Sample records for mw flywheel energy

  1. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation...

    Office of Environmental Management (EM)

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Beacon Power 20 MW...

  2. Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...

    Office of Environmental Management (EM)

    Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

  3. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  4. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

    2009-01-01T23:59:59.000Z

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  5. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31T23:59:59.000Z

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  6. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  7. Reluctance apparatus for flywheel energy storage

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    2000-01-01T23:59:59.000Z

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  8. advanced flywheel energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Theses and Dissertations Summary: ??Compared with traditional electro-chemical battery systems, a highspeed flywheel energy storage system offers the...

  9. RPM Flywheel Battery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to: navigation,REpowerRPM Flywheel

  10. High Speed Flywheels for Integrated Energy Storage and Attitude Control

    E-Print Network [OSTI]

    Hall, Christopher D.

    High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

  11. Vibration Isolation of a Locomotive Mounted Energy Storage Flywheel

    E-Print Network [OSTI]

    Zhang, Xiaohua

    2011-02-22T23:59:59.000Z

    Utilizing flywheels to store and reuse energy from regenerative braking on locomotives is a new technology being developed in the Vibration Control and Electromechanics Lab at Texas A&M. This thesis focuses on the motion analysis of a locomotive...

  12. Vibration Isolation of a Locomotive Mounted Energy Storage Flywheel 

    E-Print Network [OSTI]

    Zhang, Xiaohua

    2011-02-22T23:59:59.000Z

    Utilizing flywheels to store and reuse energy from regenerative braking on locomotives is a new technology being developed in the Vibration Control and Electromechanics Lab at Texas A&M. This thesis focuses on the motion ...

  13. Specific Energy and Energy Density Analysis of Conventional and NonConventional Flywheels

    E-Print Network [OSTI]

    Reyna, Ruben

    2013-12-09T23:59:59.000Z

    Flywheels are widely used as a means of energy storage throughout different applications such as hybrid electric vehicles, spacecraft, and electrical grids. The research presented here investigates various steel flywheel constructions. The purpose...

  14. Flywheel Energy Storage -- An Alternative to Batteries for UPS Systems

    SciTech Connect (OSTI)

    Brown, Daryl R.; Chvala, William D.

    2003-11-12T23:59:59.000Z

    Direct current (DC) system flywheel energy storage technology can be used as a substitute for batteries for providing backup power to an uninterruptible power supply (UPS) system. Although the initial cost will usually be higher, flywheels offer a much longer life, reduced maintenance, a smaller footprint, and better reliability compared to a battery. The combination of these characteristics will generally result in a lower life-cycle cost for a flywheel compared to a battery. This paper describes the technology, its variations, and installation requirements, as well as provides application advice. One Federal application is highlighted as a “case study,” followed by an illustrative life-cycle cost comparison of batteries and flywheels. A list of manufacturers, with contact information is also provided.

  15. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage. Flywheel has been selected as the means of storing energy as it provides high power density and does the energy stored in flywheel to compensate for the peak of power introduced by HEV charger, avoiding big

  16. Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module

    SciTech Connect (OSTI)

    None

    2010-09-22T23:59:59.000Z

    GRIDS Project: Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds—slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today’s flywheels. Beacon Power’s flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.

  17. Flywheel energy storage with superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

    1993-01-01T23:59:59.000Z

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  18. Flywheel Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida: EnergyFlying F

  19. Fact Sheet: Grid-Scale Flywheel Energy Storage Plant (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blue cylinders in the picture contains one flywheel. More About the Technology: At the heart of Beacon Power's flywheel design is a patented high-strength carbon fiber composite...

  20. 1710 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 6, NOVEMBER/DECEMBER 2003 An Integrated Flywheel Energy Storage System

    E-Print Network [OSTI]

    Sanders, Seth

    An Integrated Flywheel Energy Storage System With Homopolar Inductor Motor/Generator and High-Frequency Drive Abstract--The design, construction, and test of an integrated flywheel energy storage system that also serves as the energy storage rotor for the flywheel system. A high-frequency six-step drive scheme

  1. An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive

    E-Print Network [OSTI]

    Sanders, Seth

    An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive Copyright 2003 by Perry I-Pei Tsao #12;1 Abstract An Integrated Flywheel Energy Storage System with a Homopolar

  2. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! |Nearly six weeks Hazle

  3. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FYFacilityDepartment of|2013) |

  4. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast TenPrice of|SNL OnSilicon

  5. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01T23:59:59.000Z

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  6. Specific Energy and Energy Density Analysis of Conventional and NonConventional Flywheels 

    E-Print Network [OSTI]

    Reyna, Ruben

    2013-12-09T23:59:59.000Z

    .2.2 Composite disks . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Novel Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Flywheel with Pressurized Internal Cavity . . . . . . . . . . . 23 2.3.2 Welded Flywheel... . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Welded Flywheel with Internal Press Fit . . . . . . . . . . . . 24 2.3.4 Stepped Flywheel . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 Rotor-Collar Flywheel . . . . . . . . . . . . . . . . . . . . . . 27 3. ANSYS MODELING...

  7. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31T23:59:59.000Z

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  8. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  9. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R.

    2004-06-29T23:59:59.000Z

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  10. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1983-10-11T23:59:59.000Z

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

  11. Crossroads (3 MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)CriterionCrossroads (3 MW) Jump

  12. 'Recycling' Grid Energy with Flywheel Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver:

  13. Flywheel Energy Storage Device for Hybrid and Electric Vehicles - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergy Innovation

  14. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01T23:59:59.000Z

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  15. Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly

    E-Print Network [OSTI]

    Saeed, Ahmed

    2012-07-16T23:59:59.000Z

    , and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel...

  16. Rimmed and edge thickened stodola shaped flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1980-09-24T23:59:59.000Z

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  17. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V. (San Ramon, CA); Stone, Richard G. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  18. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43and Statement

  19. Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01T23:59:59.000Z

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

  20. Puna Geothermal Venture 8MW Expantion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublic ArtTexas JumpPulteGroup8MW

  1. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 Peer NationalJonathan Silver5-MW

  2. High speed flywheel

    DOE Patents [OSTI]

    McGrath, Stephen V. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  3. Model Validation at the 204-MW New Mexico Wind Energy Center

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01T23:59:59.000Z

    Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

  4. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V. (San Ramon, CA); Christensen, Richard M. (Danville, CA); Toland, Richard H. (West Chester, PA)

    1985-01-01T23:59:59.000Z

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  5. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24T23:59:59.000Z

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  6. Reactor coolant pump flywheel

    DOE Patents [OSTI]

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26T23:59:59.000Z

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    air energy storage (CAES), 25 flywheels and various batteryCr redox, some Li ion), flywheel, “second generation” CAES

  8. A 1-mW vibration energy harvesting system for moth flight-control applications

    E-Print Network [OSTI]

    Chang, Samuel C

    2010-01-01T23:59:59.000Z

    This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

  9. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07T23:59:59.000Z

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  10. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

    1998-01-01T23:59:59.000Z

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  11. SWITCH-MODE CONTINUOUSLY VARIABLE TRANSMISSION WITH FLYWHEEL ENERGY Tyler D. Forbes

    E-Print Network [OSTI]

    Van de Ven, James D.

    , Massachusetts, USA ABSTRACT A hybrid drive train significantly improves energy efficiency of ground vehicles consumption combined with a decreasing supply of petroleum elevates the importance of improving the energy efficiency of all products. A major component of global energy consumption is transportation, which consumes

  12. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    air energy storage (CAES), 25 flywheels and various batteryCr redox, some Li ion), flywheel, “second generation” CAES

  13. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  14. PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND

    E-Print Network [OSTI]

    Boyer, Edmond

    of smaller generators (using wind power, photovoltaic power, etc.) appears to be improving both the safety a stationary accumulator for a domestic application requiring power on the order of one kilowatt. Keywords towards a distributed generation in which energy storage plays a key role in balancing consumption

  15. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01T23:59:59.000Z

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  16. Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01T23:59:59.000Z

    In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

  17. MHK Projects/40MW Lewis project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump to:2MHKMHKMHKReturn to theproject

  18. Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003

    SciTech Connect (OSTI)

    anon.

    2004-03-01T23:59:59.000Z

    Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

  19. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name

  20. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation, search Name2 Jump to:

  1. Property:Device Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to:DeploymentSector Jump to:Camera

  2. MHK Technologies/14 MW OTECPOWER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:VicksburgOTECPOWER < MHK

  3. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc Jump to:Ind

  4. Property:Permit/License Buildout (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/Riverline Conditions Jump to:Permit/License

  5. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, search Property NameInstalled Capacity

  6. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is setSimulatedDescription

  7. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28T23:59:59.000Z

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  8. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, Donald E. (Thousand Oaks, CA); Ingham, Kenneth T. (Woodland Hills, CA)

    1987-01-01T23:59:59.000Z

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  9. THE INSTITUTE FOR SOLID STATE PHYSICS 2013 51.3MW 2.7kV

    E-Print Network [OSTI]

    Katsumoto, Shingo

    A picture of the largest flywheel DC generator. This generator can supply the maximum energy of 210 MJ

  10. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW Demonstration

  11. MIMO active vibration control of magnetically suspended flywheels for satellite IPAC service

    E-Print Network [OSTI]

    Park, Junyoung

    2009-05-15T23:59:59.000Z

    Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros (CMGs) on a satellite. Past modeling...

  12. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    E62. [17] S. Miller, Flywheel Fundamentals, EnvironmentalH. Bernhoff, M. Leijon, Flywheel energy and power storageen.wikipedia.org/wiki/Flywheel. [21] S. J. Bauer, K. N.

  13. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcology & Environment, Inc.Fans

  14. Optimum rotationally symmetric shells for flywheel rotors

    DOE Patents [OSTI]

    Blake, Henry W. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  15. Canned pump having a high inertia flywheel

    DOE Patents [OSTI]

    Veronesi, L.; Raimondi, A.A.

    1989-12-12T23:59:59.000Z

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  16. Canned pump having a high inertia flywheel

    DOE Patents [OSTI]

    Veronesi, Luciano (O'Hara Twp., Allegheny County, PA); Raimondi, ALbert A. (Monroeville Borough, Allegheny County, PA)

    1989-01-01T23:59:59.000Z

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  17. Layered flywheel with stress reducing construction

    DOE Patents [OSTI]

    Friedericy, Johan A. (Palos Verdes Estates, CA); Towgood, Dennis A. (Huntington Beach, CA)

    1984-11-13T23:59:59.000Z

    A flywheel having elastic spokes carrying an elastic rim; and a hub coupling the spokes to a shaft and deforming in response to centrifugal force to match the radial distortion of the spokes.

  18. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  19. American Institute of Aeronautics and Astronautics Fluidic Variable Inertia Flywheel

    E-Print Network [OSTI]

    Van de Ven, James D.

    American Institute of Aeronautics and Astronautics 1 Fluidic Variable Inertia Flywheel James D. Van for many applications from hybrid vehicles to off-peak electric power to rotating machinery. A flywheel. This work proposes a novel self-governing fluidic variable inertia flywheel that can maintain a constant

  20. Design and testing of a 13. 75-MW converter for a superconducting magnetic-energy-storage system

    SciTech Connect (OSTI)

    Boenig, H.J.; Turner, R.D.; Neft, C.L.; Sueker, K.H.

    1981-01-01T23:59:59.000Z

    A 30 MJ superconducting magnetic energy storage system will be installed in 1982 in Tacoma, WA, to act as a transmission line stabilizer. Two 6 MVA transformers and a 5.5 kA, + 2.5 kV converter will connect the superconducting coil to the 13.8 kV bus and regulate the power flow between the coil and the three phase system. The design philosophy for the converter including its control and protection system is given in the paper. The converter has been tested with 10% overvoltage at no load, with 10% overcurrent at zero output voltage and with a watercooled resistive load of about 1 MW. These test results show that the converter will meet the expected full load operating conditions.

  1. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Advanced...

  2. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSE DOE/IG-480 I N S P E C

  3. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors for3

  4. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors

  5. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  6. EK 131/132 module: Introduction to Wind Energy MW 3-5

    E-Print Network [OSTI]

    by the Museum of Science) 3. Creation and testing of wind turbine blades for desktop Description: Modern wind turbines have begun to play an important role in the production of electricity. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind

  7. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |

  8. Transient analysis of a flywheel battery containment during a full rotor burst event.

    SciTech Connect (OSTI)

    Hsieh, B. J.

    1998-04-17T23:59:59.000Z

    Flywheels are being developed for use in an Advanced Locomotive Propulsion System (ALPS) targeted for use in high speed passenger rail service. The ALPS combines high performance, high speed gas turbines, motor/generators and flywheels to provide a light-weight, fuel-efficient power system. Such a system is necessary to avoid the high cost of railway electrification, as is currently done for high speed rail service (>100mph) since diesels are too heavy. The light-weight flywheel rotors are made from multilayered composite materials, and are operated at extremely high energy levels. Metal containment structures have been designed to enclose the rotors and provide encapsulation of the rotor during postulated failure events. One such event is a burst mode failure of the rotor in which the composite rim is assumed to burst into debris that impacts against the containment. This paper presents a finite element simulation of the transient structural response of a subscale metal flywheel containment structure to a rotor burst event.

  9. Safety Assessment of PowerBeam Flywheel Technology

    SciTech Connect (OSTI)

    Starbuck, J Michael [ORNL; Hansen, James Gerald [ORNL

    2009-11-01T23:59:59.000Z

    The greatest technical challenge facing the developer of vehicular flywheel systems is the issue of safety. The PowerBeam flywheel system concept, developed by HyKinesys Inc., employs a pair of high aspect ratio, counter-rotating flywheels to provide surge power for hybrid vehicle applications. The PowerBeam approach to safety is to design flywheels conservatively so as to avoid full rotor burst failure modes. A conservative point design was sized for use in a mid-size sedan such as a Chevrolet Malibu. The PowerBeam rotor rims were designed with a steel tube covered by a carbon fiber reinforced composite tube. ORNL conducted rotor design analyses using both nested ring and finite element analysis design codes. The safety factor of the composite material was 7, while that of the steel was greater than 3. The design exceeded the PNGV recommendation for a safety factor of at least 4 for composite material to prevent flywheel burst.

