Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant...

2

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

3

Flywheel energy storage workshop  

DOE Green Energy (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

4

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

5

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

6

Design of Flywheel Energy Storage Structure  

Science Conference Proceedings (OSTI)

In this paper, we have mainly studied the flywheel energy storage system's construction and working principle, which include flywheel battery, integrated driven converting motor (Device of energy converter), and magnetic suspension support system. We ... Keywords: Flywheel principle, Flywheel energy storage, Energy transudcer, Application of flywheel storage

Baoquan Geng; Yiming He

2011-03-01T23:59:59.000Z

7

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

8

Reluctance apparatus for flywheel energy storage - Energy ...  

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ...

9

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

10

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazle Spindle LLC Hazle Spindle LLC American Recovery and Reinvestment Act (ARRA) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for Hazle Spindle LLC, the Recipient of the ARRA Cooperative Agreement. The plant will provide frequency regulation services to grid operator PJM Interconnection. Flywheel systems are kinetic energy storage devices that react instantly when needed. By accelerating a cylindrical rotor (flywheel) to a very high speed and maintaining the energy in the system as rotational energy, flywheel energy storage systems can moderate fluctuations in grid demand. When generated power exceeds load, the flywheel speeds up; when load exceeds generation, the flywheel is slowed to convert the energy for

11

Technologies for energy storage flywheels and super conducting magnetic energy storage  

DOE Green Energy (OSTI)

A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

BOYES,JOHN D.

2000-04-26T23:59:59.000Z

12

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

13

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

14

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeings new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

15

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Conference Proceedings (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

16

Reluctance apparatus for flywheel energy storage  

DOE Patents (OSTI)

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

Hull, John R. (Downers Grove, IL)

2000-01-01T23:59:59.000Z

17

Flywheel energy storage using superconducting magnetic bearings  

DOE Green Energy (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

18

FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS  

DOE Green Energy (OSTI)

This projects mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

2007-10-26T23:59:59.000Z

19

Flywheel Energy Storage Device for Hybrid and Electric Vehicles  

ORNL 2011-G00218/jcn UT-B ID 200701859 07.2011 Flywheel Energy Storage Device for Hybrid and Electric Vehicles Technology Summary This cost-effective technology ...

20

Flywheel Project Escalates Grid Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New York State: in addition to last week's announcement on the AES energy storage project, the Energy Department has finalized a $43 million loan guarantee for Beacon Power Corporation's flywheel energy storage plant. Not only is the project estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flywheel Energy Storage for End-Use Power  

Science Conference Proceedings (OSTI)

Power quality represents both a challenge and an opportunity for utilities to provide quality and service to their customers. Flywheel systems are becoming commercially available for solving short-term power quality problems, specifically voltage sags and momentary interruptions, and a variety of products appears particularly attractive for this market. This report provides information on the subject of flywheel energy storage systems to utility personnel responsible for end-use power quality.

1998-12-15T23:59:59.000Z

22

Dynamic Analysis and Control of an Energy Storage Flywheel Rotor with Active Magnetic Bearings  

Science Conference Proceedings (OSTI)

Flywheel energy storage is a promising technology for providing intermediate energy storage. An energy storage flywheel is supported by active magnetic bearings (AMBs) to achieve high speed running and increase energy efficiency of the energy storage ... Keywords: Flywheel, Energy Storage, Magnetic Bearing, Rotor Dynamics

Zhang Kai; Dai Xingjian; Zhang Xiaozhang

2010-12-01T23:59:59.000Z

23

Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module  

SciTech Connect

GRIDS Project: Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speedsslowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as todays flywheels. Beacon Powers flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.

None

2010-09-22T23:59:59.000Z

24

ESS 2012 Peer Review - Amber Kinetics Flywheel Energy Storage Demo - Ed Chiao, Amber Kinetics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amber_kinetics amber_kinetics DOE Peer Review September 2012 Ed Chiao, CEO amber_kinetics Amber Kinetics: Our Flywheel History Start-up launched in 2009, Stanford University Cleantech Entrepreneurship class Established a technology licensing & flywheel development partnership with LLNL; Amber Kinetics identified new material & lower-cost rotor designs for commercialization Awarded a Smart Grid Energy Storage Demonstration grant award for flywheels Awarded a matching grant for development & demonstration of flywheel technology Stanford University Lawrence Livermore National Laboratory U.S. Department of Energy California Energy Commission World-class institutions | innovative, deep flywheel technology owned by Amber Amber Kinetics, Inc. - Confidential and Proprietary, All Rights Reserved

25

Flywheel energy storage with superconductor magnetic bearings  

DOE Patents (OSTI)

A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

1993-01-01T23:59:59.000Z

26

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

27

Energy Storage Application Brief -- Case History for Large Flywheel System: Piller -- Flywheel Energy Storage Systems for Premium Power  

Science Conference Proceedings (OSTI)

Piller of Middleton, New York produces premium power systems for power quality and uninterruptible power supply (UPS) applications. An entire family of products is commercially available in a variety of system and circuit configurations for industrial use. These products are beneficial because they are highly reliable and protect from voltage sags. The energy storage components of these systems uses mature, conventional flywheel technology. This technology review describes the various applications of the...

1999-11-23T23:59:59.000Z

28

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

29

Development of 5kWh Flywheel Energy Storage System Using MATLAB/xPC Target  

Science Conference Proceedings (OSTI)

A 5kWh class FESS(Flywheel Energy Storage System) with the operating speed range of 9,000~15,000rpm has been developed. The system consists of a composite flywheel rotor, active magnetic bearings, a motor/generator and its controller. Because Active ... Keywords: FESS, Magnetic bearing, rotor dynamics, Imbalace Response, xPC Target

Cheol Hoon Park; Sang-Kyu Choi; Young Su Son; Young Hee Han

2009-03-01T23:59:59.000Z

30

Fields and forces in flywheel energy storage with high-temperature superconducting bearings  

DOE Green Energy (OSTI)

The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stabilization subsystem.

Turner, L.R. [Argonne National Lab., IL (United States). Energy Technology Div.

1996-05-01T23:59:59.000Z

31

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

32

High speed flywheel  

DOE Patents (OSTI)

This invention relates generally to flywheels and relates more particularly to the construction of a high speed, low-mass flywheel. Flywheels with which this invention is to be compared include those constructed of circumferentially wound filaments or fibers held together by a matrix or bonding material. Flywheels of such construction are known to possess a relatively high hoop strength but a relatively low radial strength. Hoop-wound flywheels are, therefore, particularly susceptible to circumferential cracks, and the radial stress limitations of such a flywheel substantially limit its speed capabilities. It is an object of the present invention to provide a new and improved flywheel which experiences reduced radial stress at high operating speeds. Another object of the present invention is to provide flywheel whose construction allows for radial growth as flywheel speed increases while providing the necessary stiffness for transferring and maintaining kinetic energy within the flywheel. Still another object of the present invention is to provide a flywheel having concentrically-disposed component parts wherein rotation induced radial stresses at the interfaces of such component parts approach zero. Yet another object of the present invention is to provide a flywheel which is particularly well-suited for high speed applications. 5 figs.

McGrath, S.V.

1990-01-01T23:59:59.000Z

33

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

Science Conference Proceedings (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

34

Crossroads (3 MW) | Open Energy Information  

Open Energy Info (EERE)

MW) MW) Jump to: navigation, search Name Crossroads (3 MW) Facility Crossroads (3 MW) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer Renewable Energy Systems Ltd Energy Purchaser Oklahoma Gas & Electric Location Near Canton OK Coordinates 36.019889°, -98.669894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.019889,"lon":-98.669894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage - Jim Martin, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

subsidiary subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Magnetic composites for flywheel energy storage September 27, 2012 James E. Martin Project description  The bearings currently used in energy storage flywheels dissipate a significant amount of energy. Magnetic bearings would reduce these losses appreciably.  Magnetic bearings require magnetic materials on an inner annulus of the flywheel for magnetic levitation.  This magnetic material must be able to withstand a 2% tensile deformation, yet

36

Properties of fiber composites for advanced flywheel energy storage devices  

DOE Green Energy (OSTI)

The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

DeTeresa, S J; Groves, S E

2001-01-12T23:59:59.000Z

37

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

38

Competition between SMES and flywheels  

DOE Green Energy (OSTI)

The benefits of flywheel energy storage using high-temperature superconducting bearings is compared to that of SMES for the same applications. Flywheels cover the same range of energy storage times as SMES but their scaling relationships make them inherently more amenable to modular manufacture. In addition, the magnetic fields seen by the environment are considerably reduced for flywheels.

Hull, J.R.

1995-02-01T23:59:59.000Z

39

Demonstration of an inductor motor/alternator/flywheel energy storage system. Quarterly progress report No. 1, June 28, 1976--September 28, 1976  

SciTech Connect

Vehicle propulsion concepts utilizing flywheel energy are described. Analyses are presented for sizing an inductor motor/alternator/flywheel for application to a 3000 pound vehicle. Component tradeoffs are included for the inductor motor/alternator drive, the solid state inverter/rectifier, the control circuit, and a composite flywheel. Design specifications for the machine are established and a test plan defined.

1976-09-28T23:59:59.000Z

40

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly  

E-Print Network (OSTI)

In this study, a novel concept for a downhole flywheel energy storage module to be embedded in a bottom-hole-assembly (BHA) is presented and modeled, as an alternative power source to existing lithium-ion battery packs currently deployed in measurement-while-drilling (MWD) or logging-while-drilling (LWD) operations. Lithium-ion batteries disadvantages include deteriorated performance in high temperature, limited lifetime that necessitates frequent replacement which elevates operational costs, and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel module should adhere to the geometric constraints of the wellbore and its corresponding BHA. Hence, a flywheel sizing procedure was developed that takes into consideration the required energy to be stored, the surrounding environmental conditions, and the geometric constraints. A five-axis magnetic levitation control system was implemented and tuned to maintain continuous suspension of the flywheel under the harsh lateral, axial and torsional drilling vibrations of the BHA. Thus, an integrated finite element model was developed that included the rotordynamic behavior of the flywheel and the BHA, the component dynamics of the magnetic levitation control system, and the cutting dynamics of the drillbit for both PDC and tricone types. The model also included a newly developed coupling between lateral, axial and torsional vibrations. It was demonstrated through simulations conducted by numerical integration that the flywheel maintains levitation due to all different types of external vibration as well as its own lateral vibration due to mass unbalance. Moreover, a passive proof-mass-damper (PPMD) was developed that suppresses axial bit-bounce vibrations as well as torsional vibrations, and was extended to also mitigate lateral vibrations. Optimized values of the mass, stiffness and damping values of the PPMD were obtained by the hybrid analytical-numerical Chebyshev spectral method that was superior in computational efficiency to iterative numerical integration. This also enabled the fine-plotting of an operating stability chart indicating stability regions where bit-bounce and stick-slip are avoided. The proof-mass-damping concept was extended to the flywheel to be an active proof-mass-damper (APMD) where simulations indicated functionality for a light-weight BHA.

Saeed, Ahmed

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lightweight flywheel containment  

DOE Patents (OSTI)

A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

Smith, James R. (Livermore, CA)

2001-01-01T23:59:59.000Z

42

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

Kulkarni, S.V.; Stone, R.G.

1983-10-11T23:59:59.000Z

43

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

44

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

45

Assessment of Magtube Power Ring Flywheel Technology  

Science Conference Proceedings (OSTI)

This report provides an assessment of a novel flywheel technology being developed by Magtube Inc. as a concept that is potentially scalable to MW ratings and MWh storage capabilities.

2004-01-22T23:59:59.000Z

46

Rimmed and edge thickened stodola shaped flywheel. [Patent application  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, S.V.; Stone, R.G.

1980-09-24T23:59:59.000Z

47

Flywheel Energy Storage Device for Hybrid and Electric ...  

Technology Marketing Summary This cost-effective technology stores and reuses what would otherwise be wasted energy inside a hybrid electric vehicle ...

48

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents (OSTI)

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, Satish V. (San Ramon, CA); Stone, Richard G. (Oakland, CA)

1983-01-01T23:59:59.000Z

49

ESS 2012 Peer Review - Amber Kinetics Flywheel Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7700 RPM - Spin testing accelerates rotor to: 530 ms and 11,000 RPM - Rotor stores 10 kWh of kinetic energy @ 11,000 RPM (2x more than design speed) - All testing conducted in...

50

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

52

Why Cogeneration? 24MW of local renewable energy  

E-Print Network (OSTI)

Why Cogeneration? · 24MW of local renewable energy · Reduced emissions and cleaner air · Retain 300 Wood Chips Sawdust Pulp Paper Emissions Production #12;Port Townsend Paper - Cogeneration Biomass

53

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

55

Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems  

DOE Green Energy (OSTI)

Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in high-power flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) Axially symmetric levitation elements, energized by permanent magnets., (2) electrodynamic ''stabilizers'' employing axially symmetric arrays of permanent magnet bars (''Halbach arrays'') on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria. The satisfaction of these criteria will insure that, when rotating above a low critical speed, a bearing system made up of the three elements described above will be dynamically stable. That is, it will not only be stable for small displacements from equilibrium (''Earnshaw-stable''), but will also be stable against whirl-type instabilities of the types that can arise from displacement-dependent drag forces, or from mechanical-hysteritic losses that may occur in the rotor. Our design problem thus becomes one of calculating and/or measuring the relevant stiffnesses and drag coefficients of the various elements and comparing our results with the theory so as to assure that the cited stability criteria are satisfied.

Bender, D.; Post, R.

2000-05-26T23:59:59.000Z

56

On the Optimization of Composite Flywheel Rotors.  

E-Print Network (OSTI)

??Energy storing flywheel rotor technology has yet to be fully optimized given the design possibilities. There have been many design approaches that have been published (more)

Ross, Jacob

2013-01-01T23:59:59.000Z

57

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Energy storage solutions for Renewable Integration and Transmission and Distribution (T&D) Grid Support often require systems of 10's of MWs in scale, and energy durations of longer than 4 hours. The goals of this study were to develop cost, performance and conceptual design information for several current and emerging alternative bulk storage systems in the scale of 50 MW / 250 MWh.

2011-12-28T23:59:59.000Z

58

Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.  

Science Conference Proceedings (OSTI)

As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

2013-09-01T23:59:59.000Z

59

Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.  

SciTech Connect

As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

2013-09-01T23:59:59.000Z

60

MHK Technologies/14 MW OTECPOWER | Open Energy Information  

Open Energy Info (EERE)

MW OTECPOWER MW OTECPOWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description MINIMIZE SURFACE ACTIVITIES TO REDUCE THE CAPITAL COST AND TO IMPROVE EFFICIENCY ALTERNATE WORKING FLUIDS ARE USED FOR ENHANCED POWER EFFICIENCY IN OPTEC POWER HYBRID CYCLES ARE USED TO IMPROVE POWER AND NEED WITH SUBSEA HEAT EXCHANGERS ADVANCED SUPPORTING VESSEL CONCEPT AND FREE STANDING RISER TECHNOLOGIES TO WITH STAND HARSH OCEAN ENVIRONMENT IN DEEPWATER HAD BEEN DEVELOPED FOR THIS OPTEC POWER IT IS THE ONLY RELIABLE AND PROFITABLE RENEWABLE ENERGY SOURCE FOR THE NEED OF WORLD ENERGY FOR THE NEXT DECADE DESALINATION AND HDROGEN PRODUCTION ARE LINKED TO THE POWER GENERATION OF THE OTEC POWER FOR SEVERAL BY PRODUCTS COST EFFECTIVE PRODUCTION CLEAN ENERGY AND CLEAN WATER IS THE GOAL OF OTECPOWER INC OUR 14 MW OTEC POWER COSTS 50 MILLION USD ALL EQUIPMENT HAD BEEN DESINGED AND A FEW OF THEM ARE TESTED FOR OIL AND GAS INDUSTRY APPLICATION WHICHA RE BEING USED FOR OTECPOWER A RELIABLE AND FEASIBLE OTECPOWER IS PROPOSED

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

62

Cost optimization of a hybrid composite flywheel rotor with a split-type hub using combined analytical/numerical models  

Science Conference Proceedings (OSTI)

A procedure to find the optimal design of a flywheel with a split-type hub is presented. Since cost plays a decisive role in stationary flywheel energy storage applications, a trade-off between energy and cost is required. Applying a scaling technique, ... Keywords: Cost optimization, Flywheel energy storage, Flywheel rotors, Multifidelity optimization, Split-type hub, Surrogate-based optimization

Malte Krack; Marc Secanell; Pierre Mertiny

2011-07-01T23:59:59.000Z

63

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

64

Flywheel rotor and containment technology development  

DOE Green Energy (OSTI)

The goals of the project are: to develop an economical and practical composite flywheel having an energy density of 88 Wh/kg at failure, an operational energy density of 44 to 55 Wh/kg, and an energy storage capacity of approximately 1 kWh; to determine the suitability of various manufacturing processes for low-cost rotor fabrication; to investigate flywheel and flywheel-systems dynamics; to test and evaluate prototype rotors for use in transportation and stationary applications; and to develop a fail-safe, lightweight, and low-cost flywheel containment. The following tasks have been accomplished: evaluation and selection of 1-kWh, first-generation, advanced flywheel rotor designs for subsequent development towards the DOE-established energy density goal of 88 Wh/kg at burst; completion of an advanced design concept for a flywheel primary containment structure, capable of containing the failure of a 1-kWh flywheel rotor and targeted for vehicular applications; non-destructive inspection and burst testing of approximately twenty (20) prototype rotors, and initiation of cyclic testing; completion of various activities in the areas of rotor manufacturing processes, dynamic analyses and composite materials design data generation; and initiation of an economic feasibility study to establish a rational costing methodology for composite rotors and containment.

Kulkarni, S.V.

