73.81,3200,4,6 "NEPOOL MH DA LMP",37993,37994,37994,81,76,78.3,8000,10,11 "NEPOOL MH DA LMP",37994,37995,37995,85.75,81.5,84.24,12800,16,12 "NEPOOL MH DA LMP",37998,37999,37999,77,72.5,74.12,6400,8,9 "NEPOOL MH DA LMP",37999,38000,38000,120,92,104.81,16800,21,11 "NEPOOL MH DA LMP",38000,38001,38001,375,270,311.75,6400,8,8 "NEPOOL MH DA LMP",38001,38002,38002,175,170,171,4000,5,5 "NEPOOL MH DA LMP",38005,38006,38006,90,84,86.78,7200,9,7 "NEPOOL MH DA LMP",38006,38007,38007,94,81.5,87.42,10400,13,13 "NEPOOL MH DA LMP",38007,38008,38008,76,72,74.69,6400,8,8

463

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

31.9,30.75,31.02,,14000,34,10 31.9,30.75,31.02,,14000,34,10 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.85,28,28.3,-2.72,52000,59,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",31.5,31,31.22,2.92,20000,41,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",34.25,33.4,33.8,2.58,22000,47,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",30,29.75,29.9,-3.9,52800,54,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.25,27.85,27.95,-1.95,48000,57,11

464

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

59.05,59,59.03,2.03,1600,2,3 59.05,59,59.03,2.03,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,63,63,3.97,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.5,60,61,-2,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.75,63,63.32,2.32,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,55,55.5,-7.82,3200,4,5 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55.5,55.5,55.5,0,800,1,2

465

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 "PJM Wh Real Time Peak",39818,39819,39819,60.25,57.75,58.92,2.64,109600,119,41 "PJM Wh Real Time Peak",39819,39820,39820,58,55,56.66,-2.26,49600,60,29 "PJM Wh Real Time Peak",39820,39821,39821,55.55,55,55.21,-1.45,48000,56,34 "PJM Wh Real Time Peak",39821,39822,39822,63,60.75,61.9,6.69,38400,46,28 "PJM Wh Real Time Peak",39822,39825,39825,69,66,67.63,5.73,62400,74,37 "PJM Wh Real Time Peak",39825,39826,39826,66.5,61,64.03,-3.6,91200,107,40 "PJM Wh Real Time Peak",39826,39827,39827,85.5,80,82.91,18.88,103200,124,50 "PJM Wh Real Time Peak",39827,39828,39828,100,88,93.22,10.31,110400,135,51 "PJM Wh Real Time Peak",39828,39829,39829,110,93,98.58,5.36,77600,93,37

466

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,43.25,36,38.11,35200,40,16 988,37991,37991,43.25,36,38.11,35200,40,16 "PJM West",37991,37992,37992,53.5,50,51.99,33600,41,24 "PJM West",37992,37993,37993,70,66.25,67.48,34400,40,25 "PJM West",37993,37994,37994,62,59.65,60.58,36000,41,19 "PJM West",37994,37995,37995,56.75,53,54.66,32800,39,23 "PJM West",37995,37998,37998,53.75,51.25,52.44,40000,47,25 "PJM West",37998,37999,37999,54,52.55,53.14,37600,47,24 "PJM West",37999,38000,38000,65.25,61.5,63.18,30400,37,20 "PJM West",38000,38001,38001,88,77,82.58,50400,57,28 "PJM West",38001,38002,38002,90,77,80.76,31200,37,20 "PJM West",38002,38005,38005,53.25,52.75,53.03,30400,38,18 "PJM West",38005,38006,38006,70,67,68.64,36000,45,24

467

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

150,150,,400,1,2 150,150,,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",180,180,30,2400,3,4 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",310,310,130,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",350,350,40,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",165,165,-185,800,1,2

468

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 "Entergy Peak",41247,41248,41248,28.5,28.5,28.5,1,800,1,2 "Entergy Peak",41248,41249,41249,30,30,30,1.5,800,1,2 "Entergy Peak",41250,41253,41253,30,29,29.5,-0.5,1600,2,3 "Entergy Peak",41253,41254,41254,30,29.75,29.88,0.38,1600,2,2 "Entergy Peak",41254,41255,41255,29.75,29.75,29.75,-0.13,800,1,2 "Entergy Peak",41269,41270,41270,32,32,32,2.25,1600,2,2 "Entergy Peak",41355,41358,41358,38.5,38.5,38.5,6.5,800,1,2 "Entergy Peak",41367,41368,41368,35,35,35,-3.5,800,1,2 "Entergy Peak",41425,41428,41428,37,37,37,2,800,1,2 "Entergy Peak",41436,41437,41437,42,42,42,5,800,1,2 "Entergy Peak",41446,41449,41449,41,41,41,-1,800,1,2