  10. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  11. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA)

    1999-01-01T23:59:59.000Z

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  12. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-08-24T23:59:59.000Z

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  13. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Fact Sheet: Energy...

  14. Flywheel storage for photovoltaics: an economic evaluation of two applications

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01T23:59:59.000Z

    A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

  15. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, S.E.; Deteresa, S.J.

    1998-07-14T23:59:59.000Z

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  16. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  17. Measurement of MW+ - MW- at LHC

    E-Print Network [OSTI]

    F. Fayette; M. W. Krasny; W. Placzek; A. Siodmok

    2009-06-17T23:59:59.000Z

    This paper is the second of the series of papers proposing dedicated strategies for precision measurements of the Standard Model parameters at the LHC. The common feature of these strategies is their robustness with respect to the systematic measurement and modeling error sources. Their impact on the precision of the measured parameters is reduced using dedicated observables and dedicated measurement procedures which exploit flexibilities of the collider and detector running modes. In the present paper we focus our attention on the measurement of the charge asymmetry of the W-boson mass. This measurement is of primordial importance for the LHC experimental program, both as a direct test of the charge-sign-independent coupling of the W-bosons to the matter particles and as a necessary first step towards the precision measurement of the charge-averaged W-boson mass. We propose and evaluate the LHC-specific strategy to measure the mass difference between the positively and negatively charged W-bosons, MW+ - MW-. We show that its present precision can be improved at the LHC by a factor of 20. We argue that such a precision is beyond the reach of the standard measurement and calibration methods imported to the LHC from the Tevatron program.

  18. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04T23:59:59.000Z

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  19. AXIAL-FIELD SYNCHRONOUS MACHINE WITH HOMOPOLAR FLUX IN THE AIRGAP FOR A FLYWHEEL ACCUMULATOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AXIAL-FIELD SYNCHRONOUS MACHINE WITH HOMOPOLAR FLUX IN THE AIRGAP FOR A FLYWHEEL ACCUMULATOR@bretagne.ens-cachan.fr Abstract: A new axial-field synchronous machine designed for a flywheel accumulator is presented herein with experimental results. Keywords: flywheel accumulator, axial-field synchronous machine, double-face printed

  20. ME/AE 381 Mechanical and Aerospace Control Systems TWO FLYWHEEL SYSTEM LABORATORY

    E-Print Network [OSTI]

    Landers, Robert G.

    ME/AE 381 ­ Mechanical and Aerospace Control Systems TWO FLYWHEEL SYSTEM LABORATORY The objective of this laboratory is to design controllers that will regulate the angular position of a two­flywheel system (see tasks: 1. Ignoring Coulomb friction, determine a state­space description of the two flywheel system

  1. Operation of the NRCh constriction of boilers in 300 MW energy units during combustion of anthracite dust

    SciTech Connect (OSTI)

    Kaminskii, V.P.; Mironov, S.N.

    1982-03-01T23:59:59.000Z

    Operation of the furnace constriction of boilers in 300 MW units during combustion of anthracite dust with liquid slag removal now requires special attention on the part of both operating personnel at thermal power plants and designers. The reason behind this is charring of the studs and carborundum mass on the roof portion of the constriction with subsequent exposure of the tubes; external high-temperature corrosion of the tubes on the roof portion and on the upper incline of the constriction with subsequent tapering of the tube walls to 1.5 mm and their breaking; the presence of corrosion-fatigue destruction of the tube walls in the upper incline of the constriction with formation of scale, transverse deep grooves and fissures on the front side of the tubes. Overall, at the present time the constriction is a point of failure that requires intensified control and greater repair costs to replace damaged sections of the heating surfaces. In conjunction with this, complex analysis of operation of the constriction has been carried out.

  2. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  3. NREL Controllable Grid Interface for Testing MW-scale Wind Turbine Generators (Poster), NREL (National Renewable Energy Laboratory)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspenNOT MEASUREMENTIntroduction

  4. ,,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard ErrorsNumber of

  5. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-06-02T23:59:59.000Z

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  6. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Inc Arete Power Inc Reno Nevada Developer and manufacturer of advanced flywheel energy storage systems Areva Koblitz Areva Koblitz Sao Paulo Sao Paulo Brazil The company operates...

  7. PCFB Repowering Project 80 MW plant description

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This report documents the design of a 80 MW Pressurized Circulating Fluidized Bed (PCFB) boiler for the repowering of Unit 1 at the Des Moines Energy Center. Objective is to demonstrate that PCFB combined-cycle technology is cost effective and environmentally superior compared to traditional pulverized coal burning facilities.

  8. Power Compensation Effect of an Adjustable-Speed Rotary Condenser with a Flywheel for a Large Capacity Magnet Power Supply

    E-Print Network [OSTI]

    Akagi, H

    1999-01-01T23:59:59.000Z

    Power Compensation Effect of an Adjustable-Speed Rotary Condenser with a Flywheel for a Large Capacity Magnet Power Supply

  9. Low frequency noise from MW wind turbines --mechanisms of generation

    E-Print Network [OSTI]

    Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy turbine has been simulated with a noise prediction model from NASA in US. Running the model

  10. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station Tomislav to intolerable stresses in the near future scenario where there will be a large number of public FCS spread across the network. This paper proposes an internal power balancing strategy for FCS based on flywheel

  11. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514 3. Battery storage technologiesOverview of current and future energy storage technologies for electric power applications Ioannis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513 2. Flywheel storage technologies

  12. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, S.J.; Groves, S.E.

    1998-06-02T23:59:59.000Z

    An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

  13. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

    1998-06-02T23:59:59.000Z

    An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

  14. Design and analysis of a composite flywheel preload loss test rig

    E-Print Network [OSTI]

    Preuss, Jason Lee

    2004-09-30T23:59:59.000Z

    process. Successful detection of the change in mass eccentricity was verified analytically through dynamic modeling of the flywheel rotor and magnetic suspension system. During steady state operation detection was determined to be feasible via...

  15. Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine

    E-Print Network [OSTI]

    Ran, Li

    This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

  16. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief PDF-342KB Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project...

  17. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  18. Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)

    SciTech Connect (OSTI)

    Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

    2011-05-01T23:59:59.000Z

    As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

  19. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect (OSTI)

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01T23:59:59.000Z

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  20. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    Ayers, Proton Onsite ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel Storage Grid Demo - Mike Strasik, Boeing ESS 2012 Peer Review - Iron-Air Rechargeable Battery...

  1. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA)

    1999-01-01T23:59:59.000Z

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  2. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-07-20T23:59:59.000Z

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  3. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced...

  4. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01T23:59:59.000Z

    can be used to rotate a flywheel that continues to spin withis needed, the spinning flywheel can be used to generateor more. 6 Batteries, flywheels, and capacitors generally

  5. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16T23:59:59.000Z

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  6. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2010-05-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  7. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

  8. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04T23:59:59.000Z

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  9. Design Principles of a flywheel Regenerative Braking System (f-RBS) for Formula SAE type racecar and system testing on a Virtual Test Rig modeled on MSC ADAMS

    E-Print Network [OSTI]

    Pochiraju, Anirudh

    2012-08-31T23:59:59.000Z

    This thesis presents a flywheel based mechanical regenerative braking system (RBS) concept for a Formula SAE type race car application, to improve the performance and/or efficiency of the racecar. A mechanical system is chosen to eliminate losses...

  10. The Neutronics Design and Analysis of a 200-MW(electric) Simplified Boiling Water Reactor Core

    SciTech Connect (OSTI)

    Tinkler, Daniel R.; Downar, Thomas J. [Purdue University (United States)

    2003-06-15T23:59:59.000Z

    A 200-MW(electric) simplified boiling water reactor (SBWR) was designed and analyzed under sponsorship of the U.S. Department of Energy Nuclear Energy Research Initiative program. The compact size of a 200-MW(electric) reactor makes it attractive for countries with a less well developed engineering infrastructure, as well as for developed countries seeking to tailor generation capacity more closely to the growth of their electricity demand. The 200-MW(electric) core design reported here is based on the 600-MW(electric) General Electric SBWR core, which was first analyzed in the work performed here in order to qualify the computer codes used in the analysis. Cross sections for the 8 x 8 fuel assembly design were generated with the HELIOS lattice physics code, and core simulation was performed with the U.S. Nuclear Regulatory Commission codes RELAP5/PARCS. In order to predict the critical heat flux, the Hench-Gillis correlation was implemented in the RELAP5 code. An equilibrium cycle was designed for the 200-MW(electric) core, which provided a cycle length of more than 2 yr and satisfied the minimum critical power ratio throughout the core life.

  11. Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical guidance to Beacon Power as part of a DOE project to design a large-scale flywheel- based frequency regulation power plant (shown above). The 1 MW Energy Storage Test...

  12. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect (OSTI)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09T23:59:59.000Z

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  13. Radiation protection aspects of the EURISOL Multi-MW target shielding

    E-Print Network [OSTI]

    Ene, D; Doré, D; Rapp, B; Ridikas, D

    This paper which will be submitted to Annals in Nuclear Energy is focused on the approach used to assess the radiological characterisation and to support waste analysis for the multi-MW power target shielding being the most challenging both in terms of technological and safety issues.

  14. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  15. DIII-D electron cyclotron heating 2 MW upgrade project. Final report, FY1989--FY1997

    SciTech Connect (OSTI)

    Callis, R.W.

    1997-08-01T23:59:59.000Z

    The 2 MW, 110 GHz ECH system was based on the General Atomics Proposal to the Department of Energy: DIII-D Fusion Research Program Vol. I Technical, and Vol. II Cost (GACP-72-166, July 1987 and revised). This proposal was reviewed in August 1987 by a senior technical review committee, who recommended to vigorously pursue increasing the ECH power to 6 MW. The realization of the higher frequency and power ECH on DIII-D was recognized by the committee to be important, not only for the DIII-D program, but also for future devices and the whole ECH area. Subsequently, an engineering cost and schedule review was conducted by DOE-OAK which confirmed the GA costs and schedules and recommended proceeding directly to 10 MW. However, because of budgetary constraints, in the April 1988 Field Task Proposal submission, GA proposed a phased ECH approach, Phase I being 2 MW and Phase II increasing the power to 10 MW. After review, DOE instructed GA to initiate the prototype 2 MW, 110 GHz program. The contract to procure four 500 kW, 110 GHz, 10 s gyrotrons from Varian Associates was initiated in April 1989 with final delivery by November 1990. Because of difficulties in spreading the energy of the electron beam over the collector area, the testing of the first gyrotron delayed its delivery until February 1991. The second gyrotron was able to operate for 1 s at 500 kW and 2 s at 300 kW, but failed when the cavity suffered thermal damage.

  16. PHYSICAL REVIEW B 88, 245402 (2013) Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

    E-Print Network [OSTI]

    Tománek, David

    include gravitational potential energy in water reservoirs, electrical potential energy in capacitors and batteries, nuclear potential energy in unsta- ble isotopes, chemical potential energy in fossil fuels and explosives, and thermal energy in steam. Mechanical energy storage, used in wind-up watches and flywheels

  17. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    use of QECBs and clean renewable energy bonds (CREBs) in the country. This article outlines and renewable energy installations. With either QECBs or "new" CREBS,1 the Department of the Treasury provides both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis

  18. LBNE 1.2MW Target Conceptual Design Brian Hartsell, Kris Anderson, James Hylen

    E-Print Network [OSTI]

    McDonald, Kirk

    titanium water cooling lines. Figure 2 shows a cross section of this assembly through a graphite segment in a 1.7mm beam sigma and 10mm wide fins. 36.00 3.00 10.00 6.00 5.20 35.20 BERYLLIUM TITANIUM WATER GRAPHITE 13.37 Figure 2: 1.2MW Target Cross Section Energy Deposition Energy deposition is used

  19. Solar technical assistance provided to Forest City military communities in Hawaii for incorporation of 20-30 MW of solar energy generation to power family housing for US Navy personnel.

    SciTech Connect (OSTI)

    Dominick, Jeff (National Renewable Energy Laboratory, Golden, CO); Merrigan, Tim (National Renewable Energy Laboratory, Golden, CO); Boudra, Will (Forest City Military Communities, Honolulu, HI); Miller, Ryan (CH2M Hill, Englewood, CO); Cisneros, Gabriela (New Mexico State University, Las Cruces, NM); Rosenthal, Andrew L. (New Mexico State University, Las Cruces, NM); Kuszmaul, Scott S.; Gupta, Vipin P.

    2010-06-01T23:59:59.000Z

    In May 2007, Forest City Military Communities won a US Department of Energy Solar America Showcase Award. As part of this award, executives and staff from Forest City Military Communities worked side-by-side with a DOE technical assistance team to overcome technical obstacles encountered by this large-scale real estate developer and manager. This paper describes the solar technical assistance that was provided and the key solar experiences acquired by Forest City Military Communities over an 18 month period.

  20. Data:F14544e9-5e21-4b48-a818-247c09dfce71 | Open Energy Information

    Open Energy Info (EERE)

    Energy Center LLC 16 MW EWG Unit Sector: Industrial Description: "AVAILABILITY: This tariff is available to the 16 MW electric generating station operated by NRG Energy Center,...

  1. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  2. Distributed Energy Resource Program

    Broader source: Energy.gov [DOE]

    Once a participating utility satisfies the minimum 2% requirement, the utility may invest in renewable energy facilities between 1 MW and 10 MW with a cumulative installed capacity equal to one p...

  3. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01T23:59:59.000Z

    IIResearch Toward Improved Flywheel Suspension and Energy21 48 (1976), r Composite Flywheel Program!! , and Their N78Stone, IIComposite Fiber Flywheel for Energy Storage", N77~

  4. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    -scale demonstration of atmospheric fluidized bed combustion (AFBC) with the construction and operation of the 20-MW AFBC Pilot Plant. The pilot plant was built to bridge the gap between the small process development units and utility-scale demonstration plants... the operation of the pilot plant has encouraged TVA and others to move forward with utility-scale demonstration of fluidized bed combustion. TVA's operating experience at the 20-MW AFBC Pilot Plant is discussed. [NTRODUCT ION The Tennessee Valley Authority...

