Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Latest developments on the Dutch 1MW free electron maser  

Science Journals Connector (OSTI)

The FOM Institute (Rijnhuizen Netherlands) as part of their fusion technology program has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz250GHz with wall plug efficiencies of 60%. This project has been carried out as a collaborative effort with Institute of Applied Physics Nizhny Novgorod Russia Kurchatov Institute Moscow Russia Lawrence Livermore Laboratory U.S.A and CPI U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception (usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8% beam transmission (over 5 Meters) at currents as high as 8.4 Amps with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate in the next year long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible.

M. Caplan; A. G. A. Verhoeven; W. Urbanus

1999-01-01T23:59:59.000Z

4

Latest developments on the Dutch 1MW free electron maser  

SciTech Connect

The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

1999-05-01T23:59:59.000Z

5

Development of a full-scale training simulator for an 800-MW power unit  

Science Journals Connector (OSTI)

Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are consider...

S. K. Zhuravlev; A. M. Andreev

2013-07-01T23:59:59.000Z

6

Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems  

SciTech Connect

Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

2012-11-09T23:59:59.000Z

7

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

SciTech Connect

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

8

Development of 1 MW-class HTS motor for podded ship propulsion system  

Science Journals Connector (OSTI)

To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO2, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research & development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

K Umemoto; K Aizawa; M Yokoyama; K Yoshikawa; Y Kimura; M Izumi; K Ohashi; M Numano; K Okumura; M Yamaguchi; Y Gocho; E Kosuge

2010-01-01T23:59:59.000Z

9

Design and development of a 6 MW peak, 24 kW average power S-band klystron  

SciTech Connect

A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

2011-07-01T23:59:59.000Z

10

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

11

Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

SciTech Connect

Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

NONE

1996-01-29T23:59:59.000Z

12

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

13

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

14

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

15

Economics of a 75-MW(e) hot-dry-rock geothermal power station based upon the design of the Phase II reservoir at Fenton Hill  

SciTech Connect

Based upon EE-2 and EE-3 drilling costs and the proposed Fenton Hill Phase II reservoir conditions the break-even cost of producing electricity is 4.4 cents per kWh at the bus bar. This cost is based upon a 9-well, 12-reservoir hot dry rock (HDR) system producing 75 MW(e) for 10 yr with only 20% drawdown, and an assumed annual finance charge of 17%. Only one-third of the total, potentially available heat was utilized; potential reuse of wells as well as thermal stress cracking and augmentation of heat transfer was ignored. Nearly half the bus bar cost is due to drilling expenses, which prompted a review of past costs for wells GT-2, EE-1, EE-2, and EE-3. Based on comparable depth and completion times it is shown that significant cost improvements have been accomplished in the last seven years. Despite these improvements it was assumed for this study that no further advancements in drilling technology would occur, and that even in commercially mature HDR systems, drilling problems would continue nearly unabated.

Murphy, H.; Drake, R.; Tester, J.; Zyvoloski, G.

1982-02-01T23:59:59.000Z

16

Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210  

SciTech Connect

Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

Hughes, S.

2012-05-01T23:59:59.000Z

17

Nuclear Concrete Materials Database Phase I Development  

SciTech Connect

The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

Ren, Weiju [ORNL; Naus, Dan J [ORNL

2012-05-01T23:59:59.000Z

18

GEA Development Phases | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GEA Development Phases Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phases The information for this page was taken directly from Geothermal Reporting Terms and Definitions: A Guide to Reporting Resource Development Progress and Results to the Geothermal Energy Association (GEA, November 2010) Gea.jpg The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development

19

Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311  

SciTech Connect

SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

Wallen, R.

2011-02-01T23:59:59.000Z

20

Crossroads (3 MW) | Open Energy Information  

Open Energy Info (EERE)

MW) MW) Jump to: navigation, search Name Crossroads (3 MW) Facility Crossroads (3 MW) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer Renewable Energy Systems Ltd Energy Purchaser Oklahoma Gas & Electric Location Near Canton OK Coordinates 36.019889°, -98.669894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.019889,"lon":-98.669894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Phase III - Permitting and Initial Development | Open Energy Information  

Open Energy Info (EERE)

III - Permitting and Initial Development III - Permitting and Initial Development Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase III: Permitting and Initial Development GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

22

Low Beam Voltage, 10 MW, L-Band Cluster Klystron  

SciTech Connect

Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.; /Fermilab; Kazakov, S.; /KEK, Tsukuba; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

2009-05-01T23:59:59.000Z

23

PG&E Plans for 500 MW of PV  

Energy.gov (U.S. Department of Energy (DOE))

PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

24

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

25

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

26

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

27

Plains CO2 Reduction Partnership--Development Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Phase Development Phase Background As part of a comprehensive effort to assess options for sustainable energy systems, the U.S. Department of Energy has selected seven regional partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The partnerships are

28

50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL  

SciTech Connect

In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

2011-03-11T23:59:59.000Z

29

Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?  

Science Journals Connector (OSTI)

Abstract Larger wind turbines are believed to be advantageous from an investment and installation perspective, since costs for installation and inner cabling are dependent mainly on the number of wind turbines and not their size. Analogously, scaling up the turbines may also be argued to be advantageous from an operation and maintenance (O&M) perspective. For a given total power production of the wind farm, larger wind turbines give a smaller number of individual machines that needs to be maintained and could therefore give smaller O&M costs. However, the O&M costs are directly dependent on how failure rates, spare part costs, and time needed by technicians to perform each maintenance task and will develop for larger wind turbines. A simulation study is carried out with a discrete-event simulation model for the operational phase of an offshore wind farm, comparing the O&M costs of a wind farm consisting of 5 MW turbines with a wind farm consisting of 10 MW turbines. Simulation results confirm that O&M costs decrease when replacing two 5 MW turbines by one 10 MW turbine, if the total production capacity and all other parameters are kept equal. However, whether larger wind turbines can contribute to a reduction of cost of energy from an O&M perspective is first and foremost dependent on how the failure rates and maintenance durations for such wind turbines will develop compared to 5 MW wind turbines. Based on the results of this analysis, it is concluded that higher failure rates and maintenance durations rapidly are counterbalancing the benefits of larger wind turbines.

Matthias Hofmann; Iver Bakken Sperstad

2014-01-01T23:59:59.000Z

30

Phase equilibrium data for development of correlations for coal fluids  

SciTech Connect

The overall objective of the authors' work is to develop accurate predictive methods for representations of vapor-liquid equilibria in systems encountered in coal-conversion processes. The objectives pursued in the present project include: (1) Measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g., C{sub 2}H{sub 6}, CH{sub 4}) in a series of paraffinic, naphthenic, and aromatic hydrocarbon solvents to permit evaluations of interaction parameters in models for phase behavior. Solubilities of the gases in the liquid phase have been determined. (2) Evaluation of existing equations of state and other models for representations of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed. (3) Generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentation of final results in formats useful in the design/optimization of coal liquefaction processes.

Robinson, R.L. Jr.; Gasem, K.A.M.; Darwish, N.A.; Raff, A.M.

1991-02-01T23:59:59.000Z

31

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

32

Auslegung eines 1-MW-Brennstoffzellen-Heizkraftwerks  

Science Journals Connector (OSTI)

Aufbauend auf den Ergebnissen der Machbarkeitsstudie 1,5-MW-PAFC-Heizkraftwerk, beabsichtigt die GEW, eine 1-MW-Brennstoffzellenanlage zur kombinierten Strom- und Wrmeerzeugung (Kraft-Wrme-Kopplung ... KWK...

U. Langnickel

1997-10-01T23:59:59.000Z

33

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

34

Phase Diagram of Fully Developed Drainage in Porous Media  

SciTech Connect

Using concepts of invasion percolation in a gradient, we develop a phase diagram of fully developed drainage in porous media. The transition between stabilized displacement (where the conventional continuum applies) and fingering is controlled by the change of the sign of the gradient of the percolation probability (from stabilizing to destabilizing). The transition boundary is described by scaling laws. {copyright} {ital 1997} {ital The American Physical Society}

Yortsos, Y.C.; Xu, B. [Petroleum Engineering Program, Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211 (United States)] [Petroleum Engineering Program, Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211 (United States); Salin, D. [Laboratoire Fluides, Automatique et Systemes Thermiques, Universite Paris VI and XI, associated with C.N.R.S. (URA 871), Batiment 502, Campus Universitaire, 91405 Orsay Cedex (France)] [Laboratoire Fluides, Automatique et Systemes Thermiques, Universite Paris VI and XI, associated with C.N.R.S. (URA 871), Batiment 502, Campus Universitaire, 91405 Orsay Cedex (France)

1997-12-01T23:59:59.000Z

35

Long Range Campus Development Plan Implementation and Plan Phasing  

E-Print Network (OSTI)

Long Range Campus Development Plan Implementation and Plan Phasing 55 Introduction Plan Review approach and the formal, regular review of the process of the Plan. MSU will revisit the Plan on a cyclical will continue to build upon and refine these fundamental elements and strategies. Recurring review of the Plan

Maxwell, Bruce D.

36

10MW Class Direct Drive HTS Wind Turbine, CRADA Number CRD-08...  

Office of Scientific and Technical Information (OSTI)

10MW Class Direct Drive HTS Wind Turbine Cooperative Research and Development Final Report CRADA Number: CRD-08-00312 NREL Technical Contact: Walter Musial CRADA Report NREL...

37

Streak tube photocathode development program. Phase 2, Final technical report  

SciTech Connect

This report details the progress made toward developing a streak tube with greater than 1% quantum efficiency at a wavelength of 1300 nm. The achieved performance is the result of approximately three years of effort. The goal of Phase 2 of this contract was to seal a working 1.3 {mu}m streak tube. This effort was focused in two areas. First there was a continuing effort to further develop and demonstrate the cathodes ability to meet the stated requirements. The second effort was aimed at solving the mechanical and process related problems related to sealing this cathode onto a EG&G streak tube.

Not Available

1993-11-20T23:59:59.000Z

38

bectso-10mw | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen 10-MW Demonstration of...

39

Latest Results in SLAC 75-MW PPM Klystrons  

SciTech Connect

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

40

PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT  

SciTech Connect

In this report, we summarize our current collobarative efforts, involving three national laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboatory (LANL), to develop a computational framework for homogenous and heterogenous nucleation mechanisms into the generic phase-field model. During the studies, the Fe-Cr system was chosen as a model system due to its simplicity and availability of reliable thermodynamic and kinetic data, as well as the range of applications of low-chromium ferritic steels in nuclear reactors. For homogenous nucleation, the relavant parameters determined from atomistic studies were used directly to determine the energy functional and parameters in the phase-field model. Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were systematically examined in two- and three- dimensional models. For the heteregoneous nucleation mechanism, we studied the nucleation and growth behavior of chromium precipitates due to the presence of dislocations. The results demonstrate that both nucleation schemes can be introduced to a phase-field modeling algorithm with the desired accuracy and computational efficiency.

Biner, Bullent; Tonks, Michael; Millett, Paul C.; Li, Yulan; Hu, Shenyang Y.; Gao, Fei; Sun, Xin; Martinez, E.; Anderson, D.

2012-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II  

SciTech Connect

This document constitutes GEs final report for the Microgrid Design, Development and Demonstration program for DOEs Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energys Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

Sumit Bose; Michael Krok

2011-02-08T23:59:59.000Z

42

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

43

CIM5 Phase III base process development results  

SciTech Connect

Integrated Demonstration Runs for the Am/Cm vitrification process were initiated in the Coupled 5-inch Cylindrical Induction Melter (CIM5) on 11/30/98 and completed on 12/9/98. Four successful runs at 60 wt% lanthanide loading were completed which met or exceeded all established criteria. The operating parameters used in these runs established the base conditions for the 5-inch Cylindrical Induction Melter (CIM5) process and were summarized in the 5-inch CIM design basis, SRT-AMC-99-OO01. (1) In subsequent tests, a total of fourteen CIM5 runs were performed using various power inputs, ramp rates and target temperatures to define the preferred processing conditions (2) Process stability and process flexibility were the key criteria used in assessing the results for each run. A preferred set of operating parameters was defined for the CIM5 batch process and these conditions were used to generate a pre-programmed, automatic processing cycle that was used for the last six CIM.5 runs (3) These operational tests were successfully completed in the January-February time frame and were summarized in SRT-AMC-99-00584. The recommended set of operating conditions defined in Runs No.1 through No.14 was used as the starting point for further pilot system runs to determine the robustness of the process, evaluate a bubbler, and investigate off-normal conditions. CIM5 Phase III Runs No.15 through No.60 were conducted utilizing the pre-programmed, automatic processing cycle to investigate system performance. This report summarizes the results of these tests and provides a recommendation for the base process as well as a processing modification for minimizing volume expansions if americium and/or curium are subject to a thermal reduction reaction like cerium. This document summarizes the results of the base process development tests conducted in the Am/Cm Pilot Facility located in Building 672-T.

Witt, D.C.

2000-01-06T23:59:59.000Z

44

X-ray Phase Contrast analysis - Digital wavefront development  

SciTech Connect

Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

Idir, Mourad [Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Potier, Jonathan [Phaseview, Palaiseau (France); Universite Paul Sabatier-Toulouse III, Metrology Beamline, Synchrotron SOLEIL, Gif-sur-Yvette (France); Fricker, Sebastien [Phaseview, Palaiseau (France); Snigirev, Anatoly; Snigireva, Irina [ESRF, Grenoble (France); Modi, M. H. [X-ray Optics Section, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

45

Ris-R-Report 12MW: final report  

E-Print Network (OSTI)

the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st char.): `12MW: final report' is for the project with the full title `12 MW wind turbines

46

Developement of a digitally controlled low power single phase inverter for grid connected solar panel.  

E-Print Network (OSTI)

?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter (more)

Marguet, Raphael

2010-01-01T23:59:59.000Z

47

Phase Development in a U-7 wt.% Mo vs. Al-7 wt.% Ge Diffusion Couple  

SciTech Connect

Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. Compositional modification to replace Si with Ge is now under evaluation to attempt to further improve irradiation behavior. In this study, the microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solutioning developing a (U,Mo)(Al,Ge)3 phase.

E. Perez; D.D. Keiser, Jr.; Y.H. Sohn

2013-10-01T23:59:59.000Z

48

MHK Technologies/14 MW OTECPOWER | Open Energy Information  

Open Energy Info (EERE)

MW OTECPOWER MW OTECPOWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description MINIMIZE SURFACE ACTIVITIES TO REDUCE THE CAPITAL COST AND TO IMPROVE EFFICIENCY ALTERNATE WORKING FLUIDS ARE USED FOR ENHANCED POWER EFFICIENCY IN OPTEC POWER HYBRID CYCLES ARE USED TO IMPROVE POWER AND NEED WITH SUBSEA HEAT EXCHANGERS ADVANCED SUPPORTING VESSEL CONCEPT AND FREE STANDING RISER TECHNOLOGIES TO WITH STAND HARSH OCEAN ENVIRONMENT IN DEEPWATER HAD BEEN DEVELOPED FOR THIS OPTEC POWER IT IS THE ONLY RELIABLE AND PROFITABLE RENEWABLE ENERGY SOURCE FOR THE NEED OF WORLD ENERGY FOR THE NEXT DECADE DESALINATION AND HDROGEN PRODUCTION ARE LINKED TO THE POWER GENERATION OF THE OTEC POWER FOR SEVERAL BY PRODUCTS COST EFFECTIVE PRODUCTION CLEAN ENERGY AND CLEAN WATER IS THE GOAL OF OTECPOWER INC OUR 14 MW OTEC POWER COSTS 50 MILLION USD ALL EQUIPMENT HAD BEEN DESINGED AND A FEW OF THEM ARE TESTED FOR OIL AND GAS INDUSTRY APPLICATION WHICHA RE BEING USED FOR OTECPOWER A RELIABLE AND FEASIBLE OTECPOWER IS PROPOSED

49

DEVELOPMENT AND TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3  

SciTech Connect

In the second quarter of calendar year 1998, no work was performed on the present project. The 20 MMBtu/hr combustor-boiler facility was not operated during this period. The total test days on the Philadelphia facility to the end of June 1998 remained at 108 as in the previous quarter. Of these, 34 tests were part of the other DOE project. The test days on the other project are listed here because they demonstrate the durability of the combustor, which is one of the objectives of the present project. As noted previously, this exceeds the planned 63 test days for this project. All key project objectives have been exceeded including combustor durability, automated combustor operation, NO{sub x} emissions as low as 0.07 lb/MMBtu and SO{sub 2} emissions as low as 0.2 lb/MMBtu. In addition, a novel post-combustion NO{sub x} control process has been tested on a 37 MW and 100 MW utility boiler. Any further tests will depend on the results of evaluations of current and prior tests. The only effort remaining on this project is facility disassembly and Final Report. Also, as part of the commercialization effort for this combustor technology, Coal Tech is developing alternative designs of the combustor that allow its fabrication as substantially reduced costs from the present unit.

Dr. Bert Zauderer

1998-07-08T23:59:59.000Z

50

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

51

10 MW Supercritical CO2 Turbine Test  

SciTech Connect

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650C in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

52

Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998  

SciTech Connect

The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

Neuhauser, E.

1998-11-01T23:59:59.000Z

53

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

54

TWRS privatization Phase I site development design requirements document  

SciTech Connect

The DOE-RL is pursuing a strategy of hiring private contractors for treatment of Hanford Site tank wastes. This strategy is called privatization and includes design, permitting,construction, operation, and deactivation of facilities for tank waste treatment. The TWRS Privatization Infrastructure Project consists of several sub- projects which will provide key services needed to support the privatization mission. This document identifies the design requirements for the site development sub-project, including construction, power, water, and road modifications. It will be used in development of the project`s conceptual design.

Shord, A.L.

1997-01-21T23:59:59.000Z

55

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

56

Low frequency noise from MW wind turbines --mechanisms of generation  

E-Print Network (OSTI)

Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy 3.6MW turbine 12 3.2 Noise as function of wind speed 12 3.3 Noise as function of rotor

57

Ris-R-Report The DAN-AERO MW Experiments  

E-Print Network (OSTI)

ull scale MW size rotor s as well as o n airfoils for MW size turbine s in wind tun nels. Shear ew insight into a number of fu ndamental aerodynamic and aero-acoustic issues, important and turbulence inflow characteristics were measured on a Si emens 3.6 MW turbine with a five hole pitot tube

58

Phase 1 Development Report for the SESSA Toolkit.  

SciTech Connect

The Site Exploitation System for Situational Awareness ( SESSA ) tool kit , developed by Sandia National Laboratories (SNL) , is a comprehensive de cision support system for crime scene data acquisition and Sensitive Site Exploitation (SSE). SESSA is an outgrowth of another SNL developed decision support system , the Building R estoration Operations Optimization Model (BROOM), a hardware/software solution for data acquisition, data management, and data analysis. SESSA was designed to meet forensic crime scene needs as defined by the DoD's Military Criminal Investigation Organiza tion (MCIO) . SESSA is a very comprehensive toolki t with a considerable amount of database information managed through a Microsoft SQL (Structured Query Language) database engine, a Geographical Information System (GIS) engine that provides comprehensive m apping capabilities, as well as a an intuitive Graphical User Interface (GUI) . An electronic sketch pad module is included. The system also has the ability to efficiently generate necessary forms for forensic crime scene investigations (e.g., evidence submittal, laboratory requests, and scene notes). SESSA allows the user to capture photos on site, and can read and generate ba rcode labels that limit transcription errors. SESSA runs on PC computers running Windows 7, but is optimized for touch - screen tablet computers running Windows for ease of use at crime scenes and on SSE deployments. A prototype system for 3 - dimensional (3 D) mapping and measur e ments was also developed to complement the SESSA software. The mapping system employs a visual/ depth sensor that captures data to create 3D visualizations of an interior space and to make distance measurements with centimeter - level a ccuracy. Output of this 3D Model Builder module provides a virtual 3D %22walk - through%22 of a crime scene. The 3D mapping system is much less expensive and easier to use than competitive systems. This document covers the basic installation and operation of th e SESSA tool kit in order to give the user enough information to start using the tool kit . SESSA is currently a prototype system and this documentation covers the initial release of the tool kit . Funding for SESSA was provided by the Department of Defense (D oD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL) . ACKNOWLEDGEMENTS The authors wish to acknowledge the funding support for the development of the Site Exploitation System for Situational Awareness (SESSA) toolkit from the Department of Defense (DoD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL). Special thanks to Mr. Garold Warner, of DFSC, who served as the Project Manager. Individuals that worked on the design, functional attributes, algorithm development, system arc hitecture, and software programming include: Robert Knowlton, Brad Melton, Robert Anderson, and Wendy Amai.

Knowlton, Robert G.; Melton, Brad J; Anderson, Robert J.

2014-09-01T23:59:59.000Z

59

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

SciTech Connect

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

60

Design and development of a laminated Fresnel lens for point-focus PV systems. Phase II  

SciTech Connect

A laminated glass-plastic lens parquet using injection molded point focus Fresnel lenses is described. The second phase of a program aimed at investigating the cost effectiveness of a glass-plastic concentrator lens assembly is reported. The first phase dealt with the development of a first generation lens design, the selection of the preferred glass coverplate and glass-to-lens adhesive and initial injection molding lens molding trials. The second phase has dealt with the development of an improved lens design, a full size parquet lamination process, and a second group of injection molding lens molding trials.

Hodge, R.C.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report  

SciTech Connect

Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

2011-11-28T23:59:59.000Z

62

Seismic reflection evidence for two phase development of Tertiary basins from east-central Nevada  

SciTech Connect

Two east-west seismic reflection profiles crossing Antelope Valley, Smokey Valley, Railroad Valley and Big Sand Springs Valley demonstrate the evolution of Tertiary extension from broad sags to narrow, fault-bounded basins. Seismic reflection data was acquired for the Anschutz Corporation by the Digicon Corporation during the winter of 1988/1989. Reprocessing of a 480 channel, 60 fold, dynamite source experiment enabled good imaging of the basin stratigraphy. These data suggest two distinct phases of basin development occurred, separated by a regional unconformity. The early phase is characterized by development of a broad basin riddled with many small offset normal faults. The later phase shows a narrowing of the basin and subsidence along one dominant structure, an apparent planar normal fault. The unconformity separating the two phases of extension marks a transition from broad subsidence to local asymmetric tilting that took place over a short period of time relative to sedimentation rates. Antelope Valley and Railroad Valley clearly show strong evidence for two phase development, whereas Smokey Valley represents mostly the early phase and Big Sand Springs Valley represents only the later phase of extension. The absence of dating within the basins precludes the authors from determining if the abrupt tectonic transition within the basins resulted from differences in local strain rates or amounts, or was due to changes in regional stress fields.