1981-08-11T23:59:59.000Z

65

Advanced high-speed flywheel energy storage systems for pulsed power application  

E-Print Network (OSTI)

Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power for short periods of time, on the order of a few seconds, especially during acceleration and deceleration. The current approach to solving this problem is sizing the electrical grid for peak power, rather than the average. A method to efficiently store and discharge the pulsed power is necessary to eliminate the cost and weight of oversized generation equipment to support the pulsed power needs of these applications. Highspeed Flywheel Energy Storage Systems (FESS) are effectively capable of filling the niche of short duration, high cycle life applications where batteries and ultra capacitors are not usable. In order to have an efficient high-speed FESS, performing three important steps towards the design of the overall system are extremely vital. These steps are modeling, analysis and control of the FESS that are thoroughly investigated in this dissertation. This dissertation establishes a comprehensive analysis of a high-speed FESS in steady state and transient operations. To do so, an accurate model for the complete FESS is derived. State space averaging approach is used to develop DC and small-signal AC models of the system. These models effectively simplify analysis of the FESS and give a strong physical intuition to the complete system. In addition, they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc. In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented in the high-speed FESS are investigated in detail and outline a proper control strategy to achieve the required performance by the system. Next, a novel design algorithm developed by S.P. Bhattacharyya is used to design the control system. The algorithm has been implemented to a motor drive system, for the first time, in this work. Development of the complete set of the current- and speed-loop proportional-integral controller gains stabilizing the system is the result of this implementation. In the last part of the dissertation, based on the information and data achieved from the analysis and simulations, two parts of the FESS, inverter/rectifier and external inductor, are designed and the former one is manufactured. To verify the validity and feasibility of the proposed controller, several simulations and experimental results on a laboratory prototype are presented.

Talebi Rafsanjan, Salman

2008-12-01T23:59:59.000Z

66

Composite-flywheel burst-containment study  

Science Conference Proceedings (OSTI)

A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These area: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk. The flywheel materials for the disk are S-glass; the subcircular rim is Kevlar over S-glass. Test data on flywheel bursts and containment failures were analyzed. Recommendations are made for further testing.

Sapowith, A.D.; Handy, W.E.

1982-04-08T23:59:59.000Z

67

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

68

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

69

High speed flywheel  

DOE Patents (OSTI)

A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

McGrath, Stephen V. (Knoxville, TN)

1991-01-01T23:59:59.000Z

70

Property:Permit/License Buildout (MW) | Open Energy Information  

Open Energy Info (EERE)

Permit/License Buildout (MW) Permit/License Buildout (MW) Jump to: navigation, search Property Name Permit/License Buildout (MW) Property Type String Pages using the property "Permit/License Buildout (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 40 + MHK Projects/Algiers Light Project + 20 + MHK Projects/Anconia Point Project + 15 + MHK Projects/Ashley Point Project + 148 + MHK Projects/Avalon Tidal + 30 + MHK Projects/Avondale Bend Project + 18 + MHK Projects/BW2 Tidal + 3 + MHK Projects/Bar Field Bend + 94 + MHK Projects/Barfield Point + 114 + MHK Projects/Bayou Latenache + 50 + MHK Projects/Bondurant Chute + 152 + MHK Projects/Breeze Point + 198 + MHK Projects/Brilliant Point Project + 56 + MHK Projects/Brough Head Wave Farm + 200 +

71

Model Validation at the 204-MW New Mexico Wind Energy Center  

DOE Green Energy (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

72

Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

1980-09-24T23:59:59.000Z

73

Matched metal die compression molded structural random fiber sheet molding compound flywheel  

DOE Patents (OSTI)

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, Satish V. (San Ramon, CA); Christensen, Richard M. (Danville, CA); Toland, Richard H. (West Chester, PA)

1985-01-01T23:59:59.000Z

74

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

75

Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy  

Open Energy Info (EERE)

Solar Electric Corp aka Solar MW Energy Inc Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place Ontario, California Zip 91761 Product Plans to develop STEG plants in the Mojave desert. Coordinates 34.06457°, -117.647809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.06457,"lon":-117.647809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

LIRR High-Speed Flywheel Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIRR High-Speed Flywheel LIRR High-Speed Flywheel Demonstration Guy Sliker Program Manager Research & Technology Development New York Power Authority This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Presentation Layout Introduction Flywheel Description Project Reasoning Project Objective Project Participants Expected Benefits New York Power Authority Highlights A public benefit energy corporation founded 1931 Largest non-federal public electric utility in United States Wholesale power supplier throughout New York State and neighboring states as required by law

77

Low-cost flywheel demonstration program. Final report  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

78

Composite flywheel development completion report, May 1--September 30, 1976  

DOE Green Energy (OSTI)

The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

1977-05-01T23:59:59.000Z

79

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

80

A 1-mW vibration energy harvesting system for moth flight-control applications  

E-Print Network (OSTI)

This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

Chang, Samuel C

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flywheel Power Systems: Market Analysis  

Science Conference Proceedings (OSTI)

High speed flywheel power systems offer a new opportunity to provide power delivery systems. Such systems are very useful to mitigate power quality problems. This report focuses on the industrial market for flywheel storage systems.

1998-02-20T23:59:59.000Z

82

Modeling and Analysis of a Flywheel Energy Storage System for Voltage Regulation.  

E-Print Network (OSTI)

??Ontario in 21st century is progressing rapidly to source a bulk of its energy supply from green and renewable energy sources, including wind energy. However (more)

Farahani, Kamran Masteri

2012-01-01T23:59:59.000Z

83

Evaluation of Demo 1C composite flywheel rotor burst test and containment design  

DOE Green Energy (OSTI)

Laboratory-Directed funds were provided in FY 1995 for research to develop flywheel containment specifications and to consider concepts that could satisfy these specifications and produce a prototype small, lightweight, inexpensive, mobile flywheel containment. Research activities have included an analytical and pictorial review of the Demo 1C flywheel failure test, which provided significant insight about radial and axial failure modes; calculations of the thickness of ultra-conservative pressure vessel containment; entertainment of advanced containment concepts using lightweight materials and armor literature; consideration of fabrication assembly procedures; and participation in a Flywheel Energy Storage Workshop during which additional flywheel failure experiences were discussed. Based on these activities, calculations, and results, a list of conclusions concerning flywheel containment and its relation to the flywheel are presented followed by recommendations for further research.

Kass, M.D.; McKeever, J.W.; Akerman, M.A.; Goranson, P.L.; Litherland, P.S.; O`Kain, D.U.

1998-07-01T23:59:59.000Z

84

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

85

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

86

EK 131/132 module: Introduction to Wind Energy MW 3-5  

E-Print Network (OSTI)

EK 131/132 module: Introduction to Wind Energy MW 3-5 Course. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind. Students will measure personal energy use and analyze wind turbine data from the Museum of Science's wind

87

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Electric utilities are interested energy storage solutions for renewable integration and transmission and distribution (TD) grid support that require systems of 10's of MWs in scale and energy durations of longer than 4 hours. Compressed air energy storage and pumped hydro systems are currently the lowest capital cost (/ kW-h) bulk storage options for energy durations longer than 10 hour; however, these storage facilities have geological and siting restrictions and require long permitting and deployment ...

2010-12-16T23:59:59.000Z

88

Third Generation Flywheels for electric storage  

Science Conference Proceedings (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

89

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

DOE Green Energy (OSTI)

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

90

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

91

Flywheel rotor and containment technology development, FY83  

DOE Green Energy (OSTI)

The Department of Energy decided to terminate the Flywheel Rotor and Containment Technology Development project during FY 1983. Activities this year included fabrication, inspection, and test evaluation of rotor and containment structures. A peak energy of 700 Wh was stored at an energy density of 70 Wh/kg. In cyclic tests, 10,000 cycles from design speed to half speed were logged without failure. The first test of a lightweight containment structure indicates the need for additional development. In complementary studies, production cost estimates were made for three flywheel designs. In a cooperative program with the University of Wisconsin, work began on construction of a flywheel/continuously variable transmission/heat engine car which promises fuel economy improvements of up to 100%. Suggestions are made for the direction of future work when interest in flywheel system reappears.

Mohr, P.B.; Walter, C.E.

1983-09-12T23:59:59.000Z

92

Economic Development Impact of 1,000 MW of Wind Energy in Texas  

DOE Green Energy (OSTI)

Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

Reategui, S.; Hendrickson, S.

2011-08-01T23:59:59.000Z

93

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

Science Conference Proceedings (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

94

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

Davis, D.E.; Ingham, K.T.

1987-04-28T23:59:59.000Z

95

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

Davis, Donald E. (Thousand Oaks, CA); Ingham, Kenneth T. (Woodland Hills, CA)

1987-01-01T23:59:59.000Z

96

Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program ...................................................................... 5 1.1. The Grid Energy Storage Value Proposition ..................................................................................... 5 1.2. Grid Energy Storage at DOE .............................................................................................................

97

Publicly Submitted White Papers - Energy  

Science Conference Proceedings (OSTI)

Energy. 10 ... Advanced Composites for Flywheels; Advanced Technologies for the Infrastructure: Mobile Energy; Alternative ...

2011-08-16T23:59:59.000Z

98

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

1980-04-01T23:59:59.000Z

99

Computer-aided-design of flywheels  

Science Conference Proceedings (OSTI)

We have presented in this work, a computer-aided-design software for flywheels using object-oriented programming approach of Visual Basic. The various configurations of flywheels (rimmed or solid) formed the basis for the development of the software. ... Keywords: Computer-aided-design, Flywheels, Object-oriented programming, Speed fluctuation, Stress

John A. Akpobi; Imafidon A. Lawani

2006-04-01T23:59:59.000Z

100

Computer-aided-design of flywheels  

Science Conference Proceedings (OSTI)

We have presented in this work, a computer-aided-design software for flywheels using object-oriented programming approach of Visual Basic. The various configurations of flywheels (rimmed or solid) formed the basis for the development of the software. ... Keywords: computer-aided-design, flywheels, object-oriented programming, speed fluctuation, stress

John A. Akpobi; Imafidon A. Lawani

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing  

DOE Green Energy (OSTI)

The summaries of this project are: (1) Program goal is to design, develop, and demonstrate a 100 kW UPS flywheel electricity system; (2) flywheel system spin tested up to 15,000 RPM in a sensorless, closed loop mode; (3) testing identified a manufacturing deficiency in the motor stator--overheats at high speed, limiting maximum power capability; (4) successfully spin tested direct cooled HTS bearing up to 14,500 RPM (limited by Eddy current clutch set-up); (5) Testing confirmed commercial feasibility of this bearing design--Eddy Current losses are within acceptable limits; and (6) Boeing's investment in flywheel test facilities increased the spin-test capabilities to one of the highest in the nation.

Dr. Michael Strasik, Philip E Johnson; A. C. Day; J. Mittleider; M. D. Higgins; J. Edwards; J. R. Schindler; K. E. McCrary; C.R. McIver; D.; J. F. Gonder; J. R. Hull

2007-10-29T23:59:59.000Z

102

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-cells-backup-infrastructure-cleanly-and-quietly Article 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage...

103

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

p-rfi-reply-comments-communications-requirements Article 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage...

104

ESS 2012 Peer Review - Energy Storage Controls for Grid Stability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dissipated across the ESR 8 High fidelity (14 th order) model based on a Beacon flywheel (Smart Energy 25 Flywheel) Parameters were derived from published performance...

105

Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * NREL/TP-620-33177 3 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates B.G. Swezey National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 June 2003 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates

106

Oak Ridge Flywheel Evaluation Laboratory. Annual report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

The purpose of the Oak Ridge Flywheel Evaluation Laboratory Annual Report is to present work performed for and funded by the Mechanical Energy Storage Technology Project at Lawrence Livermore National Laboratory (LLNL). In addition to the management sections (schedules, budgets, and facility accomplishments), summaries are given for the ultimate speed evaluations of one flywheel built by Union Carbide Corporation, Nuclear Division (UCC-ND); four flywheels constructed under subcontracts from Sandia National Laboratory, Albuquerque; one fabricated by LLNL; and one manufactured by General Electric Company. Also included are the test results from two momentum transfer tests of the UCC-ND-designed flywheel. Prototype crash rings were used in a number of these tests, and a discussion of their performance is included.

Steele, Jr., R. S.; Babelay, Jr., E. F.; Sutton, B. J.

1981-04-30T23:59:59.000Z

107

HI-MW Roadmap SCE DER  

Science Conference Proceedings (OSTI)

... 4,000 MW Wind 1,000 MW Solar Energy Storage with Advanced PCS, A Solution? ... Reliable, Cost Competitive, Innovation Incentive Rate ...

2012-07-07T23:59:59.000Z

108

Performance Testing of a Flywheel-Based Uninterruptible Power Supply  

Science Conference Proceedings (OSTI)

Performance testing of a fully integrated flywheel-based uninterruptible power supply (UPS) confirmed that the Caterpillar UPS 250 unit offers an innovative power quality solution for a broad range of industrial and commercial applications. It provides stored energy, immediately available, to protect critical loads against temporary power disturbances such as outages, sags, and surges. This report provides complete details of performance testing of the UPS system, including test instrumentation and setup...

2002-07-17T23:59:59.000Z

109

Optimum rotationally symmetric shells for flywheel rotors  

DOE Patents (OSTI)

A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

Blake, Henry W. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

110

MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

NJBPU 1 5 MW Demonstration Program NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6032,"lon":-74.3401,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

111

Canned pump having a high inertia flywheel  

DOE Patents (OSTI)

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

Veronesi, Luciano (O' Hara Twp., Allegheny County, PA); Raimondi, ALbert A. (Monroeville Borough, Allegheny County, PA)

1989-01-01T23:59:59.000Z

112

Canned pump having a high inertia flywheel  

DOE Patents (OSTI)

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

Veronesi, L.; Raimondi, A.A.

1989-12-12T23:59:59.000Z

113

Layered flywheel with stress reducing construction  

DOE Patents (OSTI)

A flywheel having elastic spokes carrying an elastic rim; and a hub coupling the spokes to a shaft and deforming in response to centrifugal force to match the radial distortion of the spokes.

Friedericy, Johan A. (Palos Verdes Estates, CA); Towgood, Dennis A. (Huntington Beach, CA)

1984-11-13T23:59:59.000Z

114

The Flywheel Effect in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Because of the requirement of geostrophic balance, mechanical inertia can affect the thermal response of the atmosphere to transient heating. We examine some very simple linear models of this flywheel effect, and discuss their possible ...

Roelof K. Snieder; Stephen B. Fels

1988-12-01T23:59:59.000Z

115

ESS 2012 Peer Review - Next Generation Composite Materials for Flywheel Development - Timothy Lambert, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia! Sandia! National! Laboratories! Acknowledgments We gratefully acknowledge support from Dr. Imre Gyuk and the Office of Electricity, Delivery and Energy Reliability. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Abstract Flywheels are "mechanical battery" storage systems that have fast response times, long lifetimes and lower maintenance costs; when coupled with high-temperature superconducting (HTS) bearings, flywheels can exhibit extremely low rotational losses resulting in high efficiency. For energy storage purposes, materials with higher strengths, and lower densities that would allow the flywheel to spin

116

Model Validation at the 204-MW New Mexico Wind Energy Center (Poster)  

Science Conference Proceedings (OSTI)

The objectives of this report are: (1) to investigate the impact of aggregation on a large wind farm; and (2) to explore the dynamic behaviors of the power system and the wind turbine. The methods used are: (1) use equivalencing method previously developed to simplify Taiban Mesa wind power plant; (2) use PSLF dynamic analysis to simulate the wind power plant with AWEA-proposed low voltage ride through (LVRT) used to test the systems; and (3) represent a 204-MW wind plant two ways, treat the entire wind farm feeding a large power system network as a single generator and treat each wind turbine within the wind farm as an individual generator (136 generators) feeding the large power system network.

Muljadi, E.; Butterfield, C. P.; Miller, N.; Delmerico, R.; Ellis, A.; Mechenbier, J.; Zavadil, R.; Smith, J. C.; Hochheimer, J.; Young, R.

2006-01-01T23:59:59.000Z

117

The Los Alamos 600 MJ, 1500 MW inertial energy storage and pulsed power unit  

DOE Green Energy (OSTI)

A 1430 MVA synchronous generator from a cancelled nuclear power plant has been installed and commissioned at Los Alamos National Laboratory (LANL) to be used as the pulsed power generator for physics experiments. The generator is mounted on a spring foundation to prevent dynamic forces from being transmitted to the substructure and into the ground. A 6 MW load-commutated inverter drive accelerates the machine from standstill to the maximum operating speed of 1800 rpm and from 1260 rpm to 1800 rpm between load pulses. The generator cooling method has been changed from hydrogen to air cooling to facilitate operation. A current limiting fuse, with a fuse clearing current of 90 kA, will protect the generator output against short circuit currents. An overview of the installation is presented. The paper also addresses the overload capability of the generator for pulsed loads. 7 figs., 1 tab.

Boenig, H.J.

1991-01-01T23:59:59.000Z

118

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

119

Energy-Saving Analysis on Thermal System in 600MW Supercritical Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

High-efficiency, energy-saving and environmentally friendly supercritical thermal power units are gradually becoming main stream in China. In this paper, an advanced energy system analysis method, specific consumption analysis, is used to examine the ... Keywords: supercritical, energy-saving, specific consumption analysis, feed-water heating system, environmentally friendly

Yongping Yang; Yu Wu; Zhiping Yang; Ningling Wang; Gang Xu

2010-06-01T23:59:59.000Z

120

Design and testing of a 13. 75-MW converter for a superconducting magnetic-energy-storage system  

DOE Green Energy (OSTI)

A 30 MJ superconducting magnetic energy storage system will be installed in 1982 in Tacoma, WA, to act as a transmission line stabilizer. Two 6 MVA transformers and a 5.5 kA, + 2.5 kV converter will connect the superconducting coil to the 13.8 kV bus and regulate the power flow between the coil and the three phase system. The design philosophy for the converter including its control and protection system is given in the paper. The converter has been tested with 10% overvoltage at no load, with 10% overcurrent at zero output voltage and with a watercooled resistive load of about 1 MW. These test results show that the converter will meet the expected full load operating conditions.

Boenig, H.J.; Turner, R.D.; Neft, C.L.; Sueker, K.H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design of plywood and paper flywheel rotors  

SciTech Connect

Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationaly flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Plywood moisture equilibration during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. High resolution tensile tests were performed while monitoring the acoustic emissions. Reasonable correlations exist between the instantaneous sample stiffness during the test and the accumulated acoustic energy released in fracture of the sample. They indicate promise for short term monitoring of damage during tensile tests. Preliminary duration of load tests were performed on vacuum dried hexagonal Birch plywood. Dynamic and static rotor-hub fatigue equipment were designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for 17 examples. Plywood rotors appear to be marginally competitive with steel hose wire or E-glass rotors. High performance oriented draft paper rotors potentially provide the lowest energy storage costs in stationary systems.

Hagen, D.L.

1982-01-01T23:59:59.000Z

122

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Renewable Energy, National Energy Technology Laboratory August 9, 2010 Flywheel Project Escalates Grid Efficiency How does an energy storage plant recycle energy?...