  5. Fuel strategy for 2 MW SF-TMSR

    SciTech Connect (OSTI)

    Zhu, Zhiyong; Lin, Jun; Cao, Changqing; Zhang, Haiqing; Zhu, Tianbao; Li, Xiaoyun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No.2019 Jialuo Road, Jiading District, Shanghai 201800 (China)

    2013-07-01T23:59:59.000Z

    China has launched a series of projects for developing high performance nuclear energy systems. The 2 MW solid fuel thorium based molten salt reactor (TMSR-SF) is one of these projects, which uses TRISO fuel elements as the fuel carrier and the FLiBe molten salt (2LiF-BeF{sub 2}) as the coolant. TRISO fuel elements have been well developed in respect to manufacturing, testing experiments inside and outside reactors as well as their successful application in HTGRs. The application of LEU (low enriched uranium) spherical TRISO fuel elements in TMSR-SF can be safely conducted through careful control of temperature and power density. Although the soaking of molten salt into graphite has shown no damage to the graphite material as experienced by ORNL group in the sixties last century, the compatibility of FLiBe salt with graphite covering of the fuel elements should be tested before the application. It is expected that TMSR-SF can be an appropriate test reactor for high performance fuel element development. (authors)

  6. Comprises over of Energy Resources

    E-Print Network [OSTI]

    into fuels including gasoline. Like coal, it can be burned in power plants, but its high sulfur and heavy to 1% of the region's energy resources. Hydro- power 46% Coal 18% Energy Efficiency 16% Natural Gas 11) Energy Efficiency (4,633 MW) Coal (5,396 MW) Hydropower (13,401.8 MW) Dispatched Average Megawatts

  7. Bearing design for flywheel energy storage using high-TC superconductors

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    2000-01-01T23:59:59.000Z

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  8. Advanced high-speed flywheel energy storage systems for pulsed power application

    E-Print Network [OSTI]

    Talebi Rafsanjan, Salman

    2009-05-15T23:59:59.000Z

    , they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc. In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented...

  9. 550 MW | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. Home

  10. bectno-180mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing Coal(tm): An Integrated Approach to CleanSNOX(tm)

  11. bectso-10mw | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing Coal(tm): An Integrated ApproachSelective Catalytic3

  12. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  13. Why Cogeneration? 24MW of local renewable energy

    E-Print Network [OSTI]

    Recycled Cardboard Wood Chips Sawdust #12;Power Boiler #10 Improve combustion efficiency by installing a new overfire system to increase firing efficiency Construct a new Dry Electrostatic Precipitator (ESP to increase sulfur dioxide (SO2) removal efficiency Reduce the amount of Reprocessed Fuel Oil (RFO) by 1

  14. Energy Conversion and Transmission Facilities (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain...

  15. 10MW Class Direct Drive HTS Wind Turbine, CRADA Number CRD-08-00312

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youTheWSRC-TR-97-0100WHITE. ., .10MW Class Direct

  16. Total Cost Per MwH for all common large scale power generation sources |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEI Community Cost Per MwH for

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  19. Operating and Maintaining a 465MW Cogeneration Plant

    E-Print Network [OSTI]

    Theisen, R. E.

    OPERATING AND HAINTAINING A 465MW COGENERATION PLANT -- R. E. Theisen Plant Hanager CoGen Lyondell PSE Inc. Houston, Texas ABSTRACT The on-line av ilability of the five Fr me-7E gas turbine generators installed at the 465MW Lyondell... Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140~~ st am turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs...

  20. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31T23:59:59.000Z

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  1. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29T23:59:59.000Z

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  2. CERN-PS Main Power Converter Renovation How to Provide and Control the Large Flow of Energy for a Rapid Cyclic Machine?

    E-Print Network [OSTI]

    Bordry, Frederick; Völker, F V

    2005-01-01T23:59:59.000Z

    The PS accelerator (Proton-Synchrotron) at CERN, which is part of the LHC injector chain, is composed of one hundred magnets connected in series. During a typical acceleration cycle (taking 2.4 seconds), the active power at the magnet terminals varies from plus to minus 40 MW. As this large active power variation was not acceptable to the electrical network, a motor-generator set (M-G) was inserted between the grid and the load. The M-G set (of 1968) acts as a fly-wheel with a stored kinetic energy of 233 MJ and the magnets are fed via two 12-pulse thyristor rectifiers. A renovation or replacement of the installation is planned in the near future as part of the consolidation of the LHC injectors to avoid any major breakdown, to improve overall availability and to reduce operation and maintenance costs. This paper presents a first comparison of technical solutions available to build such a power system and the strategy that will be applied for the up-grade of the system.

  3. Navy Estimated Average Hourly Load Profile by Month (in MW)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

  4. Ris-R-Report 12MW: final report

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project data were successfully compared to offshore mast data and the wind profile was extended 100 m above

  5. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  6. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect (OSTI)

    Galambos, John D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  7. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    Engineering 18618 Smart Grids & Fut. Elec. Energy Sys (12) TBA 18771 Linear Systems (12)MW2:304:20,F2 to Sustainable Engr (12)MW34:20 19472 Fund. Electric Pwr Sys (12/note MW3:304:20) 19638 (18618) Smart Grids & F 12706 Civil Systems Invest. Plan & Pricing (12)MW10:3012:20 12741 Data Management & Analysis (A26)TR121

  8. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  9. J.M. Tarascon, et al. , Electrochemical energy storage

    E-Print Network [OSTI]

    Canet, Léonie

    Integration of RES requires massive energy storage to improve grid , reliability, quality and utilization to smooth out energies from wind and photovoltaic farms. 34 MW2 MW Safety issues not completely resoved yet

  10. Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    The Oklahoma Corporation Commission reported that 18.42% (4,056 MW) of installed capacity came from eligible renewable energy resources in 2013.

  11. Integrated Energy Efficiency 

    E-Print Network [OSTI]

    Heins, S.

    2007-01-01T23:59:59.000Z

    6 Customer Story Bemis Manufacturing Sheboygan Falls, WI Before After Energy & Financial Impacts Annual Energy Savings $317,897 Maintenance Savings $63,579 Payback Period Less than 2 years Annual Displaced Energy 6,300,289 kWh Displaced Capacity 731... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...

  12. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    added September 29, 2014 Downloaded 68 times Category Large Offshore Rotor Development, Offshore Wind, Rotor Innovation, Wind Energy All Models (13.2MW Turbine Model + all 4...

  13. Ormat's North Brawley plant with 17MW short of its 50MW potential | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-Tax Charge for Impairment

  14. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01T23:59:59.000Z

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  15. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect (OSTI)

    Veca, Anthony R.; Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  16. NV Energy RFP

    Broader source: Energy.gov [DOE]

    NV Energy request for proposals (RFP) is seeking proposals that would allow the company to acquire or partner to construct a renewable energy resource that would satisfy a 54-MW of planning capacity. The company is also looking for proposals for a build-transfer option for a 140-MW single axis tracking solar PV facility at a location provided by the bidder.

  17. A Pion Production and Capture System for a 4 MW Target Station

    SciTech Connect (OSTI)

    Ding, X.; Kirk, H.; Berg, J.S.

    2010-06-01T23:59:59.000Z

    A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

  18. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    production credits, renewable energy incentives, and feed-instanding incentives supporting renewable energy, startingincentive structure to encourage the adoption of renewable energy

  19. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Wind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbineturbines with expected annual production capacity of 450 MW (Xinhua, 2011c). 3.5 Remaining Challenges for Wind Energy

  1. Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System

    E-Print Network [OSTI]

    Szabados, Barna

    life cycle. A reduced life cycle will translate into high maintenance costs since the batteries have devices capable of a minimum power of 400 W/kg, energy of 200 Wh/kg, a life cycle of 2500 at a cost vehicle during both acceleration and regenerative braking. The life cycle of the electric vehicle

  2. RPP Constructions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to: navigation,REpowerRPM FlywheelRPP

  3. Ris-R-Report Multi-MW wind turbine power curve

    E-Print Network [OSTI]

    Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

  4. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract This handbook outlines the requirements for hydropower licenses issued by the Federal Energy Regulatory Commission. Author Federal Energy...

  5. A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    of Unbalanced Loading and Voltage Regulation Final Report M.W. Davis DTE Energy Detroit, Michigan R. Broadwater and Testing of Unbalanced Loading and Voltage Regulation Final Report M.W. Davis DTE Energy Detroit, MichiganA national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable

  6. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide...

  7. System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

    2010-01-01T23:59:59.000Z

    We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

  8. Metronaut: A Wearable Computer with Sensing and Global Communication Capabilities

    E-Print Network [OSTI]

    Smailagic, Asim

    is alternatively powered by a mechanical flywheel converting kinetic energy to electrical energy. Keywords flywheel converting kinetic energy to electrical energy. 2 Application The initial applications

  9. Alternative Energy Law (AEL)

    Broader source: Energy.gov [DOE]

    Iowa requires its two investor-owned utilities (MidAmerican Energy and Alliant Energy Interstate Power and Light) to own or to contract for a combined total of 105 megawatts (MW) of renewable...

  10. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2011-05-03T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  11. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  12. Iowa Nuclear Profile - Duane Arnold Energy Center

    U.S. Energy Information Administration (EIA) Indexed Site

    Duane Arnold Energy Center" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  13. Design and analysis of a 5-MW vertical-fluted-tube condenser for geothermal applications

    SciTech Connect (OSTI)

    Llewellyn, G.H.

    1982-03-01T23:59:59.000Z

    The design and analysis of an industtial-sized vertical-fluted-tube condenser. The condenser is used to condense superheated isobutane vapor discharged from a power turbine in a geothermal test facility operated for the US Department of Energy. The 5-MW condenser has 1150 coolant tubes in a four-pass configuration with a total heat transfer area of 725 m/sup 2/ (7800 ft/sup 2/). The unit is being tested at the Geothermal Components Test Facility in the Imperial Valley of East Mesa, California. The condenser design is based on previous experimental research work done at the Oak Ridge National Laboratory on condensing refrigerants on a wide variety of single vertical tubes. Condensing film coefficients obtained on the high-performance vertical fluted tubes in condensing refrigerants are as much as seven times greater than those obtained with vertical smooth tubes that have the same diameter and length. The overall heat transfer performance expected from the fluted tube condenser is four to five times the heat transfer obtained from the identical units employing smooth tubes. Fluted tube condensers also have other direct applications in the Ocean Thermal Energy Conversion (OTEC) program in condensing ammonia, in the petroleum industry in condensing light hydrocarbons, and in the air conditioning and refrigeration industry in condensing fluorocarbon vapors.

  14. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01T23:59:59.000Z

    flywheels would likely be Develop- been demonstrated. located underground to avoid mishap from high stress

  15. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    government in nuclear energy regulation in Rossiiskaiaof 63260 MW. 30 Nuclear energy regulation in France is not astate control in nuclear energy regulation at the expense of

  16. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01T23:59:59.000Z

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  17. Radiation protection aspects of the EURISOL Multi-MW target shielding

    E-Print Network [OSTI]

    D. Ene, J.-C. David, D. Doré, B. Rapp, D. Ridikas

    This work is focused on the approach used to assess the radiological characterisation and to support waste analysis for the multi-MW power target shielding being the most challenging both in terms of technological and safety issues.

  18. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de CV Single...

  19. Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator

    E-Print Network [OSTI]

    Anderson, James P. (James Paul), 1972-

    2005-01-01T23:59:59.000Z

    This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron ...

  20. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir...

  1. A Design Study ofa 1MW Stall Regulated Rotor

    E-Print Network [OSTI]

    of special tailored airfoils has been found to be around 4% on the annual energy production and 1 55 4.8 Summary 56 5 Comparison with LM 24.0 59 5.1 Assumptions 59 5.2 Geometry 60 5.3 Annual energy production and loads 62 5.4 Materia

  2. ccpi2 285mw Orlando finaleis | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,.2 Mesaba EnergyFinal

  3. 10-MW Supercritical-CO2 Turbine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    National Renewable Energy Laboratory is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  4. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  5. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    2008-01-01T23:59:59.000Z

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  6. A CONCEPTUAL DESIGN FOR THE ZEPHYR NEUTRAL BEAM INJECTION SYSTEM

    E-Print Network [OSTI]

    Cooper, W.S.

    2010-01-01T23:59:59.000Z

    240 MVA Pulse Loading M-G Flywheel Stored Energy, Maximum M-Output Frequency The flywheel energy storage for the MG ic

  7. AWEA State Wind Energy Forum - Michigan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Wind Energy Forum - Michigan AWEA State Wind Energy Forum - Michigan January 20, 2015 8:00AM to 5:00PM EST Lansing, MI Michigan has 988 MW of installed wind capacity,...

  8. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, Léonie

    , Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

  9. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-MInformation

  10. Activation of 200 MW refusegenerated CHP upward regulation effect (Smart

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers toAclaraFacing Jump to:Grid

  11. Activation of 200 MW refusegenerated CHP upward regulation effect (Smart

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers toAclaraFacing Jump

  12. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Biogas (Gm3) PV (MW) Solar water heater (Mm2) Bio-ethanol (through the use of solar water heaters. Photovoltaic (PV)2 Energy Production solar water heaters and solar heated

  13. Design of a 465 MW Combined Cycle Cogeneration Plant

    E-Print Network [OSTI]

    Leffler, D. W.

    STEAM TUR8JNE GENERAIOR ELECTRICAl, POWER OUIPUI GAS TURBINE GENERAIORS ~==3:=:J PROCESS CONDENSATE TOIAl fUEl 90 MillION BBl./'l'R NEI ELECTRICAl GENERATION 46$.000 KW LOSSES Sl,\\OF JUHINPUI NfTHEAT . 10 PROCESS 43% EFFICIENT... energy efficiency within this operating envelope, the following design .features are incorporated: extraction-induction-condensing steam turbine modulating inlet guide vanes on the gas turbine~ supplementary firing on two boilers steam augmentation...

  14. Design of a 465 MW Combined Cycle Cogeneration Plant 

    E-Print Network [OSTI]

    Leffler, D. W.

    1986-01-01T23:59:59.000Z

    STEAM TUR8JNE GENERAIOR ELECTRICAl, POWER OUIPUI GAS TURBINE GENERAIORS ~==3:=:J PROCESS CONDENSATE TOIAl fUEl 90 MillION BBl./'l'R NEI ELECTRICAl GENERATION 46$.000 KW LOSSES Sl,\\OF JUHINPUI NfTHEAT . 10 PROCESS 43% EFFICIENT... energy efficiency within this operating envelope, the following design .features are incorporated: extraction-induction-condensing steam turbine modulating inlet guide vanes on the gas turbine~ supplementary firing on two boilers steam augmentation...