Liberty, L.M.; Heller, P.L.; Smithson, S.B. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics)

1993-04-01T23:59:59.000Z

63

Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1  

SciTech Connect

This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

None

1995-10-01T23:59:59.000Z

64

ECH Technology Development  

SciTech Connect

Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

Temkin, Richard [MIT

2014-12-24T23:59:59.000Z

65

500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application  

SciTech Connect

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

66

Siemens introduces 50 Hz 190 MW gas turbine  

SciTech Connect

According to market data for high power gas turbines compiled by Erlangen, Germany-based Siemens KWU, referring to machines above 50 MW, market demand will average approximately 22 GW per year from now to 2005, of which roughly 15 GW will be for combined-cycle plants and nearly half (11 GW) will be placed in the intermediate capacity class (M Class). Looking at the Siemens line of advanced machines for 50 Hz grids; from the V64.3A rated 70 MW one jumps to the V94.3A rated 240 MW leaving a gap of 170 MW uncovered aside from the existing model V94.2 at 159 MW. This article describes the design and specifications of Siemens new 50 Hz 190 MW gas turbines that hope to cater to this gap. 2 refs.

Chellini, R.

1997-01-01T23:59:59.000Z

67

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

68

5-MW Dynamometer Ground Breaking | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Laboratory in Golden, Colorado, broke ground for a new 5-MW dynamometer test facility. When complete, the new facility will more than double the wind turbine...

69

Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System  

SciTech Connect

A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Park, H.; Cho, M. H.; Namkung, W. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Hosea, J.; Ellis, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Sakamoto, K.; Kajiwara, K. [Japan Atomic Energy Agency, Ibaraki (Japan); Doane, J. [General Atomics, San Diego (United States)

2011-12-23T23:59:59.000Z

70

5 MW pulsed spallation neutron source, Preconceptual design study  

SciTech Connect

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

71

Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy  

Open Energy Info (EERE)

Solar Electric Corp aka Solar MW Energy Inc Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place Ontario, California Zip 91761 Product Plans to develop STEG plants in the Mojave desert. Coordinates 34.06457°, -117.647809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.06457,"lon":-117.647809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector  

SciTech Connect

The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab

2011-03-01T23:59:59.000Z

73

ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III  

SciTech Connect

This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); coal providing >65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

NONE

1998-09-30T23:59:59.000Z

74

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

75

Phase 1: Forming and Norming Leaders Guide for developing a Community Wildfire Protection Plan  

E-Print Network (OSTI)

Phase 1: Forming and Norming Leaders Guide for developing a Community Wildfire Protection Plan This Leaders Guide is designed to supplement the document entitled: "Preparing a Community Wildfire Protection Guide Supplement for details about each of the step instructions listed on this Fire Chiefs / Leaders

76

The nal phase of dead-ice moraine development: processes and sediment architecture, Kotlujokull, Iceland  

E-Print Network (OSTI)

with an interrelated group of re-sedimentation processes and surface features. Series of sinkholes evolve at the toeThe ®nal phase of dead-ice moraine development: processes and sediment architecture, Ko the ®nal melting processes to the architecture of the sedimentary end product. In the current humid sub

Ingólfsson, ?lafur

77

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

78

Property:Permit/License Buildout (MW) | Open Energy Information  

Open Energy Info (EERE)

Permit/License Buildout (MW) Permit/License Buildout (MW) Jump to: navigation, search Property Name Permit/License Buildout (MW) Property Type String Pages using the property "Permit/License Buildout (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 40 + MHK Projects/Algiers Light Project + 20 + MHK Projects/Anconia Point Project + 15 + MHK Projects/Ashley Point Project + 148 + MHK Projects/Avalon Tidal + 30 + MHK Projects/Avondale Bend Project + 18 + MHK Projects/BW2 Tidal + 3 + MHK Projects/Bar Field Bend + 94 + MHK Projects/Barfield Point + 114 + MHK Projects/Bayou Latenache + 50 + MHK Projects/Bondurant Chute + 152 + MHK Projects/Breeze Point + 198 + MHK Projects/Brilliant Point Project + 56 + MHK Projects/Brough Head Wave Farm + 200 +

79

Instrumentation development for multi-dimensional two-phase flow modeling  

SciTech Connect

A multi-faceted instrumentation approach is described which has played a significant role in obtaining fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The goal of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressure/temperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Doppler velocimeter is used to measure the velocity of liquid-vapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.

Kirouac, G.J.; Trabold, T.A.; Vassallo, P.F.; Moore, W.E.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)

1999-06-01T23:59:59.000Z

80

Wax phase equilibria: developing a thermodynamic model using a systematic approach  

Science Journals Connector (OSTI)

Reservoir hydrocarbon fluids contain heavy paraffins that may form solid phases of wax at low temperatures. Problems associated with wax formation and deposition are a major concern in production and transportation of hydrocarbon fluids. The industry has directed considerable efforts towards generating reliable experimental data and developing thermodynamic models for estimating the wax phase boundary. The cloud point temperature, i.e. the wax appearance temperature (WAT) is commonly measured in laboratories and traditionally used in developing and/or validating wax models. However, the WAT is not necessarily an equilibrium point, and its value can depend on experimental procedures. Furthermore, when determining the wax phase boundary at pipeline conditions, the common practice is to measure the wax phase boundary at atmospheric pressure, then apply the results to real pipeline pressure conditions. However, neglecting the effect of pressure and associated fluid thermophysical/compositional changes can lead to unreliable results. In this paper, a new thermodynamic model for wax is proposed and validated against wax disappearance temperature (WDT) data for a number of binary and multi-component systems. The required thermodynamic properties of pure n-paraffins are first estimated, and then a new approach for describing wax solids, based on the UNIQUAC equation, is described. Finally, the impact of pressure on wax phase equilibria is addressed. The newly developed model demonstrates good reliability for describing solids behaviour in hydrocarbon systems. Furthermore, the model is capable of predicting the amount of wax precipitated and its composition. The predictions compare well with independent experimental data, demonstrating the reliability of the thermodynamic approach.

Hong-Yan Ji; Bahman Tohidi; Ali Danesh; Adrian C Todd

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engineering development of coal-fired high performance power systems phase 2 and 3  

SciTech Connect

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le}10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; and Task 2.4 Duct Heater and Gas Turbine Integration.

Unknown

1999-08-01T23:59:59.000Z

82

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

SciTech Connect

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

83

Aspects of the electrical system design of the colmi 660 mw coal-fired power plant  

SciTech Connect

The conceptual design of the electrical systems for Mexico's Commission Federal de Electricidad (CFE) COLMI 660-MW coal-fired power plant builds on Bechtel's experience with nuclear, gas and coal-fired generating plants. The COLMI conceptual design incorporates a combination of new equipment applications and design considerations that make it more economical when compared to traditional alternatives. Also it provides a reliable state-of-the-art distribution system that is flexible enough for any unit in the 400-900 MW range. Alternative approaches were studied for the system design and equipment arrangement. This paper reviews the approach taken to arrive at the conceptual design and describes the equipment selected and the advantages they provide. Exact sizing and determination of characteristics of the equipment are not given because these were not determined during the conceptual design. These will be determined during the detailed design phase of the project.

Aguilar, J. (Bechtel Corp., Norwalk, CA (US)); Fernandez, J.H. (Comision Federal de Electricidad, Mexico, D.F. (MX))

1992-01-01T23:59:59.000Z

84

Development of an electrical impedance computed tomographic two-phase flows analyzer. Annual technical report for program renewal  

SciTech Connect

This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.

Jones, O.C.

1993-05-01T23:59:59.000Z

85

Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985  

SciTech Connect

This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

NONE

1985-04-01T23:59:59.000Z

86

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

87

Gamesa Installs 2-MW Wind Turbine at NWTC  

Energy.gov (U.S. Department of Energy (DOE))

In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center.

88

Update on the Southwest 1000 MW CSP Initiative  

SciTech Connect

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.

Mancini, T.; Mehos, M.; Wilkins, F.; Morse, F.

2005-11-01T23:59:59.000Z

89

Membrane/distillation hybrid process research and development. Final report, phase II  

SciTech Connect

This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

Mazanec, T.J.

1997-07-01T23:59:59.000Z

90

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the second half year (April 1, 2001-September 30, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-10-30T23:59:59.000Z

91

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-04-30T23:59:59.000Z

92

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report  

SciTech Connect

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

Eidler, Phillip

1999-07-01T23:59:59.000Z

93

Development and validation of a two-phase, three-dimensional model for PEM fuel cells.  

SciTech Connect

The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

Chen, Ken Shuang

2010-04-01T23:59:59.000Z

94

DEVELOPMENT AND TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3  

SciTech Connect

In the second half of calendar year 1998, no work was performed on the present project. The 20 MMBtu/hr combustor-boiler facility was operated for 11 tests, primarily with Coal Tech resources on biomass combustion and gasification. The total test days on the Philadelphia facility to the end of August 1998 was 119. Of these, 36 tests were part of another DOE project on sulfur retention is slag, and 8 were on an in-house biomass combustion effort. The test days on the other project are listed here because they demonstrate the durability of the combustor, which is one of the objectives of the present project. Also, the test work of 1998 revealed for the first time the major potential of this combustor for biomass combustion. These tests are double the 63 tests in the original plan for this project. All key project objectives have been exceeded including combustor durability, automated combustor operation, NO{sub x} emissions as low as 0.07 lb/MMBtu and SO{sub 2} emissions as low as 0.2 lb/MMBtu. In addition, a novel post-combustion NOx control process has been tested on a 37 MW and 100 MW utility boiler. The only effort remaining on this project is facility disassembly and Final Report. However, as part of the commercialization effort for this combustor technology, Coal Tech is planning to maintain the combustor facility in an operational mode at least through 2001. Coal Tech is focusing on utilizing the combustor with biomass fuels in very low cost, small (1 MW nominal) steam power plants. Worldwide application of this technology would have a major impact in reduction of greenhouse gas emissions because the energy content of agricultural biomass is equal to the energy content of the USA's annual coal production.

Dr. Bert Zauderer

1999-03-11T23:59:59.000Z

95

Navy Estimated Average Hourly Load Profile by Month (in MW)  

NLE Websites -- All DOE Office Websites (Extended Search)

Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

96

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

97

Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report  

SciTech Connect

This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

2014-05-19T23:59:59.000Z

98

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

99

Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report  

SciTech Connect

Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

Not Available

1980-10-01T23:59:59.000Z

100

Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development  

SciTech Connect

The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

Ackerman, J.P.; Johnson, T.R.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2003-06-25T23:59:59.000Z

102

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

UPGRADING THE AGS TO 1 MW PROTON BEAM POWER.  

SciTech Connect

The Brookhaven Alternating Gradient Synchrotron (AGS) is a strong focusing accelerator that is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. At this energy the maximum intensity achieved is around 7 x 10{sup 13} protons per pulse. This corresponds to an average beam power of about 0.2 MW. Future programs in high-energy physics, as for instance a neutrino factory with the AGS as the proton driver [l], may require an upgrade of the AGS to an average beam power of 1 MW, at the energy of 24 GeV. This can be achieved with an increase of the beam intensity to 1 x 1014 protons per pulse, a 1.2-GeV superconducting linac as a new injector, and by upgrading the power supply and rf systems to allow cycling at 2.5 beam pulses per second.

BRENNAN,M.J.; MARNERIS,I.; ROSER,T.; RUGGIERO,A.G.; TRBOJEVIC,D.; ZHANG,S.Y.

2001-06-18T23:59:59.000Z

105

DeepWind-from Idea to 5 MW Concept  

Science Journals Connector (OSTI)

Abstract The DeepWind concept has been described previously on challenges and potentials, this new offshore floating technology can offer to the wind industry [1]. The paper describes state of the art design improvements, new simulation results of the DeepWind floating vertical axis wind turbine concept, which implies a high potential for cost saving. The most critical aspects of the concept are addressed in proving feasibility, and if it can be scaled up to 20 MW. Applying structural mechanics, generator, floater & mooring system, control system design, and rotor design using detailed integrated models, results have evolved to a 5 MW baseline design. This important outcome will be used as a reference for further improvements. Emphasis in this paper is made on the interplay between different components and some trade-offs. One such example is the rotational speed which largely influences the design of both the generator and the aerodynamic rotor. Another example is aerofoil design affecting energy capture, stall behaviour, structural dynamics and control design. Finally, the potential for up-scaling to 20 MW is discussed.

Uwe S. Paulsen; Helge A. Madsen; Knud A. Kragh; Per H. Nielsen; Ismet Baran; Jesper Hattel; Ewen Ritchie; Krisztina Leban; Harald Svendsen; Petter A. Berthelsen

2014-01-01T23:59:59.000Z

106

Development of Thermo-Regulating Fabric Using Phase Change Material (PCM).  

E-Print Network (OSTI)

?? This research study concentrates on use of phase change material (PCM) in textiles which can produce thermo-regulating characteristics to control body temperature useful for (more)

Bhatkhande, Prasad S.

2011-01-01T23:59:59.000Z

107

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53 53 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman August 2013 PNNL- 22653 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members August 2013 Prepared by: Pacific Northwest National Laboratory and

108

Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems. [PWR  

SciTech Connect

A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations.

Hsu, C.T.; Keshock, E.G.; McGill, R.N.

1983-01-01T23:59:59.000Z

109

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report  

SciTech Connect

Since 1985, the Pacific Northwest Laboratory (PNL) has managed the Whole-Building Energy Design Targets project for the US Department of Energy (DOE) Office of Building Technologies (formerly the Office of Buildings and Community Systems). The primary focus of the Targets project is to develop a flexible methodology for buildings industry use in setting energy performance guidelines for commercial buildings and for determining compliance with those guidelines. The project is being conducted as a two-phase effort. In Phase 1, Planning, the project team determined the research that was necessary for developing the Targets methodology. In the concept stage of Phase 2, Development, the team sought to define the technical and software development concepts upon which the overall Targets methodology will be based. The concept stage work is documented in four volumes, of which this summary volume is the first. The three other volumes are Volume 2: Technical Concept Development Task Reports, Volume 3: Workshop Summaries, and Volume 4: Software Concept Development Task Reports. 8 refs., 14 figs.

Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA))

1990-09-01T23:59:59.000Z

110

Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

Purpose, Context, Meeting Process, and Agenda for MW and RF as Enabling Technologies for Advanced Manufacturing on July 25, 2012

111

Progress towards a 200 MW electron beam accelerator for the RDHWT/Mariah II Program.  

SciTech Connect

The Radiatively Driven Hypersonic Wind Tunnel (RDHWT) program requires an unprecedented 2-3 MeV electron beam energy source at an average beam power of approximately 200MW. This system injects energy downstream of a conventional supersonic air nozzle to minimize plenum temperature requirements for duplicating flight conditions above Mach 8 for long run-times. Direct-current electron accelerator technology is being developed to meet the objectives of a radiatively driven Mach 12 wind tunnel with a free stream dynamic pressure q=2000 psf. Due to the nature of research and industrial applications, there has never been a requirement for a single accelerator module with an output power exceeding approximately 500 kW. Although a 200MW module is a two-order of magnitude extrapolation from demonstrated power levels, the scaling of accelerator components to this level appears feasible. Accelerator system concepts are rapidly maturing and a clear technology development path has been established. Additionally, energy addition experiments have been conducted up to 800 kW into a supersonic airflow. This paper will discuss progress in the development of electron beam accelerator technology as an energy addition source for the RDHWT program and results of electron beam energy addition experiments conducted at Sandia National Laboratories.

Lockner, Thomas Ramsbeck; Reed, Kim Warren; Pena, Gary Edward; Schneider, Larry X.; Lipinski, Ronald J.; Glover, Steven Frank

2004-06-01T23:59:59.000Z

112

Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation  

E-Print Network (OSTI)

macroencapsulated phase-change materials (PCMs), incorporated therein, was developed, constructed, and evaluated. This prototype wall is referred to as - phase-change frame wall (PCFW). A PCFW is a typical frame wall, consisting of outside siding, thermal insulation...

Zhang, M.; Medina, M. A.; King, J. B.

2004-01-01T23:59:59.000Z

113

Seismic activity in the SumatraJava region prior to the December 26, 2004 (Mw =9.09.3) and March 28, 2005 (Mw =8.7) earthquakes  

E-Print Network (OSTI)

Seismic activity in the Sumatra­Java region prior to the December 26, 2004 (Mw =9.0­9.3) and March

Dmowska, Renata

114

Demonology in Ancient Egypt History and Developments during the Later Phases of Pharaonic History and the Greco-Roman  

E-Print Network (OSTI)

Demonology in Ancient Egypt History and Developments during the Later Phases of Pharaonic History and the Greco-Roman Period. Rita Lucarelli In this paper the meaning and function of demons in ancient Egypt have been outlined and a few central issues concerning demonology of Pharaonic and Greco-Roman Egypt

Qian, Ning

115

Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report  

SciTech Connect

The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

Not Available

1980-10-01T23:59:59.000Z

116

Development of building materials by using micro-encapsulated phase change material  

Science Journals Connector (OSTI)

Micro-encapsulated phase change material (Micro-PCM) could be used for ... thermal energy storage and also for PCM-building materials. Micro-PCM was prepared by in-situ ... ?m. The thermal fluctuation of PCM-buil...

See Hoon Lee; Sang Jun Yoon; Yong Gu Kim

2007-03-01T23:59:59.000Z

117

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

118

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

SciTech Connect

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

119

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-04-28T23:59:59.000Z

120

Stress development and shape change during press-hardening process using phase-transformation-based finite element analysis  

Science Journals Connector (OSTI)

Abstract Elastically driven shape change, or springback, in a press-hardened U-channel part made from a tailor-welded blank (TWB) was simulated using a fully coupled thermo-mechanicalmetallurgical finite element (FE) method. The TWB consists of boron steel and high-strength low-alloy steel, which have significantly different hardenabilities. A combined implicitexplicit three-step simulation consisting of air cooling, forming and die quenching, and springback was used for computational efficiency. All the required material models such as the modified phase-transformation kinetics and phase-transformation-related stress-update scheme were implemented in the FE software ABAQUS with the user-defined subroutines UMAT, VUMAT, and HETVAL. The developed FE procedure, including the material models, satisfactorily predicted the experimentally measured shape changes of the TWB part. Here we present an in-depth analysis of the residual stress development during forming and die quenching using different material modeling schemes. It should be noted that the stress evolution of the two materials with high and low hardenabilities were significantly different depending on the phase transformation kinetics during forming and quenching. Moreover, in order to enhance the prediction capability of the press-hardening simulations, it was essential to include the phase-transformation-related strains in the material model.

H.H. Bok; J.W. Choi; D.W. Suh; M.G. Lee; F. Barlat

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

SciTech Connect

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

122

Property:Project Phase | Open Energy Information  

Open Energy Info (EERE)

Phase Phase Jump to: navigation, search Property Name Project Phase Property Type Text This is a property of type String. Pages using the property "Project Phase" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Phase 2 + MHK Projects/ADM 3 + Phase ? + MHK Projects/ADM 4 + Phase ? + MHK Projects/ADM 5 + Phase 2 + MHK Projects/AW Energy EMEC + Phase 3 + MHK Projects/AWS II + Phase 1 + MHK Projects/Admirality Inlet Tidal Energy Project + Phase 1 + MHK Projects/Agucadoura + Phase 3 + MHK Projects/Alaska 1 + Phase 0 + MHK Projects/Alaska 13 + Phase ? + MHK Projects/Alaska 17 + Phase 0 + MHK Projects/Alaska 18 + Phase 0 + MHK Projects/Alaska 24 + Phase 0 + MHK Projects/Alaska 25 + Phase 0 + MHK Projects/Alaska 28 + Phase 0 +

123

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

effect (Smart effect (Smart Grid Project) (Thisted, Denmark) Jump to: navigation, search Project Name Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167°, 8.703492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.959167,"lon":8.703492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

2 MW upgrade of the Fermilab Main Injector  

SciTech Connect

In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

Weiren Chou

2003-06-04T23:59:59.000Z

125

Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2007-03-31T23:59:59.000Z

126

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-10-28T23:59:59.000Z

127

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

128

EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I  

SciTech Connect

All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

None

1984-02-01T23:59:59.000Z

129

Design and operating experience of a 40 MW, highly-stabilized power supply  

SciTech Connect

Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of <10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [Florida State Univ., Tallahassee, FL (United States). Nationa High Magnetic Field Laboratory; Bogdan, F.; Morris, G.C. [ABB Industrial Systems, New Berlin, WI (United States); Rumrill, R.S. [Alpha Scientific Electronics Inc., Hayward, CA (United States)

1995-07-01T23:59:59.000Z

130

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

131

Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980  

SciTech Connect

This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

Not Available

1981-01-20T23:59:59.000Z

132

Model Validation at the 204-MW New Mexico Wind Energy Center  

SciTech Connect

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

133

Experimental Study on Coal Feeding Property of 600MW CFB Boiler  

Science Journals Connector (OSTI)

In the CFB boiler technology, improving the steam parameters can ... , based on the structure of commercial 600MW CFB boiler unit and similarity principle, the experiment...

H. P. Chen; L. N. Tian; Q. Du; H. P. Yang

2010-01-01T23:59:59.000Z

134

br Owner br Facility br Type br Capacity br MW br Commercial...  

Open Energy Info (EERE)

Area Pauzhetskaya Geothermal Power Plant Kamchatskburgeotermiya Single Flash MW Rye Patch Geothermal Area Pianacce Geothermal Power Station Travale Radicondoli Geothermal Area...

135

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

136

Model Validation at the 204-MW New Mexico Wind Energy Center (Poster)  

SciTech Connect

The objectives of this report are: (1) to investigate the impact of aggregation on a large wind farm; and (2) to explore the dynamic behaviors of the power system and the wind turbine. The methods used are: (1) use equivalencing method previously developed to simplify Taiban Mesa wind power plant; (2) use PSLF dynamic analysis to simulate the wind power plant with AWEA-proposed low voltage ride through (LVRT) used to test the systems; and (3) represent a 204-MW wind plant two ways, treat the entire wind farm feeding a large power system network as a single generator and treat each wind turbine within the wind farm as an individual generator (136 generators) feeding the large power system network.

Muljadi, E.; Butterfield, C. P.; Miller, N.; Delmerico, R.; Ellis, A.; Mechenbier, J.; Zavadil, R.; Smith, J. C.; Hochheimer, J.; Young, R.

2006-01-01T23:59:59.000Z

137

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

NONE

1996-10-01T23:59:59.000Z

138

Expanded High-Level Waste Glass Property Data Development: Phase I  

SciTech Connect

Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

2011-01-21T23:59:59.000Z

139

Progress in the development of phase-sensitive neutron reflectometry methods.  

SciTech Connect

It has been a number of years since phase-sensitive specular neutron reflectometry (PSNR) methods employing reference layers were first introduced to help remove the ambiguity inherent in the reconstruction of scattering length density (SLD) depth profiles (Majkrzak, C. F.; Berk, N. F. Physica B 2003, 336, 27) from specular reflectivity measurements. Although a number of scientific applications of PSNR techniques have now been successfully realized (Majkrzak, C. F.; Berk, N. F.; Perez-Salas, U. A. Langmuir 2003, 19, 7796 and references therein), in certain cases practical difficulties remain. In this article, we describe possible solutions to two specific problems: (1) the need for explicit, detailed knowledge of the SLD profile of a given reference layer of finite thickness; and (2) for a reference layer of finite thickness in which only two density variations are possible, how to identify which of two mathematical solutions corresponds to the true physical structure.

Majkrzak, C. F.; Berk, N. F.; Kienzle, P.; Perez-Salas, U. (Materials Science Division); (NIST Center for Neutron Research)

2009-01-01T23:59:59.000Z

140

The second-phase development of the China JinPing underground Laboratory  

E-Print Network (OSTI)

During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m^3, which can be compared to the existing CJPL-I volume of 4,000 m^3. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals.