123

Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

DOE Green Energy (OSTI)

Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

NONE

1996-01-29T23:59:59.000Z

124

History of First U.S. Compressed Air Energy Storage (CAES) Plant (110-MW-26 h): Volume 1: Early CAES Development  

Science Conference Proceedings (OSTI)

In 1991, Alabama Electric Cooperative's 110-MW-26 h compressed air energy storage (CAES) plant, the first in the United States, became commercially operational. This report, first in a series, documents the history of the plant from project conception to the beginning of plant construction.

1993-01-01T23:59:59.000Z

125

A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems  

E-Print Network (OSTI)

to the tide phenomenon while supercapacitor and flywheel are more suitable for eliminating short-period power current energy; Power fluctuation; Battery; Flywheel; Supercapacitor hal-00757890,version1-27Nov2012

Paris-Sud XI, Université de

126

Final report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

DOE Green Energy (OSTI)

Voltage sags, swells and momentary power interruptions lasting a few cycles to several seconds are common disturbances on utility power distribution systems. These disturbances are a result of normal utility recloser switching activity due in part to distribution system short circuits from natural causes such as lightning, rodents, traffic accidents, and current overloads. Power disturbances pose serious problems for many customers with critical, voltage sensitive equipment. Faults can interrupt a manufacturing process, cause PLC`s to initialize their programmed logic and restart equipment out of sequence, create computer data errors, interrupt communications, lockup PC keyboards and cause equipment to malfunction. These momentary disturbances result in billions of dollars of lost productivity annually due to downtime, cleanup, lost production and the loss of customer confidence in the business. This report describes prototype development work for a factory assembled 2 MW/10 Second Battery Energy Storage System. The system design includes (1) a modular battery energy storage system comprised of several strings of batteries-each string provided with an integral Power Conversion System (PCS), (2) an Electronic Selector Device (ESD) comprised of a solid state static switch with sensing and power switching controls, and utility interconnection termination bus bars, and (3) a separate isolation transformer to step-up PCS output voltage to interface directly with the distribution transformer serving the industrial or commercial customer. The system monitors the utility distribution system voltage for voltage sags, swells, and interruptions, switches the customer`s critical loads from utility power to the energy stored in the systems batteries and provides up to 2 MVA until the disturbance clears or up to 10 seconds. Once the ESD sensing circuits have confirmed that the utility is again stable, it seamlessly returns the critical load to the utility. 22 figs., 1 tab.

NONE

1996-12-11T23:59:59.000Z

127

Transient analysis of a flywheel battery containment during a full rotor burst event.  

DOE Green Energy (OSTI)

Flywheels are being developed for use in an Advanced Locomotive Propulsion System (ALPS) targeted for use in high speed passenger rail service. The ALPS combines high performance, high speed gas turbines, motor/generators and flywheels to provide a light-weight, fuel-efficient power system. Such a system is necessary to avoid the high cost of railway electrification, as is currently done for high speed rail service (>100mph) since diesels are too heavy. The light-weight flywheel rotors are made from multilayered composite materials, and are operated at extremely high energy levels. Metal containment structures have been designed to enclose the rotors and provide encapsulation of the rotor during postulated failure events. One such event is a burst mode failure of the rotor in which the composite rim is assumed to burst into debris that impacts against the containment. This paper presents a finite element simulation of the transient structural response of a subscale metal flywheel containment structure to a rotor burst event.

Hsieh, B. J.

1998-04-17T23:59:59.000Z

128

REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT  

DOE Patents (OSTI)

A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

Loeb, E.

1961-01-17T23:59:59.000Z

129

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Technology Description Advanced storage technologies under active development include processes that are mechanical (flywheels, pneumatic), electrochemical...

130

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

131

Conceptual design of electrical balance of plant for advanced battery energy storage facility. Annual report, March 1979. [20-MW, 100 MWh  

SciTech Connect

Large-scale efforts are in progress to develop advanced batteries for utility energy storage systems. Realization of the full benefits available from those systems requires development, not only of the batteries themselves, but also the ac/dc power converter, the bulk power interconnecting equipment, and the peripheral electric balance of plant equipment that integrate the battery/converter into a properly controlled and protected energy system. This study addresses these overall system aspects; although tailored to a 20-MW, 100-MWh lithium/sulfide battery system, the technology and concepts are applicable to any battery energy storage system. 42 figures, 14 tables. (RWR)

1980-01-01T23:59:59.000Z

132

Evaluation of the Urenco PQ Flywheel Energy Storage System for Enhancing the Ride-Through Performance of an Adjustable-Speed Drive  

Science Conference Proceedings (OSTI)

Power electronic technologies have revolutionized the process industry. However, power quality problems, such as voltage sags and momentary interruptions, threaten the continuity of automated processes that are endowed with power electronics. Adjustable-speed drives, programmable logic controllers, and microprocessor-based controls enable wonderful efficiency but are particularly susceptible to electrical disturbances. This report discusses the application of a promising energy storage technology that en...

2000-11-08T23:59:59.000Z

133

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

134

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

Kuklo, T.C.

1999-08-24T23:59:59.000Z

135

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technology to manage and store energy better -- it continuously absorbs and injects electricity. http:energy.govarticlesrecycling-grid-energy-flywheel-technology Download...

136

Flywheel storage for photovoltaics: an economic evaluation of two applications  

E-Print Network (OSTI)

A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

137

Modeling and torque estimation of an automotive dual mass flywheel  

Science Conference Proceedings (OSTI)

The Dual Mass Flywheel (DMF) is primarily used for dampening of oscillations in automotive powertrains and to prevent gearbox rattling. This paper explains the DMF mechanics along with its application and components. Afterwards a detailed ab-inltio model ...

Ulf Schaper; Oliver Sawodny; Tobias Mahl; Uli Blessing

2009-06-01T23:59:59.000Z

138

'Recycling' Grid Energy with Flywheel Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electrical grid has been around much longer than other vital technologies, like telecommunications and the Internet. Yet these systems have become more efficient in significantly...

139

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

Groves, S.E.; Deteresa, S.J.

1998-07-14T23:59:59.000Z

140

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARPA-E 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

has been working to develop critical components of a highly advanced "flying ring" flywheel energy storage system. Image: Sarah Gerrity, Energy Department Date taken: 2013-02-26...

142

ESS 2012 Peer Review - Higher Power Motor for ARPA-E Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Higher Power Motor for ARPA-E Flywheel Limitations of ARPA-E Flywheel * 1 Hour of Storage Program Tasks * Add Back-Iron to Stator to Increase Magnet Flux g * Limited to Longer Term...

143

Design of plywood and paper flywheel rotors. Final report  

SciTech Connect

Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor-hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E-glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.

Erdman, A.G.; Hagen, D.L.; Gaff, S.A.

1982-05-01T23:59:59.000Z

144

Vycon Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Cerritos, California Zip 90703 Product Vycon markets and manufactures flywheel energy storage systems for a wide range of applications in the power quality and UPS...

145

Amber Kinetics | Open Energy Information  

Open Energy Info (EERE)

search Name Amber Kinetics Product Start-up company developing a novel flywheel energy storage system with the Lawrence Livermore National Laboratory. References Amber...

146

Ashman Technologies | Open Energy Information  

Open Energy Info (EERE)

has developed various permanent magnet high-speed generators and various flywheel energy storage applications funded by NASA and NASA GRC has extensively tested these...

147

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

Science Conference Proceedings (OSTI)

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

148

Energy Systems High Pressure Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

with energy storage activities such as ultra- capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to...

149

History of First U.S. Compressed-Air Energy Storage (CAES) Plant (110 MW 26h): Volume 2: Construction  

Science Conference Proceedings (OSTI)

This report, Volume 2 in a series, documents the construction of the first U.S. compressed-air energy storage (CAES) plant from August 1988 to May 1991. By providing valuable information on construction and cost schedules for Alabama Electric Cooperative's (AEC) plant, this report will help utilities evaluate and build CAES plants.

1994-05-07T23:59:59.000Z

150

Arete Power Inc | Open Energy Information  

Open Energy Info (EERE)

Arete Power Inc Place Reno, Nevada Product Developer and manufacturer of advanced flywheel energy storage systems. Coordinates 32.944065, -97.578279 Loading map......

151

Geology and potential uses of the geopressure resources of the Gulf Coast. [6,000 MW-centuries of recoverable electric energy, 200 Tcf of methane  

DOE Green Energy (OSTI)

The US ERDA has supported efforts to evaluate the potential contribution to the national energy supply of geopressured geothermal resources in the Gulf Coast. Efforts include a program of resource assessment and programs to examine utilization of the resource for the production of electricity and as a source of industrial-process heat. Work on resource assessment has suggested the presence of perhaps as much as 6,000 MW-centuries of recoverable electric energy and of 200 Tcf of methane. This program has emphasized finding significantly large sand bodies within the geopressured stratigraphic section in addition to defining the distribution of abnormal fluid pressures and formation temperatures. Regional sand facies analyses conducted thus far indicate five locations in the Frio formation of Central and South Texas where adequately large geopressured geothermal resources may be present. Engineering studies of energy-conversion systems based on total-flow, flashed-steam, and binary-cycle concepts show that development of electric power from the Gulf Coast geopressure resource is technically feasible. Study of use of the resource as process heat in pulp and paper mills and new sugar refineries has shown that these uses also are technically sound. The thermal content of a barrel of geothermal brine can cost as little as 9 mills when credited for recoverable hydraulic energy and methane. The value of heat approaches 50 mills per bbl for certain applications. All programs have pointed out clearly the need for better specific understanding of the resource, especially its dissolved methane content and its ability to produce for tens of years.

Howard, J.H.; House, P.A.; Johnson, P.M.; Towse, D.F.; Bebout, D.G.; Dorfman, M.H.; Agagu, O.K.; Hornburg, C.D.; Morin, O.J.

1976-06-01T23:59:59.000Z

152

Hopf Bifurcation Analysis for a Mechanical Centrifugal Flywheel Governor System  

Science Conference Proceedings (OSTI)

The complex dynamic behavior of the mechanical centrifugal flywheel governor system is studied. The dynamical equation of the system is established using Lagrangian and Newtons second law. The bifurcation behavior and stability of the mechanical ... Keywords: centrifugal governor, Lyapunov exponents, chaos, chaos synchronization, Poincar map

Jian-Gang Zhang; Jian-Ning Yu; Yan-Dong Chu; Xian-Feng Li

2008-10-01T23:59:59.000Z

153

A zinc-air battery and flywheel zero emission vehicle  

DOE Green Energy (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

154

Utilization of rotor kinetic energy storage for hybrid ...  

Flywheel Energy Storage Device for Hybrid and Electric Vehicles: Abstract: A power system for a motor vehicle having an internal combustion engine, ...

155

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02092010 Location(s):...

156

Welcoming Remarks Imre Gyuk US Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark A. Smith (Sandia National Laboratories) Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing -...

157

Oak Ridge Flywheel Evaluation Laboratory. Annual report, April 1, 1979-September 30, 1979  

DOE Green Energy (OSTI)

The Oak Ridge Flywheel Evaluation Laboratory (ORFEL) was assembled, and the initial stages of proof testing were completed in FY 1979. The significant accomplishments for the past year included the establishment of adequate full-time personnel; facility modification to reflect the emphasis on flywheel evaluation over simple testing; and the facility proof test involving two aluminum disk flywheels and one composite flywheel. This report contains details of the FY 1979 program plans for ORFEL, personal profiles of the dedicated manpower, and details of the tests performed.

Steele, R.S. Jr.; Casstevens, J.M.; Sutton, B.J.

1979-12-01T23:59:59.000Z

158

Flywheel electric battery. Final report, June 12, 1995--January 16, 1997  

DOE Green Energy (OSTI)

The objective is to develop proposals to obtain funding for development of a 2nd Generation Flywheel Battery Prototype designed for a specific application.

Thorpe, D.G.

1997-01-16T23:59:59.000Z

159

PCFB Repowering Project 80 MW plant description  

Science Conference Proceedings (OSTI)

This report documents the design of a 80 MW Pressurized Circulating Fluidized Bed (PCFB) boiler for the repowering of Unit 1 at the Des Moines Energy Center. Objective is to demonstrate that PCFB combined-cycle technology is cost effective and environmentally superior compared to traditional pulverized coal burning facilities.

Not Available

1994-05-01T23:59:59.000Z

160

Engineering study of a 20 MW lead--acid battery energy storage demonstration plant. Final report for the period ending October 1976  

DOE Green Energy (OSTI)

The Research and Engineering Operation of Bechtel Corporation conducted an engineering study of a 20-MW lead--acid battery energy storage demonstration plant. Ten alternative designs were evaluated. Basically, the configurations proposed for the demonstration plants are those of the mature plants which would follow. The designs of the individual plants are based on the cell designs and the means used to house the cells. Initially, proposed cell designs from five manufacturers were considered. To conform with the level of effort allowed for this engineering study, two manufacturers' cells (one open-tank design and one sealed cell design) were selected by ERDA and Bechtel as being representative. These designs formed the basis for the detailed evaluation conducted in this study. The plant and battery configurations evaluated in the study are a large open-tank cell, configured in rows and housed in four buildings; a sealed cell, configured in a single layer of close packed rows in a single building; a sealed cell, configured in a three-tiered arrangement in a single building; and a sealed cell, configured with groups of cells housed in weatherproof modules and placed outdoors. Annual operating costs based on these mature plant costs show lead--acid load-leveling plants are generally not economically competitive with the alternatives when no consideration is given to their other possible benefits to the power system. However, application of credits (e.g., transmission line or spinning reserve credits) can make such plants economically competitive with gas turbine peaking units in specific situations. 46 figures, 25 tables. (RWR)

Not Available

1976-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Critical National Need: Improved Composites for Flywheels  

Science Conference Proceedings (OSTI)

... The US does possess abundant renewable resources in the form of wind, hydro, geothermal, and solar energy inputs. Hydro ...

2011-08-02T23:59:59.000Z

162

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (Day 2): ARRA Projects 2 (Day 2): ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARRA project presentations from the second poster session on Day 2, chaired by Sandia's Georgianne Huff, are below. ESS 2012 Peer Review - 20 MW Flywheel Frequency Regulation Plant - Jim Arseneaux, Beacon Power ESS 2012 Peer Review - Advanced Implementation of Community ESS for Grid Support - Haukur Asgeirsson, Detroit Edison ESS 2012 Peer Review - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth,

163

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (Day 2): ARRA Projects 2 (Day 2): ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARRA project presentations from the second poster session on Day 2, chaired by Sandia's Georgianne Huff, are below. ESS 2012 Peer Review - 20 MW Flywheel Frequency Regulation Plant - Jim Arseneaux, Beacon Power ESS 2012 Peer Review - Advanced Implementation of Community ESS for Grid Support - Haukur Asgeirsson, Detroit Edison ESS 2012 Peer Review - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth,

164

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

Deteresa, S.J.; Groves, S.E.

1998-06-02T23:59:59.000Z

165

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

1998-06-02T23:59:59.000Z

166

LIRR High-Speed Flywheel Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approximately 23% of New York State electricity needs 2006 Generation: 26.9MM MWh 75% hydro; 25% fossil 2006 energy sales: 42.9MM MWh (includes 16.5MM MWh purchased power)...

167

Energy Storage Systems 2006 Peer Review - Day 2 morning presentations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Peer Review - Day 2 morning 6 Peer Review - Day 2 morning presentations Energy Storage Systems 2006 Peer Review - Day 2 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. Presentations from the Day 2 morning session are below. ESS 2006 Peer Review - EESAT 2007 Conference Information - Georgianne Peek, SNL.pdf ESS 2006 Peer Review - Ultracapacitor EnergyBridge UPS - Chris McKay, Northern Power.pdf ESS 2006 Peer Review - Flywheel-based Frequency Regulation Demonstration Projects - Jim Arseneaux, Beacon Power.pdf ESS 2006 Peer Review - Design of the FESS 20MW Frequency Regulation Plant -

168

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a 43...

169

Third Generation Flywheels for electric storage  

DOE Green Energy (OSTI)

Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

170

Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine  

E-Print Network (OSTI)

This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

Ran, Li

171

Update on the Southwest 1000 MW CSP Initiative  

Science Conference Proceedings (OSTI)

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.

Mancini, T.; Mehos, M.; Wilkins, F.; Morse, F.

2005-11-01T23:59:59.000Z

172

Optimal power capturing of multi-MW wind generation system  

Science Conference Proceedings (OSTI)

Recently, an increasing number of multi-MW (1MW and up) wind generation systems are being developed and variable speed-variable pitch (VS-VP) control technology is usually adopted to improve the fast response speed and obtain the optimal energy, which ... Keywords: adaptive fuzzy proportional integral derivative, doubly-fed induction generator, hydraulic variable pitch mechanism, optimal, variable speed-variable pitch, wind turbine

Kong Yigang; Wang Zhixin

2008-03-01T23:59:59.000Z

173

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage and store energy better -- it continuously absorbs and injects electricity. September 30, 2010 Renovations to Pinehurst's City Hall are saving residents of this bedroom community $1,335 a year | Photo courtesy of Pinehurst Big Energy Savings for Small Idaho City The Pinehurst City Hall had been in need of renovations for quite some time. Constructed in the 1960s, the building had received few physical

174

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and continuous adjustments (frequency regulation) of power pulses. Wind Ramping Percentage Percentage Solar Shading A 20 MW flywheel energy storage resource accurately...

175

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

176

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

177

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

178

Beacon Power-Flywheel Energy Storage System Case Study  

Science Conference Proceedings (OSTI)

As the telecommunications industry grows and competition increases, providers of cable, telephone, and other products are looking for more equipment reliability and cost-effectiveness to distinguish themselves. Reliability for telecommunication and cable equipment has traditionally been provided through the use of lead-acid batteries. However, because these batteries have disadvantages, telecommunications operators are looking for alternative power quality and reliability solutions for their systems. The...

1999-11-11T23:59:59.000Z

179

ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in greater detail. Develop mixed particle composites based on monodisperse steel shot to appreciably increase the packing density and composite permeability. ...

180

Beacon Power Corp | Open Energy Information  

Open Energy Info (EERE)

Zip 1879 Sector Solar Product US-based developer of solar PV inverters and flywheel-based energy storage systems. References Beacon Power Corp1 LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

DOE Green Energy (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

182

Sacremento Municipal Utility District 100-MW sub e photovoltaic plant  

Science Conference Proceedings (OSTI)

A status report on plans for the Sacramento Municipal Utility District (SMUD) 1-MW photovoltaic power plant is presented. DOE, the California Energy Commission, and SMUD will fund the project cooperatively. Emphasis is placed on the details of the government contract/cooperation agreement.