469

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

32.5,33.04,-3.33,15200,19,19 32.5,33.04,-3.33,15200,19,19 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,37.32,4.28,7600,19,18 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35,35.46,-1.86,9600,24,22 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,38.66,3.2,14800,36,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.75,40.34,1.69,9200,23,22

470

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 "ERCOT Houston",40912,40913,40913,28.3,28,28.18,1.35,4800,6,7 "ERCOT Houston",40913,40914,40914,26.35,26.2,26.29,-1.89,3200,4,6 "ERCOT Houston",40914,40917,40917,27.25,27,27.13,0.84,8000,10,5 "ERCOT Houston",40917,40918,40918,27.75,27.5,27.58,0.45,2400,3,3 "ERCOT Houston",40918,40919,40919,27.5,27.5,27.5,-0.08,1600,2,2 "ERCOT Houston",40919,40920,40920,31.5,31,31.33,3.83,2400,3,4 "ERCOT Houston",40920,40921,40921,31,30.25,30.5,-0.83,2400,2,4 "ERCOT Houston",40925,40926,40926,26,25.75,25.96,-4.54,5600,7,4 "ERCOT Houston",40926,40927,40927,23.75,23.75,23.75,-2.21,2400,3,5 "ERCOT Houston",40928,40931,40931,22.15,22.15,22.15,-1.6,800,1,2

471

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,26,22.95,24.08,51200,64,19 258,37259,37259,26,22.95,24.08,51200,64,19 "Entergy",37259,37260,37260,28.25,24.5,26.09,38400,47,17 "Entergy",37260,37263,37263,22.5,17,20.72,34400,43,16 "Entergy",37263,37264,37264,25,19,20.17,19200,24,15 "Entergy",37264,37265,37265,20,19,19.55,44000,54,19 "Entergy",37265,37266,37266,23,18.75,19.31,50400,62,18 "Entergy",37266,37267,37267,19,15,18.21,45600,56,18 "Entergy",37267,37270,37270,18.85,17.4,18.21,65600,81,17 "Entergy",37270,37271,37271,21.75,18.2,19.01,24800,28,18 "Entergy",37271,37272,37272,22.35,18.95,20.98,31200,38,16 "Entergy",37272,37273,37273,22,19,21.2,49600,62,22 "Entergy",37273,37274,37274,22.5,19.5,20.93,46400,55,20 "Entergy",37274,37277,37277,19.75,18.75,19.26,36000,45,18

472

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 "SP-15 Gen DA LMP Peak",39905,39906,39907,28.7,27.5,28.03,-2.41,119200,103,17 "SP-15 Gen DA LMP Peak",39906,39909,39909,31.5,30.25,30.5,2.47,43200,89,17 "SP-15 Gen DA LMP Peak",39909,39910,39910,33.3,32.45,32.83,2.33,40800,80,20 "SP-15 Gen DA LMP Peak",39910,39911,39912,29,28,28.69,-4.14,116000,117,22 "SP-15 Gen DA LMP Peak",39911,39913,39914,27.25,26.55,26.88,-1.81,96800,110,21 "SP-15 Gen DA LMP Peak",39912,39916,39916,28.5,27.5,28.01,1.13,58000,119,19 "SP-15 Gen DA LMP Peak",39916,39917,39917,26.65,25,26.27,-1.74,26400,51,17 "SP-15 Gen DA LMP Peak",39917,39918,39918,28.25,27.7,27.97,1.7,55600,101,20

473

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43,39.05,41.9,4.15,5600,7,8 43,39.05,41.9,4.15,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.5,38.5,39.53,-2.37,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.25,38.25,38.9,-0.63,13600,17,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,39,40,1.1,10400,13,11 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,37.75,38.3,-1.7,12000,14,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,43,43.4,5.1,4000,5,5