Jainmin Li; Xiangdong Ji; Wick Haxton; Joseph S. Y. Wang

2014-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

142

A Multi-MW Proton/Electron Linac at KEK  

E-Print Network (OSTI)

It is proposed that a multi-MW superconducting proton/electron linac (SCL) and a proton injector (PI) be built at KEK. The 3 GeV PI would serve both as an injector to the SCL and a source of proton beams that could be used to copiously produce neutrons and muons. Protons accelerated by the SCL to 20 GeV would be transferred through the KEK Tristan ring in order to create neutrino, kaon and muon beams for fixed-target experiments. At a later stage, a 60 GeV proton synchrotron could be installed inside the Tristan ring. The SCL, comprising 1.3 GHZ superconducting ILC-type rf cavities, could also accelerate polarized or unpolarized electron beams. After acceleration, electrons may traverse an XFEL undulator, or could be used to produce polarized positrons. An SCL-based synchrotron light source for applications in materials science and medicine is also envisaged. The proposed facility would be constructed using the existing KEK accelerator infrastructure.

Belusevic, Radoje

2014-01-01T23:59:59.000Z

143

Developing life-cycle phases for the DoDAF using ISO15704 Annex A (GERAM)  

Science Journals Connector (OSTI)

This paper presents a development of the US Department of Defense Architecture Framework (DoDAF) based on life-cycle concept of the Generalized Enterprise Reference Architecture and Methodology (GERAM) framework/ISO 15704:2000 requirements. Previous ... Keywords: DoDAF, Enterprise architecture, GERAM, ISO15704, Life-cycle

Kamal Chaharsooghi; Mohammad Ahmadi Achachlouei

2011-04-01T23:59:59.000Z

144

Conceptual design report, TWRS Privatization Phase I, site development and roads, subproject W-505  

SciTech Connect

This document includes Conceptual Design Report (CDR) for the site development, construction of new roads and improvements at existing road intersections, habitat mitigation, roadway lighting, and construction power needed for the construction of two Private Contractor (PC) Facilities. Approximately 50 hectare (124 acres) land parcel, east of the Grout Facility, is planned for the PC facilities.

Singh, G.

1997-06-05T23:59:59.000Z

145

Northern Cheyenne Tribe Wind Energy Development Report  

SciTech Connect

Specific development objectives focused on the completion of all actions required to qualify a specfic project for financing and construction of a 30MW wind facility.

Belvin Pete; Distributed Generation Systems Inc; WEST, Inc; Michael S. Burney; Chris Bergen; Electrical Consultants, Inc; Terracon

2007-06-27T23:59:59.000Z

146

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

147

Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II  

SciTech Connect

The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

None

1980-06-30T23:59:59.000Z

148

Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection  

SciTech Connect

A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200 C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

Le Bourdais, Florian; Marchand, Benot [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

2014-02-18T23:59:59.000Z

149

Ris-R-Report Multi-MW wind turbine power curve  

E-Print Network (OSTI)

Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

150

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

151

The Numerical Simulation on Cooling Effect of Microcapsulated Phase Change Material Suspension in Laminar Thermal Developing Section  

Science Journals Connector (OSTI)

The microcapsulated phase change material (MEPCM) suspension has obtained more and ... concerning MECPM suspension are generally reduced to single-phase models. In this paper, a novel two-phase model is construct...

P. Q. Liu; J. Jin; G. P. Lin

2009-01-01T23:59:59.000Z

152

Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum  

SciTech Connect

Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

2005-10-31T23:59:59.000Z

153

Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR  

SciTech Connect

The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

Hoppe, Eric W.; Merriman, Jason H.

2011-03-01T23:59:59.000Z

154

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

Albert Calderon

2005-10-14T23:59:59.000Z

155

Diagnosis of a turbocharging system of 1MW internal combustion engine  

Science Journals Connector (OSTI)

A diagnostic procedure is presented purposely for the turbocharging system of 1MW internal combustion engine (I.C.E.) and specifically, for the filters and compressor modules. This study is part of a wider research activity, concerning the development of a diagnosis system dedicated to the cogenerative I.C.E. installed at the Engineering Faculty in Perugia. Firstly a 1-D thermodynamic model of the CHP engine working fluid was developed to simulate failure conditions of the turbocharging groups, which are not directly replicable on the I.C.E. to avoid plant stoppage. This model is able to simulate the degradation in performance of the engine components. It also takes into account the effect of compensation which the regulation system activates in case of efficiency loss or failure relative to filters or compressors. In order to identify and assess such failures, the fuzzy logic was chosen as the tool for the diagnosis system design. The developed diagnosis system displayed a good reliability degree with the 1-D thermodynamic model results, for operating conditions in correspondence of bad performance either on behalf of the filters or the compressor. Moreover, the procedure can be implemented in the plant monitoring system and provides in real-time diagnosis results about the status of the components and the need of maintenance, on the basis of few parameters already measured on the I.C.E.

L. Barelli; G. Bidini; F. Bonucci

2013-01-01T23:59:59.000Z

156

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

157

Center for Fuel Cell Research and Applications development phase. Final report  

SciTech Connect

The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

NONE

1998-12-01T23:59:59.000Z

158

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

159

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

SciTech Connect

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

160

System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler  

SciTech Connect

We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The MARX Modulator Development Program for the International Linear Collider  

SciTech Connect

The ILC Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC.

Leyh, G.E.; /SLAC

2006-06-12T23:59:59.000Z

162

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

163

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

164

Study and Design of Platen Superheater of 300 MW CFB Boiler  

Science Journals Connector (OSTI)

In order to avoid overtemperature tube explosion of the platen superheater, the measurements of metal temperatures and the heat transfer coefficients of the platen superheater in a commercial 300 MW Circulating F...

Zhang Man; Lv Qinggang; Jiang Xiaoguo

2013-01-01T23:59:59.000Z

165

Mercury Emission and Removal of a 135MW CFB Utility Boiler  

Science Journals Connector (OSTI)

To evaluate characteristic of the mercury emission and removal from a circulating fluidized bed (CFB) boiler, a representative 135 MW CFB utility boiler was selected to take the ... is of majority in flue gas of ...

Y. F. Duan; Y. Q. Zhuo; Y. J. Wang; L. Zhang

2010-01-01T23:59:59.000Z

166

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

167

EURISOL-DS MULTI-MW TARGET ISSUES: BEAM WINDOW AND TRANSVERSE FILM TARGET  

E-Print Network (OSTI)

The analysis of the EURISOL-DS Multi_MW target precise geometry (Fig.1) has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

Adonai Herrera-Martnez, Yacine Kadi

168

New two element steam turbine for 150 to 27 MW applications  

SciTech Connect

A modern high efficiency two element steam turbine for application in the 150 MW to 270 MW range is discussed. Innovations utilized and the experience base from which they are derived are presented. Benefits to the power producer resulting from this innovative approach are highlighted.They include reliability and efficiency improvement, delivery time reduction, and the application of design features, microprocessor control systems, and A. I. diagnostic techniques to reduce maintenance requirements, increase life, and enhance overall power plant productivity.

Martin, H.F.; Vaccarro, F.R.; Conrad, J.D. (Westinghouse Electric Corp., Orlando, FL (USA))

1989-01-01T23:59:59.000Z

169

Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994  

SciTech Connect

The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

1994-08-01T23:59:59.000Z

170

Operating results of the advanced ceramic tube filter (ACTF) at Wakamatus 71 MW PFBC demonstration plant  

SciTech Connect

The ACTF installed at the 71 MWe pressurized fluidized bed combustion (PFBC) demonstration plant at Wakamatsu Power Station of Electric Power Development Co., Ltd. is featured by inside to outside gas flow configuration with vertically arranged tubes in three compartments. This unique configuration offers advantages in the gas cleaning system for high-temperature and high-pressure applications of commercial scale. During Phase-1 demonstration program in Wakamatsu completed in December 1997, the ACTF showed the outstanding performance in terms of dust removal efficiency, pressure drop stability and reliability. The accumulated operating time of the ACTF in Phase-1 reached more than 6,000 hours and the continuous operating time record for 785 hours has been established. The successful results of ACTF and PFBC in Phase-1 lead to a two-year extension of the demonstration program (Phase-2). In Phase-2, it is aimed to demonstrate the further reliability and the possibility of cost reduction of the ACTF. The modified configuration of the boiler in Phase-2 (elimination of the existing pre-cleaning cyclones, etc.) magnifies the inlet dust loading at the ACTF and it calls for modifications in the ACTF to make it feasible with inlet gas with much higher dust loading. The modification works are under way and will continue until July 1998. The test operation is planned to resume in August 1998. This paper reviews the operating results of the ACTF during Wakamatsu demonstration test Phase-1 and gives brief description of the Phase-2 program.

Toriyama, Akira; Higashi, Katsumi; Maeno, Hiroshi; Saito, Tsunehiro; Mori, Mineo; Hori, Junji; Tsuji, Yasujiro

1999-07-01T23:59:59.000Z

171

Development of a real-time residue number processor for SAFT inspection. Phase II. Final report, September 1984-April 1986  

SciTech Connect

A high speed SAFT imaging system has been designed using residue number system (RNS) computational methods. The imaging system is based on a new frequency domain correlation process applied to conventional pulse-echo ultrasonic data, wherein the data is collected over a two-dimensional aperture. The resulting three-dimensional data set in x, y, and 'time-of-flight' may be processed by the frequency domain SAFT (FSAFT) system in either real-time or batch (post-test) modes. In the real-time mode it is expected that true flaw recognition would be of primary interest and the resulting images would be competitive with current time-domain SAFT (TSAFT) techniques. However, the greatest benefit of FSAFT is for detailed analysis of critical flaw types using the high speed batch or fast inspection mode. The system's performance results from using custom RNS hardware to speed the correlation process, which for typical sub-volumes of 64 x 128 x 400 sample points would execute in 11 seconds. This rapid execution time includes all memory exchange overhead as well as forward and inverse number theoretic transforms (NTTs) and point spread function (PSF) multiplication. The hardware design concentrated on a custom memory management processor and RNS computational modules. A FORTRAN coded software simulation was developed in conjunction with the analysis phase of this effort. It was determined by analysis and simulation that the PSF is the critical element in the effective use of FSAFT for inspection.

Polky, J.N.

1986-05-01T23:59:59.000Z

172

Electrical Model Development and Validation for Distributed Resources  

SciTech Connect

This project focuses on the development of electrical models for small (1-MW) distributed resources at the National Renewable Energy Laboratory's Distributed Energy Resources Test Facility.

Simoes, M. G.; Palle, B.; Chakraborty, S.; Uriarte, C.

2007-04-01T23:59:59.000Z

173

Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks  

E-Print Network (OSTI)

evaluation of a thermodynamic dataset for phases of interestKeywords: Thermodynamic dataset CO2water basaltABSTRACT A thermodynamic dataset describing 36 mineral

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

174

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

175

Development of Polarizable Water Force Fields for Phase Equilibrium Calculations Bin Chen, Jianhua Xing, and J. Ilja Siepmann*  

E-Print Network (OSTI)

point (TIP4P) water representations. Adiabatic nuclear and electronic sampling Monte Carlo (ANES the electronic many-body effect. For example, an isolated water molecule (in the gas phase) has a dipole moment There is considerable controversy on the exact value of the average molecular dipole moment in condensed phases

Xing, Jianhua

176

Seismic fragility analysis of 5MW offshore wind turbine  

Science Journals Connector (OSTI)

Abstract Considering nonlinear soilpile interaction, seismic fragility analysis of offshore wind turbine was performed. Interface between ground soils and piles were modeled as nonlinear spring elements. Ground excitation time histories were applied to spring boundaries. Two methods of applying ground motion were compared. Different time histories from free field analysis were applied to each boundary in the first loading plan (A). They were compared with the second loading plan (B) in which the same ground motion is applied to all boundaries. Critical displacement for wind turbine was proposed by using push-over analysis. Both the stress based and the displacement based fragility curves were obtained using dynamic responses for different peak ground accelerations (PGAs). In numerical example, it was shown that seismic responses from loading plan A are bigger than from plan B. It seems that the bigger ground motion at surface can cause less response at wind turbine due to phase difference between ground motions at various soil layers. Finally, it can be concluded that layer by layer ground motions from free field analysis should be used in seismic design of offshore wind turbine.

Dong Hyawn Kim; Sang Geun Lee; Il Keun Lee

2014-01-01T23:59:59.000Z

177

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-07-30T23:59:59.000Z

178

Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels  

SciTech Connect

Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

179

Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels  

SciTech Connect

Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

180

Operation experience from the 71 MW Wakamatsu PFBC Demonstration Plant  

SciTech Connect

In Japan, research and development of the fluidized bed combustion boiler (FBC boiler) for utility and industrial application has been initiated since 1978. At present, for the atmospheric FBC boiler, a unit of 350 MWe output is under construction at Takehara power station, and for the pressurized FBC boiler, a demonstration plant of 71 MWe output has already been installed at Wakamatsu Coal Utilization Research Center. Coal fired operation started in September 1993. Plant shakedown test is now underway. Wakamatsu PFBC Demonstration Plant is fundamentally based on the technology developed by ABB Carbon AB, a Swedish firm. However, various supplemental technologies of Japanese origin have been introduced in this project to improve environmental characteristics, plant heat rate and load controllability. For instances an ultra supercritical (USC) steam turbine and ceramic tube filters are featured in the Wakamatsu plant. The paper describes the outline of Wakamatsu PFBC Project and some major troubles which have been resolved. In addition, the report will provide an update on the operating experience of the Wakamatsu Project.

Goto, Hideki

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996  

SciTech Connect

Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

NONE

1996-11-01T23:59:59.000Z

182

Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project  

SciTech Connect

Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

2010-06-16T23:59:59.000Z

183

Tucson Request for Proposal for 1-5 MW PV PPA  

Energy.gov (U.S. Department of Energy (DOE))

The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

184

ARC-coal acetylene process development program. Phase 1B. Final technical progress report, 15 September 1979-31 September 1980  

SciTech Connect

For many years, acetylene was a major feedstock in the chemical industry, being used for the manufacture of such important large-volume chemicals as vinyl chloride, vinyl acetate, acrylonitrile, acetaldehyde, and several others chemicals. Since the mid-1960's, however, acetylene has been largely replaced by olefins like ethylene and propylene. These olefins, though sometimes less suitable as feedstocks than acetylene, became more economical as they became readily available at prices considerably lower than acetylene. The successful development of the Arc-Coal process appears to offer a new competitive option to ethylene while reducing the risk of feedstock shortage by relying on the vast coal resources within the US. The Arc-Coal Acetylene process has been tested successfully at both the 100 kW and 1 MW levels, clearly demonstrating that acetylene can be economically produced from coal in a one-step reaction, and that the current reactor design approach is capable of being scaled up to commercial size. The process is shown to be commercially competitive with the currently available process for acetylene manufacture and, more importantly, competes attractively with ethylene in the manufacture of vinyl chloride and vinyl acetate. With the commercial advent of the arc-coal acetylene process, it will become possible to manufacture acetylene more economically than by conventional process. Substantial ethylene price increases tied closely to, and driven by, higher crude oil and natural gas prices are a clear long-term trend which appears certain to continue well into the foreseeable future with periodic market variations. This situation will make the Arc-coal Acetylene process a leading contender for the production of chemicals such as vinyl chloride and vinyl acetate, substituting a coal feedstock process for the current liquid hydrocarbon-fed ethylene-to-vinyl monomers processes.

Not Available

1980-10-30T23:59:59.000Z

185

Genesee Phase 3, Edmonton, Alberta, Canada  

SciTech Connect

Genesee Phase 3 is Canada's first supercritical power plant and, at 450 MW, is significant not only for its low levels of greenhouse gas emissions, made possible by the use of supercritical technology and emissions off-sets. It also marks the North American debut of a boiler, derived from a proven 500-MW-class Hitachi reference plant, that operates at sliding pressure. The key benefits of operating in this mode are high efficiency, operating flexibility, and reliability. This boiler design may well migrate to the US in the very near future. 6 figs.

Peltier, R.

2005-08-01T23:59:59.000Z

186

Development of a method for building life cycle analysis at an early design phase - Implementation in a tool - Sensitivity and uncertainty of such a method in comparison to detailed LCA software.  

E-Print Network (OSTI)

??The thesis presents in detail the various steps in the development of an early design phase method for the LCA of buildings. After an introduction (more)

Chouquet, Julie

2007-01-01T23:59:59.000Z

187

Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994  

SciTech Connect

A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

NONE

1995-09-26T23:59:59.000Z

188

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

189

Type II Transformation -Regeneration 2 Media -1 Liter Solution Substance []stock/MW Final Add ( )  

E-Print Network (OSTI)

Type II Transformation - Regeneration 2 Media - 1 Liter Solution Substance []stock/MW Final Add. bialaphos stock 10mg/ml 1mg/L 100ul/L Pour into 100x25mm Petri dishes in hood. 1L=30 plates. Dry plates lids

Raizada, Manish N.

190

DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC*  

E-Print Network (OSTI)

DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC* Colin H. Smith+ , Yun He an Energy Recovery Linac (ERL) is dumped at an energy close to the injection energy. This energy is chosen to be as low as possible consistent with meeting the beam quality specifications. ERLs operate with high

191

Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake  

E-Print Network (OSTI)

Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake Yih-Min Wu a , Chien the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi

Wu, Yih-Min

192

Sculpting on polymers using focused ion beam M.-W. Moon a  

E-Print Network (OSTI)

Sculpting on polymers using focused ion beam M.-W. Moon a , E.-K. Her b , K.H. Oh b , K.-R. Lee and Engineering, Seoul National University, San 56-1 Shillim, Kwanak, Seoul, 151-744, Republic of Korea c Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA A B S T R

Vaziri, Ashkan

193

Management and Organizational Behavior Section 301-08 @ 2:00 3:15 MW  

E-Print Network (OSTI)

MGMT 301 Management and Organizational Behavior Fall 2013 Section 301-08 @ 2:00 ­ 3:15 MW Beatty organizational goals by working with, and through, people and other resources. Organizations are treated factors. International as well as domestic situations are examined. Course Learning Objectives: 1

Young, Paul Thomas

194

EK 131/132 module: Introduction to Wind Energy MW 3-5  

E-Print Network (OSTI)

EK 131/132 module: Introduction to Wind Energy MW 3-5 Course. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind. Students will measure personal energy use and analyze wind turbine data from the Museum of Science's wind

195

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

SciTech Connect

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

196

Abstract--This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based  

E-Print Network (OSTI)

) generators where most of the systems are single phase. New ancillary service such as static reactive power, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV support by PV inverters can be also merged together with the load flow solution tool and thus, the impact

Teodorescu, Remus

197

Development of a 10 kW High Temperature High Power Density Three-Phase AC-DC-AC SiC Converter  

SciTech Connect

This paper presents the development and experimental performance of a 10 kW, all SiC, 250 C junction temperature high-power-density three-phase ac-dc-ac converter. The electromagnetic interference filter, thermal system, high temperature package, and gate drive design are discussed in detail. Finally, tests confirming the feasibility and validating the theoretical basis of the prototype converter system are described.

Ning, Puqi [ORNL

2012-01-01T23:59:59.000Z

198

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake  

E-Print Network (OSTI)

Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake, Geophys. Res. Lett., 32, L that strain is distributed over a broad area, from the Atlas front to the offshore margin [Buforn et al., 1995

Déverchère, Jacques

199

Development of a pilot-scale kinetic extruder feeder system and test program. Phase II. Verification testing. Final report  

SciTech Connect

This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.

Not Available

1984-01-12T23:59:59.000Z

200

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

NLE Websites -- All DOE Office Websites (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

NJBPU 1 5 MW Demonstration Program NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6032,"lon":-74.3401,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

202

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

203

Heat transfer characteristics of fluidized bed heat exchanger in a 300MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

204

Preise in CHF inkl. 8.0 % MwSt. Zrichsee AOC  

E-Print Network (OSTI)

Weissweine Preise in CHF inkl. 8.0 % MwSt. Schweiz Zürich Zürichsee AOC Riesling-Sylvaner Staatskellerei, Werner Kuster, Rheinau 2010 75 cl 46.00 Staatsschreiber Cuvée blanc Préstige AOC Pinot noir.00 Schiterberger AOC Sauvignon blanc Landolt Weine, Zürich 2010 75 cl 49.00 Teufener AOC Pinot Gris Landolt Weine

Zürich, Universität

205

The "extended phase space" approach to quantum geometrodynamics: what can it give for the development of quantum gravity?  

E-Print Network (OSTI)

The talk is devoted to the "extended phase space" approach to Quantum Geometrodynamics. The premises that have led to the formulation of this approach are briefly reviewed, namely, non-trivial topology of the Universe which implies the absence of asymptotic states, in contrast to situations one usually deals in ordinary quantum field theory; parametrization noninvariance in the Wheeler - DeWitt theory; the problem of time and the absence of dynamical evolution. Then we discuss the main features of the approach: Hamiltonian dynamics in extended phase space, gauge-dependent Schrodinger equation for the wave function of the Universe, the description of quantum Universe from the viewpoint of observers in a wide enough class of reference frames. After all, we analyse problems arising in this approach: the structure of Hilbert space in Quantum Geometrodynamics, the relations between solutions for the wave function of the Universe corresponding to various reference frames, properties of a medium to be necessary to fix a reference frame, the transition to classical limit.

T. P. Shestakova

2008-10-22T23:59:59.000Z

206

New urbanism on a grand scale : the challenges for large-scale, multi-phase master planned developments  

E-Print Network (OSTI)

New Urbanism has been described as an urban design movement promoting the master planning and development of communities that have walkable, human-scale neighborhoods while integrating the necessary elements of modern life ...

Olchowicz, Edward J

2011-01-01T23:59:59.000Z

207

Noble metals-compatible melter features development Phase 1: Establishing functional and design criteria and design concepts  

SciTech Connect

Premature failures have occurred in melters at Japan`s Tokai Mockup Facility and at the Federal Republic of Germany (FRG) PAMELA plant during processing of feeds with high levels of noble metals. Melter failure was due to the accumulation of an electrically conductive, noble metals-containing precipitates in the glass, that then resulted in short circuiting of the electrodes. A comparison was made of the anticipated Hanford Waste Vitrification Plant (HWVP) feed with the feeds processed in the FRG and Japanese melters. The evaluation showed that comparable levels of noble metals and other potential precipitate-forming components (e.g. Cr/Fe/Ni-spinels) exist in the HWVP feed. As a result, the HWVP project made a decision to modify the present reference melter design to include features to prevent the precipitation and accumulation or otherwise accommodate precipitated phases on a routine basis without loss of production capacity.

Elmore, M.R.; Siemens, D.H.; Chapman, C.C.

1996-03-01T23:59:59.000Z

208

Genomics-based early-phase clinical trials in oncology: Recommendations from the task force on Methodology for the Development of Innovative Cancer Therapies  

Science Journals Connector (OSTI)

Abstract The Methodology for the Development of Innovative Cancer Therapies (MDICT) task force discussed incorporation of genomic profiling into early (Phase I and II) clinical trials in oncology. The task force reviewed the challenges of standardising genomics data in a manner conducive to conducting clinical trials. Current barriers to successful and efficient implementation were identified and discussed, as well as the methods of genomic analysis, the proper setting for study and strategies to facilitate timely completion of genomics-based studies. The importance of properly capturing and cataloguing outcomes was also discussed. Several recommendations regarding the use of genomics in these trials are provided.