  15. SolarReserve, LLC (Crescent Dunes) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    SolarReserve's 110 MW solar power tower that concentrates solar energy to heat molten salt, converting that heat into electricity. This project is the first commercial...

  16. Remarks for Quadrennial Energy Review Public Meeting June 19...

    Broader source: Energy.gov (indexed) [DOE]

    each day: renewable energy, clean water for recycling, and biosolids products for agriculture. We generate 11 MW of electrical power-- enough to meet about 23 of the electrical...

  17. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    2007-01-01T23:59:59.000Z

    Recently Texas Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target...

  18. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.docThe4 Conference,EvolutionAdvanced

  19. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute for Advanced StudyPrinceton

  20. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    is often 60% to 80%. Flywheel-based units typically have 2%systems (static UPS) or flywheels for energy storage. Staticat full load whereas flywheel-based systems provide from two

  1. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  2. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  3. FVB Energy Inc. Technical Assistance Project

    SciTech Connect (OSTI)

    DeSteese, John G.

    2011-05-17T23:59:59.000Z

    The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

  4. Tucson Request for Proposal for 1-5 MW PV PPA

    Broader source: Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  5. Focus Group Meeting (Activities Status) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and FuelFloridaofMarchFlywheelMay

  6. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis

    E-Print Network [OSTI]

    Grujicic, Mica

    -Axis Wind-Turbine Blades M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen optimization, fatigue-life assessment, horizon- tal axis wind turbine blades 1. Introduction The depletion for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine

  7. Management and Organizational Behavior Section 301-08 @ 2:00 3:15 MW

    E-Print Network [OSTI]

    Young, Paul Thomas

    MGMT 301 Management and Organizational Behavior Fall 2013 Section 301-08 @ 2:00 ­ 3:15 MW Beatty organizational goals by working with, and through, people and other resources. Organizations are treated. To understand management and organizational behavior (OB) concepts associated with continuous improvement

  8. Title: Feasibility Study for 20 MW Hybrid Solar and Wind Park in Colombia

    E-Print Network [OSTI]

    Johnson, Eric E.

    partnerships with leading U.S. solar and wind industry companies · Select the solar and wind technologies1 of 2 Title: Feasibility Study for 20 MW Hybrid Solar and Wind Park in Colombia Principal Investigator: Abbas Ghassemi Sponsor: Columbian Electric Company Summary: NMSU leads a bi-national team

  9. An All Metal High Power Circularly Polarized 100 MW RF Load

    SciTech Connect (OSTI)

    Fowkes, W.R.; Jongewaard, E.N.; Loewen, R.J.; Tantawi, S.G.; Vlieks, A.E.; /SLAC

    2011-08-30T23:59:59.000Z

    A compact RF load has been designed using a cascaded array of lossy radial RF chokes to dissipate 100 MW peak and 8 kW average power uniformly along the length of the load. Operation in the circularly polarized Te{_}11 mode assures uniform dissipation azimuthally as well.

  10. Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake

    E-Print Network [OSTI]

    Wu, Yih-Min

    Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake Yih-Min Wu a , Chien the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi

  11. Renewable Energy in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    ENERGY END USE ACTIVITIES (ENERGY SERVICES) COAL, OIL, SOLAR, GAS POWER PLANT, REFINERIES REFINED OIL;Characteristics of Renewables Large, Inexhaustible source -Solar energy intercepted by earth 1.8*1011 MW Clean #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal

  12. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

  13. Perturbation of the Izmit earthquake aftershock decaying activity following the 1999 Mw 7.2 Duzce, Turkey, earthquake

    E-Print Network [OSTI]

    ¨zce, Turkey, earthquake Guillaume Daniel,1 David Marsan,2 and Michel Bouchon1 Received 4 August 2005; revised patterns of seismicity in western Turkey, following the occurrence of the 12 November 1999 Mw 7.2 Du activity following the 1999 Mw 7.2 Du¨zce, Turkey, earthquake, J. Geophys. Res., 111, B05310, doi:10

  14. Renewable Energy Property Tax Assessment

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes. Additionally, low impact hydro, geothermal, and biomass facili...

  15. Taming the Energy Hog in Cloud Infrastructure

    E-Print Network [OSTI]

    Hunt, Galen

    gasoline Transformer UPS PDU Power grid power Water chillers CRAC air water Racks Internet PUE= #12 energy consumption consumed 61 Billion kWh in 2006, enough to power 5.8 Million average US households 190 miles of conduit 7.5 miles of chilled water piping 100+ MW Power Capacity 60 MW Total Critical

  16. Large-Scale Renewable Energy Projects (Larger than 10 MWs) |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Projects (Larger than 10 MWs) Large-Scale Renewable Energy Projects (Larger than 10 MWs) Renewable energy projects larger than 10 megawatts (MW) are...

  17. Beacon Power Corporation Business Case Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MW Flywheel vs. Traditional Technologies for Regulation * Emissions Comparison between: - Coal Power Plant - Baseload and "Peaker" Mode - Natural Gas Plant - Baseload and "Peaker"...

  18. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

  19. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01T23:59:59.000Z

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  20. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  1. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect (OSTI)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01T23:59:59.000Z

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  2. A reactive contingency analysis algorithm using MW and MVAR distribution factors

    SciTech Connect (OSTI)

    Taylor, D.G.; Maahs, L.J. (Pennsylvania-New Jersey-Maryland Interconnection, Norristown, PA (US))

    1991-02-01T23:59:59.000Z

    This paper describes an algorithm that can be used in analyzing reactive power flow contingencies. This approach uses MW distribution factors (DFAX) in conjunction with newly developed VAR distribution factors (RDFAX) to solve for the post-contingency bus voltage magnitude changes of an interconnecter EHV system. A prototype version of the algorithm described in this paper is presently being tested at the Pennsylvania-New Jersey-Maryland (PJM) interconnection office.

  3. Smart Energy 

    E-Print Network [OSTI]

    Morrison, W.

    2012-01-01T23:59:59.000Z

    Smart Energy Presentation The future is best experienced at home. CATEE Conference October 10, 2012 ? 2012 Reliant Proprietary and Confidential Information 1 NRG - Strength in Numbers ? 2012 Reliant Proprietary and Confidential... Information + 2011 ranking by Fortune Magazine; *Since 2000 Reduced emissions by nearly ?* for a cleaner NRG 276 25K 5 50% 2M Place on Fortune 500 and S&P 500 Index company 5th largest in the energy sector+ 20M Generating more than 25,000 MW...

  4. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01T23:59:59.000Z

    sis and the collection and storage of hydrogen gas has beenair storage, flywheels, synthetic fuels ( hydrogen), and the

  5. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

  6. A. Pourmovahed1 Power Systems Research Department,

    E-Print Network [OSTI]

    Bahrami, Majid

    , energy was repeatedly transferred between the hydraulic accumulators and the flywheel through thepump-type accumulators were used in the tests. During the cycling of the energy between the accumulators and a flywheel, the torque be- tween the pump/motor and flywheel, and the flywheel speed. Tests were run with different pump

  7. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 36, NO. 2, MARCH/APRIL 2000 531 High-Speed Synchronous Reluctance Machine with

    E-Print Network [OSTI]

    Hofmann, Heath F.

    /alternator in a flywheel energy storage device. Such devices store energy by spinning a high-inertia flywheel at high rotational speeds. To reduce spinning losses, it is expected that the flywheel and the rotor of the motor rotor losses. We have designed a solid-rotor synchronous reluctance ma- chine for flywheel applications

  8. Quick assessment of the fault plane, for the recent event in Southern Greece (14 February 2008, Mw 6.9)

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Quick assessment of the fault plane, for the recent event in Southern Greece (14 February 2008, Mw.org/index.php?page=current&sub=recent&evt=20080106_GREECE), we issue a quick assessment of the fault plane for the most recent Mw6.9 earthquake in Southern Greece (20080214 at 10:09:23 UTC). Using hypocenter (H) from manual P and Swave picks from 14

  9. Hydrogen Technology Park DTE Energy -Company Overview

    E-Print Network [OSTI]

    Gas Production Detroit Edison Power Generation Energy Services* Energy Trading Biomass Energy Coal billion · 2.6 million customers · 11,000 MW of generation · 600 BCF natural gas delivery · 11,000 employees #12;3 Diversified Energy and Energy Technology Company * Energy Services: Coal Based Fuels

  10. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Broader source: Energy.gov [DOE]

    Primus Power is deploying a 25 MW/75 MWh EnergyFarm in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power...

  11. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  12. EIS-0354: Ivanpah Energy Center, NV

    Broader source: Energy.gov [DOE]

    Ivanpah Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric power generating station in southern Clark County, Nevada.

  13. California Energy Commission Media Office POWER PLANT FACT SHEET

    E-Print Network [OSTI]

    California Energy Commission Media Office POWER PLANT FACT SHEET Updated: 12/4/2012 (Includes: Lodi has licensed or given small power plant exemptions to 78 power plants, totaling 29,156* megawatts (MW). Fifty-four licensed power plants are in operation, producing 17,737 MW. Since Governor Brown took office

  14. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    /Y) ­ Electric capacity and energy generation potential (MW, TWh/y) ­ Statewide biogas potential · Resource,000 Total Forestry Urban Agriculture (MW) Technical Electrical Capacity (MWe) #12;Feedstock Biomethane methane) Statewide Biogas Potential #12;PJ (LHV basis)§ Agricultural Residue (Lignocellulosic) 5.4 MBDT

  15. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  16. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  17. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    2008-01-01T23:59:59.000Z

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Energy Systems Laboratory p. 1 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System STATEWIDE AIR EMISSIONS CALCULATIONS FROM ENERGY EFFICIENCY, WIND...

  18. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31T23:59:59.000Z

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  19. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01T23:59:59.000Z

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  20. EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EIS for the proposed interconnection of the Clean Path Energy Center Project to Western’s transmission system at the Shiprock Substation. The planned Clean Path Energy Center will consist of a 680 MW natural gas combined cycle power plant co-located with a 70 MW solar photovoltaic project.

  1. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30T23:59:59.000Z

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  2. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30T23:59:59.000Z

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  3. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03T23:59:59.000Z

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  4. A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.

    SciTech Connect (OSTI)

    Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

    2006-10-01T23:59:59.000Z

    We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

  5. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01T23:59:59.000Z

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  6. 150-MW S-band klystron program at the Stanford Linear Accelerator Center

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Phillips, R.M.

    1996-07-01T23:59:59.000Z

    Two S-Band klystrons operating at 150 MW have been designed, fabricated and tested at the Stanford Linear Accelerator Center (SLAC) during the past two years for use in an experimental accelerator at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany. Both klystrons operate at the design power, 60 Hz repetition rate, 3 {micro}s pulsewidth, with an efficiency {gt} 40%, and agreement between the experimental results and simulations is excellent. The 535 kV, 700 A electron gun was tested by constructing a solenoidal focused beam stick which identified a source of oscillation, subsequently engineered out of the klystron guns. Design of the beam stick and the two klystrons is discussed, along with observation and suppression of spurious oscillations. Differences in design and the resulting performance of the Klystrons is emphasized.

  7. Small-angle scattering instruments on a 1 MW long pulse spallation source

    SciTech Connect (OSTI)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-12-01T23:59:59.000Z

    Two small-angle neutron scattering instruments have been designed and optimized for installation at a 1 MW long pulse spallation source. The first of these instruments allows access to length scales in materials from 10 to 400 {angstrom}, and the second instrument from 40 to 1200 {angstrom}. Design characteristics were determined and optimization was done using the MCLIB Monte Carlo instrument simulation package. The code has been {open_quote}benchmarked{close_quote} by simulating the {open_quote}as-built{close_quote} D11 spectrometer at ILL and a performance comparison of the three instruments was made. Comparisons were made by evaluating the scattered intensity for {delta} scatterers at different Q values for various instrument configurations needed to span a Q-range of 0.0007 - 0.44 {angstrom}{sup {minus}1}.

  8. Mineralogical study of borehole MW-206 Asarco smelter site, Tacoma, Washington

    SciTech Connect (OSTI)

    Frank, D.

    1998-10-01T23:59:59.000Z

    The mobility of metals in ground water is an important consideration for evaluating remedial options at the Asarco smelter site. Tacoma, Washington. One factor in assessing metal mobility is the degree of secondary mineralization in a slag-fill aquifer extending into the intertidal zone along the Puget Sound shoreline. Samples of aquifer material were collected for mineralogical analysis from borehole MW-206 at five-foot intervals within the slag fill from 5 to 25 feet below the ground surface, and in the underlying marine sand and gravel at 27 feet. Grab samples of slag fragments with visually apparent secondary minerals were also collected at five intermediate depths between 12 and 19 feet. Samples were analyzed by a variety of techniques including hydride generation/atomic absorption for arsenic concentration, scanning electron microscopy/electron microprobe for mineralogical texture and microanalysis, powder x-ray diffraction for mineral identification, and optical microscopy for textural observations.