Powell, R.V.

1982-04-01T23:59:59.000Z

183

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

184

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume III. Appendix. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

This is the appendix to the Stearns-Roger Engineering Company conceptual design report on ERDA's Large Scale Experiment No. 2 (LSE No. 2). The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. Under this contract Stearns-Roger developed a conceptual design, which was site specific, containing the following major elements: System Requirements Analysis, Site Description, System Conceptual Design, Conceptual Test and Operating Plans, Development Plans, Procurement and Management Plans for Subsequent Phases, and Cost Estimates. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. Drawings, tables, and data sheets are included on hourly temperatures, displacement, utility rates, power conversion system, seasonal design load summary, average collector temperature optimization study, system operating temperature optimization study, power conversion system seasonal performance, thermal storage/fluid loop, system integration, and cost estimates. (WHK)

None,

1977-10-17T23:59:59.000Z

185

Carbon Nanostructured for Energy Storage Bingqing (BQ) Wei  

Science Conference Proceedings (OSTI)

... E n e rg y d e n s ity (W h /k g ) Power density (kW/kg) Flywheels Department of Energy (DOE) Target Ragone Chart NIST Workshop 2011BQWei ...

2012-10-22T23:59:59.000Z

186

Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)  

DOE Green Energy (OSTI)

As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

2011-05-01T23:59:59.000Z

187

Design guide for composite-material flywheels: rotor dyamic considerations. Part I. System whirling and stability. Final report  

DOE Green Energy (OSTI)

Information to designers of flywheels is provided which will enable them to predict many aspects of the dynamic behavior of their flywheel systems when spin-tested with a quill-shaft support and driven by an air turbine. Computer programs are presented for the following dynamic analysis to obtain the results indicated: free whirling for natural frequencies versus rotational speed and the associated mode shapes; rough-type stability analysis for determining the stability limits; and forced whirling analysis for estimating the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped-parameter analysis, while the other is a combined distributed- and lumped-parameter analysis. When applied to an existing flywheel system, the two models yielded numerical values for the lowest first-order forward critical speed in very close agreement with each other and with experimental results obtained in spin tests. Therefore, for the second kind of analysis, only the lumped-parameter model is implemented. Qualitative discussions as to why forced retrograde whirling is not as severe as forward whirling are also presented. The analyses are applied to the multi-material ring type flywheel systems, a constant-thickness-diskring type, and a tapered-thickness-disk type. In addition, the effects of the following flywheel design parameters on system dynamics were investigated: flywheel mass; diametral and polar mass moments of inertia; location of mass center from the lower end of the quill shaft; quill shaft length; lower turbine-bearing support stiffness; equivalent viscous damping coefficient of the external damper; flywheel dead weight; and torque applied at the turbine.

Bert, C.W.; Ramunujam, G.

1981-09-01T23:59:59.000Z

188

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

189

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 5.11 - Top 10 Independent Power Producers Worldwide (Megawatts) Company 2002 Capacity (MW) 2003 Capacity (MW) 2004 Capacity (MW) SUEZ Energy International (formerly...

190

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 Flywheel Project Escalates Grid Efficiency How does an energy storage plant recycle energy? Find out how flywheels are expanding the capacity for renewable energy sources. August 9, 2010 LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo Lighting Retrofits Saving Energy, Helping Local Companies It's easy to measure the effects of a lighting retrofit project in a city like Altoona, Pa., where 169 new LED units are expected to save $4,078 in energy costs annually. But there are also other benefits to such energy efficiency initiatives, which can be seen in the local companies that make the projects possible... August 9, 2010 AcuTemp received a $900,000 48C manufacturing tax credit under the American Recovery and Reinvestment Act to increase production of the company's ThermoCor vacuum insulation panels for more efficient ENERGY STAR appliances. | Photo courtesy of AcuTemp |

191

Greene County 100 MW Biomass Conceptual Engineering Study  

Science Conference Proceedings (OSTI)

Southern Company Services, Incorporated, (SCS) is interested in constructing a 100-megawatt (MW) (net) biomass-fueled facility at an existing facility to increase its share of renewable energy generation and to support future load growth. The site of interest is the Greene County Electric Generating Plant in Demopolis, Alabama. This report represents the formal compilation of key engineering deliverables that collectively provide a better understanding of the conceptual-level parameters associated with t...

2010-12-10T23:59:59.000Z

192

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

193

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents (OSTI)

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

194

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents (OSTI)

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

Kuklo, T.C.

1999-07-20T23:59:59.000Z

195

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

196

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

197

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

198

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

199

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

200

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

202

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P P r o m or Field Office: Advanced Research Projects Agency - Energy Proiect Title: (0290-1654) Beacon Power - Development of a 100 k w h 1 100 kW Flywheel Energy Storage Module Location: Massachusetts Proposed Action or Project Description: American Recovery and Reinvestment Act: Fundingwill support laboratory and bench scale researchand development on a flywheel energy storage modulethat will provide4 times the stored energy at 118 the cost-per-energy of Beacon's state-of-the-art Gen4 flywheel. The proposedwork is consistentwith the goal of GRIDS: development of newtechnologies to enable the widespreaddeployment of cost-effective, grid-scale energy storage. Work consists entirely of RD&D to be completed at the Beacon Power facility in Tyngsboro, MA The work performed

203

CX-004955: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-004955: Categorical Exclusion Determination Beacon Power -Development of a 100 Kilowatt Hour/1100 Kilowatt Flywheel Energy Storage Module CX(s) Applied: B3.6 Date: 08/09/2010 Location(s): Tyngsboro, Massachusetts Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory and bench scale research and development on a flywheel energy storage module that will provide 4 times the stored energy at 118 the cost-per-energy of Beacon's state-of-the-art Gen 4 flywheel. The proposed work is consistent with the goal of Grid-Scale Rampable Intermittently Dispachable Storage (GRIDS): development of new technologies to enable the widespread deployment of cost-effective, grid-scale energy storage. Work consists entirely of research, development,

204

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90 levels instead of 150 and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84 -86 when outside ambient temperatures range from 98 -100. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

205

Environmental Energy Technologies Division Energy Analysis Department Community Wind Power  

E-Print Network (OSTI)

Environmental Energy Technologies Division · Energy Analysis Department Community Wind Power projects * standard US commercial wind development #12;Environmental Energy Technologies Division · Energy % Community- Owned Community- Owned Wind Capacity (MW) Total Wind Capacity (MW) #12;Environmental Energy

206

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

207

Micropower | Open Energy Information  

Open Energy Info (EERE)

energy Product Italian firm operating in the wind energy, solar energy, biomass and biogas sectors. The company operates 14MW wind power and has a pipeline of over 200MW at an...

208

5 MW pulsed spallation neutron source, Preconceptual design study  

Science Conference Proceedings (OSTI)

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

209

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

Not Available

2008-10-01T23:59:59.000Z

210

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

Not Available

2008-10-01T23:59:59.000Z

211

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

Not Available

2008-10-01T23:59:59.000Z

212

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

Not Available

2008-10-01T23:59:59.000Z

213

Conceptual design 10 MW experimental power generation facility  

DOE Green Energy (OSTI)

The overall or ultimate program envisions a small (10 MW) field experimental, highly instrumented, binary fluid cycle power plant facility planned to confirm the concept and evaluate technical and economic feasibility of the large scale use of geothermal energy resources. The eight year program duration anticipates four years for exploration and construction, two years for research and development of initial operations, and two years for research and development effort during production operating phase. The following are covered: a review of the design of all facilities between the supply and reinjection wells; a detailed description of the project scope; the project, system or performance requirements; the project design, procurement and construction schedule; the site layout, power plant perspective, plant layouts, single line electrical diagram, piping and instrument diagram and flow diagram; the cost estimate based on the included drawings; and project feasibility. (MHR)

Not Available

1974-09-30T23:59:59.000Z

214

Internal Technical Report, Heat Exchanger Sizing for 20 MW Geothermal Power Plants at MX Sites  

DOE Green Energy (OSTI)

This report presents the details of the analyses used to size the heaters, steam condenser, and working fluid condenser for a proposed 20 MW geothermal power plant application at MX sites in the southwest. These units would use a mixture of hydrocarbons (90% isobutane--10% n-hexane) to extract energy from moderate temperature resources (resource temperatures of 365 F, 400 F, and 450 F were considered). The working fluid will be maintained at supercritical pressures in the heater units. Studies have shown that this cycle will provide a significant net power increase over standard dual boiling single fluid cycles currently in use, e.g., the Raft River 5 MW pilot plant.

Kochan, R.J.; Bliem, C.J.

1981-12-01T23:59:59.000Z

215

Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems  

SciTech Connect

Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

2012-11-09T23:59:59.000Z

216

The conversion of the 2 MW reactor at the Rhode Island Nuclear Science Center  

Science Conference Proceedings (OSTI)

The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more U-235 than the current HEU plate. These differences, coupled with a desire to upgrade the characteristics and capability of the reactor, have resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during 23 years of operation, it has become clear that the main uses of the reactor have been neutron scattering and neutron activation analysis. The requirement to convert to LEU presents and opportunity to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper presents the current conclusions of both aspects. 2 refs., 9 figs.

DiMeglio, A.F.; Matos, J.E.; Freese, K.E.; Spring, E.F. (Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center; Argonne National Lab., IL (USA); Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center)

1989-01-01T23:59:59.000Z

217

3D Simulation of a 5MW Wind Turbine.  

E-Print Network (OSTI)

??In the present work, the influence of turbulence and gravity forces on the tower and the rotor of a 5MW onshore wind turbine has been (more)

Namiranian, Abtin

2011-01-01T23:59:59.000Z

218

EA-1631: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Final Environmental Assessment 1: Final Environmental Assessment EA-1631: Final Environmental Assessment Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York The environmental assessment examines the potential environmental impacts associated with issuing a Federal loan guarantee to Beacon Power Corporation for construction and operation of a flywheel-based frequency regulation facility at an undeveloped seven acre site in Stephentown, New York. Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York, DOE/EA-1631, February 2009 More Documents & Publications EA-1631: Finding of No Significant Impact Fact Sheet: Grid-Scale Flywheel Energy Storage Plant

219

Iowa | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa July 12, 2013 Wind Energy Production Tax Credit (Iowa) This section applies to wind energy production facilities with a capacity of 2-30 MW, or greater than 0.75 MW if...

220

Energy conversion apparatus for supplying variable voltage direct current power to an electrically propelled vehicle  

SciTech Connect

A synchronous machine, operable as both a motor and a generator, is mounted on an electrically powered vehicle, such as a mine shuttle car, and includes a plurality of conductors having connections that are detachably engagable with receptacles of a stationary power bank. Engagement of the conductors with the receptacles supplies variable voltage alternating current power to the machine. The machine is drivingly connected to a flywheel on the vehicle and, operating as a motor, energizes the flywheel to store a preselected amount of mechanical energy. The electrical connection between the vehicle and the power bank is opened after the flywheel has been sufficiently charged. The stored energy in the flywheel is then available to drive the machine as a generator and produce high frequency, three phase, alternating current power. The generated power is transmitted to a full wave silicon controlled rectifier that converts the alternating current power to direct current for powering the traction motors of the vehicle. A variable voltage controller is connected to the rectifier and actuates the rectifier to supply direct current at a selected voltage level. The controller is responsive to an operator foot pedal. By manually depressing the foot pedal to a selected position, the voltage level of the rectified current is controlled. Thus, the speed of the traction motors is adjustable topropel the vehicle at a speed within a given range. After a portion of the energy stored by the flywheel is consumed, the vehicle is returned to the power bank to replenish the energy supply.

Jamison, W.B.; Burr, J.F.

1976-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

Lantz, E.; Tegen, S.

2008-05-01T23:59:59.000Z

222

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume II, Section 3. Facility concept design. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is presented. The various LSEs are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The details of studies conducted for Phase II of the Solar Total Energy System (STES) for the conceptual design requirements of the facility are presented. Included in this section are the detailed descriptions and analyses of the following subtasks: facility concept design, system concept design, performance analysis, operation plan, component and subsystem development, procurement plan, cost estimating and scheduling, and technical and management plans. (WHK)

None,

1977-10-17T23:59:59.000Z

223

Solar Total Energy System: Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume I. Section 1. Conclusions and recommendations. Section 2. Systems requirements. [1. 72-MW thermal and 383. 6-kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is described. The various LSE's are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power (both space heating and process heat) and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The section on conclusions and recommendations described the baseline design recommendation, facility requirements, the solar system, power conversion system, schedules and cost, and additional candidate systems. The systems requirements analysis includes detailed descriptions and analyses of the following subtasks: load analysis, energy displacement, local laws and ordinances, life cycle cost, health and safety, environmental assessment, reliability assessment, and utility interface. (WHK)

None,

1977-10-17T23:59:59.000Z

224

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network (OSTI)

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT PIPING MTO FOR 1 MW SOLAR THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M

Narayanan, H.

225

10 MW Final Report Body.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Department of Energy United States Department of Energy National Energy Technology Laboratory FINAL REPORT Cooperative Agreement No. DE-FC26-00NT 40804 Project Title: FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR From 1 September 2000 to 1 June 2003 Performed by: Clean Energy Systems, Inc. United States Department of Energy National Energy Technology Laboratory FINAL REPORT of a project to FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR Cooperative Agreement No. DE-FC26-00NT 40804 PROJECT DURATION: From 1 September 2000 to 1 June 2003 Authors: Eugene Baxter, Project Manager Roger E. Anderson, Principal Investigator Stephen E. Doyle, President, CES May 2003 Performed by: Clean Energy Systems, Inc.

226

Energy storage options for space power  

DOE Green Energy (OSTI)

Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

Hoffman, H.W.; Martin, J.F.; Olszewski, M.

1985-01-01T23:59:59.000Z

227

Solar technical assistance provided to Forest City military communities in Hawaii for incorporation of 20-30 MW of solar energy generation to power family housing for US Navy personnel.  

DOE Green Energy (OSTI)

In May 2007, Forest City Military Communities won a US Department of Energy Solar America Showcase Award. As part of this award, executives and staff from Forest City Military Communities worked side-by-side with a DOE technical assistance team to overcome technical obstacles encountered by this large-scale real estate developer and manager. This paper describes the solar technical assistance that was provided and the key solar experiences acquired by Forest City Military Communities over an 18 month period.

Dominick, Jeff (National Renewable Energy Laboratory, Golden, CO); Merrigan, Tim (National Renewable Energy Laboratory, Golden, CO); Boudra, Will (Forest City Military Communities, Honolulu, HI); Miller, Ryan (CH2M Hill, Englewood, CO); Cisneros, Gabriela (New Mexico State University, Las Cruces, NM); Rosenthal, Andrew L. (New Mexico State University, Las Cruces, NM); Kuszmaul, Scott S.; Gupta, Vipin P.

2010-06-01T23:59:59.000Z

228

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

229

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

in Progress Research Highlights Sources and Credits PDF of EETD News Image of a flywheel uninterruptible power supply (UPS) Figure 1. Flywheel uninterruptible power supply...

230

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Conference Proceedings (OSTI)

Owing to sun's rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization by genetic algorithm and neural network was used to optimize ... Keywords: battery flywheel, genetic algorithm, neural network

Shiqiong Zhou; Longyun Kang; Miaomiao Cheng; Binggang Cao

2009-11-01T23:59:59.000Z

231

EA-1753: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

753: Finding of No Significant Impact 753: Finding of No Significant Impact EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois Based on the analyses in the environmental assessment (EA), DOE determined that its proposed action--awarding a federal grand to Beacon Power Corporation (Beacon Power) to facilitate installation and operation of a 20-megawatt flywheel frequency regulation plant--would result in no significant adverse impacts. DOE further determined that the proposed project could result in beneficial impacts o the nation's energy efficiency and air quality. Operating the flywheel plant could result in a decrease in carbon dioxide emissions from regional power plants. In addition, there would be small positive socioeconomic impacts from the expenditures for the

232

EA-1753: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Finding of No Significant Impact 3: Finding of No Significant Impact EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois Based on the analyses in the environmental assessment (EA), DOE determined that its proposed action--awarding a federal grand to Beacon Power Corporation (Beacon Power) to facilitate installation and operation of a 20-megawatt flywheel frequency regulation plant--would result in no significant adverse impacts. DOE further determined that the proposed project could result in beneficial impacts o the nation's energy efficiency and air quality. Operating the flywheel plant could result in a decrease in carbon dioxide emissions from regional power plants. In addition, there would be small positive socioeconomic impacts from the expenditures for the

233

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

-storage materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed airCOMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique, USA ABSTRACT In this work, a low-cost, low-volume, low-maintenance, small-scale compressed-air energy

Deymier, Pierre

234

Inland Energy Inc | Open Energy Information  

Open Energy Info (EERE)

the 500MW natural gas-fired combined cycle, plus 50MW solar thermal, Victorville 2 power plant. References Inland Energy Inc1 LinkedIn Connections CrunchBase Profile No...

235

Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)  

DOE Green Energy (OSTI)

The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

Not Available

2011-09-01T23:59:59.000Z

236

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Accessed May 2008 from www.sce.com 9. The California BiomassCollaborative, Biomass gasification / power generationECONOMIC ANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

237

1 MW / 7.2 MWh NaS Battery Demonstration and Case Study Update  

Science Conference Proceedings (OSTI)

The New York Power Authority (NYPA), working together with the Metropolitan Transit Authority Long Island Bus (LIB) Company, has installed an advanced sodium sulfur battery energy storage system (NaS BESS) at the LIB facility located at 700 Commercial Avenue, Garden City, New York. The BESS is capable of providing a nominal 1MW of power to the bus fueling compressor station for 6-8 hours per day, 7 days per week.

2009-12-18T23:59:59.000Z

238

Design and Test of a 100MW X Band TE01 Window  

Science Conference Proceedings (OSTI)

Research at Stanford Linear Accelerator Center (SLAC) is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present generation accelerators. This will require development of high power X-Band sources generating 50-100 MW per source. Conventional pillbox window designs are capable of transmitting peak rf powers up to about 30 MW, well below the desired level required for the use of a single window per tube. SLAC has developed a 75 MW TE{sub 01} window [1] that uses a 'traveling wave' design to minimize fields at the window face. Irises match to the dielectric window impedance, resulting in a pure traveling wave in the ceramic and minimum fields on the window face. The use of the TE{sub 01} mode also has zero electric field on the braze fillet. Unfortunately, in-band resonances prevented this window design from achieving the desired 75MW power level. It was believed the resonances resulted from sudden steps in the circular guide to match the 38mm input diameter to the overmoded (TE{sub 01} and TE{sub 02} mode propagating) 65 mm diameter of the window ceramic. Calabazas Creek Research Inc. is currently developing a traveling wave window using compact, numerically optimized, parabolic tapers to match the input diameter of 38mm to the window ceramic diameter of 76mm (Figure 1). The design is projected to handle 100 MW of pulse power with a peak field at the window face of 3.6 MV/m. Cold test of the window has shown the return loss to be better than -25 dB over a 100 MHz bandwidth and to be resonance free (Figure 2). The window is scheduled for high-power testing in July 2003 at the SLAC.

Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

2008-03-24T23:59:59.000Z

239

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

240

Bearing design for flywheel energy storage using high-TC superconductors  

DOE Patents (OSTI)

A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for mid-sized renewable energy generators between 50kW and 20MW to enter into long term price contracts. The goal for total production from all participants is 100MW, with no...

242

Aero-Structural Optimization of a 5 MW Wind Turbine Rotor.  

E-Print Network (OSTI)

??A 5 MW wind turbine rotor blade based on the NREL 5 MW Reference Turbine is optimized for maximum efficiency and minimum flapwise hub bending (more)

Vesel, Richard W., Jr.

2012-01-01T23:59:59.000Z

243

Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976  

DOE Green Energy (OSTI)

A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

Beachley, N.H.; Frank, A.A.

1976-07-01T23:59:59.000Z

244

SIIF Energies do Brasil Ltda | Open Energy Information  

Open Energy Info (EERE)

energy Product Wind farm developer and independent electric energy producer with a pipeline of 342MW in wind projects , all inscribed in PROINFA. References SIIF Energies do...

245

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

246

Latest Results in SLAC 75-MW PPM Klystrons  

Science Conference Proceedings (OSTI)

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

247

Economics of a conceptual 75 MW Hot Dry Rock geothermal electric power station  

DOE Green Energy (OSTI)

Man-made, Hot Dry Rock (HDR) geothermal energy reservoirs have been investigated for over ten years. As early as 1977 a research-sized reservoir was created at a depth of 2.9 km near the Valles Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir was operated for nearly a year with a thermal drawdown less than 10/sup 0/C. A small 60kW(e) electrical generation unit using a binary cycle (hot geothermal water and a low boiling point organic fluid, R-114) was operated. Interest is now worldwide with field research being conducted at sites near Le Mayet de Montagne, France; Falkenberg and Urach, Federal Republic of Germany; Yakedake, Japan; and Rosemanowes quarry in Cornwall, United Kingdom. To assess the commercial viability of future HDR electrical generating stations, an economic modeling study was conducted for a conceptual 75 MW(e) generating station operating at conditions similar to those prevailing at the New Mexico HDR site. The reservoir required for 75 MW(e), equivalent to 550 MW of thermal energy, uses at least 9 wells drilled to 4.3 km and the temperature of the water produced should average 230/sup 0/C. Thermodynamic considerations indicate that a binary cycle should result in optimum electricity generation and the best organic fluids are refrigerants R-22, R-32, R-115 or R-600a (Isobutane). The break-even bus bar cost of HDR electricity was computed by the levelized life-cycle method, and found to be competitive with most alternative electric power stations in the US.

Murphy, H.D.; Drake, R.H.; Tester, J.W.; Zyvoloski, G.A.

1984-01-01T23:59:59.000Z

248

Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary......

249

A new Main Injector radio frequency system for 2.3 MW Project X operations  

SciTech Connect

For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

Dey, J.; Kourbanis, I.; /Fermilab

2011-03-01T23:59:59.000Z

250

Cost analysis of energy storage systems for electric utility applications  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

251

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

252

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

253

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

254

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

Not Available

2009-03-01T23:59:59.000Z

255

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

256

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

257

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

Not Available

2008-10-01T23:59:59.000Z

258

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

Not Available

2008-10-01T23:59:59.000Z

259

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

Not Available

2008-10-01T23:59:59.000Z

260

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

Not Available

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

Not Available

2008-10-01T23:59:59.000Z

262

Multi-Mission Capable, High g Load mW RPS  

DOE Green Energy (OSTI)

Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

2007-05-23T23:59:59.000Z

263

Intense Atmospheric Vortices Associated with a 1000 MW Fire  

Science Conference Proceedings (OSTI)

Observations of vortices of various types produced in a large thermal plume are described. The apparatus used to generate the plume is the Mtotron, an array of 105 fuel oil burners with a total heat output of approximately 1000 MW. Three types ...

Christopher R. Church; John T. Snow; Jean Dessens

1980-07-01T23:59:59.000Z

264

Repowering the 250 MW Supercritical Power Plant at Lenenergo, Russia  

Science Conference Proceedings (OSTI)

This report describes the repowering of a supercritical 250 MW generating unit with an ABB 52.9 MN gas turbine at the Southern Plant of the Lenenergo system in Russia. It includes a review of the performance parameters of the repowered unit and an economic analysis of the repowering project.

1999-11-30T23:59:59.000Z

265

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

266

DG Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

92101 Product Develops owns and operates industrial, commercial and institutional cogeneration plants from 2-50MW. References DG Energy Solutions1 LinkedIn Connections...

267

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Wind industry installs almost 5,300 MW of capacity in December. ... Combined heat and power technology fills an important energy ...

268

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network (OSTI)

The on-line avilability of the five Frame-7E gas turbine generators installed at the 465MW Lyondell Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140MW steam turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs utilized before and continued after plant startup, (2) redundancies designed into the critical components of the plant, (3) the immediate actions taken on failures or near-failures, (4) a sound preventive maintenance program, and (5) improvements performed promptly on discovered design, operating, and maintenance weaknesses uncovered during the early months of operation.

Theisen, R. E.

1988-09-01T23:59:59.000Z

270

SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

Galambos, John D [ORNL

2011-01-01T23:59:59.000Z

271

Veronagest SA | Open Energy Information  

Open Energy Info (EERE)

37121 Sector Wind energy Product Investment company recently entered in the Italian wind energy market with a 70MW project near Catania, Sicily. Coordinates 45.438113,...

272

1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application  

SciTech Connect

This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources.

McMain, Jr., A. T.; Stanley, J. D.

1981-05-01T23:59:59.000Z

273

Sky Energy | Open Energy Information  

Open Energy Info (EERE)

Sky Energy Jump to: navigation, search Name Sky Energy Place Germany Product A German company which is involved with the development of a 10MW STEG plant in the Moura region of...

274

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

SciTech Connect

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

2012-03-01T23:59:59.000Z

275

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

DOE Green Energy (OSTI)

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

Not Available

2012-03-01T23:59:59.000Z

276

Low Beam Voltage, 10 MW, L-Band Cluster Klystron  

SciTech Connect

Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.; /Fermilab; Kazakov, S.; /KEK, Tsukuba; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

2009-05-01T23:59:59.000Z

277

Initial operating experience of the 12-MW La Ola photovoltaic system.  

DOE Green Energy (OSTI)

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

2011-10-01T23:59:59.000Z

278

CX-004960: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4960: Categorical Exclusion Determination 4960: Categorical Exclusion Determination CX-004960: Categorical Exclusion Determination Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage Grid CX(s) Applied: B3.6 Date: 08/13/2010 Location(s): Kent, Washington Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory and bench-scale research and development, and pilot scale testing of a low-cost, flywheel-based energy storage system. The proposed work is consistent with the goal of Grid-Scale Rampable Intermittently Dispachable Storage (GRIDS): development of new technologies to enable the widespread deployment of cost-effective, grid-scale energy storage. Work consists entirely of research, development, and demonstration to be completed at the Boeing Research and Technology

279

Application of Energy Storage To Solar Electric Propulsion Orbital Transfer  

E-Print Network (OSTI)

Solar electric propulsion uses solar panels to generate power for electric thrusters. Using stored energy makes it possible to thrust through eclipses, but requires that some of the solar power collected during the sunlit portion of the trajectory be used to recharge the storage system. Previous researchers have reported that the required energy storage mass can be prohibitive. However, the use of high-speed flywheels for energy storage can provide advantages. In this paper, we compare the effectiveness of orbit transfers using and without using energy storage. The orbit transfers are developed as sequences of time-optimal circle-to-circle planar transfers from low-Earth orbit to geostationary orbit. We develop techniques for solving the appropriate boundary value problems, and illustrate tradeoffs between solar array and flywheel-battery masses for transfers

Mark W. Marasch; Christopher D. Hall

1999-01-01T23:59:59.000Z

280

Energy Storage Management for VG Integration (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Management for VG Integration Energy Storage Management for VG Integration UWIG FALL TECHNIICAL WORKSHOP Brendan Kirby National Renewable Energy Laboratory Consultant October 13, 2011 NREL/PR-5500-53295 Photo by NREL/PIX 19498 National Renewable Energy Laboratory Innovation for Our Energy Future Increases Value Through Optimized Ancillary Service (AS) Provision: Pumped Storage Generator Example (320 MW pump, 200-400 MW gen, 40 MW reg, 200 MW spin, 400 MW non) * Total profits increased 133%; * Energy profits reduced -48%; * Regulation profits added +41%; * Spinning profits added +89%; * Non-Spin profits added +50%. CAISO market modeled for all 2010

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

282

The design of a 200 MW interphase power controller prototype  

SciTech Connect

The paper addresses the practical design aspects of a 200 MW prototype for the interconnection of two synchronous 120-kV networks that are close to their short-circuit limits. The Interphase Power Controller is a new concept for the control of active and reactive power; it uses only standard components connected in an original manner. The paper gives the results of EMTP simulations for the conditions governing the design of the components. The significant steady-state and transient capabilities of the components are given as well as insulation coordination and protection aspects. Finally, a preliminary layout is presented for the prototype.

Habashi, K.; Lombard, J.J.; Mourad, S. (ABB Canada, Inc., Montreal, Quebec (Canada)); Pelletier, P.; Morin, G.; Beauregard, F.; Brochu, J. (CITEQ, Varennes, Quebec (Canada))

1994-04-01T23:59:59.000Z

283

Latest developments on the Dutch 1MW free electron maser  

SciTech Connect

The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

1999-05-01T23:59:59.000Z

284

Port Clair Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Port Clair Wind Energy Jump to: navigation, search Name Port Clair Wind Energy Place United Kingdom Sector Wind energy Product Company setup to develop the 35MW Port Clair wind...

285

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0290-1757 Boeing Research and Technology - 0290-1757 Boeing Research and Technology - Low-Cost, High-Energy Density Flywheel Storage Grid Location: Washington ProposedAction or Project Description: American Recovery and Reinvestment Act: Funding will support laboratory and bench-scale research and development, and pilot scale testing of a low-cost, flywheel-based energy storage system. The proposed work is consistent with the goal of GRIDS: development of new technologies to enable the widespread deployment of cost- effective, grid-scale energy storage. Work consists entirely of RD&D to be completed at the Boeing Research and Technology development and test facilities in Kent and Seattle, WA. The work performedwill be limited to research, development, pilot scale testing, and evaluation.

286

Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System  

E-Print Network (OSTI)

of a suitable EV power supply. Industry experts have concluded that practical EVs must have energy storage's batteries can be extended considerably by supplying peak energy requirements from a secondary source to an external power supply, the braking energy must be stored `on board'. Advanced lead-acid batteries provide

Szabados, Barna

287

NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)  

DOE Green Energy (OSTI)

In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

2013-04-01T23:59:59.000Z

288

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-?based energy recovery and storage system. This technology is being developed at TDIs facilities to capture and reuse the energy necessary for the companys core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

289

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

effect (Smart effect (Smart Grid Project) (Thisted, Denmark) Jump to: navigation, search Project Name Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167°, 8.703492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.959167,"lon":8.703492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

A conceptual design of the 2+ MW LBNE beam absorber  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility will aim a beam of neutrinos, produced by 60-120 GeV protons from the Fermilab Main Injector, toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. Secondary particles that do not decay into muons and neutrinos as well as any residual proton beam must be stopped at the end of the decay region to reduce noise/damage in the downstream muon monitors and reduce activation in the surrounding rock. This goal is achieved by placing an absorber structure at the end of the decay region. The requirements and conceptual design of such an absorber, capable of operating at 2+ MW primary proton beam power, is described.

Velev, G.; Childress, S.; Hurh, P.; Hylen, J.; Makarov, A.; Mohkhov, N.; Moore, C.D.; Novitski, I.; /Fermilab

2011-03-01T23:59:59.000Z

291

Aqua Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

vs. Nearshore Nearshore Wave Power Wave Power EPRIE2I 13 1312006 Makah Bay Pilot Power Plant Makah Bay Pilot Power Plant Nameplate capacity: 1MW Annual energy output:...

292

Energy Storage Systems Program at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Sandia National Laboratories at Sandia National Laboratories John D. Boyes Nov. 2, 2010 Sandia National Laboratories is a multiprogram Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. FY10 SNL ESS Program FY10 Budget ~$11 M * System and Prototype Development - HYBSIM model development - Boeing Superconducting Flywheel - ABMASS Hybrid Controller - Iowa Stored Energy Project - CEC Support - NYSERDA Support Molecules to Megawatts * Applied Research increased to $2.3 M - Develop Ionic Liquid Electrolytes for Flow Batteries - N2-O2 Battery Feasibility - CRADA formed with East Penn Manufacturing Co. to study carbon additions to plate structure of lead acid battery - Advanced Flywheel Materials *

293

1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application  

SciTech Connect

The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10/sup 9/ m/sup 3/ (1000 x 10/sup 9/ bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region.

Rao, R.; McMain, A.T. Jr.

1981-05-01T23:59:59.000Z

294

Rose Energy | Open Energy Information  

Open Energy Info (EERE)

Sector Biomass Product Backed by a consortium of three players in our agri-food industry, Rose Energy has proposed a 30MW biomass plant in Northern Ireland. References Rose...

295

A Pion Production and Capture System for a 4 MW Target Station  

Science Conference Proceedings (OSTI)

A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

Ding, X.; Kirk, H.; Berg, J.S.

2010-06-01T23:59:59.000Z

296

The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Wind energy has become an increasingly important  

E-Print Network (OSTI)

existing wind energy facili- ties in the US include turbines with installed capacity rang- ing from 600 kW 000 MW, or the equivalent 48 000 1.5 MW wind turbines. This is enough, according REVIEWS REVIEWS to 2 MW per turbine. Wind turbines up to about 3 MW of installed capacity for onshore applications

Wilmers, Chris

297

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

renewable energy incentives, and feed-in tariffs areEnergy Credits (REC) and Carbon Credits, contracting for a Feed in TariffTariff is an incentive structure to encourage the adoption of renewable energy

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

298

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

of production credits, renewable energy incentives, andand production rate. Due to the current market uncertainty for Renewable EnergyProduction Credits/Incentives The federal government has long standing incentives supporting renewable energy,

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

299

Bio Energy US New Hampshire | Open Energy Information  

Open Energy Info (EERE)

Bio Energy (US - New Hampshire) Place Manchester, New Hampshire Zip 3109 Product Project developer currently operating a 12.6MW plant in Hopkington, New Hampshire. References Bio...

300

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

Not Available

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

Not Available

2008-06-01T23:59:59.000Z

302

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

Not Available

2008-06-01T23:59:59.000Z

303

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

Not Available

2008-06-01T23:59:59.000Z

304

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

305

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

Not Available

2008-06-01T23:59:59.000Z

306

Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

Not Available

2008-06-01T23:59:59.000Z

307

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

Not Available

2008-06-01T23:59:59.000Z

308

Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

Not Available

2008-06-01T23:59:59.000Z

309

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

310

Energieteam AG | Open Energy Information  

Open Energy Info (EERE)

Energieteam AG Jump to: navigation, search Name Energieteam AG Place Lichtenau, Germany Zip D-33165 Sector Wind energy Product Wind farm developer. Has developed 904MW wind in...

311

LLL energy technologies  

DOE Green Energy (OSTI)

Lawrence Livermore Laboratory (LLL) research programs directed toward recovering and conserving major energy resources are outlined. The research programs are based on the following concepts: (1) Underground Coal Gasification; thick coal beds can be converted underground into a mixture of combustible gases suitable for use as a fuel. (2) Underground Oil Shale Retorting; when oil shale is heated underground to about 400/sup 0/C, organic material bound in the rock structure decomposes, forming shale oil, a petroleum-like liquid. (3) Gas Stimulation by Massive Hydraulic Fracturing; by fracturing tight underground gas shales and sandstones, great quantities of natural gas can be liberated that would otherwise remain trapped in the rock. (4) Solar Energy; unique solar heat collectors developed at LLL can provide industry with large quantities of hot water and steam at competitive costs. (5) Uranium Resource Survey; LLL is participating in a comprehensive National Uranium Resource Evaluation (NURE). (6) Metal-Air Power Cells for Automobiles; metal-air power cells seem capable of matching the range and performance of internal combustion engines. (7) Fiber-Composite Flywheels for Energy Storage; flywheels made of light, strong, fiber-composite materials could improve the performance of electric cars.

Not Available

1978-06-01T23:59:59.000Z

312

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

313

Wind industry installs almost 5,300 MW of capacity in December ...  

U.S. Energy Information Administration (EIA)

Approximately 40% of the total 2012 wind capacity additions (12,620 MW) came online in December, just before the scheduled expiration of the wind production tax ...

314

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

315

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2010 10, 2010 CX-001055: Categorical Exclusion Determination American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant City of Los Angeles Strategy CX(s) Applied: A9, A11, B5.1 Date: 02/10/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02/09/2010 Location(s): Freemont, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 8, 2010 CX-000665: Categorical Exclusion Determination Development of an Advanced Stimulation/Production Predictive Simulator for Enhanced Geothermal Systems

316

Modular 5 MW geothermal power plant design considerations and guidelines  

DOE Green Energy (OSTI)

The design considerations and guideline documents given define the principal design requirements for a nominal 5 MW geothermal power plant of a type to permit over-the-road transport of its several modules. The power plant system defined is supplied with steam from a single flash steam separator stage, located at the plant area, and supplied with steam from two wells at nominal pressure of 3.8 Kg/cm/sup 2/ Abs (54 psia). In some cases where the content of noxious noncondensable gases is high, a shell and tube condenser would be substituted for the direct contact type condenser specified and an additional module containing an H/sub 2/S removal system would be added. Guidelines are given for the following: site preparation, collection system, plant installation, assembly, and test; turbine generator module; condenser and noncondensable gas removal module; plant control and switchgear module; cooling water circulation pump module; steam-water separator module; maintenance, office, and lavatory module; reinjection pump module; cooling tower modules; spray pond installation and piping; and auxiliary generator module. (MHR)

Not Available

1976-05-01T23:59:59.000Z

317

350 MW(t) design fuel cycle selection. Revision 1  

Science Conference Proceedings (OSTI)

This document discusses the results of this evaluation and a recommendation to retain the graded fuel cycle in which one-half of the fuel elements are exchanged at each refueling. This recommendation is based on the better performance of the graded cycle relative to the evaluation criteria of both economics and control margin. A choice to retain the graded cycle and a power density of 5.9 MW/m{sup 3} for the upcoming conceptual design phase was deemed prudent for the following reasons: the graded cycle has significantly better economics, and essentially the same expected availability factor as the batch design, when both are evaluated against the same requirements, including water ingress; and the reduction in maximum fuel pin power peaking in the batch design compared to the graded cycle is only a few percent and gas hot streaks are not improved by changing to a batch cycle. The preliminary 2-D power distribution studies for both designs showed that maximum fuel pin power peaking, particularly near the inner reflector, was high for both designs and nearly the same in magnitude. 10 figs., 9 tabs.