Stephen V. Liu; Vincent A. Miller; Marinus W. Lobbezoo; Giuseppe Giaccone

2014-01-01T23:59:59.000Z

209

Development of a high-efficiency, automatic-defrosting refrigerator-freezer. Phase II. Field test. Volume III. Executive summary and task reports  

SciTech Connect

The second phase of the development of a high-efficiency, automatic-defrosting, refrigerator-freezer is described. Following the successful completion of Phase I (design, construction, and laboratory testing of a 16 ft/sup 3/ high efficiency refrigerator-freezer prototype), Phase II was initiated to evaluate sales potential and in-home performance as a necessary step in creating a product that was both manufacturable and marketable. Twenty-five pilot production 18 ft/sup 3/ units using prototype tooling were produced on the assembly line to confirm the feasibility of full-scale production. These units were then used in a market and field test program in which consumer appeal and in-home performance were assessed. The market evaluation confirmed that refrigerators incorporating high-efficiency features at added cost are saleable and that large capacity, automatic-defrosting, refrigerator-freezers will continue to capture a large portion of the market in the years ahead, The field test confirmed the in-home energy saving potential of a high efficiency, automatic-defrosting refrigerator-frezer utilizing advanced design features such as optimized, thick-wall, foam an average energy savings of 60% compared to a baseline unit of conventional design.

Topping, R.F.

1982-12-01T23:59:59.000Z

210

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

211

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

212

Experience of Implementing a PGU-200 MW Two-Boiler One-Turbine Unit at the South-West CHP  

Science Journals Connector (OSTI)

The engineering solutions for PGU-200 MW unit, the electrical distribution system layout, and the results of implementing the SPPA-T3000 control system are presented. The results of performance adjustment conf...

A. V. Chugin; M. S. Tsvetkov; R. I. Kostyuk

2014-07-01T23:59:59.000Z

213

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)  

E-Print Network (OSTI)

Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

Bookhagen, Bodo

214

Experience operating a thermal configuration without a deaerator at the 330 MW unit 3 of the Kashira GRS  

Science Journals Connector (OSTI)

The operating experience gained during introduction of a configuration without a deaerator at the 330 MW unit No. 3 of the Kashira GRS is analyzed. The basic advantages of this configuration are pointed out, ...

G. D. Avrutsky; V. D. Nikanorov; I. R. Kalinowskiy

2012-11-01T23:59:59.000Z

215

--H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors)  

E-Print Network (OSTI)

CARS -- H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors) CARS.W. Vannier, Inamura, A.G. Farman, Doi & J.H.C. Reiber (Editors) #1; CARS/Springer. rights reserved. Snapshot and the compositionCARS -- H.U. Lemke, M.W. Vannier, Inamura, A.G. Farman, & J.H.C. Reiber (Editors) CARS

Wahle, Andreas

216

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

SciTech Connect

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

217

Experimental development of nuclear pumped laser candidate inertial confinement fusion driver. Technical progress report, Phase 1, 1988--1989  

SciTech Connect

This progress report is submitted at the end of the first year of a 3-year project grant studying development of a nuclear pumped atomic iodine laser. The first section of the report will provide background on the study and briefly describe the original plans for the 3-year project. The second section will detail the work done to date. Included will be a description of the preparations made for experimentation, as well as some preliminary results recently obtained. Plans for the upcoming budget year are covered in the accompanying proposal, ``Project Plans for 1989--1990.``

Miley, G.H.

1989-05-31T23:59:59.000Z

218

Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)  

SciTech Connect

The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

Dan Kieki

2008-09-30T23:59:59.000Z

219

Xenon-induced axial power oscillations in the 400MW PBMR  

Science Journals Connector (OSTI)

The redistribution of the spatial xenon concentration in the 400MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%50%100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations.

Gerhard Strydom

2008-01-01T23:59:59.000Z

220

Fundamental investigation of Duct/ESP phenomena: 1. 7 MW pilot parametric testing results  

SciTech Connect

Radian Corporation was contracted to investigate duct injection and electrostatic precipitator phenomena in a 1.7-MW pilot plant constructed for this test program. This study was an attempt to resolve previous problems and to answer remaining questions with the technology using an approach which concentrated on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of the duct injection process to an existing ESP particulate collection device. (VC)

McGuire, L.M.; Brown, C.A.

1991-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

222

A new Main Injector radio frequency system for 2.3 MW Project X operations  

SciTech Connect

For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

Dey, J.; Kourbanis, I.; /Fermilab

2011-03-01T23:59:59.000Z

223

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

224

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

225

Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development  

SciTech Connect

The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

Louis, J.F.; Tung, S.E.

1980-10-01T23:59:59.000Z

226

A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.  

SciTech Connect

This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

Del Bravo, R.; Pinacci, P.; Trifilo, R.

1998-07-01T23:59:59.000Z

227

Competitive auction mechanisms for the promotion renewable energy technologies: The case of the 50MW photovoltaics projects in Cyprus  

Science Journals Connector (OSTI)

Abstract There are a range of policy frameworks and support mechanisms to promote the penetration of renewable energy technologies into the energy mix assembled by the governments and regulatory bodies around the world. The three dominant and most common support schemes that have also been implemented within the EU and proven successful in the past include the competitive auctions, the Feed-in Tariff scheme (FiT), and Tradable Green Certificates (TGCs). This study reviews the use of the competitive auction mechanism for the promotion of power generation from renewable energy technologies. The process of the specific policy instrument as well as its pros and cons are introduced. Successful and failed case studies from countries that have already incorporated this mechanism into their renewable energy technologies development policies are also presented. Among these cases is the Cyprus auction procurement for the licensing of 50MW of photovoltaic power plants, conducted in January 2013, which is thoroughly elaborated in this paper. The timeline of the bids is presented, and the auction winner strategy is tracked and examined. A discussion is also presented on the feasibility of the awarded projects. Eventually, the entire auction procurement procedure is evaluated to expose the defects of the mechanism and to offer some recommendations for the viability of the process.

Angeliki Kylili; Paris A. Fokaides

2015-01-01T23:59:59.000Z

228

MW-class hybrid power system based on planar solid oxide stack technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

229

Experimental Study Of A 1.5-mw, 110-ghz Gyrotron Oscillator  

E-Print Network (OSTI)

This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron cyclotron heating required in fusion devices. A short pulse gyrotron based on the industrial tube design was built at MIT for experimental studies. The experiments are the first demonstration of such high powers at 110 GHz. Using a 96 kV, 40 A electron beam, over 1.4 MW was axially extracted in the design (TE22,6) mode in 3 ?s pulses, corresponding to a microwave efficiency of 37%. The beam alpha, the ratio of transverse to axial velocity in the electron beam, was measured with a probe. At the high efficiency operating point the beam alpha was measured as 1.33. This value of alpha is less than the design value of 1.4, possibly accounting for the slightly reduced experimental efficiency. The output power and efficiency, as a function of magnetic field, beam voltage, and beam current, are in...

Anderson, J P

2005-01-01T23:59:59.000Z

230

Initial operating experience of the 12-MW La Ola photovoltaic system.  

SciTech Connect

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

2011-10-01T23:59:59.000Z

231

Development of a new feed channel spacer for reverse osmosis elements. Phase 2 final report, October 1, 1994--December 31, 1997  

SciTech Connect

During Phase 1, computer modeling techniques were used as the prime instrument of evaluation of designs for a new feed channel spacer to replace the 30 mil thick standard mesh (Vexar) spacer currently used in ROWPU [Reverse Osmosis Water Processing Unit] spiral-wound elements. A hemispherical peg model, based on a Bed of Nails concept developed in Phase 1, was selected for prototype production of spiral-wound elements for field testing. Evaluation in the See-Thru test cell to observe pressure drops through the spacer, feed mixing patterns and ease of cleaning fouled membrane samples showed considerable benefit over Vexar. This design would be suitable for production by roll embossing (or rotary punching) methods instead of expensive injection molding techniques. A 10{1/2} inch die set was fabricated to prove this concept using a 12 ton press brake. Due to a number of factors, however, the equipment did not work as anticipated and numerous modifications are currently in progress. This work will continue at no cost to the government until completed. A seawater test system has been constructed for field testing of various commercially available feed channel spacers for comparison with the Vexar spacer.

Milstead, C.E.; Riley, R.L.

1998-02-11T23:59:59.000Z

232

Developing Mt. Hope: The megawatt line  

SciTech Connect

After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

Rodzianko, P.; Fisher, F.S.

1992-12-01T23:59:59.000Z

233

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

SciTech Connect

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

234

The Next Linear Collider Klystron Development Program  

E-Print Network (OSTI)

Klystrons capable of 75 MW output power at 11.4 GHz have been under development at SLAC for the last decade. The work has been part of the program to realize all the components necessary for the construction of the Next Linear Collider (NLC). The effort has produced a family of solenoid-focused 50 MW klystrons, which are currently powering a 0.5 GeV test accelerator at SLAC and several test stands, where high power components are evaluated and fundamental research is performed studying rf breakdown and dark current production. Continuing development has resulted in a Periodic Permanent Magnet (PPM) focused 50 MW klystron, tested at SLAC and subsequently contracted for manufacture by industry in England and Japan. A 75 MW version of that PPM klystron was built at SLAC and reached 75 MW, with 2.8 microsecond pulses. Based on this design, a prototype 75 MW klystron, designed for low-cost manufacture, is currently under development at SLAC, and will eventually be procured from industry in modest quantities for ad...

Jongewaard, E; Pearson, C; Phillips, R M; Sprehn, D; Vlieks, A E

2000-01-01T23:59:59.000Z

235

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Steven T. Derenne

2006-04-28T23:59:59.000Z

236

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-10-26T23:59:59.000Z

237

Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995  

SciTech Connect

About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1996-06-01T23:59:59.000Z

238

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

SciTech Connect

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

239

Definition of a 5MW/61.5m wind turbine blade reference model.  

SciTech Connect

A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

Resor, Brian Ray

2013-04-01T23:59:59.000Z

240

Investigation of the part-load performance of two 1. 12 MW regenerative marine gas turbines  

SciTech Connect

Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performance of two 1.12 MW (1,500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

Korakianitis, T.; Beier, K.J. (Washington Univ., St. Louis, MO (United States). Dept. of Mechanical Engineering)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

242

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

SciTech Connect

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

243

Detailed design of the 2MW Demonstration Plant. Topical report, Task 2  

SciTech Connect

This document provides a summary of the design of the 2MW carbonate fuel cell power plant which will be built and tested under DOE cooperative agreement DE-FC2l-92MC29237. The report is divided into sections which describe the process and stack module design, and Appendices which provide additional design detail. Section 2.0 provides an overview of the program, including the project objectives, site location, and schedule. A description of the overall process is presented in Section 3.0. The design of the fuel cell stack Modules is described in Section 5.0, which discusses the design of the fuel cell stacks, multi-stack enclosures, and Stack Modules. Additional detail is provided in a report Appendix, the Final Design Criteria Summary. This is an abstract of the design criteria used in the design of the Submodules and Modules.

Not Available

1993-09-16T23:59:59.000Z

244

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

245

Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays  

SciTech Connect

The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

Wu, Yan.

1990-11-01T23:59:59.000Z

246

Phase behavior of coal fluids: Data for correlation development: Final report for the period August 1, 1983 to January 31, 1987  

SciTech Connect

The overall objective of the author's work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal-conversion processes. During the course of this project, solubility data were obtained on eighteen binary mixtures of the solute CO/sub 2/ or ethane in a series of paraffinic, naphthenic and aromatic solvents which included n-decane, n-dodecane, n-eicosane, n-octadecane, n-hexatriacontane, cyclohexane, trans-Decalin, benzene, naphthalene, phenanthrene and pyrene. Temperatures, pressures and solute mole fractions were in the general range of 313 to 423K, 0.3 to 12.0 MPa, and 0.05 to 0.60 mole fraction solute, respectively. The solubility data for either CO/sub 2/ or ethane in the paraffinic, naphthenic and aromatic solvents are described well by the Soave or Peng-Robinson equation of state (EOS). When one empirical interaction parameter, k/sub 12/, is used for each isotherm in each system, average errors in the predicted solubility are on the order of 0.01 to 0.02 mole fraction. The use of two interaction parameters per isotherm, k/sub 12/ and l/sub 12/, reduces the typical errors to 0.001 to 0.003. The experimental data obtained in the project can serve as an excellent basis for evaluation of parameters in any selected phase behavior model. The systematic study of a series of solvents of the same molecular class can permit generalized correlations to be developed for the model parameters. For the equations of state studied in this work, convenient generalized correlations are presented for the interaction parameters of CO/sub 2/ or ethane in n-paraffins. To date, no equivalent generalizations have been developed for the naphthenic or aromatic solvents. 30 refs., 20 figs., 21 tabs.

Robinson, R.L. Jr.; Anderson, J.M.; Barrick, M.W.; Bufkin, B.A.; Ross, C.H.

1987-01-01T23:59:59.000Z

247

Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements  

SciTech Connect

This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

Rothrock, R.B.

1998-09-01T23:59:59.000Z

248

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

SciTech Connect

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

249

Phase five  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase five Phase five 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Phase five Los Alamos physicists have conclusively demonstrated the existence of a new phase of matter. November 25, 2013 Phase five Scientists still have more to learn about the exotic physics of specialty materials. What makes the cuprates special? How about a new phase of matter. Ceramic metals known as cuprates have mystified physicists for decades. They exhibit a variety of distinct phases of matter, each with its own specific properties, including a phase bearing an exotic type of magnetism, a high-temperature superconducting phase, an ordinary metal phase, a poorly understood and weird metallic phase simply called a strange metal, and an equally poorly understood metallic phase known as the pseudogap. The

250

Property:GEADevelopmentPhase | Open Energy Information  

Open Energy Info (EERE)

GEADevelopmentPhase GEADevelopmentPhase Jump to: navigation, search Property Name GEADevelopmentPhase Property Type Page Description GEA Development Phase, as characterized by their Annual U.S. Geothermal Power Production and Development Report. See GEA_Development_Phases Allows Values Phase I - Resource Procurement and Identification;Phase II - Resource Exploration and Confirmation;Phase III - Permitting and Initial Development;Phase IV - Resource Production and Power Plant Construction Subproperties This property has the following 77 subproperties: A Abraham Hot Springs Geothermal Area Adak Geothermal Area Akun Strait Geothermal Area Akutan Fumaroles Geothermal Area Alum Geothermal Area Alvord Hot Springs Geothermal Area Amedee Geothermal Area Arrowhead Hot Springs Geothermal Area

251

A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer  

SciTech Connect

A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

Samuel, E.A.; Murphy, K.R.; Demian, A.

1989-11-01T23:59:59.000Z

252

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Demonstration Plan Page 3.5 - 1 3.5 Manufacturing R&D More than 15,000 fuel cell systems were shipped in 2010 worldwide, 1 representing more than 80 MW of power....

253

Update on CMM/CBM development activity in Ukraine  

SciTech Connect

Current coal mine methane (CMM) and coalbed methane (CBM) development efforts in Ukraine are reviewed. These include the Donetsk CMM/CBM project and the Ukraine Methane Group CMM project (15 MW power production). 4 figs.

NONE

2007-01-15T23:59:59.000Z

254

Development of a plan to implement enhanced geothermal system...  

Open Energy Info (EERE)

hydrothermal systems at the other. This report provides a concept for development of a Combined Technologies Project with construction and operation of a 6 MW (net) binary-cycle...

255

Development of High Expansion Ratio Helium Turbo Expander  

Science Journals Connector (OSTI)

The authors developed a high expansion ratio radial inflow turbine for a helium liquefier of 100 L/h capacity for use with a 70 MW superconductive generator. The following results were obtained from this devel...

N. Ino; A. Machida; K. Ttsugawa; Y. Arai; M. Matsuki

1991-01-01T23:59:59.000Z

256

Development of a low-cost black-liquid solar collector, Phase II. Second semi-annual report, March 1, 1980-August 31, 1980  

SciTech Connect

Battelle's Columbus Laboratories (BCL) is continuing its research effort to develop an efficient, low-temperature, low-cost, flat-plate black-liquid solar collector. The research efforts during this second 6-month period of Phase II have been directed toward (1) evaluating the long-term durability of various plastic materials and solar collector designs, (2) obtaining sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application, (3) working closely with a company willing to commercialize black liquid plastic collectors, and (4) incorporating improved black liquids with the identified plastic collector designs. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities have been operated. One unit has been in use since February 1980 at Battelle in Columbus, Ohio, and the other unit began operation in May 1980 at Ramada Energy Systems, Inc., a collector manufacturing company near Phoenix, Arizona. Since Ramada Energy Systems has been working with extruded polycarbonate panels, Battelle has been working to date with extruded acrylic panel designs. Other potential plastics for solar collectors are being evaluated by exposure testing.

Landstrom, D.K.; Talbert, S.G.; McGinniss, V.D.

1980-09-30T23:59:59.000Z

257

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

258

Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846-2001  

E-Print Network (OSTI)

accumulated since a great earthquake in the 15th century. The Kangra rupture could fail again today in a Mw=7 uplift in the Dehra Dun region, and this supposed signal has been incorporated into a large number and the original seismograms suggest that the Kangra earthquake triggered a deep earthquake near Dehra Dun a few

Bilham, Roger

259

ATS 680 A6: Applied Numerical Weather Prediction MW, 1:00-1:50 PM, ACRC Room 212B  

E-Print Network (OSTI)

experiments using a state-of-the-art numerical weather prediction model · Discuss the strengths and weaknesses, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University PressATS 680 A6: Applied Numerical Weather Prediction Fall 2013 MW, 1:00-1:50 PM, ACRC Room 212B Course

260

Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*  

E-Print Network (OSTI)

1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C. Stevenage, U.K. Thomas M. Davis Air Force Research Laboratory Kirtland AFB, New Mexico, U.S.A ABSTRACT investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler  

E-Print Network (OSTI)

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate, the noncontinuous biomass feeding and grate movement, the combustion instabilities inside the fuel bed used to fire biomass for heat and power production. However, grate-firing systems are often reported

Rosendahl, Lasse

262

Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.  

SciTech Connect

This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

Lesser, Jonathan A.

1992-07-01T23:59:59.000Z

263

Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report  

SciTech Connect

The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

BPL Global

2008-09-30T23:59:59.000Z

264

Modelling of NO{sub x} reduction strategies applied to 350 MW(e) utility boilers  

SciTech Connect

A computational fluid dynamics model has been combined with a NO{sub x} chemistry post-processor to predict the formation and destruction of nitric oxide in three-dimensional furnaces burning pulverized fuel. The model considers the complex interaction of turbulent flow, heat transfer, combustion, and NO{sub x} reaction chemistry. Lagrangian particle dynamics are used to track burning pulverized coal particles through the computational cells. Fuel nitrogen is released in proportion to the burnout of the particle. A range of combustion NO{sub x} reduction strategies has been applied to two 350 MW(e) utility boilers burning different coals. A medium volatile bituminous coal is fired using low NO{sub x} burners in one furnace and a sub-bituminous coal is burnt using conventional swirl burners in a different furnace. The strategies include: burner out of service, overfire air, reduction in excess air, change in particle size, and fuel reburn. In general NO{sub x} predictions are better for the sub-bituminous coal than for the medium volatile bituminous coal. Typical NO{sub x} prediction errors are {+-} 10 percent.

Visona, S.P.; Singh, B. [AUSTA Electric, Brisbane (Australia); Stanmore, B.R. [Dept. of Chemical Engineering, Brisbane (Australia)

1997-07-01T23:59:59.000Z

265

Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler  

Science Journals Connector (OSTI)

Abstract In this paper, systematic experimental investigation on the heat flux distribution inside the furnace of a 300MW CFB boiler was presented. Detailed experimental setup and measurement techniques were presented and a finite element method approach was applied to determine the heat flux. The heat flux profile on the rear wall along the horizontal direction shows a significant imbalance at different boiler loads. As a result of the non-uniform layout of the heating surfaces, which is the essential reason, as well as the imbalance and deviation of the temperature field, solid suspension density and solid flow rate, the central section of the furnace possesses higher heat flux distribution compared to the side sections. The heat flux is also found to increase with the increasing boiler load and decrease as the height increases. Heat flux near the roof, where the solid suspension density is rather small, is found to decrease remarkably revealing less heat absorption in this area. In addition, an empirical model of heat transfer coefficient is revised using the average data at different boiler loads. A mechanism heat transfer model based on the membrane water-wall configuration is proposed and validated with the heat flux profile obtained from the measurement. The model provides good accuracy for correlating 85% of the data within 10%.

Ruiqing Zhang; Hairui Yang; Nan Hu; Junfu Lu; Yuxin Wu

2013-01-01T23:59:59.000Z

266

Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core  

SciTech Connect

In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% /sup 235/U) is presented. In order to assess the performance of the core with the LEU (< 20%) fuel replacement, while keeping fuel element geometry nearly unchanged, several different /sup 235/U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial /sup 235/U content is 195 g /sup 235/U/SFE and 9.7 g /sup 235/U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE.

Pazirandeh, A.; Bartsch, G.

1987-01-01T23:59:59.000Z

267

CFD-based design load analysis of 5MW offshore wind turbine  

Science Journals Connector (OSTI)

The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM respectively ). In CFD method the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

T. T. Tran; G. J. Ryu; Y. H. Kim; D. H. Kim

2012-01-01T23:59:59.000Z

268

Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers  

SciTech Connect

This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

Steven Derenne; Robin Stewart

2009-09-30T23:59:59.000Z

269

Development Development  

E-Print Network (OSTI)

Programme 2007 - 2010 The aim of the Timber Development Programme (TDP) is "to contribute to the sustainable development to underpin sustainable forest management and support economic growth and employment acrossDevelopment Timber Development Programme 2007 - 2010 #12;2 | Timber Development Programme 2007

270

Development of Simplified Models for Wind Turbine Blades with Application to NREL 5 MW Offshore Research Wind Turbine  

Science Journals Connector (OSTI)

Integration of complex models of wind turbine blades in aeroelastic simulations places an untenable demand on computational resources and, hence, means of speed-up become necessary. This paper considers the pr...

Majid Khorsand Vakilzadeh; Anders T. Johansson

2014-01-01T23:59:59.000Z

271

Demand response enabling technology development  

E-Print Network (OSTI)

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

272

Development of Ion Mobility-mass Spectrometry Instrumentation to Probe the Conformations and Capture the Solution to Gas Phase Transition of Electrosprayed Biomolecules  

E-Print Network (OSTI)

(i.e., peptides and proteins) produced upon ESI and provide new insight into their solution to gas phase evolution. First, fundamental principles of periodic focusing ion mobility spectrometry are comprehensively discussed. Radial ion confinement...

Silveira, Joshua A

2013-11-22T23:59:59.000Z

273

phase coherence  

Science Journals Connector (OSTI)

The state in which two signals, such as electronic or optical signals, maintain (a) a fixed phase relationship with each other or (b) a fixed phase relationship with a third signal that can serve as a referenc...