474

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62.5,65.15,3.64,62800,150,34 62.5,65.15,3.64,62800,150,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54.25,61.54,-3.61,153600,172,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60.5,62.02,0.48,81200,188,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.73,0.71,69600,168,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.75,63.47,0.74,74400,170,34

475

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,45.5,-0.2,22800,57,25 1,45.5,-0.2,22800,57,25 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,45.44,-0.06,96000,198,32 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,43.27,-2.17,89600,210,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,42.7,-0.57,118400,261,35 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.5,43.86,1.16,169600,196,33

476

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 "Entergy Peak",40183,40184,40184,62.25,62.25,62.25,1.75,800,1,2 "Entergy Peak",40189,40190,40190,63.5,60.75,62.42,0.17,2400,3,3 "Entergy Peak",40190,40191,40191,46,45,45.5,-16.92,1600,2,2 "Entergy Peak",40196,40197,40197,40,40,40,-5.5,800,1,2 "Entergy Peak",40197,40198,40198,40,40,40,0,800,1,2 "Entergy Peak",40198,40199,40199,38,38,38,-2,800,1,2 "Entergy Peak",40199,40200,40200,38,38,38,0,800,1,2 "Entergy Peak",40204,40205,40205,47,47,47,9,800,1,2 "Entergy Peak",40205,40206,40206,45,45,45,-2,800,1,2 "Entergy Peak",40206,40207,40207,48,48,48,3,800,1,2 "Entergy Peak",40210,40211,40211,43,43,43,-5,800,1,2

477

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,131,114,125.81,37.67,95200,116,49 449,39450,39450,131,114,125.81,37.67,95200,116,49 "PJM Wh Real Time Peak",39450,39451,39451,106,99,102.43,-23.38,78400,96,39 "PJM Wh Real Time Peak",39451,39454,39454,54,52.5,53.44,-48.99,65600,74,34 "PJM Wh Real Time Peak",39454,39455,39455,45,41,42.69,-10.75,87200,98,48 "PJM Wh Real Time Peak",39455,39456,39456,47.5,45,46.31,3.62,47200,57,36 "PJM Wh Real Time Peak",39456,39457,39457,59.5,54.25,57.53,11.22,35200,44,34 "PJM Wh Real Time Peak",39457,39458,39458,51,46.25,48.3,-9.23,72800,88,51 "PJM Wh Real Time Peak",39458,39461,39461,76.5,70,74.88,26.58,103200,121,42 "PJM Wh Real Time Peak",39461,39462,39462,80,75.5,77.94,3.06,109600,127,40 "PJM Wh Real Time Peak",39462,39463,39463,72,68,70.47,-7.47,78400,95,35

478

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

911,40912,40912,56,52,53.84,-11.87,161600,191,55 911,40912,40912,56,52,53.84,-11.87,161600,191,55 "PJM Wh Real Time Peak",40912,40913,40913,39,38,38.7,-15.14,45600,54,30 "PJM Wh Real Time Peak",40913,40914,40914,33.25,33,33.05,-5.65,42400,53,33 "PJM Wh Real Time Peak",40914,40917,40917,37.25,36.5,36.8,3.75,43200,51,34 "PJM Wh Real Time Peak",40917,40918,40918,36,35.25,35.53,-1.27,48000,57,31 "PJM Wh Real Time Peak",40918,40919,40919,35,34.2,34.6,-0.93,32000,40,28 "PJM Wh Real Time Peak",40919,40920,40920,35.5,35,35.14,0.54,43200,48,27 "PJM Wh Real Time Peak",40920,40921,40921,40.75,38.6,39.44,4.3,108000,111,39 "PJM Wh Real Time Peak",40921,40924,40924,43.5,41.6,42.69,3.25,61600,74,39 "PJM Wh Real Time Peak",40924,40925,40925,35.25,34.5,34.68,-8.01,36000,44,23

479

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 "Nepool MH Da LMP Peak",41247,41248,41248,58.5,55,57.81,10.65,26400,32,21 "Nepool MH Da LMP Peak",41248,41249,41249,79.75,75,76.49,18.68,32800,39,18 "Nepool MH Da LMP Peak",41249,41250,41250,65,50.5,51.47,-25.02,35200,42,23 "Nepool MH Da LMP Peak",41250,41253,41253,47,45.5,46.48,-4.99,12800,16,14 "Nepool MH Da LMP Peak",41253,41254,41254,50,46,47.3,0.82,38400,44,22 "Nepool MH Da LMP Peak",41254,41255,41255,70,57,59.54,12.24,39200,49,19 "Nepool MH Da LMP Peak",41255,41256,41256,50,48.25,48.97,-10.57,53600,59,29 "Nepool MH Da LMP Peak",41256,41257,41257,39.25,38.5,38.98,-9.99,11200,14,10 "Nepool MH Da LMP Peak",41257,41260,41260,45,45,45,6.02,3200,4,6