  9. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01T23:59:59.000Z

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  10. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    Patricia (May Prices and Future Projections: An Conditions,World, "Flywheels," Prices and Future Projections: An Update

  11. International Energy Conference, 19 -21 May 2003 Energy Technologies for post-Kyoto targets in the medium term

    E-Print Network [OSTI]

    capturecapture facilityfacility Water vapour FuelFuel 'refinery''refinery' Flue gas Increased oil recovery: CO2 EnergiE2Photo EnergiE2 PhotoPhoto EnergiEnergi E2E2 Statoil Kalundborg refinery Asnæsværket 1300 MW coal

  12. Magnitude Scaling of Early-Warning Parameters for the Mw 7.8 Tocopilla, Chile, Earthquake and Its Aftershocks

    E-Print Network [OSTI]

    Madariaga, Raúl

    early- warning systems for real-time magnitude estimation. The investigated parameters are the low system in Chile. Introduction The most critical problem for the development of an earthquake early-warningMagnitude Scaling of Early-Warning Parameters for the Mw 7.8 Tocopilla, Chile, Earthquake and Its

  13. The role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin films

    E-Print Network [OSTI]

    Bristol, University of

    in polycrystalline diamond film CVD [3,4]. While the mechanical, thermal and acoustic properties of MCD films haveThe role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin diamond Nanocrystalline Inert gas Growth Nanocrystalline diamond thin films have been deposited using

  14. Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*

    E-Print Network [OSTI]

    1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals would minimise seal losses. The widespread use of linear clearance seals in linear compressor has raised

  15. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect (OSTI)

    Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    2006-12-15T23:59:59.000Z

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  16. The lower hybrid (LH) heating and current drive system can generate 10-12 MW of microwave power

    E-Print Network [OSTI]

    Background The lower hybrid (LH) heating and current drive system can generate 10-12 MW reflecting optics · Remote vacuum window manufactured by CCFE · Industrial contract for periscope manufacture with Zemax model · Remote, IR compatible, double vacuum window with pumped interspace · 4, two colour

  17. Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler

    E-Print Network [OSTI]

    Rosendahl, Lasse

    Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate used to fire biomass for heat and power production. However, grate-firing systems are often reported and modernized. This paper presents the efforts toward a reliable baseline computational fluid dynamics (CFD

  18. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  19. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO{sub 3} thin films

    SciTech Connect (OSTI)

    Kharade, Rohini R., E-mail: k_rohini@in.com [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune, MH (India)] [Centre for Materials Characterization, National Chemical Laboratory, Pune, MH (India); Patil, P.S. [Thin Film Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)] [Thin Film Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Bhosale, P.N., E-mail: p_n_bhosale@rediffmail.com [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India)

    2012-07-15T23:59:59.000Z

    Graphical abstract: Electrochromic intercalation and deintercalation of Li{sup +} ions and electrons is facilitated by providing hexagonal tunnel, trigonal cavity and square window which allows easy and fast insertion and extraction of ions. Highlights: ? Novel two step MW-SGS is first time employed to prepare WO{sub 3} thin films. ? MW-SGS is simple and cost effective technique for preparation of nanostructures. ? Petal-like hexagonal WO{sub 3} nanodisks were successfully deposited. ? O/W ratio calculated by XPS studies is 2.89. ? Good electrochromic performance suggests practical usability of proposed technique. -- Abstract: Use of domestic microwave oven is first time employed for chemical deposition of nanocrystalline hexagonal WO{sub 3} (h-WO{sub 3}) thin films. Low cost precursors like sodium tungstate, hydrochloric acid, oxalic acid and potassium sulfate signifies cost effectiveness of this thin film fabrication route. Scanning electron microscopy images reveal formation of petal like nanodisks. A number of analytical techniques were used to characterize the WO{sub 3} petal like nanodisks, including X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy, FT-IR spectroscopy, Raman scattering spectroscopy, UV–visible spectrophotometry and cyclic voltammetry (CV). The X-ray photoelectron spectroscopic studies revealed 2.89 O/W atomic ratio. The electrical transport studies on WO{sub 3} thin films show semiconducting behavior with n-type semiconductivity. The value of determined coloration efficiency is 57.90 cm{sup 2}/C. The mechanism of Li{sup +} intercalation and deinercalation in h-WO{sub 3} matrix is proposed for enhanced electrochromism.

  20. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Seabrook","Nuclear","NextEra Energy Seabrook LLC",1246.2 2,"Granite Ridge","Natural Gas","Granite...

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Presentation submitted to IEA Task 26. Wiser, R. ; Yang,AEE) contribution to IEA Task 26. Chupka, M.W. ; Basheda,International Energy Agency (IEA). (2008). Energy Technology

  2. Region Qinghai Gofly Green Energy Ltd Co Qinghai Gofly Green...

    Open Energy Info (EERE)

    up planning to develop produce and market flywheel batteries for stationary power storage RPP Constructions RPP Constructions Tamil Nadu India Focused on infrastructure and...

  3. RENEWABLE ENERGY RESEARCH August 2010

    E-Print Network [OSTI]

    . The demonstration will address the integration issues for new wind power, large-scale energy storage, demand, battery storage sized at 2 megawatt (MW), demand response initiatives, and solar thermal to generate up-and-play" energy resources. · Techniques for deploying smart grid battery storage and monitoring battery

  4. Fact Sheet: Award-Winning Silicon Carbide Power Electronics ...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Fact Sheet:...

  5. advanced filter systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ac transmission systems (FACTS), flywheel energy storage, high voltage dc transmission (HVDC), hypercapacitor, power electronics, supercapacitor, superconducting magnetic energy...

  6. advanced shielding systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ac transmission systems (FACTS), flywheel energy storage, high voltage dc transmission (HVDC), hypercapacitor, power electronics, supercapacitor, superconducting magnetic energy...

  7. advanced storage rings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ac transmission systems (FACTS), flywheel energy storage, high voltage dc transmission (HVDC), hypercapacitor, power electronics, supercapacitor, superconducting magnetic energy...

  8. HFIR Vessel Maximum Permissible Pressures for Operating Period 26 to 50 EFPY (100 MW)

    SciTech Connect (OSTI)

    Cheverton, R.D.; Inger, J.R.

    1999-01-01T23:59:59.000Z

    Extending the life of the HFIR pressure vessel from 26 to 50 EFPY (100 MW) requires an updated calculation of the maximum permissible pressure for a range in vessel operating temperatures (40-120 F). The maximum permissible pressure is calculated using the equal-potential method, which takes advantage of knowledge gained from periodic hydrostatic proof tests and uses the test conditions (pressure, temperature, and frequency) as input. The maximum permissible pressure decreases with increasing time between hydro tests but is increased each time a test is conducted. The minimum values that occur just prior to a test either increase or decrease with time, depending on the vessel temperature. The minimum value of these minimums is presently specified as the maximum permissible pressure. For three vessel temperatures of particular interest (80, 88, and 110 F) and a nominal time of 3.0 EFPY(100 MVV)between hydro tests, these pressures are 677, 753, and 850 psi. For the lowest temperature of interest (40 F), the maximum permissible pressure is 295 psi.

  9. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

    2011-11-28T23:59:59.000Z

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  10. Control system for 5 MW neutral beam ion source for SST1

    SciTech Connect (OSTI)

    Patel, G.B.; Onali, Raja; Sharma, Vivek; Suresh, S.; Tripathi, V.; Bandyopadhyay, M.; Singh, N.P.; Thakkar, Dipal; Gupta, L.N.; Singh, M.J.; Patel, P.J.; Chakraborty, A.K.; Baruah, U.K.; Mattoo, S.K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India-382428 (India)

    2006-01-15T23:59:59.000Z

    This article describes the control system for a 5 MW ion source of the NBI (neutral beam injector) for steady-state superconducting tokamak-1 (SST-1). The system uses both hardware and software solutions. It comprises a DAS (data acquisition system) and a control system. The DAS is used to read the voltage and current signals from eight filament heater power supplies and 24 discharge power supplies. The control system is used to adjust the filament heater current in order to achieve an effective control on the discharge current in the plasma box. The system consists of a VME (Verse Module Eurocard) system and C application program running on a VxWorks{sup TM} real-time operating system. A PID (proportional, integral, and differential) algorithm is used to control the filament heater current. Experiments using this system have shown that the discharge current can be controlled within 1% accuracy for a PID loop time of 20 ms. Response of the control system to the pressure variation of the gas in the chamber has also been studied and compared with the results obtained from those of an uncontrolled system. The present approach increases the flexibility of the control system. It not only eases the control of the plasma but also allows an easy changeover to various operation scenarios.

  11. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

  12. LEC 5 Toronto 11 Apr 2014 Global energy and environment

    E-Print Network [OSTI]

    generation: about 36% (but, this does not include the material and energy costs of constructing the power tower) BOILER #10 SAME AMOUNT LOW PRESSURE STEAM TO MILL FOR PAPER TURBINE/ GENERATOR 25 MW MORE

  13. 2010 Solar Technologies Market Report, November 2011, Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENA Middle East and North Africa MG-Si metallurgical-grade silicon MNGSEC Martin Next Generation Solar Energy Center MOU memorandum of understanding MT metric ton MW megawatt...

  14. Department of Energy Conditional Loan Guarantee Commitment to...

    Energy Savers [EERE]

    for clean energy projects is increasing our global competitiveness and positioning us to win the future." The wind generation project will consist of 33 Vestas V90 3.0-MW wind...

  15. JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 119, doi:10.1002/jgrb.50117, 2013 The 2011 Mw 7.1 Van (Eastern Turkey) earthquake

    E-Print Network [OSTI]

    Mw 7.1 Van (Eastern Turkey) earthquake J. R. Elliott,1 A. C. Copley,2 R. Holley,3 K. Scharer,4 and B to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake Turkey) earthquake, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50117. 1. Introduction [2

  16. BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

    E-Print Network [OSTI]

    such as electric transmission lines and natural gas and water pipelines. PLEASE TAKE NOTICE that the Energy all applications to construct and operate thermal electric power plants, 50 MW and greater to construct and operate a nominal 100-megawatt (MW) intermediate/peaking load, electrical generating facility

  17. Economic Development Benefits from Wind Energy in Nebraska: A Report for the Nebraska Energy Office (Revised)

    SciTech Connect (OSTI)

    Lantz, E.

    2009-06-01T23:59:59.000Z

    This report focuses on the economic development impacts estimated from building and operating 7,800 MW of new wind power in Nebraska. This level of development is on the scale envisioned in the Department of Energy (DOE) report 20% Wind Energy by 2030. A practical first step to building 7,800 of wind is completing 1,000 MW. We also include the estimated economic impacts to Nebraska from building 1,000 MW of wind power. Our primary analysis indicates that the development and construction of approximately 7,800 MW of wind energy in Nebraska by 2030 will support 20,600 to 36,500 annual full-time equivalents (AFTE). In addition, operating the full 7,800 MW of wind energy could support roughly 2,000 to 4,000 full-time workers throughout the operating life of the wind facilities (LFTE). Nebraska's economy is estimated to see an average annual boost in economic activity ranging from $140 million to $260 million solely from construction and development related activities between 2011 and 2030. An additional boost of $250 - $442 million annually is estimated from operating 7,800 MW of wind capacity.

  18. Makai Ocean Engineering, Inc. Otec Plume Biochemical Simulation of a 100MW

    E-Print Network [OSTI]

    the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent

  19. Thermal-hydraulic analysis of the LANL/IPPE/EDO-GP 1-MW LBE target

    SciTech Connect (OSTI)

    He, X.; Ammerman, C.; Woloshun, K.; Li, N.

    2000-07-01T23:59:59.000Z

    The accelerator-driven transmutation of waste (ATW) concept has been proposed by the United States and other countries to transmute plutonium, higher actinides, and other environmentally hazardous fission products. One of the key components in the ATW concept is a target that, via spallation, produces neutrons to transmute nuclear waste. Since significant heat is generated during fissioning of the waste actinides, an efficient heat removal system is necessary. Liquid lead-bismuth eutectic (LBE) is an efficient coolant as well as a good spallation target for production of neutrons. The LBE coolant technology has been successfully used in Russian submarine nuclear reactors. The International Science and Technology Center (ISTC) has funded the Institute of Physics and Power Engineering (IPPE) and the Experiment and Design Organization-Gidropress (EDO-GP) of Russia to design and manufacture a pilot target (Target Circuit One-TC1) that incorporates Russian LBE technology into the ATW concept. The target will be tested in the 800-MeV, 1-mA proton beam at the Los Alamos National Laboratory (LANL) in 2 yr. These target experiments will provide valuable information on the performance of LBE as both spallation target and coolant. They will also help to design target/blanket systems for future ATW facilities. In summary, the authors have carried out thermal-hydraulic analyses for the LANL/IPPE/EDO-GP 1-MW LBE target. It is shown that the current design is suitable for the beam-on tests. The diffuser plate successfully enhances the coolant flow around the window center but still avoids generating recirculation zone downstream. The temperature range is within the proper operation range for both the LBE coolant and the structural materials.

  20. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312

    SciTech Connect (OSTI)

    Musial, W.

    2011-05-01T23:59:59.000Z

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

  1. EEC 216 -Low Power Digital Integrated Circuit Design Lecture: MW 9-10:30

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    if absolutely necessary. 1 #12;Course Description: IC design for low power and energy consumption. Low power. CMOS Power Dissipation B. Power and Performance Tradeoffs C. Trends in IC Power Consumption II. Low management. Power estimation. Energy sources, power electronics, and energy recovery. Applications

  2. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  3. Clean energy funds: An overview of state support for renewable energy

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

    2001-01-01T23:59:59.000Z

    exists in the West. Landfill gas has proven to be moderatelyassorted) 471 MW (assorted) 3 MW landfill gas 3 MW hydro 1.2MW hydro 15 MW landfill gas 3 MW wind 51.5 MW wind 6.6 MW

  4. News & Events Event Calendar

    E-Print Network [OSTI]

    Papalambros, Panos

    's work has been incorporated into products such as flywheel energy storage systems and electric vehicles interests are propulsion drives for electric and hybrid electric vehicles, energy harvesting, flywheel

  5. I. Introduction Equivalent loading of induction machines are

    E-Print Network [OSTI]

    Szabados, Barna

    described, the rotor is used as an energy storing device, equivalent to a flywheel. The energy stored depends upon speed and moment of inertia of the machine. The speed response capacity of this "flywheel

  6. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  7. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  8. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    acknowledgment of OTC copyright. Abstract Preliminary designs for first generation Ocean Thermal Energy Conversion (OTEC) plants utilizing either closed cycle (CC) or open cycle (OC) concepts are presented

  9. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08 Jump to:FC3 Group|

  10. Economic Development Impacts of Colorado's First 1,000 Megawatts of Wind Energy

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    This fact sheet summarizes the findings of a report authored by Sandra Reategui and Suzanne Tegen of the National Renewable Energy Laboratory (NREL). A confluence of events ignited soaring growth in the number of Colorado?s wind power installations in recent years, from 291 megawatts (MW) of nameplate capacity in 2006 to 1,067 MW (nameplate capacity) in 2007. Analyzing the economic impact of Colorado?s first 1,000 MW of wind energy development not only provides a summary of benefits now enjoyed by the state?s population, but it also provides a sense of the economic development opportunities associated with other new wind project scenarios, including the U.S. Department of Energy?s 20% Wind Energy by 2030 scenario. The analysis can be used by interested parties in other states as an example of the potential economic impacts if they were to adopt 1,000 MW of wind power development.