2001-01-01T23:59:59.000Z

274

REL-1001/6-001 FW MW 14:30-15:45 Religion & Identity in Contemporary Canada Colorado REL-1002/6-050 FW MW 17:30-18:45 Exploring Religion: The World s Religions Janzen  

E-Print Network (OSTI)

Colorado REL-3/4940/3-001 W TH 14:30-17:15 Topics in Modern Western Culture Colorado ( &( &( &( & REL-2703REL-1001/6-001 FW MW 14:30-15:45 Religion & Identity in Contemporary Canada Colorado REL-1002:30-11:20 Religion & Pop Culture Colorado REL-2402/3-001 F MWF 10:30-11:20 Fundamentalisms in Global Perspective

Martin, Jeff

275

Life cycle assessment of 50MW wind firms and strategies for impact reduction  

Science Journals Connector (OSTI)

The world today is continuously striving toward a carbon neutral clean energy technology. Hence, renewable wind power systems are increasingly receiving the attention of mankind. Energy production with structurally more promising and economically more competitive design is no more the sole criterion while installing new megawatt (MW) range of turbines. Rather important life cycle analysis (LCA) issues like climate change, ozone layer depletion, effect on surrounding environments e.g. eco-system quality, natural resources and human health emerge as dominant factors from green energy point of view. Hence, the study covers life cycle impact analysis (LCIA) of three wind farms: one onshore horizontal, one offshore horizontal, another vertical axis. It appears that vertical axis wind farm generates per unit electricity with lowest impact followed by horizontal offshore and horizontal onshore farms. The study, henceforward, discovers most adverse impact contributing materials in today's multi megawatt wind turbines and subsequently substitutes copper, the topmost impact contributor, with more eco-friendly aluminum alloys and its corresponding process routes. In this process, it reduces overall life cycle impacts up to 30% for future greener wind farms. In later stages, it compares all major electricity production technologies, viz., oil, diesel, coal, natural gas, wind, solar, biomass, nuclear, hydro plant in a common platform which demonstrates the wind farms performing the best except the hydro-kinetic ones. However, as the study suggests, offshore VAWT farm may even perform better than hydro-kinetic farms because of higher capacity factors in the high sea. Findings from the study can be deployed to harness massive scale green electricity from environmentally more clean and green turbines.

A. Rashedi; I. Sridhar; K.J. Tseng

2013-01-01T23:59:59.000Z

276

NGNP PHASE I REVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVIEW REVIEW NEAC REACTOR TECHNOLOGY SUBCOMMITTEE FINAL REPORT JUNE 15, 2011 EPACT 2005 REQUIREMENTS * FIRST PROJECT PHASE REVIEW-On a determination by the Secretary that the appropriate activities under the first project phase under subsection (b)(1) are nearly complete, the Secretary shall request the NERAC to conduct a comprehensive review of the Project and to report to the Secretary the recommendation of the NERAC concerning whether the Project is ready to proceed to the second project phase under subsection (b)(2) NGNP PROJECT PHASES (1) FIRST PHASE.-A first project phase shall be conducted to- (A) select and validate the appropriate technology under subsection (a)(1); (B) carry out enabling research, development, and demonstration activities on technologies and components under

277

Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * NREL/TP-620-33177 3 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates B.G. Swezey National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 June 2003 * NREL/TP-620-33177 Listening to Customers: How Deliberative Polling Helped Build 1,000 MW of New Renewable Energy Projects in Texas R.L. Lehr Attorney W. Guild, Ph.D. The Guild Group, Inc. D.L. Thomas, Ph.D. Dennis Thomas and Associates

278

Study on the Portable and Integrated Type Pore Plate Flow Measureing Device for Condensate Water of 300MW Steam Turbine  

Science Journals Connector (OSTI)

In order to insure the accuracy of steam turbine thermal test in power plant, the flowrate measurement accuracy of condensate water should be insured. In this paper, the portable and integrated type flow measuring device for condensate water of 300MW steam turbine flow is designed, which is based on the condensate water parameters and the specific pipeline conditions at the exit of the No. 5 low pressure heater for 300MW unit. A integration of non standard differential pressure orifice flow meter is designed in this paper Through calibration in standard experimental system, the reason of the large error is that the flow field is disturbed by the origin plate type downward welding connecting flanges. Then the welding neck flanges is designed for the connecting flanges. The distribution of connecting flanges of flow field is weaken, and the measurement accuracy can meet the demand of steam turbine thermal test.

Yong Li; Jia-yong Wang

2012-01-01T23:59:59.000Z

279

Experimental Study of Two-Phase Flow Oscillation in Natural Circulation  

SciTech Connect

The experiment was performed on the test loop HRTL-5, which simulates the geometry and system design of the 5-MW nuclear heating reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. The flow behavior for a wide range of inlet subcoolings, in which the flow experience varies from single- to two-phase, is described in a natural circulation system at different pressures (p = 0.1, 0.24, and 1.5 MPa). Several kinds of flow instability are investigated, including geysering, flashing-related flow instability, and high-frequency flow oscillation at p = 0.1 and 0.24 MPa, as well as low steam quality density wave oscillation at p = 1.5 MPa. The mechanisms of geysering, which has new features, and flashing-related flow instability, which has never been studied well enough in this field, are particularly interpreted. The experimental results show the following: First, for a low-pressure natural circulation system, the two-phase flow is unstable in most inlet subcooling conditions, and the two-phase stable flow can be reached only with very low inlet subcoolings. Second, at high inlet subcoolings, the flow instability is dominated by subcooling boiling in the heated section, and at intermediate inlet subcoolings, it is dominated by void flashing in the adiabatic long riser. Third, in the two-phase stable flow region, the conditions for boiling out of the core, namely, single-phase flow in the heated section and two-phase flow in the riser due to vapor flashing, can be realized. The experimental results are of significance for the design and accident analysis of vessel and swimming pool-type natural circulation nuclear heating reactors.

Jiang, S.Y.; Wu, X.X.; Zhang, Y.J. [Tsinghua University (China)

2000-06-15T23:59:59.000Z

280

Advanced Envelope Research for Factory Built Housing, Phase 3...  

Energy Savers (EERE)

Advanced Envelope Research for Factory Built Housing, Phase 3-Design Development and Prototyping Advanced Envelope Research for Factory Built Housing, Phase 3-Design Development...

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of optimal SnO{sub 2} contacts for CdTe photovoltaic applications. [Final technical report of Phase II  

SciTech Connect

During this SBIR Phase II project, we have successfully established high quality SnO{sub 2}(F) based transparent conductive oxide coatings by atmospheric pressure chemical vapor deposition technique and built a large area prototype APCVD deposition system which incorporates innovative design features. This work enhances US photovoltaic research capability and other thin film oxide related research capability.

Xi, Jianping

1999-09-16T23:59:59.000Z

282

HVDC submarine power cables systems state of the art and future developments  

SciTech Connect

The paper begins with an introduction on the reasons that lead to the use of HVDC submarine cable links. The main aspects for the choice of direct current are presented as well as the advantages deriving from the utilization of submarine cables. The second part is dedicated to a discussion on the various type of insulation that could be used in power cables and their possible application to HVDC submarine cables. In the following there is a description of the main characteristics and technical details of some particular project that at present time (1995) are in progress. Two projects are briefly presented: Spain-Morocco, a 26 km long interconnection for the transmission, in a first phase, of 700 MW from Spain to Morocco at 400 kV a.c. by means of three cables, plus one spare, of the fluid filled type. The cables are designed for a future change to d.c. 450 kV, allowing a transmission of 500 MW each (i.e., 2 GW total). One of the peculiarities of the link is the maximum water depth of 615 m (world record for submarine power cables at the time of installation). Italy-Greece, a 1km long interconnection for the transmission of 500 MW (bi-directional) by means of one paper insulated mass impregnated cable having 1,250 sq mm conductor size and insulated for a rated voltage of 400 kV. This link (the installation of which will be posterior to the Spain-Morocco) will attain the world record for the maximum water depth for submarine power cables: 1,000 m. The last part deals with the future developments expected in this field, in terms of conductor size and voltage, that means an increase in transmissible capacity.

Valenza, D.; Cipollini, G. [Pirelli Cavi S.p.A., Milano (Italy)

1995-12-31T23:59:59.000Z

283

Wind Development on the Rosebud  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rosebud Sioux Rosebud Sioux Indian Reservation Wind Development on the Rosebud Akicita Cikala 750 Kw turbine Owl Feather War Bonnet Wind Farm, 30Mw North Antelope Highlands Wind Farm, 190Mw Met towers installed in 2003 Met tower installed in 2001 Met tower installed in 1999 Met towers installed in 2009 Akicita Cikala Turbine Neg Micon 750kw Commissioned March 2003 Owl Feather War Bonnet Wind Farm 2003 Dept. of Energy Grant DOE Funding $448,551.00 DISGEN Cost share/in-kind $78,750.00 RST/TUC Cost share/in-kind $27,272.00 Participants in Development RST Resource Development Office, Ken Haukaas, Coordinator RST Tribal Utilities Commission, Tony Rogers, Director RST Natural Resource Office, Stephanie Middlebrooks, Wildlife Biologist Distribute Generation Inc., Dale Osborn, President, Belvin Pete, Project

284

Retrofit Project of 2100 MW Units in Yushe Power Plant, Shanxi Province Using Two Boilers-One CFB FGD  

Science Journals Connector (OSTI)

This paper takes the example of the retrofit of 2100 MW units of Yushe Power Plant in Shanxi Province, and summarizes the applications of circulation fluid bed flue gas desulphurization (CFB-FGD) adopted two bo...

Lin Fulin; Lian Egui

2009-01-01T23:59:59.000Z

285

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network (OSTI)

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

286

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering Engine With 6-Mb Embedded DRAM  

E-Print Network (OSTI)

1352 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002 A 120-mW 3-D Rendering digital assistant (PDA) in which the power has to be supplied by batteries. Since the lithium battery

Yoo, Hoi-Jun

287

An integrated computer-based training simulator for the operative personnel of the 800-MW power-generating unit at the Perm District Power Station  

Science Journals Connector (OSTI)

The integrated computer-based training simulator for an 800-MW power-generating unit is described. Its capacities for training the personnel of the boiler-turbine and chemical departments are shown.

N. Yu. Pevneva; V. N. Piskov; A. N. Zenkov

2007-07-01T23:59:59.000Z

288

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 9, SEPTEMBER 2007 2021 A 0.2-mW 2-Mb/s Digital Transceiver Based  

E-Print Network (OSTI)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 9, SEPTEMBER 2007 2021 A 0.2-mW 2-Mb/s Digital rate of 1.1 10 7, dissipating only 0.2 mW from a 1-V supply generated by a 1.5-V battery. Index Terms body, corresponding to 1­2 m. Moreover, it should be powered by a very small battery in order

Yoo, Hoi-Jun

289

Latest developments and application of DB Riley's low NOx CCV{reg{underscore}sign} burner technology  

SciTech Connect

Recent developments in DB Riley (DBR) low NOx burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1,500 Controlled Combustion Venturi (CCV{reg{underscore}sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50--70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1,300 MW opposed fired cell type boilers. In DBR's latest version of the CCV{reg{underscore}sign} burner, a second controlled flow air zone was added to enhance NOx control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg{underscore}sign} dual air zone burner in DBR's 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg{underscore}sign} single register burner. The tests results showed that the second air zone enhanced NOx reduction capability by an additional 20% over the single register design. Computational fluid dynamic (DFD) modeling results of the CCV{reg{underscore}sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NOx firing. DBR was recently awarded Phase IV of the Low Emission Boiler System (LEBS) program by the US Department of Energy to build a proof of concept facility representing the next major advancement in pulverized coal burning technology. A key part of winning that award were test results of the CCV{reg{underscore}sign} dual air zone burner with advanced air staging and coal reburning in a 100 million Btu/hr (20 MW) U-fired slagging combustor test facility. These results showed NOx emissions of less than 0.2 lb/million Btu (0.086 g/MJ) while converting the coal ash into an inert, non-leachable solid. This results is an 80% reduction in NOx emissions from currently operating U-fired slagging boilers.

Penterson, C.; Ake, T.

1998-07-01T23:59:59.000Z

290

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility Project Eagle Phase 1 Direct Wafer/Cell Solar Facility 1366 Technologies Description of Proposed Action: The Department of Energy (DOE) proposed action is for the use of a federal loan guarantee by 1366 Technologies (1366) to support the renovation of an existing building, located at 159 Wells Avenue, Newton, Massachusetts, into a solar wafer production facility. The new facility would constitute Phase 1 of Project Eagle and accommodate 20 megawatts (MW) of multi crystalline silicon wafer production, laboratory areas, offices, and ancillary spaces. Phase 2 of Proje~y an existing DOE Categorical Exclusion and would occur at a site in _ _ _ _ . The Phase 1 facility in Newton, MA is an existing building of 50,600 square feet on a site approximately 4.7 acres. 1366 would renovate the interior of the facility to provide office

291

NETL: Carbon Storage - Regional Partnership Validation Phase (Phase II)  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation Phase (Phase II) Projects Validation Phase (Phase II) Projects The Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase focuses on validating the most promising regional opportunities to deploy CCS technologies by building upon the accomplishments of the Characterization Phase. Two different CO2 storage approaches are being pursued in this phase: geologic and terrestrial carbon storage. The Validation Phase includes 20 geologic and 11 terrestrial CO2 storage projects. Efforts are being conducted to: Validate and refine current reservoir simulations for CO2 storage projects. Collect physical data to confirm CO2 storage potential and injectivity estimates. Demonstrate the effectiveness of monitoring, verification, and accounting (MVA) technologies. Develop guidelines for well completion, operations, and abandonment.

292

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

293

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

294

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

offshore wind turbines typically have taller towers withTower Development. 17 Table 9. Reported Material Input per 1.25 MW Onshore Wind Turbine ..wind turbine and substation component manufacturing, transport of equipment to the wind farm site, construction of the tower

Zheng, Nina

2012-01-01T23:59:59.000Z

295

Development of high-temperature turbine subsystem technology to a technology readiness status, Phase II. Quarterly report, January-March 1981  

SciTech Connect

progress in developing a technical readiness vehicle (TRV) for demonstrating the performance of a combined-cycle power plant with high-temperature, 2600 to 3000/sup 0/F firing temperature, gas turbines using coal-derived gas fuel is reported. Work on the combined-cycle power plant and TRV design, component development, aerodynamics studies, simulation, and fuel gas cleanup systems is described. (LCL)

Horner, M.W.

1981-04-01T23:59:59.000Z

296

Suspect Counterfeit Items Criteria Review and Approach Document , Phase 1 - Management - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suspect/Counterfeit Items Suspect/Counterfeit Items Criteria Review and Approach Document (CRAD) NNSA/Nevada Site Office Facility Representative Division Phase 1 - Management Performance Objective: Management should have a formal system under Quality Assurance with adequate controls defined and implemented to identify and preclude Suspect/Counterfeit Items (S/CI) from being introduced into safety systems and applications that create potential hazards. CRITERIA: Management should have a formal system of controls in place for assurance that all items procured meet the requirements for their intended use. Management should have a system of mechanisms to continuously maintain current, accurate, updated information on SC/Is and associated suppliers using all available sources. Management should have a training program with detailed records that

297

Phase II - Resource Exploration and Confirmation | Open Energy Information  

Open Energy Info (EERE)

Phase II - Resource Exploration and Confirmation Phase II - Resource Exploration and Confirmation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase II: Resource Exploration and Confirmation GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

298

A global investigation of phase equilibria using the Perturbed-Chain Statistical-Associating-Fluid-Theory (PC-SAFT) approach  

E-Print Network (OSTI)

The recently developed Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) is investigated for a wide range of model parameters including the parameter m representing the chain length and the thermodynamic temperature T and pressure p. This approach is based upon the first-order thermodynamic perturbation theory for chain molecules developed by Wertheim and Chapman et al. and includes dispersion interactions via the second-order perturbation theory of Barker and Henderson. We systematically study a hierarchy of models which are based on the PC-SAFT approach using analytical model calculations and Monte Carlo simulations. For one-component systems we find that the analytical model in contrast to the simulation results exhibits two phase-separation regions in addition to the common gas-liquid coexistence region: One phase separation occurs at high density and low temperature. The second demixing takes place at low density and high temperature where usually the ideal gas phase is expected in the phase diagram. These phenomena, which are referred to as "liquid-liquid" and "gas-gas" equilibria, give rise to multiple critical points in one-component systems, as well as to critical end points (CEP) and equilibria of three fluid phases, which can usually be found in multicomponent mixtures only. Furthermore, it is shown that the "liquid-liquid" demixing in this model is not a consequence of a "softened" repulsive interaction as assumed in the theoretical derivation of the model. Experimental data for the melt density of polybutadiene with molecular mass Mw=45000g/mol are correlated here using the PC-SAFT equation. It is shown that the discrepancies in modeling the polymer density at ambient temperature and high pressure can be traced back to ...

L. Yelash; M. Mueller; W. Paul; K. Binder

2005-05-24T23:59:59.000Z

299

Microwave concrete decontamination - Phase II results  

SciTech Connect

This report documents the results of the second phase of a four-phase development program to develop a system to decontaminate concrete using microwave energy. In the first phase of the program the feasibility of using microwaves to remove concrete surfaces was demonstrated. In the first phase experiments, concrete slabs were placed on a translator and moved beneath a stationery microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Phases III and IV will further develop the technology to be remotely operated and capable of removing concrete from floors as well as from vertical surfaces.

White, T.L.; Foster, D. Jr.

1994-06-01T23:59:59.000Z

300

Magnetic Phase Development of Iron Oxide-SiO{sub 2} Aerogel and Xerogel Prepared using Rice Husk Ash as Precursor  

SciTech Connect

This study is aimed to produce iron incorporated silica aerogel and xerogel from rice husk ash. Two sol--gel chemistry routes have been used to synthesize both samples. Iron in the form of hydrated iron nitrate with compositions in the range of 3-17 wt%(Fe{sub 2}O{sub 3}/Fe{sub 2}O{sub 3}+SiO{sub 2}) were used as iron source. For aerogel samples, iron was added at the solution level whereas for xerogel samples, iron was added after the gelation. The synthesis of iron doped aerogel was done by supercritical drying at temperature about 250 deg. C and pressure of about 5.9 MPa (850 psi) while xerogel was formed by drying the aquagel in an oven at 110 deg. C for 24 hours. The iron doped aerogel and xerogel composites were further heated to various temperatures to obtain the magnetic phase. Results show that the only sample that signifies the presence of maghemite (gamma-Fe{sub 2}O{sub 3}) is the aerogel sample doped with 7.3 wt% iron at temperature 1100 deg. C while other samples show the presence of magnetite.

Maamur, K. N.; Jais, U. S.; Yahya, S. Y. S. [Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

2010-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DEVELOPMENT OF A QUANTITATIVE MEASURE OF THE FUNCTIONALITY OF FRAME WALLS ENHANCED WITH PHASE CHANGE MATERIALS USING A DYNAMIC WALL SIMULATOR  

E-Print Network (OSTI)

into the conditioned space. PCMs have been typically incorporated into the building structure in the form of impregnated masonry (brick or concrete block) or gypsum board in walls, ceilings, and floors [5]. PCMs have been macro-encapsulated in containers... suitable for energy storage applications. Zhang, et al. [10] tested the performance of macroencapsulated PCMs by developing a frame wall that incorporated paraffin PCM encapsulated in pipes. Two small-scale test houses were constructed to compare...

Evers, Angela C.

2008-07-25T23:59:59.000Z

302

Evaluation of component performance in the TVA 20 MW FBC after 12,000 hours of operation  

SciTech Connect

During its first three years of operation (July, 1982 through July, 1985), the 20 MW AFBC boiler has been involved in four major campaigns of testing. The fuel used during all of these tests has been Kentucky No. 9, an eastern subbituminous coal with a sulfur content of approximately 4.1%. Two different sulfur sorbents have been used: Reed limestone (from July, 1982 through May, 1984) and Fredonia limestone. The superficial gas velocity through the bed has been 2.4 m/s for more than 90% of the operating time; the velocities used in the tests have ranged from 1.2 to 3.0 m/sec. Results of periodic inspections and measurements of the various boiler components, along with the evaluation of coupon materials exposed in the boiler, are discussed.

Not Available

1986-04-01T23:59:59.000Z

303

Suppression of magnetism and development of superconductivity within the collapsed tetragonal phase of Ca[subscript 0.67]Sr[subscript 0.33]Fe[subscript 2]As[subscript 2] under pressure  

SciTech Connect

Structural and electronic characterizations of (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} have been performed as a function of pressure up to 12 GPa using conventional and designer diamond anvil cells. The compound (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} behaves intermediately between its end members, displaying a suppression of magnetism and the onset of superconductivity. Like other members of the AFe{sub 2}As{sub 2} family, (Ca{sub 0.67}Sr{sub 0.33})Fe{sub 2}As{sub 2} undergoes a pressure-induced isostructural volume collapse, which we associate with the development of As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase abruptly cuts off the magnetic state and supports superconductivity with a maximum T{sub c} = 22.2 K. The maximum T{sub c} of the superconducting phase is not strongly correlated with any structural parameter, but its proximity to the abrupt suppression of magnetism as well as the volume-collapse transition suggests that magnetic interactions and structural inhomogeneity may play a role in its development.

Jeffries, J.R.; Butch, N.P.; Kirshenbaum, K.; Saha, S.R.; Samudrala, G.; Weir, S.T.; Vohra, Y.K.; Paglione, J. (LLNL); (UAB); (Maryland)

2012-10-24T23:59:59.000Z

304

Comparison of the combustion behavior of Orimulsion{trademark} and heavy fuel oil in 70 MW flames  

SciTech Connect

Results of an experimental study are shown in this publication to compare the combustion behavior of heavy fuel oil (HFO) and Orimulsion in 70 MW flames. The investigation was carried out with the use of the combustion test rig at the International Combustion Limited in Derby, UK. The main objective of this test work was to quantify the extent of differences in flame properties, particulate and gaseous emissions of Orimulsion and HFO. Under identical combustion conditions, axial profiles of flame temperature and radiation heat flux were determined at 70 MW thermal input and 1% O{sub 2} for both fuels. Gas compositions at flame tail and furnace exit were obtained to estimate flame length and emission of gaseous pollutants. Stack concentration, carbon content, size and chemical composition of fly ash were also measured. The effect of excess air level on exit NOx and CO concentration were studied. Results of detailed flame measurements and the parametric study have shown that orimulsion fuel can be burnt with 99.97% efficiency at 1% exit O{sub 2} with a modified burner system of Dunamenti Power Station. However, significant implications of Orimulsion firing were observed. Gas temperature data and CO concentrations at flame tail have indicated a 1.5--2 m longer flame for Orimulsion. At flame tail, gas temperature in the Orimulsion flame was higher by 100 C than that for HFO. Lower radiant heat flux was measured in the near burner region for Orimulsion. Higher SO{sub 3}, SO{sub 2} and lower NOx emission were found when firing Orimulsion. Despite the higher ash content of Orimulsion, its combustion resulted in smaller particulate emission, which might be due to fly ash deposition in the furnace.