Lane, R.K.; Lefler, W.; Shirley, G.

1986-01-01T23:59:59.000Z

318

A Review of NSPI's Solicitation for Renewable Energy  

E-Print Network (OSTI)

A Review of NSPI's Solicitation for Renewable Energy 100KW to 2 MW on Distribution Larry Hughes1 Solicitation for Renewable Energy ­ 100 kW to 2 MW on Distribution, a call for up to 20 megawatts as being 1.2 percent (the expected generation from NSPI's two wind turbines and the 30 MW windfarm

Hughes, Larry

319

Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant  

DOE Green Energy (OSTI)

A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

1979-07-01T23:59:59.000Z

320

City of Houston - Green Power Purchasing (Texas) | Open Energy...  

Open Energy Info (EERE)

MW, equivalent to roughly 350 million kWh annually or 25% of the annual electricity consumption of the city's municipal facilities. Additional 10 MW increments of renewable energy...

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler  

Science Conference Proceedings (OSTI)

We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

2010-01-01T23:59:59.000Z

322

Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2, Session 2 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. Presentations from the second session of Day 2, chaired by Sandia's Ross Guttromson, are below. ESS 2012 Peer Review - Na-ion Intercalation Electrodes for Na-ion Battery - Jun Liu, PNNL ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David Enos, SNL ESS 2012 Peer Review - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage -

323

Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. Presentations from the second session of Day 2, chaired by Sandia's Ross Guttromson, are below. ESS 2012 Peer Review - Na-ion Intercalation Electrodes for Na-ion Battery - Jun Liu, PNNL ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David Enos, SNL ESS 2012 Peer Review - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage -

324

ESS 2012 Peer Review - NYSERDA Energy Storage Projects - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSERDA Energy Storage Projects NYSERDA Energy Storage Projects Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP NaS Battery at MTA Long Island Bus Depot Beacon Flywheel Plant at Stephentown, NY 4 Demonstration Project Sites 1) Beacon Flywheel Plant at Stephentown, NY * Ancillary services in NYISO 2) NaS Battery at MTA Long Island Bus Depot * Time of day load shifting to avoid TOU rates 3) Flow Battery at Niagara Falls State Park * Renewables integration/firming &

325

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

326

1710 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 6, NOVEMBER/DECEMBER 2003 An Integrated Flywheel Energy Storage System  

E-Print Network (OSTI)

data from an average male human (Tilley, 1993; Department of Defense (DOD-HDBK-743A), 1991 of Anthropometry of US Military Personnel. DOD-HDBK-743A. Larson, S.G., Schmitt, D., Lemelin, P., Hamrick, M., 2000

Sanders, Seth

327

Alternative Energy Law (AEL)  

Energy.gov (U.S. Department of Energy (DOE))

Iowa requires its two investor-owned utilities (MidAmerican Energy and Alliant Energy Interstate Power and Light) to own or to contract for a combined total of 105 megawatts (MW) of renewable...

328

Tennessee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2010 Efficient Energy of Tennessee installs panels at a 1-MW solar farm outside Knoxville in July. | Photo by Harvey Abouelata and courtesy of Efficient Energy of...

329

Custom Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

Energy Trust of Oregon offers cash incentives and project development assistance for renewable energy projects that are 20 megawatts (MW) or less in capacity. These custom incentives are part of...

330

CECIC HKC Wind Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

Place China Sector Wind energy Product HKC are in a joint venture with China Energy Conservation Investment Corporation (CECIC) on developing a 200MW wind farm. References CECIC...

331

Optimal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Optimal Energy Systems Optimal Energy Systems Jump to: navigation, search Name Optimal Energy Systems Place Torrance, California Zip 90505 Product Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates 40.417285°, -79.223959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.417285,"lon":-79.223959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Austin Energy's Residential Solar Rate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leslie Libby Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW Municipal and Schools - 1.0 MW TOTAL - 9.4 MW $0 $2 $4 $6 $8 $10 $12 $14 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 Installed Cost ($/Watt-DC) Residential Commercial Municipal Residential Rebate $2.00/Watt Average Installed Cost $3.75/Watt - SEIA Q2 2012 Report - Austin had the lowest installed cost in the nation ($3.88/W-DC)

333

Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design  

E-Print Network (OSTI)

Tribal Utility Authority Wind Energy Feasibility Study.Energy (DOE). (2004). Wind Energy Resources on Tribal Landsthe Kumeyaay Nations 50 MW wind energy facility, Council of

Shelby, Ryan

2013-01-01T23:59:59.000Z

334

Sacramento Municipal Utility District, 100-MW photovoltaic power plant: draft environmental impact report  

SciTech Connect

The Sacramento Municipal Utility District proposes constructing a 100 MW solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. After a brief description of the proposed facility, including the location and an explanation of the need for it, the project-specific environmental analysis is presented. This addresses: geology/seismicity, soils, biological resources, land use, air quality, water resources, water quality, wastes management, public/occupational health, safety, energy and material resources, cultural resources, socioeconomics, and aesthetics. For each of these areas, the setting is described, impacts analyzed, mitigation measures given where appropriate, and cumulative impacts described. Unavoidable adverse environmental effects, irreversible environmental changes and irretrievable commitments of energy and materials are summarized. Also briefly summarized is the relationship between local short-term use of the environment and the maintenance and enhancement of long-term productivity. Environmental benefits and disadvantages associated with various alternatives to building and operating the proposed solar photovoltaic power plant are described, considering project objectives other than producing electricity. (LEW)

Not Available

1982-02-01T23:59:59.000Z

335

Design and analysis of a 5-MW vertical-fluted-tube condenser for geothermal applications  

DOE Green Energy (OSTI)

The design and analysis of an industtial-sized vertical-fluted-tube condenser. The condenser is used to condense superheated isobutane vapor discharged from a power turbine in a geothermal test facility operated for the US Department of Energy. The 5-MW condenser has 1150 coolant tubes in a four-pass configuration with a total heat transfer area of 725 m/sup 2/ (7800 ft/sup 2/). The unit is being tested at the Geothermal Components Test Facility in the Imperial Valley of East Mesa, California. The condenser design is based on previous experimental research work done at the Oak Ridge National Laboratory on condensing refrigerants on a wide variety of single vertical tubes. Condensing film coefficients obtained on the high-performance vertical fluted tubes in condensing refrigerants are as much as seven times greater than those obtained with vertical smooth tubes that have the same diameter and length. The overall heat transfer performance expected from the fluted tube condenser is four to five times the heat transfer obtained from the identical units employing smooth tubes. Fluted tube condensers also have other direct applications in the Ocean Thermal Energy Conversion (OTEC) program in condensing ammonia, in the petroleum industry in condensing light hydrocarbons, and in the air conditioning and refrigeration industry in condensing fluorocarbon vapors.

Llewellyn, G.H.

1982-03-01T23:59:59.000Z

336

Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary  

DOE Green Energy (OSTI)

Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

Not Available

1980-10-01T23:59:59.000Z

337

Optically Isolated HVIGBT Based MW Cascade Inverter Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage, IGBT-Based Inverter for DER Applications Presentation at DOE Energy Storage Systems Research Program Peer Review Washington, DC November 2, 2006 SBIR Phase II Grant...

338

10-MW Supercritical-CO2 Turbine (Fact Sheet)  

SciTech Connect

National Renewable Energy Laboratory is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

339

4 MW fast wave current drive upgrade for DIII-D  

SciTech Connect

The DIII-D program has just completed a major addition to its ion cyclotron range of frequency (ICRF) systems. This upgrade project added two new fast wave current drive (FWCD) systems, with each system consisting of a 2 MW, 30 to 120 MHz transmitter, ceramic insulated transmission lines and tuner elements, and water-cooled four-strap antenna. With this addition of 4 MW of FWCD power to the original 2 MW, 30 to 60 MHz capability, experiments can be performed that will explore advanced tokamak plasma configurations by using the centrally localized current drive to effect current profile modifications.

Callis, R.W.; Cary, W.P. [General Atomics, San Diego, CA (United States); Baity, F.W. [Oak Ridge National Lab., TN (United States)] [and others

1994-09-01T23:59:59.000Z

340

Energiequelle GmbH | Open Energy Information  

Open Energy Info (EERE)

Wind energy Product Feasibility, development, financing, realisation and management of wind farms. Has worked on 50 wind farms in Germany totalling 400MW. References...

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Iowa Nuclear Profile - Duane Arnold Energy Center  

U.S. Energy Information Administration (EIA) Indexed Site

Duane Arnold Energy Center" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

342

Norfolk Offshore Wind NOW | Open Energy Information  

Open Energy Info (EERE)

Norfolk Offshore Wind NOW Jump to: navigation, search Name Norfolk Offshore Wind (NOW) Place United Kingdom Sector Wind energy Product Formed to develop the 100MW Cromer offshore...

343

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia in Pennsylvania's Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid. http:energy.govnepa...

344

Micro-joule sub-10-fs VUV pulse generation by MW pump pulse using highly efficient chirped-four-wave mixing in hollow-core photonic crystal fibers  

E-Print Network (OSTI)

We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10-fs VUV pulses with energy of up to hundreds of microjoule by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate-laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30%. This generation can be realized in kagome-lattice hollow-core PCF filled with noble gas of high pressure with core-diameter less than 40 micrometers which would enable technically simple or highly efficient coupling to fundamental mode of the fiber.

Im, Song-Jin

2013-01-01T23:59:59.000Z

345

Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator  

E-Print Network (OSTI)

This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron ...

Anderson, James P. (James Paul), 1972-

2005-01-01T23:59:59.000Z

346

BEOWAWE number1-A 10 MW geothermal unit in northern Nevada  

SciTech Connect

This paper describes a project to build and operate a nominal 10 mw electrical generating unit using the geothermal heat from the Beowawe, Nevada, geothermal reservoir to power an isobutane binary unit. This 10 mw unit would be fabricated on portable skids by equipment supplier for shipment to the site. The project will be owned and operated by the NORNEV Demonstration Geothermal Company which is made up of Pacific Power and Light, Eugene Water and Electric Board, Sierra Pacific Power Company, and Sacramento Municipal Utility District. The geothermal brine for powering the 10 mw binary WGU will be purchased from Chevron Resource Company. This first unit is a research and development unit and will, hopefully, lead to total development of the 300 mw plus Beowawe reservoir.

Keilman, L.

1982-10-01T23:59:59.000Z

347

Survey of Landfill Gas Generation Potential: 2-MW Molten Carbonate Fuel Cell  

Science Conference Proceedings (OSTI)

Molten carbonate fuel cells can operate almost as efficiently on landfill gas as on natural gas. This study identified 749 landfills in the United States having the potential to support a total of nearly 3000 2-MW fuel cells.

1992-10-01T23:59:59.000Z

348

Solargen Energy LLC | Open Energy Information  

Open Energy Info (EERE)

California Zip CA 95014 Sector Solar Product California-based Solargen is developing a thin film solar farm with a planned capacity of 250MW. References Solargen Energy LLC1...

349

Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 21, 2011 EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois April 19, 2011 CX-005691:...

350

Performance of the H{sup -} Ion Source Supporting 1-MW Beam Operations at SNS  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 1-MW of beam power in September 2009, and now routinely operates near 1-MW for the production of neutrons. This paper reviews the performance, operational issues, implemented and planned mitigations of the SNS H{sup -} ion source to support such high power-level beams with high availability. Some results from R and D activities are also briefly described.

Han, B. X.; Hardek, T.; Kang, Y.; Murray, S. N. Jr.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R. F.; Stockli, M. P. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2011-09-26T23:59:59.000Z

351

Performance of the H- Ion Source Supporting 1-MW Beam Operations at SNS  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 1-MW of beam power in September 2009, and now routinely operates near 1-MW for the production of neutrons. This paper reviews the performance, operational issues, implemented and planned mitigations of the SNS H- ion source to support such high power-level beams with high availability. Some results from R&D activities are also briefly described.

Han, Baoxi [ORNL; Hardek, Thomas W [ORNL; Kang, Yoon W [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Piller, Chip [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL; Stockli, Martin P [ORNL

2011-01-01T23:59:59.000Z

352

TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

TOXECON Retrofit for Mercury and TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009) Project Description Wisconsin Electric Power Company (We Energies) has designed, installed, operated, and evaluated the TOXECON process as an integrated mercury, particulate matter, SO 2 , and NO X emissions control system for application on coal-fired power generation systems. TOXECON is a process in which sorbents, including powdered activated

353

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

Science Conference Proceedings (OSTI)

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

354

King County Carbonate Fuel Cell Demonstration Project: Case Study of a 1MW Fuel Cell Power Plant Fueled by Digester Gas  

Science Conference Proceedings (OSTI)

This case study documents the first-year demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resource planning efforts an...

2005-03-30T23:59:59.000Z

355

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-07-30T23:59:59.000Z

356

FVB Energy Inc. Technical Assistance Project  

DOE Green Energy (OSTI)

The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

DeSteese, John G.

2011-05-17T23:59:59.000Z

357

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-003457: Categorical Exclusion Determination Sidewall Coring of Single-Shell Tank 241-A-106 CX(s) Applied: A9, B3.1, B3.11 Date: 08/16/2010 Location(s): Richland, Washington Office(s): Environmental Management, Office of River Protection-Richland Office August 13, 2010 CX-004960: Categorical Exclusion Determination Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage Grid CX(s) Applied: B3.6 Date: 08/13/2010 Location(s): Kent, Washington Office(s): Advanced Research Projects Agency - Energy August 12, 2010 CX-003624: Categorical Exclusion Determination Replacement of Twenty 22-L Structures on the Satsop-Aberdeen Number 2 230-kilovolt Transmission Line CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Gray's Harbor County, Washington

358

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant project) SEP Energy Efficiency retrofits to existing biodiesel plant to reduce electricity and other energy consumption by 28%-includes installation of 1 MW CHP...

359

10-MW GTO converter for battery peaking service  

SciTech Connect

A bidirectional 18-pulse voltage source converter utilizing gate turn-off thyristors (GTO's) is described. The converter, which is rated 10 MVA, was placed in service in early 1988 to connect an energy storage battery to a utility grid. The converter is rated and controlled to operate in all four quadrants (discharge, charge, leading vars, or lagging vars) at the full 10-MVA rating. It is capable of independent rapid control of real and reactive power with a transient response of 16 ms to changes in commanded value of real or reactive power. Thus it is usable as a reactive power controller (static var control), voltage control, frequency control, power system stabilizer, or as a real power peaking station. For use as a reactive power controller only, no battery would be needed. The design, construction, control, and application of the converter are described, and performance data taken at factory power test and at the installation are given.

Walker, L.H. (Drive Development Engineering, Drive Systems, General Electric Co., Salem, VA (US))

1990-01-01T23:59:59.000Z

360

China Energy Primer  

E-Print Network (OSTI)

Biogas (Gm3) PV (MW) Solar water heater (Mm2) Bio-ethanol (through the use of solar water heaters. Photovoltaic (PV)2 Energy Production solar water heaters and solar heated

Ni, Chun Chun

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

362

EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

363

Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC  

SciTech Connect

This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

Amann, John; /SLAC; Arnold, Ray; /SLAC; Seryi, Andrei; /SLAC; Walz, Dieter; /SLAC; Kulkarni, Kiran; /Bhabha Atomic Res. Ctr.; Rai, Pravin; /Bhabha Atomic Res. Ctr.; Satyamurthy, Polepalle; /Bhabha Atomic Res. Ctr.; Tiwari, Vikar; /Bhabha Atomic Res. Ctr.; Vincke, Heinz; /CERN

2012-07-05T23:59:59.000Z

364

Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC  

E-Print Network (OSTI)

This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed

Amann, John; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz

2010-01-01T23:59:59.000Z

365

Welcome  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Energy Storage Systems Research DOE Energy Storage Systems Research Program Annual Peer Review Program Annual Peer Review Rob Rounds Rob Rounds Sr. Engineer Sr. Engineer Flywheel Installations Flywheel Installations Beacon Power Corporation Beacon Power Corporation Design of the FESS 20 MW Frequency Regulation Plant Design of the FESS 20 MW Frequency Regulation Plant Imre Imre Gyuk Gyuk Program Manager Program Manager Energy Storage Research Energy Storage Research Department of Energy Department of Energy Georgianne H. Peek Georgianne H. Peek Project Manager Project Manager Electrical Energy Storage and Distributed Electrical Energy Storage and Distributed Energy Resources Energy Resources Sandia National Laboratories Sandia National Laboratories September 24 September 24 - - 26 26 San Francisco, CA San Francisco, CA

366

2 MW Active Bouncer Converter Design for Long Pulse Klystron Modulators  

E-Print Network (OSTI)

This paper presents some design issues of a 2 MW interleaved buck converter which is used as an active bouncer droop compensator for a 5.5MW long pulse klystron modulator. This novel design concept presents many challenges in terms of voltage ripple versus pulse rise-time. Issues related to the voltage ripple specification versus output filter design are discussed in detail. The design study is analyzed analytically, simulated numerically and is validated by experimental results obtained from a full power prototype.

Aguglia, D

2012-01-01T23:59:59.000Z

367

Proyectos Eolicos Valencianos Project Finance | Open Energy Informatio...  

Open Energy Info (EERE)

Proyectos Eolicos Valencianos Project Finance Place Spain Sector Wind energy Product Joint venture to build 500 MW of wind power in Valencia. References Proyectos Eolicos...