480

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

82,75,79.66,6.43,30400,38,26 82,75,79.66,6.43,30400,38,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,58,60.11,-19.55,24000,30,22 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.05,43.75,44.81,-15.3,24000,28,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38,36,36.89,-7.92,35200,39,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,41.5,42.84,5.95,32000,39,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.44,3.6,22400,28,20

Note: This page contains sample records for the topic "mw megawatt mwh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

46,48.6,-4.22,46000,115,33 46,48.6,-4.22,46000,115,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.21,0.61,51600,120,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.75,46.71,-2.5,123200,150,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.35,2.64,63600,151,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.3,49.44,0.09,65600,163,34

482

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

39815,39818,39818,42,39,41,4.5,2400,3,4 39815,39818,39818,42,39,41,4.5,2400,3,4 "Entergy Peak",39818,39819,39819,44.5,44.5,44.5,3.5,800,1,2 "Entergy Peak",39819,39820,39820,44.5,44,44.25,-0.25,1600,2,4 "Entergy Peak",39820,39821,39821,46,45,45.5,1.25,2400,3,6 "Entergy Peak",39821,39822,39822,45,45,45,-0.5,800,1,2 "Entergy Peak",39822,39825,39825,45,40,42.5,-2.5,1600,2,3 "Entergy Peak",39825,39826,39826,48,48,48,5.5,1600,2,3 "Entergy Peak",39827,39828,39828,55,53,54,6,1600,2,4 "Entergy Peak",39828,39829,39829,56,53,54.33,0.33,2400,3,5 "Entergy Peak",39832,39833,39833,42.5,42.5,42.5,-11.83,800,1,2 "Entergy Peak",39833,39834,39834,43,42,42.5,0,1600,2,4 "Entergy Peak",39836,39839,39839,40,38,39,-3.5,1600,2,3

483

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,30,30,30,-2.63,1600,2,2 1246,41247,41247,30,30,30,-2.63,1600,2,2 "ERCOT Houston",41250,41253,41253,33,33,33,3,800,1,2 "ERCOT Houston",41260,41261,41261,27,26.9,26.98,-6.02,4000,5,4 "ERCOT Houston",41263,41264,41264,28.5,28.25,28.33,1.35,2400,3,4 "ERCOT Houston",41270,41271,41271,26.5,26.5,26.5,-1.83,800,1,2 "ERCOT Houston",41288,41289,41289,34.25,34,34.13,7.63,1600,2,3 "ERCOT Houston",41289,41290,41290,33.85,33.75,33.78,-0.35,2400,3,4 "ERCOT Houston",41338,41339,41339,34.75,34.25,34.58,0.8,2400,3,3 "ERCOT Houston",41372,41373,41373,42.75,42.75,42.75,8.17,800,1,2 "ERCOT Houston",41381,41382,41382,35.55,35.55,35.55,-7.2,800,1,2 "ERCOT Houston",41386,41387,41387,37.5,37.5,37.5,1.95,800,1,2

484

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

60.75,57.5,59.33,7.47,34400,42,23 60.75,57.5,59.33,7.47,34400,42,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,56.62,-2.71,36800,45,25 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.25,63.61,6.99,76000,86,34 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.5,60,63.84,0.23,43200,52,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,57.1,-6.74,36000,41,21 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.02,-11.08,33600,42,27