  11. Harold A. Rosen MS '48, PhD '51 Electrical Engineering

    E-Print Network [OSTI]

    . The power train's flywheel energy-storage system and low-emission gas turbine are now used in stationary

  12. Unobtrusive Integration of Magnetic Generator Systems into Common Footwear

    E-Print Network [OSTI]

    or exceeded with the addition of a flywheel to each generator shaft, or a spring to store more energy from

  13. Design and testing of an internal mode converter for a 1.5 MW, 110 GHz gyrotron with a depressed collector

    E-Print Network [OSTI]

    Tax, David Samuel

    We report experimental results on a 1.5 MW, 110 GHz, 3 microsecond pulsed gyrotron with a single-stage depressed collector. A simplified mode converter with smooth mirror surfaces has been installed in the tube. The converter ...

  14. Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311

    SciTech Connect (OSTI)

    Wallen, R.

    2011-02-01T23:59:59.000Z

    SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

  15. Suggested performance specifications of standard modular controls for the automation of small hydro electric facilities. [Plant capacities from 50 kW to 15 MW

    SciTech Connect (OSTI)

    Beckwith, R.W.

    1980-06-01T23:59:59.000Z

    These specifications are made available by the Department of Energy for the voluntary use by any person, corporation or governmental body in the writing of purchase specifications for the automatic control of small hydro generating stations, i.e., hydro plants ranging in size from 50 kW to 15 MW. It is believed that the use of these specifications will permit competition among capable vendors and, at the same time, assure proper and reliable operation of both the automation hardware and software purchased. The specifications are detailed to a degree which should assure the interchangeability of hardware and software from various suppliers. This also increases the likelihood that spare parts and service will be available for many years. The specifications are written in modules, each of which can be included or excluded for ease of editing to match a particular application. Brief but detailed instructions are included for such editing. An extensive appendix gives the alternatives which were considered and reasons for the various choices specified.

  16. br Owner br Facility br Type br Capacity br MW br Commercial br Online

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZolo Technologies IncusgbcblackOwner

  17. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUSReactiveN O T

  18. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de Nantes Jump to:EcomedTransition

  19. Arizona College 5 MW System Will be "Solar with a Purpose" | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |Aquion EnergyEnergyDepartmentON THEof

  20. Experimental Validation of Control Designs for Low-Loss Active Magnetic Bearings

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    magnetic bearing FWB flywheel battery CMG control moment gyroscope ESCMG energy storage control moment in flywheel batteries (FWBs) and advanced control moment gyroscopes (CMGs).6 In a FWB, kinetic energy is stored in the rotating flywheel and converted back and forth to electrical energy using a motor

  1. Rim for rotary inertial energy storage device and method

    DOE Patents [OSTI]

    Knight, Jr., Charles E. (Knoxville, TN); Pollard, Roy E. (Powell, TN)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  2. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MW)" 1,"Victor J Daniel Jr","Coal","Mississippi Power Co",1992 2,"Grand Gulf","Nuclear","System Energy Resources, Inc",1190 3,"Baxter Wilson","Natural Gas","Entergy...

  3. Energy-efficient LTE transmission techniques : introducing Green Radio from resource allocation perspective 

    E-Print Network [OSTI]

    Wang, Rui

    2011-06-28T23:59:59.000Z

    Energy consumption has recently become a key issue from both environmental and economic considerations. A typical mobile phone network in the UK may consume approximately 40- 50 MW, contributing a significant proportion ...

  4. The Ergosphere A rotating (Kerr) black hole in the most common (BoyerLindquist) coordinate system

    E-Print Network [OSTI]

    Fulling, Stephen

    metric signature, since U0 is positive.) Suppose the hole were replaced by a spinning flywheel conservation of energy, because there is a nontrivial interaction with the flywheel and the wheel will slow

  5. Successful Data Protection and Contingency in Managing Risk Daniel Fallon

    E-Print Network [OSTI]

    -critical systems. What we've put into place, though, is highly leveragable. So we have energy in the flywheel. The flywheel continues to move, and it allows me and others, not just IT folks, but also our business folks

  6. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2012-06-01T23:59:59.000Z

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  7. Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing

    SciTech Connect (OSTI)

    Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

    1990-06-01T23:59:59.000Z

    The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

  8. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    None

    2012-02-27T23:59:59.000Z

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  9. North Brawley Power Plant Placed in Service; Currently Generating 17 MW;

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:NeppelsourceNormal, Illinois:Power Plant

  10. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas:Bartow County,Callof:

  11. Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEI Community Biomass Power Generation

  12. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal Power

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant on Hawaii's Big

  13. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergy Innovation Portal1

  14. 1.5 MW turbine installation at NREL's NWTC on Aug. 21

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

  15. A Synchronous Homopolar Machine for High-Speed Applications

    E-Print Network [OSTI]

    Sanders, Seth

    /alternator, and its associated high efficiency six-step inverter drive for a flywheel energy storage system serves as the energy storage rotor for the flywheel system. The six-step inverter drive strategy. A prototype of the flywheel system has been constructed, and experimental results for the system are presented

  16. Implementation of the Generalized Complementary Flux Constraint for Low-Loss Active Magnetic

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    magnetic bearing FWB flywheel battery CMG control moment gyroscope ESCMG energy storage control moment. The primary interest of the aerospace community in AMBs is their application in flywheel batteries (FWBs) and advanced control moment gyroscopes (CMGs).6 In a FWB, kinetic energy is stored in the rotating flywheel

  17. California Energy Commission "We have the largest rooftop solar

    E-Print Network [OSTI]

    solar system in the nation!" Matt Muniz, P.E. Energy Program Manager Alameda County "With the Energy Commission's Energy Efficiency Financing Program we installed our 1.18 MW solar project at Santa Rita Jail different county buildings. The other loan was for a 750 kW fuel cell co-generation plant at the Santa Rita

  18. Managed by UT-Battelle for the Department of Energy

    E-Print Network [OSTI]

    McDonald, Kirk

    Managed by UT-Battelle for the Department of Energy 3 MW Solid Rotating Target Design T. McManamy F #12;2 Managed by UT-Battelle for the Department of Energy 2nd Oxford-Princeton High-Power Target by UT-Battelle for the Department of Energy 2nd Oxford-Princeton High-Power Target Workshop; Nov 6

  19. Optimal Power Cost Management Using Stored Energy in Data Centers

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    the aver- age price of 1 MW-Hour of electricity. Consequently, mini- mization of energy consumption needOptimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents

  20. Modeling and Analysis of the Role of Fast-Response Energy Storage in the Smart Grid

    E-Print Network [OSTI]

    Su, Han-I

    2011-01-01T23:59:59.000Z

    The large short time-scale variability of renewable energy resources presents significant challenges to the reliable operation of power systems. This variability can be mitigated by deploying fast-ramping generators. However, these generators are costly to operate and produce environmentally harmful emissions. Fast-response energy storage devices, such as batteries and flywheels, provide an environmentally friendly alternative, but are expensive and have limited capacity. To study the environmental benefits of storage, we introduce a slotted-time dynamic residual dc power flow model with the prediction error of the difference between the generation (including renewables) and the load as input and the fast-ramping generation and the storage (charging/discharging) operation as the control variables used to ensure that the demand is satisfied (as much as possible) in each time slot. We assume the input prediction error sequence to be i.i.d. zero-mean random variables. The optimal power flow problem is then formu...

  1. Hybrid energy storage test procedures and high power battery project FY-1995 interim report

    SciTech Connect (OSTI)

    Hunt, G.L.

    1995-12-01T23:59:59.000Z

    Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation of such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.

  2. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01T23:59:59.000Z

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  4. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.docThe4

  5. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01T23:59:59.000Z

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  6. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28T23:59:59.000Z

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  7. Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report

    SciTech Connect (OSTI)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

    1980-08-01T23:59:59.000Z

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

  8. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  9. EURISOL-DS Multi?MW Target: Radiological Protection, Radiation Safety and Shielding Aspects

    E-Print Network [OSTI]

    Y. Romanets and R. Luís (ITN)

    The objective of this work was to carry out a detailed study and analysis of all aspects related toradioprotection and radiation safety of the spallation target area and the whole spaces reservedfor the fission targets and spallation target maintenance. Operational and no?operationalconditions were considered for an evaluation of the radiation safety conditions.An analysis of the proposed shielding dimensions and configuration was performed for thesystem during operation time. Parameters as activation, dose rate, energy deposition, etc. aremore important for the no?operation period, in order to evaluate the hazard level anddetermine the staff access type to the maintenance areas (direct or remote control).Such elements as the fission targets and the whole structure involved on it were studied in moredetail because of the disposal issues, after operation. Activation, dose rate and residual nuclideswere studied for each element of the assembly. All parameters were analyzed according to their...

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  11. American Institute of Aeronautics and Astronautics Switch-Mode Continuously Variable Transmission

    E-Print Network [OSTI]

    Van de Ven, James D.

    efficiency of ground vehicles. The combination of high energy density and high power density make a flywheel hybrid system a promising option. A primary challenge of a flywheel hybrid system is coupling a high speed flywheel to a vehicle's drive train. A unique way of accomplishing this task is using a switch

  12. The Use of Mini-Vector Instructions for Implementing High-Speed Feedback Controllers on General-Purpose

    E-Print Network [OSTI]

    Skadron, Kevin

    -spin- rate flywheel. This application is representative of many control environments that require both high. Keywords Active magnetic bearing, flywheel, vector instructions, API, multi-threaded execution. 1-speed, energy-storage flywheel, and the purpose of the testbed is to provide a platform in which new

  13. Nouvelle architecture lectromagntique rluctance variable excite pour

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    field inductor. Its topology is discoid for better integration to the flywheel. Motor-generator don't have to disturb magnetic bearing of the flywheel set. We led a detailed study of magnetic forces forces, Laplace forces, reluctance forces, finite-elements, flywheel energy storage. Revue Internationale

  14. A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration

    E-Print Network [OSTI]

    Harinarayana, T.

    A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration Exchange geothermal energy. The world over about 3000 MW equivalent of energy being generated using their geothermal Manager of Renewable Energy Development Group of NTPC Limited in the presence of Dr. V.P. Dimri(third from

  15. Physics of Sustainable Energy Berkeley CA

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California Largest Solar Thermal Electric Plant SEGS Mojave Desert (CA) 354 MW Ivanpah Mojave Desert (CA) 400 of Sustainable Energy Berkeley CA March 5-6, 2011 Concentrating Solar Power ­ Direct Sun State and Kearney (2007) PV Solar Resource ­ Indirect Sun Roof area ~ 6B m2 ~ 600 GW Urban footprint ~ 3% of land

  16. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC) #12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000

  17. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  18. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The 2011 Mw 7.1 Van (Eastern Turkey) Earthquake -1

    E-Print Network [OSTI]

    Cambridge, University of

    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The 2011 Mw 7.1 Van (Eastern Turkey, 2012, 5:45pm D R A F T #12;X - 2 ELLIOTT ET AL.: 2011 VAN EARTHQUAKE, EASTERN TURKEY moment and source.: 2011 VAN EARTHQUAKE, EASTERN TURKEY X - 3 Interferograms from the ENVISAT satellite were derived from

  19. Representative Syllabus for P140 Prof. Sandra Shapshay P140 M/W 11:15pm-12:05pm Woodburn Hall 009

    E-Print Network [OSTI]

    Indiana University

    Representative Syllabus for P140 Prof. Sandra Shapshay P140 M/W 11:15pm-12:05pm Woodburn Hall 009-10:30am, SY 021 Syllabus: P140 Introduction to Ethics Welcome to Introduction to Ethics. This is a lecture

  20. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  1. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  2. Case Studies of Onsite Energy Systems for Healthcare Facilities 

    E-Print Network [OSTI]

    Schwass, R.

    2008-01-01T23:59:59.000Z

    of Central Texas. Combining the high efficiency, low emission, 4.6 MW Solar Turbines Mercury-50 combustion turbine, a 1000 Ton Trane steam absorption chiller and an 8000 Ton-hr Thermal Energy Storage tank, this onsite energy system is designed to achieve...

  3. Data:892c429f-0315-4d44-a85f-14b16701d365 | Open Energy Information

    Open Energy Info (EERE)

    5 kW and no greater than 5 MW, for the production of electricity through the use of 100% renewable resources or fuels, which shall include "Renewable energy resources" as that...

  4. Data:1549c384-97ff-424f-a94d-6a70b2eac6d9 | Open Energy Information

    Open Energy Info (EERE)

    5 kW and no greater than 5 MW, for the production of electricity through the use of 100% renewable resources or fuels, which shall include "Renewable energy resources" as that...

  5. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    i n cement plants Installing electricity generation capacityelectricity generation was assumed to be a 6 MW power plant,electricity generation, then is considered to be the difference between actual energy consumption at the cogeneration plant

  6. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26T23:59:59.000Z

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  7. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect (OSTI)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31T23:59:59.000Z

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  8. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    E-Print Network [OSTI]

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01T23:59:59.000Z

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  9. PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky

    E-Print Network [OSTI]

    Deng, Xunming

    PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C start-up efforts at the 2MW Sovlux photovoltaic production line. Triple-junction solar cells with higher than 10% initial effXency were producedin this production line with subcell yield up to 96

  10. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... variations in measured power vs base year power production in the OSP. Energy Systems Laboratory p. 4 Next, looked at hourly electricity produced vs NOAA wind data. Issue: too much scatter. Hourly Turbine Power vs. Wind Speed (On-site) 0 10 20 30...

  11. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

    2013-03-01T23:59:59.000Z

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  12. Heath F. Hofmann | Curriculum Vitae 4116 EECS Phone: (814) 769-3940

    E-Print Network [OSTI]

    Hofmann, Heath F.

    harvesting, wind energy, flywheel energy storage systems, traction drives for electric and hybrid electric drive of an electric sports car produced by Tesla Motors. Piezoelectric energy harvesting circuit

  13. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13T23:59:59.000Z

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  14. New Technology and Energy Alternatives

    E-Print Network [OSTI]

    Lamphere, F. J.

    traditional electrical power. Equipment used and case histories, including economics of the industrial installations, are included. Sites range in size from 650 kW to 22.0 MW. AI I systems use reciprocating engine generators as prime movers. Introduct... I be discussed. Our focus is on industrial plants, but the same methods and equipment can be util ized to reduce energy costs at commercial, institutional, and nonprofit facilities. A brief review of electric util ity rate structures wil I...