368

Energy Storage Systems Program at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Controller - PE Reliability FY10 SNL ESS Program Molecules to Megawatts * Testing - 1 MW Energy Storage Test Facility (ESTF) initiated - Lead Carbon, Li Ion Battery Testing to...

369

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

26% Market Predictions Source: Sandia National Laboratories, Battery Energy Storage Market Feasibility Study, September 1997. Year MW ( Million) 2000 496 372 2005 805 443 2010...

370

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 1320 of 28,905 results. 11 - 1320 of 28,905 results. Download CX-004504: Categorical Exclusion Determination Beacon Power 20 Megawatt Flywheel Frequency Regulation Plant CX(s) Applied: A1, A9, A11 Date: 11/19/2010 Location(s): Tyngsboro, Massachusetts Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004504-categorical-exclusion-determination Download CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004473-categorical-exclusion-determination Download CX-004474: Categorical Exclusion Determination

371

500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application  

SciTech Connect

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

372

500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION  

Science Conference Proceedings (OSTI)

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

2010-05-12T23:59:59.000Z

373

Welcome  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rob Rounds Rob Rounds Sr. Engineer Flywheel Installations Beacon Power Corporation Design of the FESS 20 MW Frequency Regulation Plant Imre Gyuk Program Manager Energy Storage Research Department of Energy Garth Corey Principal Member of Technical Staff Energy Storage System Program Sandia National Laboratories November 2-3 Washington DC, USA Frequency Regulation Benefit of Flywheel Based Frequency Regulation - Frees up generator capacity - Fast response may reduce quantity of necessary frequency regulation - Gives ISO another option - Benefit for deployment of wind power Environmental - No direct fossil fuel consumption - Zero plant emissions Increases the Reliability and Stability of the Grid Business Strategy Flywheel Based Frequency Regulation Beacon's Market Strategy - Sell frequency regulation service instead of product

374

Magma Energy | Open Energy Information  

Open Energy Info (EERE)

Magma Energy Magma Energy Name Magma Energy Address 5500 Soda Lake Road Place Fallon, NV Zip 89406 Sector Geothermal energy Phone number 775.867.5093 Website http://www.alterrapower.ca References Alterra Power Corp[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Magma Energy is a subsidiary of Alterra Power based in Fallon, Nevada. Alterra Power Corp. is a leading global renewable energy company. Alterra operates six power plants totaling 566 MW of capacity, including two geothermal facilities in Iceland, a geothermal plant in Nevada, British Columbia's largest run of river hydro facilities and the province's largest wind farm. Their 297 MW share of production capacity generates approximately 1,400 GWh of clean power annually. Alterra has an extensive

375

Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code  

SciTech Connect

The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

1977-08-01T23:59:59.000Z

376

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 25260 of 29,416 results. 51 - 25260 of 29,416 results. Article 25 Cities Meet to Discuss How to Eliminate Barriers and Bring More Solar to Market Representatives from 25 cities meet to discuss how to reduce local red tape, like zoning, financing and unwieldy permitting processes, that drives up the cost of solar. http://energy.gov/articles/25-cities-meet-discuss-how-eliminate-barriers-and-bring-more-solar-market Article Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit LLNL's pilot electromechanical battery/flywheel and electrostatic (ES) generator/motor technologies will reduce the plant's electrical bills by 50 percent and provide sustainable and energy efficient solutions for the nonprofit. http://energy.gov/articles/energy-innovations-livermore-lab-power-hawaiian-nonprofit

377

Operating experience with Huntorf, 290 MW - world's first air storage system energy transfer (ASSET) plant  

Science Conference Proceedings (OSTI)

This paper describes in detail the operating experience with the plant as a system and also performance of the different equipment. During these first years of operation, all problems seem to have been solved and the plant has been integrated into daily operation of the NWK system. 4 refs.

Maass, P.; Stys, Z.S.

1980-01-01T23:59:59.000Z

378

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy States Alliance Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro pumped hydro, and other forms of energy storage may be able to provide significant support to the integration of renewable energy in the United States. Public funding and support are critical to accelerate progress, achieve cost reductions, and encourage widespread deployment of these technologies. Overview The Energy Storage Technology Advancement Partnership (ESTAP) is a new, cooperative funding and information-sharing partnership between the U.S. Department of Energy (DOE) and interested states that aims to accelerate the commercialization and deployment of energy storage technologies in the United States via joint funding and coordination. Facilitated by the Clean Energy States Alliance, ESTAP is funded by Sandia National

379

New Reports and Other Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Reports and Other Materials New Reports and Other Materials New Reports and Other Materials Recently released reports, presentations, and other materials are available for download below. Energy Emergency Preparedness Quarterly Vol 1 Issue 4 - October 2012 October 2012 Energy Assurance Planning Bulletin Volume 3 No 4 Fact Sheet: Wind Firming EnergyFarm (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Grid-Scale Flywheel Energy Storage Plant (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012)

380

Outer Banks Ocean Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

28370 Sector Wind energy Product Privately-held company that plans to develop a 200-600MW offshore wind farm in federal lease blocks near North Carolina's barrier islands, known as...

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

382

Green Joules | Open Energy Information  

Open Energy Info (EERE)

Joules Jump to: navigation, search Name Green Joules Place Park City, Utah Zip 80460 Sector Solar, Wind energy Product Project developer focussing on wind farms larger than 100MW,...

383

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

384

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas or geothermal energy. Net metering is available for residential systems up to 25 kilowatts (kW) in capacity and non-residential systems up to two megawatts (MW) in capacity....

385

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

386

Sacramento Municipal Utility District 100 MW Photovoltaic Power Plant: Final environmental impact report  

Science Conference Proceedings (OSTI)

The Sacramento Municipal Utility District (SMUD) proposes constructing a 100 megawatt (MW) solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. The project, to be built in increments over the next 12 years, is the largest facility of its kind proposed by any utility in the country. The initial 1 MW photovoltaic field will consist of four 250 kW subfields, each with its own power conditioning unit. Photovoltaic cell modules will be mounted on flat-plate arrays attached to centrally located torque tubes which allow the arrays to rotate on their long axis to )openreverse arrowquotes)track)closereverse arrowquotes) the sun. This Final Environmental Impact Report (FEIR) addresses environmental aspects of the proposed project according to the guidelines for implementing the California Environmental Quality Act and the National Enviornmental Policy Act (NEPA).

Not Available

1982-04-01T23:59:59.000Z

387

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

NLE Websites -- All DOE Office Websites (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

388

Beam Loss Studies for the 2-MW LBNE Proton Beam Line  

SciTech Connect

Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

2012-05-01T23:59:59.000Z

389

Tests with a microcomputer based adaptive synchronous machine stabilizer on a 400MW thermal unit  

Science Conference Proceedings (OSTI)

Field tests have been conducted on a microcomputer-based adaptive synchronous machine stabilizer. The adaptive control algorithm tracks the system operating conditions using a least squares identification technique with variable forgetting factor and the control is calculated by a self-searching pole-shift method. An outline of the control algorithm and the results of field tests on a 400MW thermal generating unit are described in this paper.

Malik, O.P.; Hope, G.S.; Hancock, G.C. (Univ. of Calgary, Alberta (Canada)); Mao, C.X. (Huazhong Univ. of Science and Technology, Wuhan (China)); Prakash, K.S. (Bharat Heavy Electricals, Banglore (India))

1993-03-01T23:59:59.000Z

390

COST STUDY OF A 100-Mw(e) DIRECT-CYCLE BOILING WATER REACTOR PLANT  

SciTech Connect

A technical and economic evaluation is presented of a direct-cycle light- water boiling reactor designed for natural circulation and internal steam-water separation. The reference lOO-Mw(e) reactor power plant design evolved from the study should have the best chance (compared to similar plants) of approaching the 8 to 9 mill/kwh total power-cost level. (W.D.M.)

Bullinger, C.F.; Harrer, J.M.

1960-07-01T23:59:59.000Z

391

4 MW upgrade to the DIII-D fast wave current drive system  

SciTech Connect

The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

1993-10-01T23:59:59.000Z

392

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

DOE Green Energy (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

393

Alterative LEU designs for the FRM-II with power levels of 20-22 MW.  

SciTech Connect

Alternative LEU Designs for the FRM-II have been developed by the RERTR Program at Argonne National Laboratory (ANL) at the request of an FRM-II Expert Group established by the German Federal Government in January 1999 to evaluate the options for using LEU fuel instead of HEU fuel in cores with power levels of 20 MW. The ANL designs would use the same building structure and maintain as many of the HEU design features as practical. The range of potential LEU fuels was expanded from previous studies to include already-tested silicide fuels with uranium densities up to 6.7 g/cm{sup 3} and the new U-Mo fuels that show excellent prospects for achieving uranium densities in the 8-9 g/cm{sup 3} range. For each of the LEU cores; the design parameters were chosen to match the 50 day cycle length of the HEU core and to maximize the thermal neutron flux in the Cold Neutron Source and beam tubes. The studies concluded that an LEU core with a diameter of about 29 cm instead of 24 cm in HEU design and operating at a power level of 20 MW would have thermal neutron fluxes that are 0.85 times that of the HEU design at the center of the Cold Neutron Source. With a potential future upgrade to a power of 22 MW, this ratio would increase to 0.93.

Hanan, N. A.; Smith, R. S.; Matos, J. E.

1999-09-27T23:59:59.000Z

394

Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment  

DOE Green Energy (OSTI)

The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

Not Available

1984-10-01T23:59:59.000Z

395

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE PMC-EDTD FY2011 Ron Staubly 212010 - 912013 Tyngsboro, MA Beacon Power 20MW Flywheel Frequency Regulation Plant This CX would cover routine administrative, procurement,...

396

Development of renewable energy Challenges for the electrical grids  

E-Print Network (OSTI)

Energy Association : 450 member companies · Representing 10 billion Euros turnover and 80 000 jobs · Multi-industry : Wind, Photovoltaïcs, hydroelectricity, Biomass, Marine Energy, Thermal solar ­ 5 400 MW solar PV ­ 2 300 MW Biomass ­ ... · Significant change of the electricity production scheme

Canet, Léonie

397

Texas Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

This report describes initial results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2003-12-31T23:59:59.000Z

398

ESS 2012 Peer Review - Wind Firming EnergyFarm - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Firming EnergyFarm DOE Peer Review September 26, 2012 2 Primus Power is on track to deliver EnergyPods TM to California's Modesto Irrigation District starting 2014 EnergyPod TM 250 kW  1 MWh PowerBox Supports 8 EnergyPods TM 3 How will storage integrate into Modesto's system? Modesto's daily load ? Storage Hydro Coal & Gas Wind Solar 4 Modesto's 25 MW McHenry solar farm 5 Modesto will use EnergyPods to integrate renewable wind and solar energy 25 MW McHenry Solar Farm 6 Modesto will use EnergyPods to integrate renewable wind and solar energy 25 MW McHenry Solar Farm 8.7 MW up in 15 min 15 MW down in 15 min 4-Aug-12 7 Modesto will use EnergyPods to integrate renewable wind and

399

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 3780 of 28,905 results. 71 - 3780 of 28,905 results. Download EIS-0440: DOE and EPA Notice of Availability of a Draft Environmental Impact Statement Quartzsite Solar Energy Project and Proposed Yuma Field Office Resource Management Plan Amendment, La Paz County, Arizona (November 2011) http://energy.gov/nepa/downloads/eis-0440-doe-and-epa-notice-availability-draft-environmental-impact-statement Download EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois http://energy.gov/nepa/downloads/ea-1753-finding-no-significant-impact Article T-622: Adobe Acrobat and Reader Unspecified Memory Corruption Vulnerability The vulnerability is due to an unspecified error in the affected software when it processes .pdf files. An unauthenticated, remote attacker could

400

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 14950 of 26,764 results. 41 - 14950 of 26,764 results. Download EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois http://energy.gov/nepa/downloads/ea-1753-finding-no-significant-impact Download Software Risk Management A Practical Guide http://energy.gov/cio/downloads/software-risk-management-practical-guide Download Independent Oversight Inspection, Sandia National Laboratories- July 2006 Emergency Management Inspection of the Sandia National Laboratories http://energy.gov/hss/downloads/independent-oversight-inspection-sandia-national-laboratories-july Download EA-1157: Final Environmental Assessment Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 DOE Energy Storage Program 7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - BPA ETO based STATCOM Project - ETO Development Project - Boeing Superconducting Flywheel - ACONF Coast Guard Project - Iowa Stored Energy Project - Electrolyte Research

402

Decommissioning of the Austrian 10 MW Research Reactor, Results and Lessons learned Paper  

SciTech Connect

After the decision to shut down the 10 MW ASTRA-MTR Research Reactor was reached in May 1998, the possible options and required phases for decommissioning and removal of the radioactive components were evaluated in a decommissioning study. To support the decisions at each phase, an estimate of the activity inventory in the various parts of the reactor and the waste volume to be expected was performed. Of the possible options an immediate dismantling to phase 1 of IAEA Technical Guide Lines after the immediately following, continued dismantling to phase 2 of these guide lines was identified as the most reasonable and under the auspices optimum choice. The actual decommissioning work on the ASTRA-Reactor began in January 2000 after its final shutdown on July 31, 1999. Preliminary evaluations of the activity inventory gave an estimated amount of 320 kg of intermediate level waste, of about 60 metric tons of contaminated and another 100 metric tons of activated low level radioactive waste. The activities were roughly estimated to be at 200 TBq in the intermediate level and 6 GBq in the low level. The structure of the decommissioning process was decided against cost-, time- and risk-optimization following the basic layout of the main tasks, e.g. the removing of the fuel, the recovering and the treatment of the intermediate level activities in the vicinity of the core, the handling and conditioning of the neutron exposed graphite and the Beryllium-elements. As an example, the dismantling of approx. 1400 metric tons of the biological shield is described in more detail from the determination of the dismantling technique to the clearing procedures and the deposition. The process of dismantling of the biological shield is presented in fast motion. The dismantling of the pump-room installations of the primary loop, the processing of the contaminated or activated metals, the dismantling of the ventilation system and the radiological clearance of the reactor building was done under optimized conditions and is explained in the following. Spent fuel was generally delivered to the US Department of Energy - DOE in several shipments over the operational time of the ASTRA reactor. With the last shipment in May 2001 all the remaining spent fuel elements out of the ASTRA reactor consignment were transferred to DOE. To reduce waste from concrete shielding, German regulations Dt.StrSchV, annex IV, table 1, two clearance values referring to 'clearance restricted for permanent deposit' and to a clearance for unrestricted re-use were used. In order to reduce the amount of an estimated 60 tons of slightly contaminated metals, it was determined that introducing re-melting procedures were the most economical way. To obtain radiological clearance of the reactor building, compliance with the release limits according to Austrian Radiation Protection Ordinance had to be proved to the regulatory body. There, in general, the limits for unrestricted release were defined as a maximum dose rate of 10 {mu}Sv effective for an individual person per year. The results of the regular yearly medical examinations of the staff indicated no influence of the work related to decommissioning. The readings of the personal dosimeters over the entire project amounted to a total of 85.6 mSv, averaging to 1.07 mSv per year and person. After finishing the decommissioning process, the material balance showed 89.6 % for unrestricted reuse, 6.6 % for conventional mass-dumping and 3.8 % of ILW and LLW. The project was covered by an extensive documentation. All operations within NES followed ISO 9000 quality insurance standards. Experiences and knowledge were presented to and shared with the community, e.g. AFR and IAEA throughout the project. (authors)

Hillebrand, G.; Meyer, F. [Nuclear Engineering Seibersdorf GmbH (NES), Seibersdorf, Austria, Europe (Austria)

2008-07-01T23:59:59.000Z

403

Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant  

DOE Green Energy (OSTI)

This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

Radosevich, L.G.

1988-03-01T23:59:59.000Z

404

Solar Pilot Plant: Phase I. Quarterly report No. 3, April--June 1976. CDRL item No. 10. [10 MW  

DOE Green Energy (OSTI)

The baseline design for a 10 MW proof-of-concept pilot central receiver solar power plant is described. Detailed designs for the collector, steam generator, and thermal storage subsystem research experiments are presented. (WHK)

None

1976-10-28T23:59:59.000Z

405

Microphysics of Clouds Initiated from a 1000 MW Dry Heat Source in Comparison with Environmental ClodsA Statistical Study  

Science Conference Proceedings (OSTI)

To evaluate potential atmospheric impacts of wate heat released by dry cooling towers, studies have been made of an oil burning system (the Mtotron), which emits sensible heat at a rate of 1000 MW and large quantities of aerosol particles ...

Pham van Dinh; Bruno Bnech; Lawrence F. Radke

1986-08-01T23:59:59.000Z

406

The Wide-area Energy Management System Phase 2 Final Report  

DOE Green Energy (OSTI)

The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

2010-08-31T23:59:59.000Z

407

Unique design features of the SMUDPV1 1MW /SUB AC/ photovoltaic central station powerplant  

SciTech Connect

This paper discusses the unique and innovative balance of system design features incorporated into the SMUDPV1 1MW /SUB ac/ photovoltaic central station powerplant design. These include: single-axis flat-plate tracking arrays, resistance grounded dc neutral, dc fault detection and location systems and other features designed to maximize the value of the plant to the utility, while complying with standard utility design practices and standards. The paper presents the design criteria and selection rationale, design description and expected cost and performance implications to PV1 and future large-scale photovoltaic powerplants.

Daniels, R.E.; Dilts, B.; Rosen, D.J.

1984-05-01T23:59:59.000Z

408

T/g upgrade adds 15 MW, extends unit life. [Turbogenerator  

SciTech Connect

This article describes turbogenerator upgrade at Maine Yankee's PWR. Maine Yankee Atomic Power Co.'s excellent experience in the upgrading and uprating of the two low-pressure (l-p) steam turbines at its only generating unit - an 865-MW, three-loop pressurized-water reactor installed in 1972 - has motivated the utility to also contract for replacement of both the high-pressure (h-p) steam path and the generator. ABB Power Generation Inc., North Brunswick, NJ, which retrofitted the l-p steam-path components, will handle the other two projects as well.

Not Available

1990-02-01T23:59:59.000Z

409

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

410

100-MW NUCLEAR POWER PLANT UTILIZING A SODIUM COOLED, GRAPHITE MODERATED REACTOR  

SciTech Connect

The conceptual design of a 100 Mw(e) nuclear power plant is described. The plant utilized a sodium-cooled graphite-moderated reactor with stainless- steel clad. slightiy enriched UO/sub 2/ fuel. The reactor is provided with three main coolant circuits, and the steam cycle has three stages of regenerative heating. The plant control system allows automatic operation over the range of 20 to 100% load, or manual operation at all loads. The site, reactor, sodium systems, reactor auxiliaries, fuel handling, instrumentation, turbine-generator, buildings. and safety measures are described. Engineering drawings are included. (W.D.M.)