485

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,37,37,37,0,800,1,2 546,40547,40547,37,37,37,0,800,1,2 "Entergy Peak",40547,40548,40548,36,36,36,-1,800,1,2 "Entergy Peak",40548,40549,40549,33.75,33.75,33.75,-2.25,1600,2,2 "Entergy Peak",40550,40553,40553,42,42,42,8.25,800,1,2 "Entergy Peak",40555,40556,40556,52.75,49,50.88,8.88,1600,2,3 "Entergy Peak",40562,40563,40563,38.5,38,38.1,-12.78,4000,5,4 "Entergy Peak",40563,40564,40564,39,39,39,0.9,800,1,2 "Entergy Peak",40567,40568,40568,39,39,39,0,800,1,2 "Entergy Peak",40568,40569,40569,38,38,38,-1,800,1,2 "Entergy Peak",40571,40574,40574,36,36,36,-2,800,1,2 "Entergy Peak",40574,40575,40575,39.5,39.5,39.5,3.5,800,1,2 "Entergy Peak",40575,40576,40576,37,36.5,36.75,-2.75,1600,2,2

486

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 "Nepool MH DA LMP",40912,40913,40913,49,46,47.55,-39.61,78400,77,24 "Nepool MH DA LMP",40913,40914,40914,39.75,39.25,39.57,-7.98,12000,15,10 "Nepool MH DA LMP",40914,40917,40917,39,38,38.39,-1.18,8800,11,9 "Nepool MH DA LMP",40917,40918,40918,38.25,38,38.14,-0.25,8000,9,11 "Nepool MH DA LMP",40918,40919,40919,41.5,39.9,40.88,2.74,70400,83,25 "Nepool MH DA LMP",40919,40920,40920,37.25,36.75,36.83,-4.05,20000,23,16 "Nepool MH DA LMP",40920,40921,40921,44,43.5,43.73,6.9,11200,11,12 "Nepool MH DA LMP",40921,40924,40924,67,65.5,66.35,22.62,16800,21,15 "Nepool MH DA LMP",40924,40925,40925,50.75,50,50.24,-16.11,11200,14,12

487

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,65.5,64.5,65,1600,2,2 6893,36894,36894,65.5,64.5,65,1600,2,2 "PJM West",36894,36895,36895,63,59.5,61.25,3200,4,2 "PJM West",36895,36896,36896,60,58.5,59.12,4800,6,4 "PJM West",36899,36900,36900,59.5,59.5,59.5,800,1,2 "PJM West",36900,36901,36901,58,55.5,56.61,5600,7,6 "PJM West",36901,36902,36902,50.5,49,49.75,3200,4,4 "PJM West",36902,36903,36903,47,46,46.33,4800,6,3 "PJM West",36903,36906,36906,45.5,45,45.12,3200,4,6 "PJM West",36906,36907,36907,46,42,44.21,5600,7,6 "PJM West",36907,36908,36908,42.5,42,42.4,4000,4,7 "PJM West",36908,36909,36909,41,39,39.56,7200,7,6 "PJM West",36909,36910,36910,39.5,39,39.25,2400,3,5 "PJM West",36910,36913,36913,51,50,50.43,5600,5,6

488

Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210  

SciTech Connect (OSTI)

Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

Hughes, S.

2012-05-01T23:59:59.000Z

489

Solar aided power generation of a 300MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

490

10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant heliostat and beam characterization system evaluation, November 1981-December 1986  

SciTech Connect (OSTI)

Test and evaluation results for the heliostats and beam characterization system at the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant are described in this report. Southern California Edison operated and maintained the plant during the five years covered by this evaluation. Therefore, the results represent what can be expected from a large number of heliostats that are operated over a long period of time in a power plant environment. The heliostats and beam characterization system were evaluated for their ability to meet performance and survival requirements. Heliostat evaluation results are reported for mirror soiling rates, mirror corrosion, wind loads, availability, maintenance requirements, tracking accuracy, beam quality, component temperatures, and operating power requirements. The heliostat beam characterization system accuracy is given for the measurement of beam quality, heliostat tracking accuracy, and power in the reflected beam. The heliostat technical specifications and design description are provided, and a detailed design description of the beam characterization system is included. 41 refs.

Mavis, C.L.

1988-05-01T23:59:59.000Z

491

Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report  

E-Print Network [OSTI]

ESL-TR-06-06-08 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME II ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality September 2004 ? December 2005..., the following results were determined for energy-code compliant new residential single- and multi-family construction in non-attainment and affected counties built in 2004: ? The annual savings in 2005 amounted to 348,794 megawatt hours (MWh...

Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

2006-11-01T23:59:59.000Z

492

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

493

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

494

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

495

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

496

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

497

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

498

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

499

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

500

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

First Page Previous Page 1 2 3 4 5 6 7 8 9