  15. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    quickly set CO2 emission limits and establish mechanisms to meet them. But the Northwest must not waitAs Usual We have two choices for providing our electrical needs by 2050. We can either develop more of ourCoal Energy Efficiency/CHP 6¢/kWh With this extra 1,500 aMW in Bright Future we can power more electric

  16. Rangan Banerjee Energy Systems Engineering

    E-Print Network [OSTI]

    Banerjee, Rangan

    America Latin America OECD Europe Non- OECD Europe Former Soviet Union Middle East Africa China Asia © ) % © ¨ ) %$4 © # #12; ¡¢ £ ¤ ¡¥ ¦ ¡ § ¨ © ¡ ¨ ¥ ¨ Large Hydro 2% Renew ables 2% Trad Biomass 9% Coal;Characteristics of Renewables Large, Inexhaustible source -Solar energy intercepted by earth 1.8*1011 MW Clean

  17. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  18. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  19. ANTHONY EGGERT, EXECUTIVE DIRECTOR POLICY INSTITUTE FOR ENERGY, ENVIRONMENT AND THE ECONOMY

    E-Print Network [OSTI]

    California at Davis, University of

    ,000 MW (2006) Energy Expenditures (2010) ~$33.4B Electricity ~$15B Natural Gas ~$72B Petroleum Total of residential, commercial, industrial heating #12;THANK YOU! More information: · energyANTHONY EGGERT, EXECUTIVE DIRECTOR POLICY INSTITUTE FOR ENERGY, ENVIRONMENT AND THE ECONOMY

  20. Press Release Von Roll Inova to build the UK's largest energy-from-waste

    E-Print Network [OSTI]

    Columbia University

    , and regenerative heat recovery is used to boost the plant's overall energy efficiency. The majority of the waste and commercial waste per year in average and generate 72 MW of electrical energy. Riverside Resource Recovery LtdPress Release Von Roll Inova to build the UK's largest energy-from-waste plant Zürich, September, 1

  1. Quantification of Energy and Emissions Saved in Energy Efficiency/ Renewable Energy (EE/RE) Programs in Texas 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    Solar Biomass p. 67 Energy Systems Laboratory © 2011 WIND PROJECTS IN TEXAS Jul-2012; 13,609 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 Ju n -1 9 9 4 Ju n -1 9 9 5 Ju n -1 9 9 6 M a y -1 9 9 7 M a y -1 9 9 8 M a y... & PUCT) MW Actual and Announced MW -Senate Bill 20 Wind energy farms coming on- line ahead of legislative goals. p. 68 Energy Systems Laboratory © 2011 WIND PROJECTS IN TEXAS p. 69 Energy Systems Laboratory © 2011 0 1,000 2,000 3,000 4,000 5...

  2. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    2, chaired by Sandia's Georgianne Huff, are below. ESS 2012 Peer Review - Higher Power Motor for ARPA-E Flywheel - Jim Arseneaux, Beacon Power ESS 2012 Peer Review - Acid Based...

  3. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27T23:59:59.000Z

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  4. 1010 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 A Scalable 515 Gbps, 1475 mW Low-Power I/O

    E-Print Network [OSTI]

    Palermo, Sam

    1010 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 4, APRIL 2008 A Scalable 5­15 Gbps, 14­75 mW Low-Power I/O Transceiver in 65 nm CMOS Ganesh Balamurugan, Member, IEEE, Joseph Kennedy, Member, IEEE'Mahony, Bryan Casper, and Randy Mooney, Member, IEEE Abstract--We present a scalable low-power I/O transceiver

  5. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu. [JSC 'Interavtomatka' (Russian Federation); Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V. [JSC 'Reftinskaya GRES' (Russian Federation)

    2009-03-15T23:59:59.000Z

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  6. The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop

    SciTech Connect (OSTI)

    Gordon, S.P.; Falcone, P.K. [eds.

    1995-06-01T23:59:59.000Z

    This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

  7. CX-012519: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  8. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  9. CURRENT SCIENCE, VOL. 106, NO. 5, 10 MARCH 2014 665 What makes Gujarat a hotspot for solar energy investments?

    E-Print Network [OSTI]

    Joshi, Yogesh Moreshwar

    energy investments? Komalirani Yenneti With over 300 days of sunshine and solar radiation of 5.6­6.0 kWh/m2 /day (refs 1, 2), the state of Gujarat has a potential of generating 750 GW from solar energy3 II, the project is expected to generate about 500 MW of solar energy. All this growth in the solar

  10. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08T23:59:59.000Z

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  11. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  12. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01T23:59:59.000Z

    dioxide. In his 2003 review of energy recovery from landfill gas, Willumsen [2,3] reported that as of 2001 followed by Germany and United Kingdom (Table 1). The capacity of most landfill gas-fuelled generators, close to Los Angeles California; the biogas is combusted in a steam boiler that powers a 50-MW turbine

  13. 2013DvorakandSailor'sEnergy Model Forecasting Accuracy Along

    E-Print Network [OSTI]

    Firestone, Jeremy

    available buoy and tower data hourly from 2006-2010 NOAA National Data Buoy Center buoys (23) and tall. #12;©2013DvorakandSailor'sEnergy What Time is Offshore Wind Power Most Useful? Analyzed hourly a REpower 5M, 5 MW power curve, determined capacity factor out to 200-m depth Incredibly strong resource

  14. California's 43rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas RecoveryInformation Kreido BiofuelsInformation MW

  15. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  16. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEI Community Cost Per MwH

  17. Crossroads Expansion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)CriterionCrossroads (3 MW)

  18. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  19. Performance test of a hoop energy storage system for the industrial application

    SciTech Connect (OSTI)

    Lee, K.C.; Han, S.H.; Kim, K.S.; Chung, K.H. [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering; Moon, T.S.; Cho, C.H.; Hanjung, R. [Changwon, Kyung-Nam (Korea, Republic of)

    1999-11-01T23:59:59.000Z

    The power demand of an industrialized country has a peak at daytime. For example in Korea the minimum power demand at midnight of a typical one day pattern is two thirds of maximum at daytime and average power over one year of 1997 is 71.5% of maximum power of that year. For this need of the large energy storage facilities, the authors developed a hoop energy storage system. Hoop energy storage system was suggested to compensate for the stiffness of the nuclear power plants, but the authors expect that it can be applied to the other green energy sources such as solar energy. In comparison with chemical energy storage system and pumped hydro dams, hoop energy storage system has the properties of high energy conversion efficiency and high stored energy density, it also has low environmental impact because it can be installed underground. The hoop energy storage system has the same aspects with the flywheel energy storage that it stores electric energy at a high-speed rotating rotor as the rotational kinetic energy and restores the energy as electricity when it is needed, but it has three major different aspects as followings: (1) The shape of rotor is not a disk but a hoop without axis, which increases the stored energy density; (2) For the frictionless high-speed rotation, the magnetic levitation using Nd-Fe-B permanent magnets was applied; (3) It is suggested to be a large scaled facility for the ultimate purpose of the diurnal load leveling of electric power utility.

  20. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01T23:59:59.000Z

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  1. EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

  2. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    SciTech Connect (OSTI)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01T23:59:59.000Z

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  3. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01T23:59:59.000Z

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  4. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    concentrating solar power (CSP)) and biomass systems, therebines Concentrated Solar Power (CSP) Solar Photovoltaic (PV)500 MW 59 GW - Central Solar (CSP and PV) 500 MW 65 GW -

  5. The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda

    E-Print Network [OSTI]

    Mukuve, Feriha Mugisha; Fenner, Richard A.

    2014-12-31T23:59:59.000Z

    of which will be used for energy production (MEMD, 2012). The current plan is to dedicate a portion of this oil to generate 100 MW of electricity, which would supplement the country’s energy mix by 3600 TJ/year (MEMD, 2012). This resource however...

  6. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  7. Capstone C30 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde: Energy,000,000 mW 3.0e-5 GW

  8. Capstone C60 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde: Energy,000,000 mW 3.0e-5

  9. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde: Energy,000,000 mW

  10. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J. [Ferraro, Oliver, and Associates, Inc., Knoxville, TN (United States); McConnell, B.W. [Oak Ridge National Lab., TN (United States)

    1993-06-01T23:59:59.000Z

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  11. Clean energy funds: An overview of state support for renewable energy

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Milford, Lew; Stoddard, Michael; Porter, Kevin

    2001-01-01T23:59:59.000Z

    exists in the West. Landfill gas has proven to be moderatelygrant $0.55 million 3 MW landfill gas $1 million 3 MW hydro0.55 million 15 MW landfill gas MT 3-yr production incentive

  12. July 29th -30th 2010 1Integration of Wind Power in the Danish Energy System Integration of Wind Power in the Danish Energy System

    E-Print Network [OSTI]

    1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 MW Offshore Onshore Wind · Wind farms: · Grid codes ensure capability to regulate #12;July 29th - 30th 2010 9Integration of WindJuly 29th - 30th 2010 1Integration of Wind Power in the Danish Energy System Integration of Wind

  13. LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 6157 / The Software &LANAI

  14. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  15. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  17. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    deliver 1,500 MW of installed capacity from RES by the year5 Projected capacity (MW/period) Installed capacity cum (MW) Installed capacity (MW/period) Figure 10. Capacities

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Trough Concentrating Solar Power Plant and Impacts of Keyof a 1.5 MW solar power tower plant in China. ” Renewablelarger commercial solar power tower plants in Northwestern

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    s 102 MW Donghaiqiao offshore wind farm becoming the firstoperating large-scale offshore wind farm. In Octoberto construct four offshore wind farms in Jiangsu province

  20. STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    (RNS), and is based on the amount of current electric generation from renewable resources) that is generated from renewable generation resources instead of the capacity (megawatt ­ MW) of these facilitiesSTATE OF CALIFORNIA -- NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY

  1. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    of Proposed Modifications to Change the Source of Cooling Water from Well Water to Recycled Water On April 11 plant cooling water from wells to recycled wastewater from the South County Regional Wastewater's adjacent 135 MW Gilroy Energy Center's (GEC) property. The existing pipeline supplies SCRWA recycled water

  2. Assessing geothermal energy potential in upstate New York. Final report, Tasks 1, 3, and 4

    SciTech Connect (OSTI)

    Manger, K.C.

    1996-07-25T23:59:59.000Z

    New York State`s geothermal energy potential was evaluated based on a new resource assessment performed by the State University of New York at Buffalo (SUNY-Buffalo) and currently commercial technologies, many of which have become available since New York`s potential was last evaluated. General background on geothermal energy and technologies was provided. A life-cycle cost analysis was performed to evaluate the economics of using geothermal energy to generate electricity in upstate New York. A conventional rankine cycle, binary power system was selected for the economic evaluation, based on SUNY-Buffalo`s resource assessment. Binary power systems are the most technologically suitable for upstate New York`s resources and have the added advantage of being environmentally attractive. Many of the potential environmental impacts associated with geothermal energy are not an issue in binary systems because the geothermal fluids are contained in a closed-loop and used solely to heat a working fluid that is then used to generate the electricity Three power plant sizes were selected based on geologic data supplied by SUNY-Buffalo. The hypothetical power plants were designed as 5 MW modular units and sized at 5 MW, 10 MW and 15 MW. The life-cycle cost analysis suggested that geothermal electricity in upstate New York, using currently commercial technology, will probably cost between 14 and 18 cents per kilowatt-hour.

  3. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    the same support to the grid. Figure 1 indicates that 1 MW of storage (provided by a battery or ramping as an Enabling Technology. Subtask 8.2: Use of Hydrogen for Energy Storage Under this subtask, HNEI evaluated the use of hydrogen as part of an integrated storage system with emphasis on the use of hydrogen

  4. BIZKAIA WASTE TO ENERGY PLANT PROJECT February, 2005 SUMMARY REPORT Page 1 of 7

    E-Print Network [OSTI]

    Columbia University

    Gas turbine generator with 43 MW power output. e) 1 Heat recovery steam generator at 100 bars. #12 a) Thermal power exhaust gases from the gas turbine. b) Superheated steam (538 ºC 100 bar) to the steam turbine. c) Natural gas burners using fresh air to replace thermal energy in case of a gas turbine

  5. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    : Connie Bruins, Compliance Project Manager SUBJECT: Midway Sunset Cogeneration Project (85-AFC-3C) Staff a petition from the Midway Sunset Cogeneration Company (MSCC) to amend the Energy Commission Decision for the Midway Sunset Cogeneration Project. The Midway Sunset Cogeneration Project is a 225 MW cogeneration power

  6. NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency

    E-Print Network [OSTI]

    cogeneration steam to aid in an enhanced oil recovery proc certified by the Energy Commission ,in May 1987, has is a 225 MW plant that uses cogeneration steam to aid in an enhanced oil recovery proc'---"- certified of Unit B's DLN-9 combustlion system with a DLN-1 + system, revises equipment descriptions, revises

  7. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    diesel generators. Adding a 2-MW, 4-MWh storage system, a fast static switch, and a power factor cor-Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin and Renewable Generation Eduardo Alegria, Member, IEEE, Tim Brown, Member, IEEE, Erin Minear, Member, IEEE

  8. NREL is a national laboratory of the U.S. Department of Energy, Office

    E-Print Network [OSTI]

    . Mapping Wind Resource Potential Wind resource maps are among the most valuable tools used by NREL's WPA Indiana map showed considerably more wind resource potential (especially at 70 meters and 100 meters above Indiana's House Utilities Commission that Indiana has at least 40,000 MW of wind energy potential

  9. ITP Distributed Energy: State of Washington Clean Energy Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    in the Pacific Northwest: Market Assessment) 672.0 Petroleum Refineries 738 MW at BP refinery (permitted) minus Oakridge on-site and export potential of 66 MW 0 Pulp & Paper...