1958-02-28T23:59:59.000Z

411

Can fluid-bed take on p-c units in the 250- to 400-MW range  

Science Conference Proceedings (OSTI)

This article is a comparison of the state of fluid-bed design with commercial pulverized coal fossil-fuel power plants. With successful operation of several units in the 100- to 200-MW range, designers have set their sights on a doubling of unit capacity. To compete with p-c units, however, comparable gains in efficiency, operability, environmental performance, and cost are necessary, too. In a decade or so, circulating fluidized-bed (CFB) boilers and bubbling-bed units have progressed from industrial-sized curiosities to several 150-200-MW single units operating today. A 250-MW CFB unit is being installed in France for startup in 1995, a 225-MW unit is being designed for installation as part of the US DOE Clean Coal Technology Demonstration program, two 230-MW units are slated to start up in Poland in 1995, and a 350-MW bubbling-bed unit is under construction in Japan. Thus, fluid-bed technology is poised to compete with pulverized-coal (p-c)-fired units for utility-scale applications. But size isn't everything. To fully compete, CFB designers have to consider thermal efficiency, environmental performance, operability, fuel flexibility, cost, and a host of other factors.

Makansi, J.

1993-09-01T23:59:59.000Z

412

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-10-26T23:59:59.000Z

413

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Richard E. Johnson

2006-01-25T23:59:59.000Z

414

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Steven T. Derenne

2006-04-28T23:59:59.000Z

415

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Systems 2012 Peer Review Presentations - Poster Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARPA-E project presentations from the first poster session on Day 1, chaired by DOE's Mark Johnson, are below. ESS 2012 Peer Review - Dispatchable Wind--Wind Power on Demand - Ian Lawson, General Compression ESS 2012 Peer Review - Novel Regenerative Fuel Cells based on Anion Exchange Membranes - Katherine Ayers, Proton Onsite ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel Storage Grid

416

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal Batteries for Grid-Scale Storage - Mohit Singh, Seeo.pdf ESS 2010 Update Conference - Utility Scale Flywheel Energy Storage Demonstration - Edward Chiao, Amber Kinetics.pdf

417

A Look Inside the Detroit Auto Show | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Look Inside the Detroit Auto Show A Look Inside the Detroit Auto Show A Look Inside the Detroit Auto Show January 12, 2011 - 1:15pm Addthis Kerry Duggan Waking up at 4:30AM is not my idea of fun. But after I witnessed the 6:30AM unveiling of the shiny new Porsche 918 RSR Hybrid at the North American International Auto Show, I got over it. To those who know cars, its lineage is in the #22 Porsche 917 race car, winner of the LeMans in 1971. With a top speed of 140 mph, the new 918 RSR combines the power of a 563-horsepower V-8 engine and a dual inertial flywheel system to produce a total 767-horsepower. On the efficiency side, a Kinetic Energy Recovery System (KERS) allows the two 75-kW flywheels to capture wasted energy when the brakes are applied. The Porsche president said that their goal is to achieve high fuel efficiency in extreme driving

418

A Look Inside the Detroit Auto Show | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Look Inside the Detroit Auto Show A Look Inside the Detroit Auto Show A Look Inside the Detroit Auto Show January 12, 2011 - 1:15pm Addthis Kerry Duggan Waking up at 4:30AM is not my idea of fun. But after I witnessed the 6:30AM unveiling of the shiny new Porsche 918 RSR Hybrid at the North American International Auto Show, I got over it. To those who know cars, its lineage is in the #22 Porsche 917 race car, winner of the LeMans in 1971. With a top speed of 140 mph, the new 918 RSR combines the power of a 563-horsepower V-8 engine and a dual inertial flywheel system to produce a total 767-horsepower. On the efficiency side, a Kinetic Energy Recovery System (KERS) allows the two 75-kW flywheels to capture wasted energy when the brakes are applied. The Porsche president said that their goal is to achieve high fuel efficiency in extreme driving

419

MW-class hybrid power system based on planar solid oxide stack technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

420

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

1980-05-30T23:59:59.000Z

422

Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

Steven Derenne; Robin Stewart

2009-09-30T23:59:59.000Z

423

Terra-Gen Power LLC | Open Energy Information  

Open Energy Info (EERE)

a renewable energy company focused on geothermal, wind and solar generation. Terra-Gen Power owns 831 MW (net equity) in twenty-one operating renewable energy projects across the...

424

Fact Sheet: Wind Firming EnergyFarm (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

Primus Power is deploying a 25 MW/75 MWh EnergyFarm in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power...

425

City of Houston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a 5-year contract with Reliant Energy for up to 80 MW or 700 million kilowatt-hours (kWh) annually of renewable energy credits (RECs). These RECs will be generated almost...

426

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 CX-004504: Categorical Exclusion Determination Beacon Power 20 Megawatt Flywheel Frequency Regulation Plant CX(s) Applied: A1, A9, A11 Date: 11192010 Location(s):...

427

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report  

DOE Green Energy (OSTI)

This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

Not Available

1978-01-01T23:59:59.000Z

428

Ris Energy Report 5 Technical challenges to energy systems' operation and markets 55 A future energy system that includes a high propor-  

E-Print Network (OSTI)

become an issue, as the areas with good potential for wind power and wave energy are often located some of wind power plants Large wind farms such as the 160 MW Horns Rev and the 165 MW Nysted offshore wind to conventional power plant blocks. To obtain the maximum benefit from an overall power system, wind power should

429

Duke Energy Notrees Wind Storage Demonstration Project: 2013 Interim Report  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple value-added utility applications. ...

2013-12-19T23:59:59.000Z

430

PNE UK Wind | Open Energy Information  

Open Energy Info (EERE)

UK Wind Place United Kingdom Sector Wind energy Product UK-based joint venture looking to develop a 300MW portfolio of wind farm projects across England, Scotland and Wales....

431

Iberenova Cajalon JV | Open Energy Information  

Open Energy Info (EERE)

search Name Iberenova-Cajalon JV Place Spain Sector Solar, Wind energy Product Joint venture between Iberenova and Caja Rural de Aragon to develop 650MW of wind and solar...

432

PNE WIND UK | Open Energy Information  

Open Energy Info (EERE)

venture between PNE Wind and New Energy Development Ltd for the development of 300MW of wind farms in the UK and Ireland. References PNE WIND UK1 LinkedIn Connections...

433

Sistemas Energeticos Cando SA | Open Energy Information  

Open Energy Info (EERE)

search Name Sistemas Energeticos Cando SA Place Spain Sector Wind energy Product Spanish Wind farms with a total of 64,21 MW of power production. References Sistemas Energeticos...

434

VAWT Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Zip 89118 Sector Wind energy Product Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References VAWT Industries Inc1 LinkedIn...

435

Distributed Generation Standard Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

436

Bos ten AG | Open Energy Information  

Open Energy Info (EERE)

Germany Zip 93049 Sector Solar Product Partner of Beck Energy in development of a 3.2MW solar PV plant. References Bos.ten AG1 LinkedIn Connections CrunchBase Profile No...

437

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capacity of 1 MW or less and are... http:energy.govsavingssmall-scale-chp-and-fuel-cell-incentive-program-new-jersey Rebate Solar and Wind Permitting Laws New Jersey has...

438

Bio Gas Technologies LTd | Open Energy Information  

Open Energy Info (EERE)

is involved in designing, constructing, owning and operating Gas-to-Energy and Cogeneration systems. Bio-Gas currently has 8.5 MW of new renewable power in commercial...

439

Net Metering (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Capacity Limit The lesser of 1 MW or 100% of the customer's annual requirements for electricity Website http:pucweb1.state.nv.usPUCNRenewableEnergy.aspx Date added to DSIRE...

440

Greenpark Energy | Open Energy Information  

Open Energy Info (EERE)

Greenpark Energy Greenpark Energy Jump to: navigation, search Name Greenpark Energy Place Corbriggs, Chesterfield, England, United Kingdom Zip S41 OJW Sector Biomass Product Uk based, Green Park Energy, project developer of a planned 50MW coal bed methane/biomass power plant. References Greenpark Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Greenpark Energy is a company located in Corbriggs, Chesterfield, England, United Kingdom . References ↑ "[ Greenpark Energy]" Retrieved from "http://en.openei.org/w/index.php?title=Greenpark_Energy&oldid=346104" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Storage Systems 2006 Peer Review - Day 1 morning presentations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 morning 1 morning presentations Energy Storage Systems 2006 Peer Review - Day 1 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. Presentations from the Day 1 morning session are below. ESS 2006 Peer Review - NAS Battery Performance at Charleston, WV - Ali Nourai, AEP.pdf ESS 2006 Peer Review - Evaluation of the Kauai Island Utility Cooperative System for Energy Storage Potential - Abbas Akhil, SNL.pdf ESS 2006 Peer Review - Iowa Stored Energy Plant - Bob Haug, ISEPA.pdf ESS 2006 Peer Review - Superconducting Flywheel Development - Phil Johnson, Boeing.pdf ESS 2006 Peer Review - Bipolar NiMH Battery Development and Testing - James

442

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

443

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

444

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

445

Beginning-of-life neutronic analysis of a 3000-MW(t) HTGR  

SciTech Connect

The results of a study of safety-related neutronic characteristics for the beginning-of-life core of a 3000-MW(t) High-Temperature Gas-Cooled Reactor are presented. Emphasis was placed on the temperature-dependent reactivity effects of fuel, moderator, control poisons, and fission products. Other neutronic characteristics studied were gross and local power distributions, neutron kinetics parameters, control rod and other material worths and worth distributions, and the reactivity worth of a selected hypothetical perturbation in the core configuration. The study was performed for the most part using discrete-ordinates transport theory codes and neutron cross sections that were interpolated from a four-parameter nine-group library supplied by the HTGR vendor. A few comparison calculations were also performed using nine-group data generated with an independent cross-section processing code system. Results from the study generally agree well with results reported by the HTGR vendor. (auth)

Vigil, J.C.

1975-12-01T23:59:59.000Z

446

Detailed design of the 2MW Demonstration Plant. Topical report, Task 2  

DOE Green Energy (OSTI)

This document provides a summary of the design of the 2MW carbonate fuel cell power plant which will be built and tested under DOE cooperative agreement DE-FC2l-92MC29237. The report is divided into sections which describe the process and stack module design, and Appendices which provide additional design detail. Section 2.0 provides an overview of the program, including the project objectives, site location, and schedule. A description of the overall process is presented in Section 3.0. The design of the fuel cell stack Modules is described in Section 5.0, which discusses the design of the fuel cell stacks, multi-stack enclosures, and Stack Modules. Additional detail is provided in a report Appendix, the Final Design Criteria Summary. This is an abstract of the design criteria used in the design of the Submodules and Modules.

Not Available

1993-09-16T23:59:59.000Z

447

Experiences with titanium next-to-last LP blades in a 1300 MW turbine  

SciTech Connect

The use of titanium as a material for the end blades of LP turbines has already been investigated twenty years ago by Brown Boveri. Next-to-last LP blades in the past have several times been the cause of turbine damage, because these blades work in the zone of the first condensation and thus are subjected to mechanical stress in corrosive environment. Favorable corrosion properties of titanium provided a reason for developing and manufacturing two next-to-last titanium low pressure blade rows in 1980 and to use them in a 1300 MW plant. On the occasion of an overhaul, a visual check was carried out of the titanium blades and chemical analysis of the blade surface deposits were made. From the distribution of the deposits conclusions can be drawn, retroactively, as to why steel blades might have failed. The titanium blades are undergoing a further operation period.

Meyer, H.W.

1982-01-01T23:59:59.000Z

448

Recent Performance of the SNS H-Source for 1-MW Neutron Production  

Science Conference Proceedings (OSTI)

This paper describes the performance of the SNS ion source and LEBT as they continue to deliver ~50 mA H- beams at a 5.3% duty factor required for neutron production with a ~1MW proton beam since the fall of 2009. The source continues to deliver persistent H- beams for up to 6 weeks without adding Cs after an initial dose of ~4 mg, except when there are excessive plasma impurities. In one case the H- beam decayed due to an air leak, which is shown to be consistent with sputtering of the Cs layer, and which allows to bracket the plasma potential. In another case, the performance of two sources degraded progressively, which appears to be consistent with a progressive deterioration of the Cs covered Mo converter. These two and other recently discovered issues are discussed in detail.

Stockli, Martin P [ORNL; Han, Baoxi [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL

2013-01-01T23:59:59.000Z

449

A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.  

DOE Green Energy (OSTI)

We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

2006-10-01T23:59:59.000Z

450

FAST OXIDE BREEDER-REACTOR. PART I. PARAMETRIC STUDY OF 300(e) MW REACTOR CORE  

SciTech Connect

Physics scoping studies of a 300-Mw(e) PuO/sub 2/-UO/sub 2/-fueled fast- breeder reactor are reported. Physics design parameters that effect fuel costs, full conservation, and reactor safety were evaluated for use in the selection of parameters for a reference design. The total breeding ratio varied from 1.1 to 1.5 in the range of parameters corsidered. Plutonium core loading ranged from 500 to 1500 kg. Doubling time was found to be reduced by high-density fuel and low steel content. A compromise figure on fuel-rod range of sizes (about 100 mils) yields a 5 operating reactivity and a small, negative sodium temperature coefficient. (J.R.D.)

Greebler, P.; Aline, P.; Sueoka, J.

1959-11-15T23:59:59.000Z

451

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

452

Design and performance of the LAMPF 1-1/4 MW klystron modulator  

SciTech Connect

From 11th modulator symposium; New York, New York, USA (18 Sep 1973). A design for a very reliable single-triode modulator for a 11/4 MW modulating-anode klystron is presented. The operating voltage is 86 kV and the variable pulse length ranges from 200 4mmsec to 1.2 msec. The basic modulator circuit, which uses a novel Zener diode bias circuit, and several of the individual components are described in detail. Over 140,000 high-voltage hours have been accumulated on these modulators. The principal failure mechanism is grid emission from the triode. These failures can be anticipated and repaired during a normal maintenance period. The triode is then reprocessed and reused. Tube life data and a summary of the failures modes are presented. (auth)

Tallerico, P.J.; Cady, R.L.; Doss, J.D.

1974-04-30T23:59:59.000Z

453

Eye hazard and glint evaluation for the 5-MW/sub t/ Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Potential eye hazards associated with concentrated reflected light are evaluated for the ERDA 5-MW/sub t/ Solar Thermal Test Facility to be constructed at Sandia Laboratories, Albuquerque, New Mexico. Light intensities and hazardous ranges of single and multiple coincident heliostat beams are evaluated at ground level and in the air space above the facility. Possible long-range and short-range effects of distractive effects of reflected beams are discussed. Also described are certain beam control modifications which were incorporated to minimize the altitudes at which overflying aircraft could encounter unsafe levels. Recommendations are made for further evaluation of intensity excursions during fail-safe shutdown situations, and for experiments to verify analytical models and to assess distractive glint effects.

Brumleve, T.D.

1977-05-01T23:59:59.000Z

454

Total cost of 46-Mw Borax cogen system put at $30M  

SciTech Connect

The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in less than 5 years of service.

de Biasi, V.

1983-03-01T23:59:59.000Z

455

Golden Valley Electrical Association Battery Energy Storage System  

Science Conference Proceedings (OSTI)

In June 2003, the Golden Valley Electrical Association (GVEA) in Alaska commissioned a nickel-cadmium battery energy storage system (BESS) that is capable of providing 27 MW for 15 minutes or 46 MW for 5 minutes. This Engineer-of-Record report summarizes the background, planning, design, engineering, testing, and operation of the GVEA BESS.

2010-05-13T23:59:59.000Z

456

Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant  

DOE Green Energy (OSTI)

The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1977-11-01T23:59:59.000Z

457

1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application  

SciTech Connect

This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available (approx. 233 MW(e)) could be used for alumina electrolysis.

Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

1981-05-01T23:59:59.000Z

458

Energy Storage Systems 2010 Update Conference Presentations - Day 1,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the third session of Day 1, chaired by PNNL's Jun Lui, are below. ESS 2010 Update Conference - MetILs, New Ionic Liquids for Flow Batteries - Travis Anderson, SNL.pdf ESS 2010 Update Conference - Nitrogen-Air Battery - David Ingersoll, SNL.pdf ESS 2010 Update Conference - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL.pdf

459

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 DOE Energy Storage Program 6 DOE Energy Storage Program PEER REVIEW John D. Boyes Sandia National Laboratories ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - Boeing Superconducting Flywheel - ACONF Coast Guard Project - HybSim Hybrid Storage Model Development Congressionally-Directed Programs - University of Missouri-Rolla - Grid Modernization - Iowa Stored Energy Project - EEI - BiPolar Ni-MH Battery Development - Sprint - Storage for Telecommunications Apps. - Emerson - Network Power - Beacon Power - Frequency Regulation Plant Design - Mead Westvaco - Research on Lead-Carbon Asymmetric Super capacitors (FY05) ESS Program Makeup (cont.) ESS Program Makeup cont. SBIR - Aegis Technology - PII - Arkansas Power Electronic International -

460

Department of Energy and Beacon Power Finalize $43 Million Loan Guarantee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beacon Power Finalize $43 Million Loan Beacon Power Finalize $43 Million Loan Guarantee for Innovative Energy Storage Project in New York State Department of Energy and Beacon Power Finalize $43 Million Loan Guarantee for Innovative Energy Storage Project in New York State August 9, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary Steven Chu today announced that a $43 million loan guarantee has been finalized for Beacon Power Corporation's 20 megawatt innovative flywheel energy storage plant in Stephentown, NY. The plant will help improve the stability and reliability of the state's electric grid and Beacon estimates it will create 20 construction jobs in New York and 40 permanent jobs in Massachusetts. Beacon Power is an energy storage company headquartered in Tyngsboro, Massachusetts.

Note: This page contains sample records for the topic "mw flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

462

Information Strategies and Energy Conservation Behavior: A Meta-analysis of Experimental Studies from 1975-2011  

E-Print Network (OSTI)

Monitoring Systems. Energy Policy, 36(12), 4454-4459. Costa,instruments for change? Energy Policy, Lipsey, M.W. andinformation and feedback. Energy policy 34, 129- McCalley,

Delmas, Magali; Fischlein, Miriam; Asensio, Omar

2013-01-01T23:59:59.000Z

463