Barta, L.E. [Inst. for Energy, Budapest (Hungary); Horvath, G. [Hungarian Power Companies, Ltd., Budapest (Hungary); Allen, J.W.; Darar, J.S.; Wright, J.A. [International Combustion Ltd., Derby (United Kingdom). Rolls Royce Industrial Power Group; Szederkenyi, S.

1996-12-31T23:59:59.000Z

305

Engineering aspects of the application of structural materials in the 5 MW-ESS-mercury-target  

SciTech Connect

A main problem of the ESS-Hg-target development and the design of the components of its primary Hg-circuit is the choice of structural materials. As designing, calculations and experiments with elected materials take time and are very costy, a preview on their successful application has to be done before as detailed as possible. One aspect on this is to have the knowledge of characteristics values of the structural material candidates under the occuring mechanical and thermal loads, irradiation, corrosion and erosion. Another point is the technology of engineering concerning the manufacturing, welding, surface treatment, and quality control of such parts and components under the demand to reach maximum lifetime.

Guttek, B. [Forschungszentrum Juelich GmbH (Germany)

1996-06-01T23:59:59.000Z

306

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

307

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery 3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

308

Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development  

SciTech Connect

The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

Louis, J.F.; Tung, S.E.

1980-10-01T23:59:59.000Z

309

Science Learning+: Phase 1 projects Science Learning+  

E-Print Network (OSTI)

Science Learning+: Phase 1 projects Science Learning+ Phase 1 projects 2 December 2014 #12..............................................................................................................4 Youth access and equity in informal science learning: developing a research and practice agenda..................................................................................................5 Enhancing informal learning through citizen science..............................................6

Rambaut, Andrew

310

Large area self-powered gamma ray detector. Phase 2, Development of a source position monitor for use on industrial radiographic units  

SciTech Connect

The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield).

LeVert, F.E. [K.E.M.P. Corp., Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

311

Phase-Transfer-Catalyzed Reductions  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) procedures that have been developed for use with sodium borohydride, lithium aluminum hydride, and several other reducing agents involving anion transfer to organic media are des...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

312

Development of ceramic matrix composites for application in the ceramic technology for Advanced Heat Engines Project: Phase 2a, Development of in-situ toughened silicon nitride. Final report  

SciTech Connect

The objective of this program was to develop a net shape forming process for an in-situ reinforced Si{sub 3}N{sub 4} (AS-700). AS-700 was initially developed using cold isostatic pressing (CIP) of alcohol milled powders. The CIP`ed AS-700 material exhibited a moderate strength (690 MPa) and high toughness (9 MPa{radical}m) at room temperature. In addition to net-shape process development, optimization of AS-700 properties was also investigated through the refinement of densification processes, and evaluation of the effect of Si{sub 3}N{sub 4} powder properties on resulting microstructure and mechanical properties. Slip casting was chosen as the net-shape forming process. A slip casting process was successfully developed for forming green parts ranging from thin plates to thick cylinders, and to large complex shaped turbine rotors. The densification cycle was optimized to achieve full density parts without any cracks or warpage, and with comparable properties and microstructure to the CIP`ed baseline AS-700 material. The evaluation of six (6) alternate Si{sub 3}N{sub 4} powders indicated that Si{sub 3}N{sub 4} powders have a very strong influence on the development of resulting AS-700 in-situ microstructures and mechanical properties. The AS-700 slip casting process and optimized densification process were then combined and a number of test specimens were fabricated. The mechanical properties and microstructure of the optimized slip cast AS-700 Si{sub 3}N{sub 4} were then fully characterized. The key property values are: 695 MPa at room temperature, 446 MPa at 1370{degree}C flexural strengths and 8.25 MPa{radical}m toughness.

Pollinger, J.; Newson, D.; Yeh, H.; Solidum, E. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.; Yamanis, J.; Behi, M.; Li, C.W.; Whalen, P. [Allied-Signal, Inc., Morristown, NJ (United States)

1992-06-01T23:59:59.000Z

313

Development and demonstration of energy-conserving drying modifications to textile processes. Part II, Phase III. Final report, December 1, 1978-November 30, 1979  

SciTech Connect

Research was conducted to develop and to expand procedural and engineering modifications to textile drying processes in order to reduce energy requirements. Research was concentrated on: an investigation of the potential of a Machnozzle as a fabric predrying device and a program to optimize textile can drying with respect to energy consumption. Results demonstrated that the Machnozzle can significantly reduce the moisture content in fabric. The energy consumption of the Machnozzle compares favorably with that for steam can drying. An economic analysis of the Machnozzle as a predrying device was made using the Internal Rate of Return. Results showed that the economic feasibility of using the Machnozzle was dependent on the cost of energy and process operating conditions. (MCW)

Brookstein, D.S.; Carr, W.W.; Holcombe, W.D.

1980-01-01T23:59:59.000Z

314

EIS-0075: Strategic Petroleum Reserve Phase III Development, Texoma and Seaway Group Salt Domes (West Hackberry and Bryan Mound Expansion, Big Hill Development) Cameron Parish, Louisiana, and Brazoria and Jefferson Counties, Texas  

Energy.gov (U.S. Department of Energy (DOE))

Also see EIS-0021 and EIS-0029. The Strategic Petroleum Reserve (SPR) Office developed this EIS to assess the environmental impacts of expanding the existing SPR storage capacity from 538 million to 750 million barrels of storage and increasing the drawdown capability from 3.5 million to 4.5 million barrels per day. This EIS incorperates two previously issued EISs: DOE/EIS-0021, Seaway Group of Salt Domes, and DOE/EIS-0029, Texoma Group of Salt Domes.

315

The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part I Lower Rio Grande Flood Control Model [LRGFCM] RiverWare Model Development  

E-Print Network (OSTI)

..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FIGURE 17. Correlations for Del Rio and La Mesa Drain s ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 F I G U R E 18. Correl a t i o n s for East and Montoy a Dr ain... was developed using an ARIMA time-series transfer function analysis of the relationship between diversion from the Mesilla Dam and flow in the Del Rio, La Mesa, East, and Montoya Drains. ? The RiverWare physical model was constructed based on the reach...

Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

2009-01-01T23:59:59.000Z

316

Engineering development of coal-fired high performance power systems, Phases 2 and 3. Quarterly progress report, October 1--December 31, 1996. Final report  

SciTech Connect

The goals of this program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: {gt} 47% efficiency (HHV); NO{sub x}, SO{sub x}, and particulates {gt} 10% NSPS; coal providing {ge} 65% of heat input; all sold wastes benign; and cost of electricity 90% of present plant. Work reported herein is from Task 1.3 HIPPS Commercial Plant Design, Task 2,2 HITAF Air Heater, and Task 2.4 Duct Heater Design. The impact on cycle efficiency from the integration of various technology advances is presented. The criteria associated with a commercial HIPPS plant design as well as possible environmental control options are presented. The design of the HITAF air heaters, both radiative and convective, is the most critical task in the program. In this report, a summary of the effort associated with the radiative air heater designs that have been considered is provided. The primary testing of the air heater design will be carried out in the UND/EERC pilot-scale furnace; progress to date on the design and construction of the furnace is a major part of this report. The results of laboratory and bench scale activities associated with defining slag properties are presented. Correct material selection is critical for the success of the concept; the materials, both ceramic and metallic, being considered for radiant air heater are presented. The activities associated with the duct heater are also presented.

NONE

1996-12-31T23:59:59.000Z

317

Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report  

SciTech Connect

This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

NONE

1995-10-20T23:59:59.000Z

318

X-BAND KLYSTRON DEVELOPMENT AT SLAC  

SciTech Connect

The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

Vlieks, Arnold E.; /SLAC

2009-08-03T23:59:59.000Z

319

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

SciTech Connect

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

320

Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El MayorCucapah earthquake revealed by InSAR  

E-Print Network (OSTI)

Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor rocks [Dorsey, 2010]. Previous studies have docu- mented triggered slip on faults in the Imperial Valley of seismic waves. [3] In this study we document triggered slip on faults in the Imperial Valley associated

Fialko, Yuri

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller  

E-Print Network (OSTI)

MAGNETIZATION ESTIMATION FROM MFM IMAGES Chi-Chun Hsu, Clayton T. Miller, R.S. Indeck, J.A. O'Sullivan, M.W. Muller Magnetics and Information Science Center, Washington University, St. Louis, MO 63130 Tel: (314) 935-4767; Fax (314) 935-7500; email: rsi@ee.wustl.edu Magnetic force microscopy (MFM

O'Sullivan, Joseph A.

322

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back-projection of P, PP,  

E-Print Network (OSTI)

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back projected to the source region to image locations of coherent short-period seismic wave radiation. Several in North America (P), Japan (PKIKP), and Europe (PP), as well as a global configuration of stations

Madariaga, Raúl

323

IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 32, NO. 12, DEC 1997 1 A 12mW Wide Dynamic Range CMOS Front-End  

E-Print Network (OSTI)

IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 32, NO. 12, DEC 1997 1 A 12mW Wide Dynamic Range CMOS into their products. For many of these hand-held devices, one of the primary concerns is battery life. Thus

Lee, Thomas H.

324

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

325

Phasing Loops  

E-Print Network (OSTI)

of this work references minimalist composers and visual artist and composer Brian Eno. This thesis documents the research with analog and digital technologies, and the development of this installation....

Guinski, Rodrigo 1980-

2012-11-30T23:59:59.000Z

326

Phase 1 -- 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Revised 8/7/02 " "Sample Statement of Work - Standard Service Offerings for Contractor-Identified Project" "Task #","Task Title","Work Scope","Deliverable","Agency Requirements" " " "Phase Two - Initial Project Development" "2-1","DO RFP Development - Direct Support","Based upon interviews Agency/site staff and consultation support, FEMP Services will prepare DO RFP for Agency/site. FEMP Services will provide onsite or telecon review of draft DO RFP with agency staff. FEMP Services will prepare 2nd draft DO RFP based on telecon and written agency review comments and recommendations. ","Draft DO RFP Document. On-site review of draft DO RFP.

327

Phase 1 --2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev 4-01-05 " "Statement of Work - Standard Service Offerings for Contractor-Identified Project at (insert project site)" "Task #","Task Title","Work Scope","Deliverable","Agency Requirements" " " "Phase Two - Initial Project Development" "2-1","DO RFP Development - Direct Support","Based upon interviews Agency/site staff and consultation support, FEMP Services will prepare DO RFP for Agency/site. FEMP Services will provide onsite or telecon review of draft DO RFP with agency staff. FEMP Services will prepare 2nd draft DO RFP based on telecon and written agency review comments and recommendations. ","Draft DO RFP Document. On-site review of draft DO RFP.

328

Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow  

E-Print Network (OSTI)

The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

2013-01-01T23:59:59.000Z

329

Process simulation of oxy-fuel combustion for a 300MW pulverized coal-fired power plant using Aspen Plus  

Science Journals Connector (OSTI)

Abstract This work focuses on the amounts and components of flue gas for oxy-fuel combustion in a coal-fired power plant (CFPP). The combustion process of pulverized coal in a 300MW power plant is studied using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer is obtained. The differences between the two processes are identified, and the influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas are examined by sensitivity analysis. The process simulation results show that replacing atmospheric air by a 21%O2/79%CO2 mixture leads the decrease of the flame temperature from 1789C to 1395C. The equilibrium amount of \\{NOx\\} declines obviously but the \\{SOx\\} are still at the same level. The mass fraction of CO2 in flue gas increased from 21.3% to 81.5%. The amount of \\{NOx\\} is affected sensitively by the change of temperature and the excess oxygen ratio, but the change of O2/CO2 molar fraction has a little influence to the generation of NOx. With the increasing of O2 concentration, the flame temperature and \\{NOx\\} emission enhance rapidly. When the molar fraction of O2 increases to 30%, the flame temperature is similar and the mass fraction of \\{NOx\\} is about 1/8 of that air atmosphere.

Xiaohui Pei; Boshu He; Linbo Yan; Chaojun Wang; Weining Song; Jingge Song

2013-01-01T23:59:59.000Z

330

Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine  

Science Journals Connector (OSTI)

The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.

Tae Won Song; Jeong Lak Sohn; Tong Seop Kim; Sung Tack Ro

2006-01-01T23:59:59.000Z

331

Experience with the operation, maintenance and utilisation of the 3 MW TRIGA Mark-II research reactor of Bangladesh  

Science Journals Connector (OSTI)

The 3 MW TRIGA (Training, Research, Isotope, General Atomics) Mark-II research reactor of the Bangladesh Atomic Energy Commission (BAEC) has been operating at Atomic Energy Research Establishment (AERE), Savar, Dhaka, since September 1986. Since its commissioning, the reactor has been used in various fields of research and utilisation, such as Neutron Activation Analysis (NAA), Neutron Radiography (NRG), Neutron Scattering (NS), manpower training and education, and production of radioisotopes for medical applications. The reactor facility encountered a couple of incidents, which were successfully handled by BAEC personnel. In some cases, the help of experts from various local organisations/institutions as well as from the International Atomic Energy Agency (IAEA) was obtained. The upgrading of the Safety Analysis Report (SAR) of the reactor facility was completed in 2005 as per the format of the IAEA Safety Guide, SG-35-G1. The cooling system of the reactor as well as some parts of the instrumentations used in the reactor systems were also upgraded/modified during this period. The paper highlights the experience with the operation, maintenance and utilisation of the research reactor for the last 21 years. It also presents some of the modification and upgrading works carried out to enhance the operational safety of the research reactor.

M.A. Zulquarnain; M.M. Haque; M.A. Salam; M.S. Islam; P.K. Saha; M.A. Sarder; A. Haque; M.A.M. Soner; M.M. Uddin; M.M. Rahman; I. Kamal; M.N. Islam; S.M. Hossain

2009-01-01T23:59:59.000Z

332

Wind Power and the Clean Development Mechanism  

E-Print Network (OSTI)

Biogas Cement HFCs Geothermal EE Households Solar N2O Fugitive Tidal EE Service Transport Energy distrib 200 300 400 500 600 700 Lara Landfill (10 MW) Korat Biogas (3 MW) Rukmani Rice Husk (10 MW) Palestina

333

Phase Space Navigator: Towards Automating Control Synthesis in Phase Spaces for Nonlinear Control Systems  

E-Print Network (OSTI)

We develop a novel autonomous control synthesis strategy called Phase Space Navigator for the automatic synthesis of nonlinear control systems. The Phase Space Navigator generates global control laws by synthesizing ...

Zhao, Feng

1991-04-01T23:59:59.000Z

334

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved.  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors;CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) © CARS

Paris-Sud XI, Université de

335

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved. Segmentation of microcalcification in X-ray mammograms  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights

Joskowicz, Leo

336

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber CARS/Springer. All rights reserved.  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors is extracted based on the #12;CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J

Louisville, University of

337

Nozzle development  

SciTech Connect

The objective of this program has been the development of experimental techniques and data processing procedures to allow for the characterization of multi-phase fuel nozzles using laboratory tests. Test results were to be used to produce a single value coefficient-of-performance that would predict the performance of the fuel nozzles independent of system application. Several different types of fuel nozzles capable of handling multi-phase fuels have been characterized for: (a) fuel flow rate versus delivery pressure, (b) fuel-air ratio throughout the fuel spray or plume and the effective cone angle of the injector, and (c) fuel drop- or particle-size distribution as a function of fluid properties. Fuel nozzles which have been characterized on both single-phase liquids and multi-phase liquid-solid slurries include a variable-film-thickness nozzle, a commercial coal-water slurry (CWS) nozzle, and four diesel injectors of different geometries (tested on single-phase fluids only). Multi-phase mixtures includes CWS with various coal loadings, surfactant concentrations, and stabilizer concentrations, as well as glass-bead water slurries with stabilizing additives. Single-phase fluids included glycerol-water mixtures to vary the viscosity over a range of 1 to 1500 cP, and alcohol-water mixtures to vary the surface tension from about 22 to 73 dyne/cm. In addition, tests were performed to characterize straight-tube gas-solid nozzles using two differences size distributions of glass beads in air. Standardized procedures have been developed for processing measurements of spray drop-size characteristics and the overall cross-section average drop or particle size. 43 refs., 60 figs., 7 tabs.

Dodge, F.T.; Dodge, L.G.; Johnson, J.E.

1989-06-01T23:59:59.000Z

338

Phase I - Resource Procurement and Identification | Open Energy Information  

Open Energy Info (EERE)

- Resource Procurement and Identification - Resource Procurement and Identification Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase I: Resource Procurement and Identification GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

339

Vertebrate development: Multiple phases to endoderm formation  

Science Journals Connector (OSTI)

Recent results support a two-step model for endoderm formation in amphibian embryos, in which endoderm is initially specified by localised maternal factors, including the transcription factor VegT, but is then maintained by extracellular signalling molecules of the transforming growth factor-? family.

Leslie Dale

1999-01-01T23:59:59.000Z

340

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a four-helical bundle fold  

SciTech Connect

To extend the structural coverage of proteins with unknown functions, we targeted a novel protein family (Pfam accession number PF08807, DUF1798) for which we proposed and determined the structures of two representative members. The MW1337R gene of Staphylococcus aureus subsp. aureus Rosenbach (Wood 46) encodes a protein with a molecular weight of 13.8 kDa (residues 1-116) and a calculated isoelectric point of 5.15. The lin2004 gene of the nonspore-forming bacterium Listeria innocua Clip11262 encodes a protein with a molecular weight of 14.6 kDa (residues 1-121) and a calculated isoelectric point of 5.45. MW1337R and lin2004, as well as their homologs, which, so far, have been found only in Bacillus, Staphylococcus, Listeria, and related genera (Geobacillus, Exiguobacterium, and Oceanobacillus), have unknown functions and are annotated as hypothetical proteins. The genomic contexts of MW1337R and lin2004 are similar and conserved in related species. In prokaryotic genomes, most often, functionally interacting proteins are coded by genes, which are colocated in conserved operons. Proteins from the same operon as MW1337R and lin2004 either have unknown functions (i.e., belong to DUF1273, Pfam accession number PF06908) or are similar to ypsB from Bacillus subtilis. The function of ypsB is unclear, although it has a strong similarity to the N-terminal region of DivIVA, which was characterized as a bifunctional protein with distinct roles during vegetative growth and sporulation. In addition, members of the DUF1273 family display distant sequence similarity with the DprA/Smf protein, which acts downstream of the DNA uptake machinery, possibly in conjunction with RecA. The RecA activities in Bacillus subtilis are modulated by RecU Holliday-junction resolvase. In all analyzed cases, the gene coding for RecU is in the vicinity of MW1337R, lin2004, or their orthologs, but on a different operon located in the complementary DNA strand. Here, we report the crystal structures of MW1337R and lin2004, which were determined using the semiautomated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), part of the National Institute of General Medical Sciences Protein Structure Initiative.

Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Deller, Marc; Duan, Lian; Elias, Ylva; Elsliger, Marc-Andr; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Koesema, Eric; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L.; Spraggon, Glen; Trout, Christina V.; ban den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Wolf, Guenter; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (Scripps); (SSRL); (JCSG); (UCSD); (Burnham)

2009-08-28T23:59:59.000Z

342

Numerical investigations of combustion and emissions of syngas as compared to methane in a 200MW package boiler  

Science Journals Connector (OSTI)

Abstract During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting \\{NOx\\} emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngasair combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H2, 50% CO:50% H2 and 33% CO:67% H2. The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and \\{NOx\\} emissions. \\{NOx\\} emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H2 syngas composition had the lowest emissions with the best combustion characteristics.

Mohamed A. Habib; Esmail M.A. Mokheimer; Sofihullahi Y. Sanusi; Medhat A. Nemitallah

2014-01-01T23:59:59.000Z

343

Phase II Final Report  

SciTech Connect

The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter 4.7m receivers per mirror module and an operating temperature of 500C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

2014-09-11T23:59:59.000Z

344

Thermodynamic and economic analysis of the different variants of a coal-fired, 460MW power plant using oxy-combustion technology  

Science Journals Connector (OSTI)

Abstract In the face of existing international provisions limiting the emissions of greenhouse gases, primarily carbon dioxide, it is necessary to introduce solutions that will allow the production of electricity from coal with high efficiency and low emissions. Oxy-combustion systems integrated with carbon capture and storage (CCS) installations may prove to be such a solution. This paper presents the main results from a thermodynamic analysis of a supercritical unit operating in oxy-combustion technology, fueled with pulverized coal with a power output of 460MW. The parameters of the live steam in the analyzed system are 600C/30MPa. To perform the numerical analyses, models of the individual components were built, including an oxygen production installation (ASU), a boiler, a steam cycle and a flue gas conditioning system (CPU). The models were built in the commercial programs GateCycle and Aspen and then integrated into the Excel environment. In this paper, different structures for an integrated oxy-type system were analyzed and compared. The auxiliary power rates were determined for individual technological installations of the oxy-combustion power plant. The highest value of this indicator, in the range between 15.65% and 19.10% was calculated for the cryogenic ASU. The total value of this index for the whole installation reaches as high as 35% for the base case. The use of waste heat from the interstage cooling of compressors in the air separation installation and flue gas conditioning system was considered as the methods of counteracting the efficiency decrease resulting from the introduction of ASU and CPU. The proposed configurations and optimization allow a significant reduction of the auxiliary power of the considered unit. In consequence, the efficiency decrease was reduced by approximately 3.5% points. An economic analysis of the different structures of the oxy-fuel system and the reference air-fired power plant was also conducted using a newly developed computational algorithm built in the Excel environment. The algorithm uses a Break Even Point (BEP) method, focusing mainly on determining a break-even price of electricity. It was found that about the profitability of this investment will mainly decide the price of emission allowances. For the assumptions made, the oxy-combustion power plant will be economically comparable with a reference plant without carbon dioxide capture when the price of allowances would be between 34 and 41/tonne. A sensitivity analysis concerning the influence of selected components of the cash flows on the break-even price of electricity was also performed. The main results of the calculations are presented in the paper.

Anna Skorek-Osikowska; Lukasz Bartela; Janusz Kotowicz; Marcin Job

2013-01-01T23:59:59.000Z

345

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

346

TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

TOXECON Retrofit for Mercury and TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers (Completed September 30, 2009) Project Description Wisconsin Electric Power Company (We Energies) has designed, installed, operated, and evaluated the TOXECON process as an integrated mercury, particulate matter, SO 2 , and NO X emissions control system for application on coal-fired power generation systems. TOXECON is a process in which sorbents, including powdered activated

347

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

SciTech Connect

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

348

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

349

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

SciTech Connect

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

350

Protection of Li Anodes Using Dual Phase Electrolytes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cells with high energy anode and dual-phase electrolyte systems Partners BASF SE, Germany * Development of Li-S battery materials 3 Relevance. Project Objectives. * Develop a...

351

Investigation of three-phase regions formed by petroleum sulfonate systems  

SciTech Connect

The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system. The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H+M, and M+W regions meet. 18 refs.

Blevins, C.E.; Willhite, G.P.; Michnick, M.J.

1981-10-01T23:59:59.000Z

352

DEVELOPMENT OF A COMPACT PHOTO-INJECTOR WITH RFFOCUSING LENS FOR SHORT PULSE ELECTRON SOURCE APPLICATION  

SciTech Connect

For development of compact ultrafast electron source system, we are currently designing a short-pulse RF-gun with RF focusing structure by means of a series of comprehensive modeling analysis processes. EM design of a 2.5 cell resonant cavity with input coupler, acceleration dynamics of photo-emitted electron bunch, EM design of RF-lens with input coupler, and phasespace analysis of focused electron bunch are systematically examined with multi-physics simulators. All the features of the 2.856 GHz cavity geometry were precisely engineered for acceleration energies ranging from 100 keV to 500 keV (safety limited) to be powered by our 5 MW S-band klystron. The klystron (Thales TH2163) and modulator system (ScandiNova K1 turnkey system) were successfully installed and tested. Performance tests of the klystron system show peak output power > 5 MW, as per operation specifications. At the quasi-relativistic energies, the electron source is capable of generating 100fC 1 pC electron bunch with pulse duration close to 30 fs 1 ps and transverse size of a few hundred microns. PIC simulations have shown that the electron bunch undergoes fast RF acceleration, rapidly reaching the desired energies, which can be controlled by tuning RF injection phase and input driving power. It has been shown that it is possible to also focus/compress the bunch longitudinally using a RF-lens, which would allow us to control the temporal resolution of the system as well. While our primary analysis has been performed on a 2.5 cell design, we are also looking into half-cell (single cavity) design that is expected to provide the same range of beam energy with a simple configuration.

Grabenhofer, Alexander [Northern Illinois University; Eaton, Douglas W. [ScandiNova systems AB, Uppsala, Sweden

2013-09-01T23:59:59.000Z

353

CrowdPhase: crowdsourcing the phase problem  

Science Journals Connector (OSTI)

The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems.

Jorda, J.

2014-05-23T23:59:59.000Z

354

Phase 1 -- 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4" 4" "Statement of Work - Optional Service Offerings for Contractor-Identified Project" "Task #","Task Title","Work Scope","Deliverable","Agency Requirements" " " "Phase Two - Initial Project Development" "Replace Std Task# 2-1","DO RFP Development - On Site Consultation","FEMP Services will provide technical consultation resources at the Agency's site to assist in the integration of the site's requirements into the DO RFP template.","Oral Comments","Agency staff will draft DO RFP. Provide copies to FEMP Services staff for review." "Phase Three - Negotiations and Award" "Replace Std Task# 3-4","Final Proposal Review - Direct Support","FEMP Services will provide direct technical resources to review final proposal. Review will include assessment of ESPC-unique data such as markups, performance period expenses, and financing interest rates. FEMP Services will assure that price schedules have been filled out correctly. ESCO specified equipment will be evaluated for its appropriateness and installation expense (labor and material). FEMP Services will coordinate and assemble agency and FEMP Services questions and issues for Agency CO to be presented to ESCO for discussions and negotiations. ","Telecon Advice and Written comments and recommendations","Agency will provide FEMP Services staff copies of final proposal with emphasis on selected equipment compatibility with agency performance requirements. Agency shall ensure applicable acquisition team members review final proposal. Agency will generate site questions or issues prior to scheduled telecons with FEMP Services staff. Agency will review questions and issues for ESCO discussions. Agency CO will submit questions and issues to ESCO."

355

A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration  

E-Print Network (OSTI)

A major boost to develop geothermal energy in India under NGRI-NTPC Ltd collaboration Exchange geothermal energy. The world over about 3000 MW equivalent of energy being generated using their geothermal Manager of Renewable Energy Development Group of NTPC Limited in the presence of Dr. V.P. Dimri(third from

Harinarayana, T.

356

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ecosystem Development Initiative Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Utah Technology Commercialization Office Location: Salt Lake City, UT Project Title Energy Innovation Commercialization Center Proposed Action or Project Description The project proposes to create an Energy Innovation Commercialization Center at the University of Utah. The scope of work for this project is in two phases: tasks necessary to create the Center and actual commercialization and outreach to other institutions. Specific activities for Phase I for the Center startup include 1) negotiating contract, prepare correspondence, establishing website, meetings, scheduling activities, developing metrics, and designing and creating a database. Phase 2 activities for Center

357

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

358

Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange  

E-Print Network (OSTI)

The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

Marini, Joseph Thomas

2004-09-30T23:59:59.000Z

359

Quantum Spin Hall Phases  

Science Journals Connector (OSTI)

......even it is called the weak topological in- sulator (WTI). The STI and WTI correspond to the QSH and I phases, respectively...are used to distinguish various phases in the STI or WTI phases, and each phase can be associated with a mod......

Shuichi Murakami

2008-06-01T23:59:59.000Z

360

Demand response enabling technology development  

E-Print Network (OSTI)

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing SenSys 2003,

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermodynamic phase-field model for microstructure with multiple components and phases: The possibility of metastable phases  

E-Print Network (OSTI)

A diffuse-interface model for microstructure with an arbitrary number of components and phases was developed from basic thermodynamic and kinetic principles and formalized within a variational framework. The model includes ...

Cogswell, Daniel A.

362

Phase equilibrium studies  

SciTech Connect

A phase equilibrium model has been developed for the SRC-I process, as well as the other coal liquefaction processes. It is applicable to both vapor/liquid and liquid/liquid equilibria; it also provides an approximate but adequate description of aqueous mixtures where the volatile electrolyte components dissociate to form ionic species. This report completes the description of the model presented in an earlier report (Mathias and Stein, 1983a). Comparisons of the model to previously published data on coal-fluid mixtures are presented. Further, a preliminary analysis of new data on SRC-I coal fluids is presented. Finally, the current capabilities and deficiencies of the model are discussed. 25 references, 17 figures, 30 tables.

Mathias, P.M.; Stein, F.P.

1983-09-01T23:59:59.000Z

363

Proceedings: EPRI Second Phased Array Inspection Seminar  

SciTech Connect

The Second EPRI Phased Array Inspection Seminar focused on industrial applications of phased array technology that have been achieved to date or are planned for the near future. Presentations were made by developers of inspection techniques, inspection services vendors, and utility personnel who have performed inspections using arrays.

None

2001-11-01T23:59:59.000Z

364

A phase-field study of ternary multiphase microstructures  

E-Print Network (OSTI)

A diffuse-interface model for microstructures with an arbitrary number of components and phases was developed from basic thermodynamic and kinetic principles and applied to the study of ternary eutectic phase transformations. ...

Cogswell, Daniel A. (Daniel Aaron)

2010-01-01T23:59:59.000Z

365

Liquid-Phase Combinatorial Synthesis Technique Could Ease Automation  

Science Journals Connector (OSTI)

A liquid-phase combinatorial synthesis technique developed by researchers at Scripps Research Institute, La Jolla, Calif., could provide advantages over existing solid-phase technology and ease automation of combinatorial techniques.Combinatorial ...

STU BORMAN

1995-07-31T23:59:59.000Z

366

Accomplishment of a Compact and High Efficiency 2p-50Hz, 1,000MW Turbine Generator  

Science Journals Connector (OSTI)

In China, many large thermal coal-fired super critical power plants are planned accompanying rapid economic development. The consortium of Harbin Electric Machinery Co., Ltd. (HEC) and Toshiba Corporation has rec...

T. Otaka; H. Katayama; K. Nagakura

2007-01-01T23:59:59.000Z

367

An integer programming approach to the phase problem for centrosymmetric structures  

Science Journals Connector (OSTI)

An integer programming formulation and a direct method for the phase problem are developed for centrosymmetric structures. This approach solves the phase problem entirely in reciprocal space.

Vaia, A.

2003-08-29T23:59:59.000Z

368

Initial tests and operation of a 110 GHz, 1 MW gyrotron with evacuated waveguide system on the DIII-D tokamak  

SciTech Connect

A gyrotron producing nominally 1 MW at 110 GHz has been installed at the DIII-D tokamak and operated in a program of initial tests with a windowless evacuated transmission line. The alignment and first test operation were performed in an air environment at atmospheric pressure. Under these conditions, the tube produced rf output in excess of 800 kW for pulse lengths greater than 10 msec and power near 500 kW for pulse lengths of about 100 msec into a free space dummy load. The gyrotron was operated into evacuated corrugated waveguide in the full power parameter regime for pulse lengths of up to 500 msec injecting greater than 0.5 MW into DIII-D for a preliminary series of experiments. Generated powers greater than 900 kW were achieved. A parasitic oscillation at various frequencies between 20 and 100 MHz, which was generated during the pulsing of the gyrotron electron beam, was suppressed somewhat by a capacitive filter attached to the gyrotron itself. Addition of a magnetic shield intended to alter the magnetic field geometry below the cathode eliminated internal tube sparks. Rework of the external power and interlock circuitry to improve the immunity to electromagnetic interference was also done in parallel so that the fast interlock circuitry could be used. The latest results of the test program, the design of the free space load and other test hardware, and the transmission line will be presented.

Lohr, J.; Ponce, D.; Tooker, J.F. [and others

1996-08-01T23:59:59.000Z

369

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37W/m2K and the static pressure loss of 781Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 24g/(kWh) and saving of water at 2535t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

370

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

371

Phase Transformations in Confined Nanosystems  

SciTech Connect

This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

Shield, Jeffrey E. [Department of Mechanical & Materials Engineering] [Department of Mechanical & Materials Engineering; Belashchenko, Kirill [Department of Physics & Astronomy] [Department of Physics & Astronomy

2014-04-29T23:59:59.000Z

372

Getting Started: What to Ask the Developer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GETTING STARTED: WHAT TO ASK THE DEVELOPER? GETTING STARTED: WHAT TO ASK THE DEVELOPER? Below is a list of preliminary questions to think about when approached by a developer or technology representative for developing clean energy resources on tribal lands. For more assistance, contact the DOE Office of Indian Energy at indianenergy@hq.doe.gov. Resources: * Which resources have been identified as being available? * What data was used to identify the resources? * Has the development of all available resources been evaluated separately as well as optimally combined with others? * What is the effective resource capacity? Development: * What is the proposed scale (MW capacity) for the project? * How will construction be accomplished? * How long will development and construction to commercial operation date (COD) take?

373

Geothermal energy development  

SciTech Connect

Since the 1970's, technological advances in equipment and new market conditions have made drilling for egothermal energy sources in the Imperial Valley of California commercially feasible. Electric power installations are planned to produce up to 3000 MW for export to Los Angeles and San Diego. The Valley, irrigated by the Colorado River waters, is one of the most agriculturally productive in the world, having a year-round growing season. Most Known Geothermal Resource Areas (KGRA) are located beneath these highly cultivated lands. Because of the lack of other large industries in the County besides agribusiness, the population has a lower average standard of living and higher unemployment than other areas of the state. Public opinion is almost universally is favor of geothermal development for economic reasons, as well as to provide an additional needed power source for this hot arid region. Unlike other parts of California, the area has maintained a no-growth policy on population, and it has remained stable and small in relation to land area. The present study by social scientists at the University of California at Riverside is in part an outgrowth of the Imperial County Project of the National Science Foundation and the Department of Energy. It seeks to assess the effects of full-scale development of thermal energy development on the area as a whole -- population, economy, environment, employment, and community and social relations.

Butler, E.W.; Pick, J.B.

1982-01-01T23:59:59.000Z

374

Phase-Transfer Catalysts  

Science Journals Connector (OSTI)

In previous chapters we learned that a phase-transfer catalyst must have two particular chemical functions to be successful, that is, it must rapidly transfer one of the reactant species into the normal phase ...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

375

Phasing Renewable Energy Implementation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phasing Renewable Energy Implementation Phasing Renewable Energy Implementation Phasing Renewable Energy Implementation October 16, 2013 - 4:41pm Addthis If conventional or other renewable energy funding cannot be procured, or if an agency is working towards a higher goal for renewable energy usage that cannot be met with the current budget, agencies may choose to phase renewable energy into their project. This lays the groundwork and infrastructure now so that some or all of the renewable energy can easily be installed at a later date. A guide to phasing the development of renewable energy is the Solar Ready Buildings Planning Guide, developed by the National Renewable Energy Laboratory (NREL). The renewable energy project funding page has more information on applicable methods for financing the renewable energy system

376

MW-class 800 MeV/n H2+ SC-cyclotron for ADS application, design and study goals  

SciTech Connect

This paper addresses an attempt to start investigating the use of the Superconducting Ring Cyclotron (SRC) developed for DAE{delta}ALUS experiment for ADS application [1], focusing on the magnet design and its implication for lattice parameters and dynamic aperture performance.

Meot F.; Calabretta, L.; Calanna, A.; Roser, T.; Weng, B.

2012-05-20T23:59:59.000Z

377

Piecewise Linear Phase Transitions  

E-Print Network (OSTI)

It is shown how simple assumptions lead to piecewise linear behavior, which is observed in certain phase transitions.

Joseph B. Keller

2007-11-26T23:59:59.000Z

378

Multimedia Phase-Spaces  

Science Journals Connector (OSTI)

Dynamic phase-spaces are suggested as a way of designing and implementing interactive multimedia systems. A dynamic phase-space is a space of properties overlayed with dynamics. The space is decorated with multimedia resources such ... Keywords: catastrophe theory, dynamics, installation, interactive narrative, museums, phase-space

Peter Bgh Andersen

1998-05-01T23:59:59.000Z

379

Gyrotron and power supply development for upgrading the electron cyclotron heating system on DIII-D  

Science Journals Connector (OSTI)

An upgrade of the electron cyclotron heating system on DIII-D to almost 15MW is being planned which will expand it from a system with six 1MW 110GHz gyrotrons to one with ten gyrotrons. A depressed collector 1.2MW 110GHz gyrotron is being commissioned as the seventh gyrotron. A new 117.5GHz 1.5MW depressed collector gyrotron has been designed, and the first article will be the eighth gyrotron. Two more are planned, increasing the system to ten total gyrotrons, and the existing 1MW gyrotrons will subsequently be replaced with 1.5MW gyrotrons. Communications and Power Industries completed the design of the 117.5GHz gyrotron, and are now fabricating the first article. The design was optimized for a nominal 1.5MW at a beam voltage of 105kV, collector potential depression of 30kV, and beam current of 50A, but can achieve 1.8MW at 60A. The design of the collector permits modulation above 100Hz by either the body or the cathode power supply, or both, while modulation below 100Hz must use only the cathode power supply. General Atomics is developing solid-state power supplies for this upgrade: a solid-state modulator for the cathode power supply and a linear high voltage amplifier for the body power supply. The solid-state modulator has series-connected insulated-gate bipolar transistors that are switched at a fixed frequency by a pulse-width modulation regulator to control the output voltage. The design of the linear high voltage amplifier has series-connected transistors to control the output voltage, which was successfully demonstrated in a proof-of-principle test at 2kV. The designs of complete power supplies are progressing. The design features of the 117.5GHz 1.5MW gyrotron and the solid-state cathode and body power supplies will be described and the current status and plans are presented.

Joseph F. Tooker; Paul Huynh; Kevin Felch; Monica Blank; Philipp Borchardt; Steve Cauffman

2013-01-01T23:59:59.000Z

380

Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory  

SciTech Connect

Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

2009-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utility-Scale Solar Development: Achieving Sustainability and...  

NLE Websites -- All DOE Office Websites (Extended Search)

to animal and plant populations. This presentation uses two cases studies, the 250 MW California Valley Solar Ranch photovoltaic facility and 377 MW Ivanpah concentrating solar...

382

An 8-{mu}m quantum cascade laserproduced by the metalorganic vapour phase epitaxy method  

SciTech Connect

An 8-{mu}m quantum cascade laser is fabricated by the metalorganic vapour phase epitaxy method. A scheme of vertical transitions in a structure consisting of three quantum wells is used. The laser operates in a pulsed regime at temperatures up to 250 K. The threshold current density was about 3 kA cm{sup -2} and increased up to 6 kA cm{sup -2} at 250 K. The 1-{mu}s pulse power in the multimode regime was 45 mW at 77 K.

Zasavitskii, I I; Pashkeev, D A [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Marmalyuk, Aleksandr A; Ryaboshtan, Yu L [M.F. Stel'makh Polyus Research and Development Institute, Moscow (Russian Federation); Mikaelyan, G T [OJSC Research and Manufacturing Enterprise 'Inject', Saratov (Russian Federation)

2010-02-28T23:59:59.000Z

383

Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS  

E-Print Network (OSTI)

cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel. 1Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS Tristan Pichonat ABSTRACT Micro fuel cells (µ-FC) represent promising power sources for portable applications. Today, one

Boyer, Edmond

384

PHASE CHANGE LIQUIDS  

SciTech Connect

Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

Susan S. Sorini; John F. Schabron

2006-03-01T23:59:59.000Z

385

Solar aided power generation of a 300MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

386

10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant heliostat and beam characterization system evaluation, November 1981-December 1986  

SciTech Connect

Test and evaluation results for the heliostats and beam characterization system at the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant are described in this report. Southern California Edison operated and maintained the plant during the five years covered by this evaluation. Therefore, the results represent what can be expected from a large number of heliostats that are operated over a long period of time in a power plant environment. The heliostats and beam characterization system were evaluated for their ability to meet performance and survival requirements. Heliostat evaluation results are reported for mirror soiling rates, mirror corrosion, wind loads, availability, maintenance requirements, tracking accuracy, beam quality, component temperatures, and operating power requirements. The heliostat beam characterization system accuracy is given for the measurement of beam quality, heliostat tracking accuracy, and power in the reflected beam. The heliostat technical specifications and design description are provided, and a detailed design description of the beam characterization system is included. 41 refs.

Mavis, C.L.

1988-05-01T23:59:59.000Z

387

Phase transition mastering for Blu-ray ROM disc  

Science Journals Connector (OSTI)

Phase Transition Mastering (PTM) has been developed for a 25 GB Blue-ray ROM Disc. The principle and the characteristics will be described in detail.

Osato, Kiyoshi

388

Building Information Modeling (BIM), Utilized During the Design and Construction Phase of a Project Has the Potential to Create a Valuable Asset in Its Own Right ('BIMASSET') at Handover that in Turn Enhances the Value of the Development  

E-Print Network (OSTI)

be drawn from the manufacturing industry. A similarity to the BIM collaboration process can be found in the Toyota Production System. A vehicle development system called the ?Obeya? system was developed for the Prius, which is now the new standard... for Toyota. The system serves two main purposes, which is information management and on the spot decision making. It enabled project participants to keep track of the project development schedule through the CAD terminals, schedules with checkpoints...

Patrick, R.; Munir, M.; Jeffrey, H.

2012-01-01T23:59:59.000Z

389

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

SciTech Connect

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

390

Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Huaren Wind Power Technology Development Co Ltd Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name Shenyang Huaren Wind Power Technology Development Co Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product China-based technology provider of 1MW, 1.5MW and 3MW wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Holographic Magnetic Phase Transition  

E-Print Network (OSTI)

We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4 and D8 branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

Gilad Lifschytz; Matthew Lippert

2009-06-21T23:59:59.000Z

392

Degenerate Metric Phase Boundaries  

E-Print Network (OSTI)

The structure of boundaries between degenerate and nondegenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such "phase boundaries" in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild, and plane wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.

Ingemar Bengtsson; Ted Jacobson

1999-01-23T23:59:59.000Z

393

During Phase 3, WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

UPDATE: April 14, 2014 Phase 3 activities begin Two teams re-entered the WIPP underground facility on Saturday, moving closer to suspected location of the February 14...

394

NGNP PHASE I REVIEW  

Energy Savers (EERE)

and start up operations of the prototype nuclear reactor and its associated hydrogen or electricity production facilities. Scope of Work for Review * Review Phase I reports in...

395

Cleveland Project Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation Location Lake Erie OH Coordinates 41.725°, -81.802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.725,"lon":-81.802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

PhaseII1.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Stakeholder Meeting Stakeholder Meeting DOE-NETL Proposed Phase II Large Scale Mercury Control Technology Field Testing Program September 12, 2002 Meeting Summary A meeting was held in Arlington, VA on September 12 on DOE-NETL's plans to go forward with a second phase of field testing of advanced mercury control technology. The meeting was held in conjunction with the Air Quality III Conference and was attended by approximately 53 representatives from the coal and electric-utility industries, technology developers, EPA, and other interested parties (see attached attendees list). Scott Renninger provided a brief overview of DOE-NETL's current mercury field testing program. A summary of the results from an earlier stakeholder meeting held in Washington on June 4 were also presented as a starting point for discussion to help

397

Coherent Phase Argument for Inflation  

E-Print Network (OSTI)

Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion -- {\\it inflation} -- from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here I describe the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. I also discuss alternatives to inflation that have been proposed recently and explain how they produce coherent phases.

Scott Dodelson

2003-09-05T23:59:59.000Z

398

Agent review phase one report.  

SciTech Connect

This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

2009-12-01T23:59:59.000Z

399

Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison  

SciTech Connect

Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these experiments to be superior to the TIE-based method for the robustness in performing the phase retrieval.

Yan, Aimin; Wu, Xizeng; Liu, Hong [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2011-09-15T23:59:59.000Z

400

A Phase Odyssey  

SciTech Connect

We are introduced to the effects of phase from the earliest days of our childhood, from the nursery rhyme above (or its less verbose for 'Twinkle, Twinkle Little Star') to the shimmer over a hot road and the network of bright lines at the bottom of a swimming pool. These are all manifestations of phase. And there are many more.

Nugent, K.A.; Paganin, D.; Gureyev, T.E. (Melbourne)

2009-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Measurement - Hydrometeor phase  

NLE Websites -- All DOE Office Websites (Extended Search)

phase phase ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Value-Added Products VISST : Minnis Cloud Products Using Visst Algorithm (Process) VISSTPX04G08V2MINNIS : VISST-derived pixel-level products from satellite GOES8, version 2 VISSTPX04G08V3MINNIS : VISST-derived pixel-level products from satellite GOES8, version 3

402

Water development for hydroelectric in southeastern Anatolia project (GAP) in Turkey  

Science Journals Connector (OSTI)

Southeastern Anatolia Project (GAP) region in Turkey is rich in water for irrigation and hydroelectric power. The Euphrates and Tigris rivers represent over 28% of the nations water supply by rivers, and the economically irrigable areas in the region make up 20% of those for the entry country. On the other hand, 85% of the total hydro capacity in operation has been developed by DSI, corresponding to 9931MW (49 hydro plants) and 35,795GWh/year respectively. The largest and most comprehensive regional development project ever implemented by DSI in Turkey is The Southeast Anatolian (GAP) Project, which is located in the region of Southeast Anatolia on the Euprates and Tigris rivers and their tributaries, which originate in Turkey. The energy potential of the Tigris and Euphrates is estimated as 12,000GWh and 35,000GWh, respectively. These two rivers constitute 10% and 30% of the total hydroelectric energy potential. The GAP region will be an important electric power producer with 1000MW installed capacity from the Karakaya dam, 2400MW installed capacity from the Atatrk dam and 1360MW installed capacity from the Keban dam. The GAP region has a 22% share of the countrys total hydroelectric potential, with plans for 22 dams and 19 hydroelectric power plants. Once completed, 27 billionkWh of electricity will be generated annually.

Ibrahim Yuksel

2012-01-01T23:59:59.000Z

403

CARS 2002 H.U. Lemke, M.W. Vannier, K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved.  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier, K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors.W. Vannier, K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) © CARS/Springer. All rights reserved. 2

Wahle, Andreas

404

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved.  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved. 2 2. Method 2.1. Computer

Payan, Yohan

405

CARS 2002 H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) CARS/Springer. All rights reserved.  

E-Print Network (OSTI)

CARS 2002 ­ H.U. Lemke, M.W. Vannier; K. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors. Inamura, A.G. Farman, K. Doi & J.H.C. Reiber (Editors) © CARS/Springer. All rights reserved. 756

406

Presentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum capacity to biofuel due to funds from the emissions reduction units sell, under the Kyoto Protocol  

E-Print Network (OSTI)

economy in XXI century · High consumption of basic and service equipment · Low efficiency of equipment. roubles. Reconstruction period: 3 months Basic results: · Increased boiler's efficiency factor from 50Presentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum

407

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky  

E-Print Network (OSTI)

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C assembled in sovlux plant using these solar cell material have demonstrated an initial efficiency of 9. roofiop modules. Lightweight, flexible rooftop modules with initial efficiency up to 9.3% were producedat

Deng, Xunming

408

A 97mW 110MS/s 12b Pipeline ADC Implemented in 0.18m Digital CMOS Terje N. Andersen, Atle Briskemyr, Frode Telst, Johnny Bjrnsen, Thomas E. Bonnerud,  

E-Print Network (OSTI)

A 97mW 110MS/s 12b Pipeline ADC Implemented in 0.18µm Digital CMOS Terje N. Andersen, Atle Semiconductor, Trondheim, Norway Abstract A 12 bit Pipeline ADC fabricated in a 0.18 m pure digital CMOS addresses these challenges by presenting a 12 bit pipeline ADC which utilizes a 1.8V supply voltage

Paris-Sud XI, Université de

409

Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S309S313 High-Power Pulse Transformer for a 1.5-MW Magnetron of KSTAR LHCD  

E-Print Network (OSTI)

Transformer for a 1.5-MW Magnetron of KSTAR LHCD Microwave Application Sung-Duck Jang, Yoon-Gyu Son and Jong-power magnetron. The high power pulse transformer has the function of transferring pulse energy from a pulsed power source to a high-power load. A pulse transformer producing a pulse with a peak voltage of 45 k

410

Symmetry, Defects, and Gauging of Topological Phases  

E-Print Network (OSTI)

We examine the interplay of symmetry and topological order in $2+1$ dimensional topological phases of matter. We present a definition of the \\it topological symmetry \\rm group, which characterizes the symmetry of the emergent topological quantum numbers of a topological phase $\\mathcal{C}$, and describe its relation with the microscopic symmetry of the underlying physical system. We derive a general framework to classify symmetry fractionalization in topological phases, including non-Abelian phases and the possibility that the symmetries permute the quasiparticle types. We develop a theory of extrinsic defects (fluxes) associated with elements of the symmetry group, which provides a general classification of symmetry-enriched topological phases derived from a topological phase of matter $\\mathcal{C}$ with (on-site) symmetry group $G$. The algebraic theory of the defects, known as a $G$-crossed braided tensory category $\\mathcal{C}_{G}^{\\times}$, allows one to compute many properties, such as the number of topologically distinct types of defects associated with each group element, their fusion rules, quantum dimensions, zero modes, braiding exchange transformations, a generalized Verlinde formula for the defects, and modular transformations of the $G$-crossed extensions of topological phases. We also examine the promotion of the global symmetry to a local gauge invariance, wherein the extrinsic $G$-defects are turned into deconfined quasiparticle excitations, which results in a different topological phase $\\mathcal{C}/G$. A number of instructive and/or physically relevant examples are studied in detail.

Maissam Barkeshli; Parsa Bonderson; Meng Cheng; Zhenghan Wang

2014-10-16T23:59:59.000Z

411

Geothermal energy research and development  

Science Journals Connector (OSTI)

Thermal springs have been used for bathing, washing and cooking for thousands of years in many countries. At the beginning of this century, experiments started with piping the hot water to houses for space heating and with using geothermal steam for the production of electricity. Geothermal is a proven energy resource that uses mostly conventional technology. Commercial production on the scale of hundreds of MW has been undertaken for over three decades both for electricity generation and direct utilization. Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 U.S.cents/kWh. Direct utilization of geothermal water (space heating, horticulture, fish farming, industry and/or bathing) is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. The overall installed capacity for direct utilization is about 11,400 MW-thermal. The production cost/kWh for direct utilization is highly variable, but commonly under 2 U.S.cents/kWht. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion U.S.$. During the two decades, 30 countries invested each over 20 million U.S.$, 12 countries over 200 million U.S.$, and 5 countries over 1 billion U.S.$. During the first decade, 19731982, public funding amounted to 4.6 billion U.S.$ and private funding to 3 billion U.S.$. During the second decade, 19831992, public funding amounted to 6.6 billion U.S.$ and private funding to 7.7 billion U.S.$. Geothermal development has in the past been much affected by the development of prices of the competing fuels, especially oil and natural gas. Assuming a continuation of the present oil prices, the annual growth rate in geothermal utilization is likely to be some 4% for electricity generation and 10% for direct utilization. This would imply installed capacities of 8900 \\{MWe\\} and 30,000 \\{MWt\\} in the year 2000. The total investment cost of geothermal in the world during the next decade can be expected to be some 1520 billion U.S.$. Properly implemented, geothermal energy is a sustainable resource and benign to the environment. The emission of greenhouse gases is minimal compared to fossil fuels. The removal of hydrogen sulphide from high temperature steam and the reinjection of spent geothermal fluids into the ground make the potential negative environmental effects negligible. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centres are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2000 members in all parts of the world.

Ingvar B. Fridleifsson; Derek H. Freeston

1994-01-01T23:59:59.000Z

412

Advanced thermal barrier coating system development: Technical progress report  

SciTech Connect

Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

NONE

1996-08-07T23:59:59.000Z

413

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

SciTech Connect

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

414

Colloque International de Statistique Applique pour le Dveloppement en Afrique International Conference on Applied Statistics for Development in Africa  

E-Print Network (OSTI)

Conference on Applied Statistics for Development in Africa Sada'07 nn, 1­6 (2007) BAYESIAN NUMERICAL. A general framework of "Population Monte Carlo" has been proposed in this context #12;2 Fabien Campillo within Gibbs (MwG) algorithm Let (x) be the probability density function of a target distribution defined

Paris-Sud XI, Université de

415

Cummins Power Generation SECA Phase 1  

SciTech Connect

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

416

Developments in West Coast area in 1979. [Tabular data and maps  

SciTech Connect

New-field discoveries in California were down in 1979 from the previous year. The total exploratory footage drilled was slightly lower, but the total number of successful exploratory wells was up 19% from 1978. One new oil field and 5 new gas field discoveries were reported in California. None of these discoveries appear to be of major size. During 1979, hydrocarbons were discovered in commercial quantities for the first time in Oregon - the Mist Gas field, in the northwestern corner of the state, in Columbia County. A pipeline was constructed for initial production in late 1979. This discovery has spurred drilling and leasing activity. Mobil drilled a second deep exploratory well in Oregon, to 10,412 ft, which was subsequently abandoned. Only 1 shallow oil and gas exploratory well was drilled in Washington State this year. As yet it has not been completed. Development drilling in California, although down from 1978, continued at an active pace and is related largely to steam-flood projects. Production of oil outstripped additions to reserves by 285.8 million bbl in 1979. Geothermal activity increased in California's Imperial Valley and Geysers area. Southern California Edison Co. has begun construction of a 10-Mw generating plant near Brawley in the Imperial Valley. Two other geothermal projects in the Imperial Valley sponsored by Southern California Edison include the development of a 50-Mw unit near Heber and a prospective 10-Mw plant south of the Salton Sea. Westmoreland Geothermal Associates also have plans to develop a plant in the valley. In the Geysers area, Sacramento Municipal Utility District plans to construct a 55-Mw plant. The Geysers capacity is expected to increase to 1238 Mw by the end of 1982.

Blaisdell, R.C.; Dignes, T.W.

1980-09-01T23:59:59.000Z

417

A comparative study of iron-, nickel-, and cobalt-base weldments exposed in TVA 20-MW and Rocketdyne atmospheric fluidized bed combustors  

SciTech Connect

Experimental iron-, nickel-, and cobalt-base weldment materials were exposed in TVA 20-MW and Rocketdyne atmospheric fluidized bed combustors (AFBCs) at 849{degree}C for 1261 h and 871{degree}C for 1000 h, respectively. Postexposure analyses were conducted at Argonne National Laboratory. All specimens experienced different degrees of internal oxidation/sulfidation. Among eight filler materials, Marathon 25/35R and Haynes 188 showed the least corrosion attack, i.e., less than 0.5 mm/yr. A high nickel content in the weldment was unfavorable for corrosion resistance in the AFBC environment. Differences in the coal/bed chemistry of the TVA and Rocketdyne systems yielded different corrosion behavior in the materials. Calcium sulfate deposits on the specimens significantly affected the internal oxidation/sulfidation of the alloys. The results of this study supplement the material data base, in particular that of weldment performance, and aid in materials selection for AFBC applications. 10 refs., 22 figs., 4 tabs.

Wang, D.Y.; Natesan, K.

1990-06-01T23:59:59.000Z

418

QCD Phase Transitions, Volume 15  

SciTech Connect

The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

Schaefer, T.; Shuryak, E.

1999-03-20T23:59:59.000Z

419

Heating/daylighting prototype development. Phase I, Passive and Hybrid Solar Manufactured Building Project. Interim report and project status report No. 1, 1 October 1979-29 February 1980  

SciTech Connect

Climatological data, both representative (typical) and extreme conditions, relevant to building energy use in Grandview, Missouri are presented. The energy-related characteristics of a particular building and its use are merged with ambient weather conditions. The graphs depict daily fluctuations in the major categories of building heating/cooling load for the experimental building (Roof Runner facility) at Butler Research Center. Data input include hourly weather and building occupancy schedules, the geometry and fixed thermal characteristics (component R-values, heat capacities, etc.) of the prototype structure, and variable conditions (status of moveable insulating shutters, HVAC operating modes, etc.). The prototype systems to be incorporated in the new Roof Runner building are shown. Both warehouse (no ceiling) and office (suspended ceiling) system types are included. The diagrams conceptually depict the heat flows in several representative operating modes, sampling the wide variety of operating conditions which will be evaluated during the testing phase of this project. Cost estimates for the designs selected for construction are provided. (MHR)

Snyder, M.; Fraker, H.; Lindsey, L.; Braham, W.; Hallagan, W.; Huffman, J.

1980-03-31T23:59:59.000Z

420

Phasing tiny crystals  

Science Journals Connector (OSTI)

For tiny crystals, their diffraction intensities at and between the Bragg peaks become measurable due to the limited number of the unit cells, which can in principle be used to directly phase the crystal structures.

Miao, J.

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sliding Luttinger liquid phases  

Science Journals Connector (OSTI)

We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T?0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

Ranjan Mukhopadhyay; C. L. Kane; T. C. Lubensky

2001-07-09T23:59:59.000Z

422

Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane from the gas phase as a one step method in preparation of membrane for gas  

E-Print Network (OSTI)

Abstract Flame aerosol nano-technology has been developed to preparation of thin and defect on deposition of nano particles (-Al2O3, MgO or spinel MgAl2O4), formed in the premixed flame reactor through/or aluminium precursors in the flame to form nano-particles of -Al2O3, MgO or MgAl2O4 spinel. The generated

423

Highland New Wind Development LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Development LLC Wind Development LLC Jump to: navigation, search Name Highland New Wind Development LLC Place Virginia Sector Wind energy Product Developer of the 39MW Allegheny Mountain wind project in western Virginia. References Highland New Wind Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Highland New Wind Development LLC is a company located in Virginia . References ↑ "Highland New Wind Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Highland_New_Wind_Development_LLC&oldid=346536" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

424

Solano Phase 3 | Open Energy Information  

Open Energy Info (EERE)

Phase 3 Phase 3 Jump to: navigation, search Name Solano Phase 3 Facility Solano Phase 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento Municipal Utility District Developer Sacramento Municipal Utility District Energy Purchaser Sacramento Municipal Utility District Location Birds Landing CA Coordinates 38.12672486°, -121.8601799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.12672486,"lon":-121.8601799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Tillamook Windfloat Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Windfloat Phase 1 Windfloat Phase 1 Jump to: navigation, search Name Tillamook Windfloat Phase 1 Facility Tillamook Windfloat Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Principle Power Developer Principle Power Location Pacific Ocean OR Coordinates 45.54°, -124.156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.54,"lon":-124.156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Windy Flats Phase III | Open Energy Information  

Open Energy Info (EERE)

Phase III Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner Cannon Power Group Developer Cannon Power Group Location Goldendale WA Coordinates 45.76201437°, -120.5455971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.76201437,"lon":-120.5455971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Rotating Target Development for SNS Second Target Station  

SciTech Connect

A rotating target for the second target station (STS) at SNS has been identified as an option along with a mercury target. Evaluation of the rotating target alternative for STS has started at 1.5 MW which is considered an upper bound for the power. Previous preconceptual design work for a 3 MW rotating target is being modified for the lower power level. Transient thermal analysis for a total loss of active water cooling has been done for a simplified 2D model of the target and shielding monolith which shows that peak temperatures are well below the level at which tungsten vaporization by steam could exceed site boundary dose limits. Design analysis and integration configuration studies have been done for the target-moderator-reflector assembly which maximizes the number of neutron beam lines and provides for replacement of the target and moderators. Target building hot cell arrangement for this option will be described. An option for operation in rough vacuum without a proton beam window using Ferro fluid seals on a vertical shaft is being developed. A full scale prototypic drive module based on the 3 MW preconceptual design has been fabricated and successfully tested with a shaft and mock up target supplied by the ESS-Bilbao team. Overall planning leading to decision between mercury and the rotating target in 2011 will be discussed

McManamy, Thomas J [ORNL; Rennich, Mark J [ORNL; Crawford, Roy K [ORNL; Geoghegan, Patrick J [ORNL; Janney, Jim G [ORNL

2010-01-01T23:59:59.000Z

428

Phase relations in the diopside-anorthite-akermanite system  

Science Journals Connector (OSTI)

The relationship of phases developed during the crystallization of certain glasses within the system diopside-anorthite-akermanite with and without Cr2O3 was studied under different conditions of heat treatment. The mineral phases developed in the Cr2O3-free glasses after heat treatment were in good accordance with the equilibrium phase diagram. The phase relationships were greatly altered in the presence of Cr2O3 towards the formation of complex aluminous pyroxenes; the amount of anorthite was greatly decreased and an akermanite-gehlenite series of melilites formed. The effect of Cr2O3 on cation distributions during crystallization is discussed.

A.A. Omar; S.M. Salman; M.Y. Mahmoud

1986-01-01T23:59:59.000Z

429

Modeling of the Phase behavior of light (C2 & C3) olefins in liquid phase epoxidation systems and experimental determination of gas/liquid mass transfer coefficients  

E-Print Network (OSTI)

). HYSYS software was used to study the phase behavior and generate quantitative data on the solubility of gaseous olefins in the liquid phase which aided in the optimization of the reaction conditions. A detailed stirred tank reactor model was developed...

Ghanta, Madhav

2008-01-01T23:59:59.000Z

430

Program predicts two-phase pressure gradients  

SciTech Connect

The calculator program discussed, ORK, was designed for the HP-41CV hand-held calculator and uses the Orkiszewski correlation for predicting 2-phase pressure gradients in vertical tubulars. Accurate predictions of pressure gradients in flowing and gas lift wells over a wide range of well conditions can be obtained with this method, which was developed based on data from 148 wells. The correlation is one of the best generalized 2-phase pressure gradient prediction methods developed to date for vertical flow. It is unique in that hold-up is derived from observed physical phenomena, and the pressure gradient is related to the geometrical distribution of the liquid and gas phase (flow regime).

Jacks, D.C.; Hill, A.D.

1983-11-18T23:59:59.000Z

431

Property:Implementation Phase | Open Energy Information  

Open Energy Info (EERE)

Implementation Phase Implementation Phase Jump to: navigation, search This is a property of type String. The allowed values for this property are: Bring the Right People Together Create a Vision Determine Baseline Evaluate Options Develop Goals Prepare a Plan Get Feedback Develop Finance and Implement Projects Create Early Successes Evaluate Effectiveness and Revise as Needed Subproperties This property has the following 30 subproperties: A AGI-32 C Climate Leadership in Parks (CLIP) Community Energy Planning A Guide for Communities Volume 2 - The Community Energy Plan Community Energy Planning A Resource Guide for Remote Communities in Canada Community Energy Planning Tool Community Greening: How to Develop a Strategic Plan D Development of Agency Reduction Targets Does Cogeneration Make Sense for Me?

432

Analytical and Experimental Study of Annular Two-Phase Flow Friction Pressure Drop Under Microgravity  

E-Print Network (OSTI)

to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow...

Nguyen, Ngoc Thanh

2011-02-22T23:59:59.000Z

433

MH4D Development Plasma Science and Innovation Center  

E-Print Network (OSTI)

-parallel periodic boundaries ­ Operator matrix b.c. · Atomic physics development ­ Spheromak simulations · Other Development Phase II 16 · Spheromak t

434

Phase Transition in a Model Gravitating System  

Science Journals Connector (OSTI)

We present recent developments in the study of an interacting gravitational system of concentric, spherical, mass shells. The existence of two distinct phases is demonstrated. The nature of the transition in the microcanonical, canonical, and grand canonical ensembles is studied both theoretically in terms of mean field theory and via dynamical simulation. Striking differences are found in each environment, especially the last.

Bruce N. Miller and Paige Youngkins

1998-11-30T23:59:59.000Z

435

TWRS Privatization Phase 1 Master Site Plan  

SciTech Connect

This document provides a reference for the development of the Tank Waste Remediation System (TWRS) Privatization Phase I site (former Grout Disposal Compound) and the upgrades and extension to the site of the 200 East Area inter- and intra-area roads and various utilities.

PARAZIN, R.J.

1999-08-16T23:59:59.000Z

436

Viscosity near phase transitions  

E-Print Network (OSTI)

Probably the most enticing observation in theoretical physics during the last decade was the discovery of the great amount of consequences obtained from the AdS/CFT conjecture put forward by Maldacena. In this work we review how this correspondence can be used to address hydrodynamic properties such as the viscosity of some strongly interacting systems. We also employ the Boltzmann equation for those systems closer to low-energy QCD, and argue that this kind of transport coefficients can be related to phase transitions, in particular the QGP/hadronic phase transition studied in heavy ion collisions.

Antonio Dobado; Felipe J. Llanes-Estrada; Juan M. Torres-Rincon

2010-09-30T23:59:59.000Z

437

Linear phase compressive filter  

DOE Patents (OSTI)

A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

438

Phase II Clinical Trial Design: Methods in Translational Research from the Genitourinary Committee at the Eastern Cooperative Oncology Group  

Science Journals Connector (OSTI)

...II trial designs. We review randomized phase II designs...optimize a trial development plan that guides phase III...II trial designs. We review randomized phase II designs...optimize a trial development plan that guides phase III...USA. | Journal Article Review | Advisory Committees...

Robert Gray; Judith Manola; Scott Saxman; John Wright; Jan Dutcher; Michael Atkins; Michael Carducci; William See; Christopher Sweeney; Glenn Liu; Mark Stein; Robert Dreicer; George Wilding; and Robert S. DiPaola

2006-04-01T23:59:59.000Z

439

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

NONE

1996-07-26T23:59:59.000Z

440

TWRS phase I privatization site environmental baseline and characterization plan  

SciTech Connect

This document provides a plan to characterize and develop an environmental baseline for the TWRS Phase I Privatization Site before construction begins. A site evaluation study selected the former Grout Disposal Area of the Grout Treatment Facility in the 200 East Area as the TWRS Phase I Demonstration Site. The site is generally clean and has not been used for previous activities other than the GTF. A DQO process was used to develop a Sampling and Analysis Plan that would allow comparison of site conditions during operations and after Phase I ends to the presently existing conditions and provide data for the development of a preoperational monitoring plan.

Shade, J.W.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mw development phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Acoustically enhanced remediation, Phase 2: Technology scaling  

SciTech Connect

Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

Iovenitti, J.L.; Hill, D.G. [Weiss Associates, Emeryville, CA (United States); Rynne, T.M.; Spadaro, J.F.; Hutchinson, W. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States); Illangasakere, T. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

1996-12-31T23:59:59.000Z

442

Overpotential-Dependent Phase Transformation Pathways  

SciTech Connect

An objective in battery development for higher storage energy density is the design of compounds that can accommodate maximum changes in ion concentration over useful electrochemical windows. Not surprisingly, many storage compounds undergo phase transitions in situ, including production of metastable phases. Unique to this environment is the frequent application of electrical over- and underpotentials, which are the electrical analogs to undercooling and superheating. Surprisingly, overpotential effects on phase stability and transformation mechanisms have not been studied in detail. Here we use synchrotron X-ray diffraction performed in situ during potentiostatic and galvanostatic cycling, combined with phase-field modeling, to reveal a remarkable dependence of phase transition pathway on overpotential in the model olivine Li{sub 1-x}FePO{sub 4}. For a sample of particle size {approx}113 nm, at both low (e.g., <20 mV) and high (>75 mV) overpotentials a crystal-to-crystal olivine transformation dominates, whereas at intermediate overpotentials a crystalline-to-amorphous phase transition is preferred. As particle sizes decrease to the nanoscale, amorphization is further emphasized. Implications for battery use and design are considered.

Y Kao; M Tang; N Meethong; J Bai; W Carter; Y Chiang

2011-12-31T23:59:59.000Z

443

Berry Phase Quantum Thermometer  

E-Print Network (OSTI)

We show how Berry phase can be used to construct an ultra-high precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.

Martin-Martinez, E; Mann, R B; Fuentes, I

2011-01-01T23:59:59.000Z

444

Berry Phase Quantum Thermometer  

E-Print Network (OSTI)

We show how Berry phase can be used to construct an ultra-high precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.

E. Martin-Martinez; A. Dragan; R. B. Mann; I. Fuentes

2013-05-28T23:59:59.000Z

445

Development Practice in HVAC Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Practice in HVAC Controls Development Practice in HVAC Controls Speaker(s): John Zhou Date: April 11, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation will introduce development tools and design considerations used in HVAC controls development. Controls development use simulation, lab testing and field trial at different phases of the project cycle to improve control performance and to achieve rapid development. Development starts with simulation to originate and define algorithm concept. The concept is then implemented in a prototype controller, and tested in lab environment. The concept is refined and verified by analyzing lab results. In the final phase of development, controllers with refined and verified algorithms are installed in field trial sites to ensure system integration and to confirm

446

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

447

Groningen 2nd phase compression project  

Science Journals Connector (OSTI)

ABSTRACT A Double End Driven Compression train with Active Magnetic Bearings (AMBs), a novel concept on its own, has been chosen as the solution for the Groningen 2nd phase compression project. A development assurance program was followed by a team comprising of both Siemens and Shell specialists with the intent of ensuring that technical risks were identified and addressed as far as possible prior to field implementation. The paper will describe The concept evaluation and selection The creation of the development programme to assess technical risks Technical challenges and learnings Current status of the development and design maturity

E.