  10. The Fusion Advanced Studies Torus (FAST): a Proposal for an ITER Satellite Facility in Support of the Development of Fusion Energy

    E-Print Network [OSTI]

    Zonca, Fulvio

    in Support of the Development of Fusion Energy A. Pizzuto 1) on behalf of the Italian Association 1 injection (NNBI) in the energy range of 0.5-1 MeV. The total power input is in the 30-40 MW range prioritize what the actual ITER needs are. Some apparently conflicting aspects must be carefully analyzed

  11. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

  12. Caterpillar G3508 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages0,000,000 mW 1.8e-4

  13. Caterpillar G3516 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages0,000,000 mW

  14. SRP- EarthWise Solar Energy Incentive Program

    Broader source: Energy.gov [DOE]

    '''''NOTE: SRP reopened its incentive programs effective May 1, 2013. SRP has funding available for 12 MW of residential photovoltaic (PV) systems, 4 MW of small commercial PV systems, 5 MW of...

  15. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    protections, develop clean coal technology (CCT), as well asplants. Promote clean coal technology, construct 600 MW (perGreatly develop clean coal technology including constructing

  17. UC Berkeley Community College Visit Day Friday, October 18, 2013

    E-Print Network [OSTI]

    California at Irvine, University of

    is to increase the efficiency of regenerative braking by increasing the power density of the hybrid system power density and efficiency for regenerative breaking and acceleration. Although flywheel energy motor, and mechanical flywheel) system that will have improved regenerative energy storage

  18. Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Labora-

    E-Print Network [OSTI]

    Research turbine supports sustained technology development. For more than three decades, engineers, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC

  19. Differences between Western US Markets for Renewables

    E-Print Network [OSTI]

    . of CO (Xcel) Colorado Green 81 MW owned (162 MW project) Public Service Co. of CO (Xcel) San Luis 30 MW MW owned Locust Ridge 26 MW owned PPL EnergyPlus Locust Ridge II 102 MW owned Various healthcare organizations Casselman 34.5 MW owned FirstEnergy Solutions Rugby 149.1 MW owned Missouri River Energy Services

  20. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01T23:59:59.000Z

    Liberty turbine, and a 2.0 MW Gamesa G8 turbine. Each has ancapture in a 2.0 MW Gamesa G8 turbine Gamesa margin Input

  1. U.S. Army Office of Energy Initiatives

    Office of Environmental Management (EM)

    or greater than 10 MW * Will work closely with installations for 1- 10 MW opportunities * Potential for projects that exceed Army requirements * Solar, Wind, Biomass and Geothermal...

  2. EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  3. A space crystal diffraction telescope for the energy range of nuclear transitions

    SciTech Connect (OSTI)

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.; Vedrenne, G. [Centre d`Etude Spatial des Rayonmenments, Toulouse (France); Smither, R.K.; Faiz, M.; Fernandez, P.; Graber, T. [Argonne National Lab., IL (United States)

    1995-04-01T23:59:59.000Z

    This paper contains literature from American Power Conference Air Toxics Being Measured Accurately, Controlled Effectively NO{sub x} and SO{sub 2} Emissions Reduced; Surface Condensers Improve Heat Rate; Usable Fuel from Municipal Solid Waste; Cofiring Technology Reduces Gas Turbine Emissions; Trainable, Rugged Microsensor Identifies of Gases; High-Tc Superconductors Fabricated; High-Temperature Superconducting Current Leads; Vitrification of Low-Level Radioactive and Mixed Wastes; Characterization, Demolition, and Disposal of Contaminated Structures; On-Line Plant Diagnostics and Management; Sulfide Ceramic Materials for Improved Batteries; Flywheel Provides Efficient Energy Storage; Battery Systems for Electric Vehicles; Polymer-Electrolyte Fuel Cells for Transportation; Solid-Oxide Fuel Cells for Transportation; Surface Acoustic Wave Sensor Monitors Emissions in Real-Time; Advance Alternative-Fueled Automotive Technologies; Thermal & Mechanical Process; Flow-Induced Vibration & Flow Distribution in Shell-and-Tube Heat Exchangers; Ice Slurries for District Cooling; Advanced Fluids; Compact Evaporator and Condenser Technology; and Analysis of Failed Nuclear Power Station Components.

  4. 2446 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DECEMBER 2005 A 50-MS/s (35 mW) to 1-kS/s (15 W) Power

    E-Print Network [OSTI]

    Johns, David A.

    2446 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DECEMBER 2005 A 50-MS/s (35 mW) to 1-kS/s (15 W) Power Scaleable 10-bit Pipelined ADC Using Rapid Power-On Opamps and Minimal Bias Current Variation Imran Ahmed, Student Member, IEEE, and David A. Johns, Fellow, IEEE Abstract--A novel rapid power

  5. The Path to Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Prager, Stewart (PPPL) [PPPL

    2011-05-04T23:59:59.000Z

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  6. Melinda M. Higgins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale Up

  7. Melton Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale

  8. Melvin G. Williams, Jr. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis ScaleMelvin G.

  9. Membrane Technology Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharles Page

  10. 30-MJ superconducting magnetic-energy-storage stabilizing system: an overview

    SciTech Connect (OSTI)

    Roger, J.D.; Boenig, H.J.; Dean, J.W.; Schermer, R.I.; Annestrand, S.A.; Hauer, J.F.; Miller, B.L.

    1983-01-01T23:59:59.000Z

    The 30-MJ superconducting magnetic-energy-storage (SMES) system was devised as an alternate means to modulate the Bonneville Power Administration (BPA) Pacific AC Intertie, a part of the Western US Power System, to prevent undamped power oscillations at 0.35 Hz that were observed to be associated with high power transmission. The SMES system was installed at the BPA Tacoma Substation and successfully operated as an experimental device to initiate tests to determine power system dynamics, to investigate their variability, to assess system response to SMES modulation with a major variable load, and to use SMES to develop stability-control techniques. The system has been operated at frequencies of 0.1 to 1.0 Hz at power levels of +- 8.3 MW with a parallel modulation of the converter bridges and up to 9.5 MW reactive power together with +- 4.5 MW real power in constant VAR mode with buck-boost modulation of the bridges. The coil has been charged at a maximum rate of 11.8 MW. Operation of the SMES system is now under BPA jurisdiction, and all hardware has been transferred to BPA.

  11. Offshore Wind Energy Market Installed Capacity is Anticipated to Reach

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshore Lubricants Market Size Home52,120.9 MW by

  12. Ohio Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshore Lubricants Market Size Home52,120.9 MW

  13. MHK Projects/NPI 01 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW Demonstration

  14. MHK Projects/NPI 014 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW Demonstration

  15. MHK Projects/NPI 015 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW

  16. MHK Projects/NPI 016A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW

  17. TowPath Renewable Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEI Community Cost Per MwHTowPath

  18. CX-000760: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage DemonstrationCX(s) Applied: B3.6Date: 02/09/2010Location(s): Freemont, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  19. Long-term Energy Plan (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    Currently, Ontario’s electricity system has a capacity of approximately 35,000 MW of power. The Ontario Power Authority forecasts that more than 15,000 MW will need to be renewed, replaced or added...

  20. 20to2-3T5m2+5: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet Optimization Research Engineering (M.O.R.E.), LLC; 1/26/2014

    E-Print Network [OSTI]

    McDonald, Kirk

    Optimization Research Engineering (M.O.R.E.), LLC; 1/26/2014 Fig. 1. On-axis field profiles of 20-T magnets20to2-3T5m2+5: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet of 16-cm I.R. The copper magnet generates 5 T at 8.6 MW with five tightly-nested two-layer coils

  1. IDS120M20to2T5m: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet Optimization Research Engineering (M.O.R.E.), LLC; 1/21/2014

    E-Print Network [OSTI]

    McDonald, Kirk

    Optimization Research Engineering (M.O.R.E.), LLC; 1/21/2014 Fig. 1. On-axis field profile of 20-T magnet of 16IDS120M20to2T5m: 16-cm I.R., 46-cm O.D., 8.6 MW, Optimized Cooling Robert J. Weggel; Magnet-cm inner radius. The copper magnet generates 5 T at 8.6 MW with five tightly-nested two-layer coils

  2. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18T23:59:59.000Z

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  3. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01T23:59:59.000Z

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  4. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect (OSTI)

    Raja, Rajendran

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  5. Accelerator Driven Nuclear Energy - The Thorium Option

    SciTech Connect (OSTI)

    Rajendran Raja

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  6. Accelerator Driven Nuclear Energy - The Thorium Option

    ScienceCinema (OSTI)

    Rajendran Raja

    2010-01-08T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  7. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Broader source: Energy.gov [DOE]

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  8. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  9. Demonstration of Promising Energy Storage Technologies

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2014-12-31T23:59:59.000Z

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components. The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  10. 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

  11. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    in Guangdong has two 900 MW PWR units. Source: EB, Chinain Guangdong has two 900 MW PWR units. Source: EB, ChinaUnits (MW x no units) 900x2 PWR nuclear 300x2 600x2 [1

  12. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    Farms in Texas Wind Projects Completed: ERCOT Region ? 2903 MW 1 Culberson, 35 MW, Texas Wind Power, 01/1995 2 Howard, 34 MW, Big Spring Wind Power, 02/1999 3 Howard, 6.6 MW, Big Spring Wind Power, 07/1999 4 Upton, 75 MW, Southwest Mesa Wind, 06/1999... 5 Culberson, 30 MW, Delaware Mountain , 06/1999 6 Pecos, 82.5 MW, Indian Mesa I, 06/2001 7 Pecos, 160 MW, Woodward Mountain, 07/2001 8 Nolan, 150 MW, Trent Mesa, 11/2001 9 Pecos, 160 MW, Desert Sky (Indian Mesa II), 12/2001 10 Upton, 278...

  13. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01T23:59:59.000Z

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  14. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Production solar water heaters and solar heated housesBiogas (Gm3) PV (MW) Solar water heater (Mm2) Bio-ethanol (through the use of solar water heaters. Photovoltaic (PV)

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    wind power by constructing thirty 100 MW wind farms and fourGW class wind farms in the Inner Mongolia region, Hebei,benchmark prices for on-grid wind farm-generated electricity

  17. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    pressurized water reactors (PWRs) the principal but not theJiangsu Capacity (MW) Reactor Type PWR:CNP-300 Operator CNNC1991 Qinshan Phase II Unit 1 PWR:CNP-600 CNNC 2-Jun-1996 15-

  18. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    MW domestically-designed nuclear plant went online in 1991.Table 2-33 Existing Nuclear Power Plants (As of the end ofand Planned Nuclear Power Plants 61 Table

  19. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    storm. On Wednesday the Arizona Public Service Commission announced that the Palo Verde 3 nuclear plant would be going down for 2 weeks for repairs, taking nearly 1,300 MW of...

  20. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lanai High-Density Irradiance Sensor Network for Characterizing Solar Resource Variability of MW-Scale PV System Tara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download...

  1. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  2. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  3. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  4. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    is all generation from small hydro stations (rural grids),is all generation from small hydro stations (rural grids),Systems Capacity (MW) Small Hydro Capacity (MW) Source:

  5. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Systems Capacity (MW) Small Hydro Capacity (MW) Source:power technologies Small hydro power generation Miicro-hydrois all generation from small hydro stations (rural grids),

  6. CX-004504: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beacon Power 20 Megawatt Flywheel Frequency Regulation PlantCX(s) Applied: A1, A9, A11Date: 11/19/2010Location(s): Tyngsboro, MassachusettsOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  7. CX-004955: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beacon Power -Development of a 100 Kilowatt Hour/1100 Kilowatt Flywheel Energy Storage ModuleCX(s) Applied: B3.6Date: 08/09/2010Location(s): Tyngsboro, MassachusettsOffice(s): Advanced Research Projects Agency - Energy

  8. CX-004960: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage GridCX(s) Applied: B3.6Date: 08/13/2010Location(s): Kent, WashingtonOffice(s): Advanced Research Projects Agency - Energy

  9. A 76.8 GB/s 46 mW Low-latency Network-on-Chip for Real-time Object Recognition Processor

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    has been widely used in various applications such as mobile robot navigation, autonomous vehicle consumption. The NoC is implemented in 0.13µm CMOS process and provides 76.8 GB/s aggregated bandwidth at 400 computing power and required complex data synchronization mechanism. In this paper, a low-latency and energy

  10. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4. System planning studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    Potomac Electric Power Company and Acres American Incorporated have been performing a three year DOE/EPRI/PEPCO sponsored program for preliminary design of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) power plants. This report presents both the costs of the CAES and UPH plant designs which were developed, and the results of economic evaluations performed for the PEPCO system. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  11. Overview of the energy conversion program

    SciTech Connect (OSTI)

    LaSala, R.

    1996-04-10T23:59:59.000Z

    I wish we had time to cover all of the DOE-sponsored energy conversion and materials projects in detail, but we don`t. Instead, let me take a few minutes to bring you up to date on several items that will not be discussed elsewhere in this session. First, we still have a cooperative Agreement with Energy, Inc. to demonstrate a 12.4 MW Kalina cycle power plant at Steamboat, Nevada; but the project remains stalled by the lack of a power purchase agreement, a problem that I am sure many of you can appreciate. I hope we can get this project back on track by the time of the next annual meeting of the Geothermal Resources Council in late September.

  12. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    SciTech Connect (OSTI)

    Steinberg, D.; Porro, G.; Goldberg, M.

    2012-04-01T23:59:59.000Z

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  13. 39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)

    E-Print Network [OSTI]

    McGaughey, Alan

    Storage (6) 19638 (18618) Smart Grids & F. Elec. Eng Sys (12)TR910:20 19714 (12714) Env. Life Cycle Prep (3)MW34:20 12706 Civil Systems Invest. Plan & Pricing (12)MW10:3012:20 12745 AID Systems Project:20 12743 Comp. Search & Decision in Civil Infrastructure (6) Electrical & Computer Engineering 18618 Smart

  14. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    ?ahin, Sümer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 ?ncek, Gölba??, Ankara (Turkey)

    2014-09-30T23:59:59.000Z

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

  15. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  16. Meijer Stores E85 Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale Up EMeijer

  17. Melter Pours 10 Millionth Pound of Glass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale UpMelter

  18. Membrane and MEA Accelerated Stress Test Protocols | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharles Pageand

  19. Membranes and MEAs at Freezing Temperatures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharles Pageandat

  20. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW ElectrolysisCharlesDry,