National Library of Energy BETA

Sample records for mv-1 assembly facility

  1. Los Alamos Critical Assemblies Facility

    SciTech Connect (OSTI)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of /sup 235/U, /sup 233/U, and /sup 239/Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented.

  2. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  3. Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility

    Broader source: Energy.gov [DOE]

    The purpose of this document is to report the results of a survey conducted at the Los Alamos Tritium Systems Test Assembly (TSTA Facility). The survey was conducted during the week of 3/20/00.

  4. High Energy X-Ray System Specification for the Device Assembly Facility (DAF) at the NNSS

    SciTech Connect (OSTI)

    Fry, David A.

    2012-08-10

    This specification establishes requirements for an X-Ray System to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) to support radiography of experimental assemblies for Laboratory (LANL, LLNL, SNL) programs conducting work at the NNSS.

  5. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  6. Structural analysis of fuel assembly clads for the Upgraded Transient Reactor Test Facility (TREAT Upgrade)

    SciTech Connect (OSTI)

    Ewing, T.F.; Wu, T.S.

    1986-01-01

    The Upgraded Transient Reactor Test Facility (TREAT Upgrade) is designed to test full-length, pre-irradiated fuel pins of the type used in large LMFBRs under accident conditions, such as severe transient overpower and loss-of-coolant accidents. In TREAT Upgrade, the central core region is to contain new fuel assemblies of higher fissile loadings to maximize the energy deposition to the test fuel. These fuel assemblies must withstand normal peak clad temperatures of 850/sup 0/C for hundreds of test transients. Due to high temperatures and gradients predicted in the clad, creep and plastic strain effects are significant, and the clad structural behavior cannot be analyzed by conventional linear techniques. Instead, the detailed elastic-plastic-creep behavior must be followed along the time-dependent load history. This paper presents details of the structural evaluations of the conceptual TREAT Upgrade fuel assembly clads.

  7. Activation Analysis of the Final Optics Assemblies at the National Ignition Facility

    SciTech Connect (OSTI)

    Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

    2008-10-14

    Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

  8. Prototype secondary mirror assembly design for the space infrared telescope facility

    SciTech Connect (OSTI)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1989-02-01

    The authors describe their design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under development for the NASA Space Infrared Telescope Facility (SIRTF) program. The SIRTF secondary mirror assembly must operate below 4 K and provide the functions of highly precise 2-axis dynamic tilting (chopping) in addition to the conventional functions needed by the SIRTF observatory. Their PSMA design employs a fused quartz mirror kinematically attached at its center to an aluminium cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexure-pivoted mass enhancing servo system stability and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose dimensional characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a six degree of freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  9. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  10. Development of an incremental and iterative risk reduction facility for robotic servicing and assembly missions

    E-Print Network [OSTI]

    Sternberg, David Charles, S.M. Massachusetts Institute of Technology

    2014-01-01

    A means for reducing the risk for an on-orbit robotic servicing and assembly mission through the development of a series of testbeds that build successively upon one another is investigated. Robotic Servicing and Assembly ...

  11. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    SciTech Connect (OSTI)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  12. Motor Assembly Plant Saves $85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project.

  13. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  14. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  15. Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles

    SciTech Connect (OSTI)

    Kim, Mariya D.; Dergunov, Sergey; Richter, Andrew; Durbin, Jeffrey; Shmakov, Sergey; Jia, Ying; Kenbeilova, Saltanat; Orazbekuly, Yerbolat; Kengpeiil, Aigerim; Lindner, Erno; Pingali, Sai Venkatesh; Urban, Volker S; Weigand, Steven; Pinkhassik, Eugene

    2014-01-01

    Surfactant vesicles containing monomers in the interior of the bilayer were used to template hollow polymer nanocapsules. This study investigated the formation of surfactant/monomer assemblies by two loading methods, concurrent loading and diffusion loading. The assembly process and the resulting aggregates were investigated with dynamic light scattering, small angle neutron scattering, and small-angle X-ray scattering. Acrylic monomers formed vesicles with a mixture of cationic and anionic surfactants in a broad range of surfactant ratios. Regions with predominant formation of vesicles were broader for compositions containing acrylic monomers compared with blank surfactants. This observation supports the stabilization of the vesicular structure by acrylic monomers. Diffusion loading produced monomer-loaded vesicles unless vesicles were composed from surfactants at the ratios close to the boundary of a vesicular phase region on a phase diagram. Both concurrent-loaded and diffusion-loaded surfactant/monomer vesicles produced hollow polymer nanocapsules upon the polymerization of monomers in the bilayer followed by removal of surfactant scaffolds.

  16. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect (OSTI)

    Kimura, C Y; Sanzo, D L; Sharirli, M

    1998-07-09

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of ?no-fly? periods for R-4808N during which SNM is present in the DAF should be formalized either by modifying an existing operational procedure or instituting a new procedure. Additionally, the process for DOE notification by DAF personnel of the presence of SNM should be formalized.

  17. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect (OSTI)

    Kimura, C. Y.; Sanzo, D. L.; Sharirli, M.

    1998-12-16

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of ?no-fly? periods for R-4808N during which SNM is present in the DAF should be formalized either by modifying an existing operational procedure or instituting a new procedure. Additionally, the process for DOE notification by DAF personnel of the presence of SNM should be formalized.

  18. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-04-08

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

  19. Dynamic pathways for viral capsid assembly

    SciTech Connect (OSTI)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

  20. Precision Robotic Assembly Machine

    ScienceCinema (OSTI)

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  1. Hinge assembly

    DOE Patents [OSTI]

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  2. Latch assembly

    DOE Patents [OSTI]

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  3. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  4. Sensor assembly

    DOE Patents [OSTI]

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  5. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  6. Shingle assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  7. Pushrod assembly

    DOE Patents [OSTI]

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  8. Dump assembly

    DOE Patents [OSTI]

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  9. Pushrod assembly

    DOE Patents [OSTI]

    Potter, Jerry D. (Kennewick, WA)

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  10. Manhattan Project Signature Facilities | Department of Energy

    Energy Savers [EERE]

    Reactor, the T Plant Chemical Separations Building, the V-Site Assembly BuildingGun Site, and the Trinity Site. Two of the facilities--the Metallurgical Laboratory at the...

  11. Thermocouple assembly

    DOE Patents [OSTI]

    Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  12. Swivel assembly

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  13. Method for disconnecting a marine drilling riser assembly

    SciTech Connect (OSTI)

    Beynet, P.A.

    1990-03-27

    This patent describes a method for disconnecting a marine riser assembly extending from a surface facility to a subsea wellhead. The marine riser assembly comprising a marine riser connected to a subsea wellhead utilizing a wellhead connector having an internal shoulder positioned above an upper edge of the subsea wellhead and having connector dogs for releaseably connecting the wellhead connector to the subsea wellhead.

  14. Assembling and Installing LRUs for NIF

    SciTech Connect (OSTI)

    Bonanno, R E

    2003-12-31

    Within the 192 National Ignition Facility (NIF) beamlines, there are over 7000 large (40 x 40 cm) optical components, including laser glass, mirrors, lenses, and polarizers. These optics are held in large opto-mechanical assemblies called line-replaceable units (LRUs). Each LRU has strict specifications with respect to cleanliness, alignment, and wavefront so that once activated, each NIF beamline will meet its performance requirements. NIF LRUs are assembled, tested, and refurbished in on-site cleanroom facilities. The assembled LRUs weigh up to 1800 kilograms, and are about the size of a phone booth. They are transported in portable clean canisters and inserted into the NIF beampath using robotic transporters. This plug and play design allows LRUs to be easily removed from the beampath for maintenance or upgrades. Commissioning of the first NIF quad, an activity known as NIF Early Light (NEL), has validated LRU designs and architecture, as well as demonstrated that LRUs can be assembled and installed as designed. Furthermore, it has served to develop key processes and tools forming the foundation for NIF s long-term LRU production and maintenance strategy. As we look forward to building out the rest of NIF, the challenge lies in scaling up the production rate while maintaining quality, implementing process improvements, and fully leveraging the learning and experience gained from NEL. This paper provides an overview of the facilities, equipment and processes used to assemble and install LRUs in NIF.

  15. Latching relay switch assembly

    DOE Patents [OSTI]

    Duimstra, Frederick A. (Anaheim Hills, CA)

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  16. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  17. Inlet nozzle assembly

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  18. Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THEEnergyAO is theDepartment of

  19. Tilt assembly for tracking solar collector assembly

    DOE Patents [OSTI]

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  20. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  1. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  2. Tritium systems test assembly stabilization

    SciTech Connect (OSTI)

    Jasen, W. G. (William G.); Michelotti, R. A. (Roy A.); Anast, K. R. (Kurt R.); Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R&D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S&M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S&M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now designated as a Radiological Facility. Innovative approaches were employed for characterization and removal of legacy wastes and high inventory components. Major accomplishments included: (1) Reduction of tritium inventory, elimination of chemical hazards, and identification and posting of remaining hazards. (2) Removal of legacy wastes. (3) Transferred equipment for reuse in other DOE projects, including some at other DOE facilities. (4) Transferred facility in a safe and stable condition to the S&M organization. The project successfully completed all project goals and the TSTA facility was transferred into S&M on August 1,2003. This project demonstrates the benefit of radiological inventory reduction and the removal of legacy wastes to achieve a safe and stable end state that protects workers and the environment pending eventual demolition of the facility.

  3. Autonomous electrochromic assembly

    DOE Patents [OSTI]

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  6. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  7. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  8. Sensor mount assemblies and sensor assemblies

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA)

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  9. MOX Lead Assembly Fabrication at the Savannah River Site

    SciTech Connect (OSTI)

    Geddes, R.L.; Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  10. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  12. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  13. Public Assembly Buildings

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as "primary energy," which includes the energy consumed during the generation and transmission of electricity. Public assembly buildings used 577 trillion Btu of primary...

  14. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  15. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, Carolyn (Idaho Falls, ID)

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  16. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  17. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  18. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  20. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  1. Automated Assembly Using Feature Localization

    E-Print Network [OSTI]

    Gordon, Steven Jeffrey

    1986-12-01

    Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations ...

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  5. CAD Assemblies Academic Resource Center

    E-Print Network [OSTI]

    Heller, Barbara

    Desk Inventor, which is free to students #12;Why are Assemblies Important? Assemblies are collections of parts for the Inventor software Prepared by Adin Goings #12;

  6. Implementation of RFID in a low volume high flexibility assembly plant : item-level tagging

    E-Print Network [OSTI]

    Koniski, Cyril (Cyril A.)

    2010-01-01

    The implementation of an RFID checkpoint system in a low volume high flexibility assembly plant, aimed at tracking the flow of parts within the facility, was studied. A pilot revealed the suitability of the technology to ...

  7. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  8. Draft Genome Sequence of Deinococcus phoenicis, a Novel Strain Isolated during the Phoenix Lander Spacecraft Assembly

    E-Print Network [OSTI]

    Fox, George

    Draft Genome Sequence of Deinococcus phoenicis, a Novel Strain Isolated during the Phoenix Lander isolated from a cleanroom facility where the Phoenix Lander spacecraft was assembled. In order sequence of Deinococcus phoenicis, a novel strain isolated during the Phoenix Lander spacecraft assembly

  9. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  10. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  11. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  12. Magnetic assisted statistical assembly

    E-Print Network [OSTI]

    Cheng, Diana I

    2008-01-01

    The objective of this thesis is to develop a process using magnetic forces to assemble micro-components into recesses on silicon based integrated circuits. Patterned SmCo magnetic thin films at the bottom of recesses are ...

  13. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M. (Blackfoot, ID); Mills, William C. (McKeesport, PA)

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  14. Recuperator assembly and procedures

    DOE Patents [OSTI]

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-06-27

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  15. Recuperator assembly and procedures

    DOE Patents [OSTI]

    Kang, Yungmo (La Canada Flintridge, CA); McKeirnan, Jr., Robert D. (Westlake Village, CA)

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  16. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  19. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  20. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  1. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  2. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  3. Constrained space camera assembly

    DOE Patents [OSTI]

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  4. Fire resistant PV shingle assembly

    SciTech Connect (OSTI)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  5. Power module assembly

    DOE Patents [OSTI]

    Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  6. Supported PV module assembly

    SciTech Connect (OSTI)

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  7. Low inductance connector assembly

    DOE Patents [OSTI]

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  8. Self assembling proteins

    DOE Patents [OSTI]

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  9. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  10. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  11. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  12. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  13. Segmented stator assembly

    DOE Patents [OSTI]

    Lokhandwalla, Murtuza; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shah, Manoj Ramprasad; Quirion, Owen Scott

    2013-04-02

    An electric machine and stator assembly are provided that include a continuous stator portion having stator teeth, and a tooth tip portion including tooth tips corresponding to the stator teeth of the continuous stator portion, respectively. The tooth tip portion is mounted onto the continuous stator portion.

  14. Rotary shaft sealing assembly

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX); Kalsi, Manmohan S. (Houston, TX); Alvarez, Patricio D. (Richmond, TX)

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  15. Rotary shaft sealing assembly

    DOE Patents [OSTI]

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  16. Vacuum breaker valve assembly

    DOE Patents [OSTI]

    Thompson, J.L.; Upton, H.A.

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.

  17. Vacuum breaker valve assembly

    DOE Patents [OSTI]

    Thompson, Jeffrey L. (San Jose, CA); Upton, Hubert Allen (Morgan Hill, CA)

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  18. Solution deposition assembly

    SciTech Connect (OSTI)

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  19. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  20. Turbine seal assembly

    DOE Patents [OSTI]

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  1. Ingestion resistant seal assembly

    DOE Patents [OSTI]

    Little, David A. (Chuluota, FL)

    2011-12-13

    A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.

  2. Low inductance busbar assembly

    DOE Patents [OSTI]

    Holbrook, Meghan Ann (Manhattan Beach, CA)

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  3. Subsea wellhead seal assembly

    SciTech Connect (OSTI)

    Gullion, S.D.

    1988-07-26

    An annular subsea wellhead seal assembly is described for sealing against the walls in a subsea wellhead annulus above a landing seat at the lower end of the annulus comprising: an annular body having an outwardly and downwardly flaring outer skirt and an inwardly and downwardly flaring inner skirt extending from it slower surface, a landing ring having lower landing surface for landing on a landing seat at the lower end of the subsea wellhead annulus in which the assembly is to seal, and an upper flat reaction surface which is positioned immediately under and engagable with the lower ends of the skirts; and means connecting the body and the landing ring for relative movement toward each other; downward movement of the body with respect to the landing ring spreading the skirts outward and inward, respectively, into a substantially horizontal digging engagement set position with the walls of the annulus to be sealed.

  4. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  5. Infrared floodlight assembly

    DOE Patents [OSTI]

    Wierzbicki, Julian J. (Peabody, MA); Chakrabarti, Kirti B. (Danvers, MA)

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  6. Fuel nozzle assembly

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC); Lacey, Benjamin Paul (Greer, SC); York, William David (Greer, SC); Stevenson, Christian Xavier (Inman, SC)

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  7. Design, construction and evaluation of a facility for the simulation of fast reactor blankets

    E-Print Network [OSTI]

    Forbes, Ian Alexander

    1970-01-01

    A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

  8. Pull rod assembly

    DOE Patents [OSTI]

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  9. Cool Storage Economic Feasibility Analysis for a Large Industrial Facility 

    E-Print Network [OSTI]

    Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

    1988-01-01

    of Arizona Helicopter Co. Tucson, Arizona. Tucson, Arizona. Mesa. Arizona. ABSTRACT The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2... thermal storage at McDonnell Douglas Helicopter CO. (MDH) in Mesa, Arimna [I]. MDH is a large assembly plant consisting of eleven air conditioned buildings totalling 2,000.000 square feet of diversified activities. The site has a central chilled water...

  10. Removable feedwater sparger assembly

    DOE Patents [OSTI]

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  11. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  12. Airfoil nozzle and shroud assembly

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  13. Airfoil nozzle and shroud assembly

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  14. Multi-position photovoltaic assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2003-03-18

    The invention is directed to a PV assembly, for use on a support surface, comprising a base, a PV module, a multi-position module support assembly, securing the module to the base at shipping and inclined-use angles, a deflector, a multi-position deflector support securing the deflector to the base at deflector shipping and deflector inclined-use angles, the module and deflector having opposed edges defining a gap therebetween. The invention permits transport of the PV assemblies in a relatively compact form, thus lowering shipping costs, while facilitating installation of the PV assemblies with the PV module at the proper inclination.

  15. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  16. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  17. The production-assembly-distribution system design problem: modeling and solution approaches 

    E-Print Network [OSTI]

    Liang, Dong

    2009-05-15

    used to make p ( 2 p ). Similarly, material flows are always transferred from facility 1 f to facility f and then to facility 2 f ; that is, ____________ *Part of this section is reprinted with permission from Wilhelm, W. E., D. Liang, B. R. T.... Vasudeva, D. Warrier, X. Zhu, S. Bulusu (2005) Design of international assembly sys- tems and their supply chains under NAFTA. Transportation Research Part E, 41, 467- 493. doi:10.1016/j.tre.2005.06.002 21 the corresponding facility relationship 12 f ff...

  18. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  19. Bottom head assembly

    DOE Patents [OSTI]

    Fife, A.B.

    1998-09-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs.

  20. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  1. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  2. Assembling thefacebook: Using heterogeneity to understand online social network assembly

    E-Print Network [OSTI]

    Jacobs, Abigail Z; Ugander, Johan; Clauset, Aaron

    2015-01-01

    Online social networks represent a popular and highly diverse class of social media systems. Despite this variety, each of these systems undergoes a general process of online social network assembly, which represents the complicated and heterogeneous changes that transform newly born systems into mature platforms. However, little is known about this process. For example, how much of a network's assembly is driven by simple growth? How does a network's structure change as it matures? How does network structure vary with adoption rates and user heterogeneity, and do these properties play different roles at different points in the assembly? We investigate these and other questions using a unique dataset of online connections among the roughly one million users at the first 100 colleges admitted to Facebook, captured just 20 months after its launch. We first show that different vintages and adoption rates across this population of networks reveal temporal dynamics of the assembly process, and that assembly is onl...

  3. Three dimensional colorimetric assay assemblies

    DOE Patents [OSTI]

    Charych, Deborah (Albany, CA); Reichart, Anke (Albany, CA)

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  4. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  5. Stator and method of assembly

    DOE Patents [OSTI]

    Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shen, Xiaochun

    2013-06-18

    The present application provides a stator. The stator may include a number of poles and a stator tip and cooling assembly. The stator tip and cooling assembly may include a number of stator tips with a number of cooling tubes adjacent thereto such that the stator tips align with the poles and the cooling tubes cool the poles.

  6. UNC Faculty Assembly Reports to the Faculty Senate Cynthia Deale, Faculty Assembly Delegate

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    UNC Faculty Assembly Reports to the Faculty Senate Cynthia Deale, Faculty Assembly Delegate Report Assembly Delegates Report on February 20, 2015, UNC Faculty Assembly Meeting. James Holloway, Faculty Assembly Delegate Report on January 9, 2015, UNC Faculty Assembly Meeting. Robert Kulesher, Faculty

  7. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  8. Microfluidic self assembly

    E-Print Network [OSTI]

    Bingqing Shen; Joshua Ricouvier; Mathilde Reyssat; Florent Malloggi; Patrick Tabeling

    2014-09-14

    Recent progress in colloidal science has led to elaborate self-assembled structures whose complexity raises hopes for elaborating new materials. However, the throughputs are extremely low and consequently, the chance to produce materials of industrial interest, for instance, groundbreaking optical devices, harnessing complete three-dimensional band gaps, is markedly low. We discovered a novel hydrodynamic effect that may unlock this bottleneck. It is based on the dipolar flow interactions that build up when droplets are slowed down by the microchannel walls along which they are transported. Coupled with depletion forces, we succeeded to form, via a continuous flow process, at unprecedented speeds and under exquisite control, a rich ensemble of monodisperse planar and tridimensional clusters, such as chains, triangles, diamonds, tetahedrons, heterotrimers, possessing geometrical, chemical, and/or magnetic anisotropies enabling directional bonding. Continuous productions of millions of building blocks per second for elaborating new functional materials can be envisioned.

  9. Flexible cloth seal assembly

    DOE Patents [OSTI]

    Bagepalli, B.S.; Taura, J.C.; Aksit, M.F.; Demiroglu, M.; Predmore, D.R.

    1999-06-29

    A seal assembly is described having a flexible cloth seal which includes a shim assemblage surrounded by a cloth assemblage. A first tubular end portion, such as a gas turbine combustor, includes a longitudinal axis and has smooth and spaced-apart first and second surface portions defining a notch there between which is wider at its top than at its bottom and which extends outward from the axis. The second surface portion is outside curved, and a first edge of the cloth seal is positioned in the bottom of the notch. A second tubular end portion, such as a first stage nozzle, is located near, spaced apart from, and coaxially aligned with, the first tubular end portion. The second tubular end portion has a smooth third surface portion which surrounds at least a portion of the first tubular end portion and which is contacted by the cloth seal. 7 figs.

  10. Crank shaft support assembly

    DOE Patents [OSTI]

    Natkin, Robert J. (Canton, MI); Oltmans, Bret (Stacy, MN); Allison, John E. (Ann Arbor, MI); Heater, Thomas J. (Milford, MI); Hines, Joy Adair (Plymouth, MI); Tappen, Grant K. (Washington, MI); Peiskammer, Dietmar (Rochester, MI)

    2007-10-23

    A crank shaft support assembly for increasing stiffness and reducing thermal mismatch distortion in a crank shaft bore of an engine comprising different materials. A cylinder block comprises a first material and at least two crank journal inserts are insert-molded into respective crank journal regions of the cylinder block and comprise a second material having greater stiffness and a lower thermal coefficient of expansion that the first material. At least two bearing caps are bolted to the respective crank journal inserts and define, along with the crank journal inserts, at least two crank shaft support rings defining a crank shaft bore coaxially aligned with a crank shaft axis. The bearing caps comprise a material having higher stiffness and a lower thermal coefficient of expansion than the first material and are supported on the respective crank journal inserts independently of any direct connection to the cylinder block.

  11. Advanced gray rod control assembly

    DOE Patents [OSTI]

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  12. Shape Allophiles Improve Entropic Assembly

    E-Print Network [OSTI]

    Eric S. Harper; Ryan L. Marson; Joshua A. Anderson; Greg van Anders; Sharon C. Glotzer

    2015-06-25

    We investigate a class of "shape allophiles" that fit together like puzzle pieces as a method to access and stabilize desired structures by controlling directional entropic forces. Squares are cut into rectangular halves, which are shaped in an allophilic manner with the goal of re-assembling the squares while self-assembling the square lattice. We examine the assembly characteristics of this system via the potential of mean force and torque, and the fraction of particles that entropically bind. We generalize our findings and apply them to self-assemble triangles into a square lattice via allophilic shaping. Through these studies we show how shape allophiles can be useful in assembling and stabilizing desired phases with appropriate allophilic design.

  13. Superconducting RF Lab Facility Upgrades at Los Alamos

    SciTech Connect (OSTI)

    Katonak, D.J.; Rusnak, B.

    1999-03-01

    Research and testing of multi-cell superconducting cavities demands extensive contamination control resources to achieve high-cavity fields. Facility upgrades at Los Alamos National Laboratory (LANL) included the modernization of test equipment, expanding and modernizing cleanroom facilities, improving safety, and expanding the high-pressure rinse cleaning process equipment. Each upgrade was integrated into the facility to enable users to assemble prototype cryomodules. The scope of the upgrades, the new installed capability, and budget and schedule for certain aspects of the project are discussed in this paper.

  14. Molecular Self-Assembly

    SciTech Connect (OSTI)

    CURRO, JOHN G.; MCCOY, JOHN DWANE; FRISCHKNECHT, AMALIE L.; YU, KUI

    2001-11-01

    This report is divided into two parts: a study of the glass transition in confined geometries, and formation mechanisms of block copolymer mesophases by solvent evaporation-induced self-assembly. The effect of geometrical confinement on the glass transition of polymers is a very important consideration for applications of polymers in nanotechnology applications. We hypothesize that the shift of the glass transition temperature of polymers in confined geometries can be attributed to the inhomogeneous density profile of the liquid. Accordingly, we assume that the glass temperature in the inhomogeneous state can be approximated by the Tg of a corresponding homogeneous, bulk polymer, but at a density equal to the average density of the inhomogeneous system. Simple models based on this hypothesis give results that are in remarkable agreement with experimental measurements of the glass transition of confined liquids. Evaporation-induced self-assembly (EISA) of block copolymers is a versatile process for producing novel, nanostructured materials and is the focus of much of the experimental work at Sandia in the Brinker group. In the EISA process, as the solvent preferentially evaporates from a cast film, two possible scenarios can occur: microphase separation or micellization of the block copolymers in solution. In the present investigation, we established the conditions that dictate which scenario takes place. Our approach makes use of scaling arguments to determine whether the overlap concentration c* occurs before or after the critical micelle concentration (CMC). These theoretical arguments are used to interpret recent experimental results of Yu and collaborators on EISA experiments on Silica/PS-PEO systems.

  15. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  16. Assembly and electrical transport characterization of nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Conference: Assembly and electrical transport characterization of nanostructures. Citation Details In-Document Search Title: Assembly and electrical transport characterization of...

  17. PREPARATIONS FOR ASSEMBLY OF THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

    SciTech Connect (OSTI)

    McIntosh, P. A.; Bate, R.; Beard, C. D.; Cordwell, M. A.; Dykes, D. M.; Pattalwar, S. M.; Strachan, J.; Belomestnykh, S.; Liepe, M.; Padamsee, H.; Quigley, P.; Sears, J.; Shemelin, V.; Veshcherevich, V.; Proch, D.; Sekutowicz, J.; Buchner, A.; Gabriel, F.; Michel, P.; Corlett, J. N.; Li, D.; Lidia, S.; Kimura, T.; Smith, T. I.

    2009-04-29

    The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised forfinal cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.

  18. Bearing assemblies, apparatuses, and motor assemblies using the same

    DOE Patents [OSTI]

    Sexton, Timothy N.; Cooley, Craig H.; Knuteson, Cody W.

    2015-12-29

    Various embodiments of the invention relate to bearing assemblies, apparatuses and motor assemblies that include geometric features configured to impart a selected amount of heat transfer and/or hydrodynamic film formation. In an embodiment, a bearing assembly may include a plurality of superhard bearing pads distributed circumferentially about an axis. At least some of the plurality of superhard bearing pads may include a plurality of sub-superhard bearing elements defining a bearing surface. At least some of the plurality of sub-superhard bearing elements may be spaced from one another by one or more voids to impart a selected amount of heat transfer and hydrodynamic film formation thereon during operation. The bearing assembly may also include a support ring that carries the plurality of superhard bearing pads. In addition, at least a portion of the sub-superhard bearing elements may extend beyond the support ring.

  19. Drive piston assembly for a valve actuator assembly

    DOE Patents [OSTI]

    Sun, Zongxuan (Troy, MI)

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  20. Cooling assembly for fuel cells

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  1. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  2. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  3. Concentric tube support assembly

    DOE Patents [OSTI]

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  4. Additive assembly of digital materials

    E-Print Network [OSTI]

    Ward, Jonathan (Jonathan Daniel)

    2010-01-01

    This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

  5. Magnet Girder Assembly and Installation

    ScienceCinema (OSTI)

    None

    2013-07-17

    It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

  6. Direct hierarchical assembly of nanoparticles

    SciTech Connect (OSTI)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  7. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  8. Wafer scale micromachine assembly method

    DOE Patents [OSTI]

    Christenson, Todd R. (Albuquerque, NM)

    2001-01-01

    A method for fusing together, using diffusion bonding, micromachine subassemblies which are separately fabricated is described. A first and second micromachine subassembly are fabricated on a first and second substrate, respectively. The substrates are positioned so that the upper surfaces of the two micromachine subassemblies face each other and are aligned so that the desired assembly results from their fusion. The upper surfaces are then brought into contact, and the assembly is subjected to conditions suited to the desired diffusion bonding.

  9. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  10. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    SciTech Connect (OSTI)

    Horvath, J. A.

    1998-07-16

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design.

  11. Computing Facilities Orientation

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Computing Facilities Orientation September, 2014 #12;Introductions Jason Simpson ­ Manager Computing Facilities Use Policy The Computing facilities are a shared resource for all Bren MESM students Respect the work environment of other students Protect the computer equipment and resources provided You

  12. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  13. Hear Exchange Assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc (Princeton, NJ); Miller, Jeffrey (Rocky Hill, NJ); Tonon, Thomas S. (Princeton, NJ)

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  14. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    periods 122015 Facility Mgmt 2009 http:www.hanford.govpage.cfmDOEORPContracts Marc McCusker 509-376-2760 Susan E. Bechtol 509-376-3388 Strategic Petroleum Reserve FE Dyn...

  15. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  16. A framework for assembly sequence planning for computer aided design of mechanical assemblies 

    E-Print Network [OSTI]

    Cheboli, Ramakrishna

    2000-01-01

    This thesis presents a framework for interactive assembly sequence panning for mechanical assemblies. Realizing the utility of such a tool that will enable the product engineer to evaluate the assemblability of his designs and generate suitable...

  17. Advanced Materials Facilities & Capabilites | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Building Battery Processing Facility Battery and Capacitor Test Facility Nuclear Analytical Chemistry and Isotopics Laboratories Manufacturing Manufacturing Demonstration...

  18. HYTEST Phase I Facility Commissioning and Modeling

    SciTech Connect (OSTI)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

    2009-09-01

    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  19. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  20. Fixture for aligning motor assembly

    DOE Patents [OSTI]

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  1. Dynamics of assembly production flow

    E-Print Network [OSTI]

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...

  2. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

  3. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  4. Abrasive swivel assembly and method

    DOE Patents [OSTI]

    Hashish, Mohamed (Kent, WA); Marvin, Mark (Tacoma, WA)

    1990-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, a swivel assembly for rotating a section of the tubular arrangement, and a tubular end section for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  5. Defining the early steps in nuclear pore assembly : chromatin-associated ELYS initiates pore assembly

    E-Print Network [OSTI]

    Rasala, Beth A.

    2008-01-01

    of membrane fusion……………… 121 Figure 3.2: Cold temperaturefusion inhibitor LPC prevents FG Nups assembly into the coldfusion inhibitor LPC prevents FG Nups assembly into the cold

  6. DNA-guided nanoparticle assemblies

    DOE Patents [OSTI]

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  7. Poultry Facility Biosecurity 

    E-Print Network [OSTI]

    Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

    2005-12-21

    . When teamed with disinfection and sanitation pro - cedures, biosecurity practices can eradicate or reduce pathogens to noninfectious levels. Such preventive measures as vaccination and sero- logic monitoring also help ensure good f_lock health... economically, reducing production over the life of the facility without overt signs of disease. Once contaminated with pathogens, poultry facilities are extremely diff_icult and expensive to clean, sanitize and disinfect. Facility location and design...

  8. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  9. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  10. Presented by FACILITIES MANAGEMENT

    E-Print Network [OSTI]

    Meyers, Steven D.

    Presented by FACILITIES MANAGEMENT TRANSFORMING USF'S TAMPA CAMPUS SUMMER 2011 #12; WELCOME Facili:es Management #12; Facili:es Management #12; NEW CONSTRUCTION Facili

  11. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  12. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  13. Monolithic fiber optic sensor assembly

    DOE Patents [OSTI]

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  14. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  15. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  16. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  17. Inorganic Materials and Assembly Techniques

    E-Print Network [OSTI]

    Rogers, John A.

    a transformational set of capabilities for high performance flexible/stretchable electronics. KEYWORDS | Bio-integrated electronics; flexible electronics; inorganic materials; integrated systems; stretchable electron- icsINVITED P A P E R Inorganic Materials and Assembly Techniques for Flexible and Stretchable

  18. Corner-cutting mining assembly

    DOE Patents [OSTI]

    Bradley, John A. (San Antonio, TX)

    1983-01-01

    A mining assembly includes a primary rotary cutter mounted on one end of a support shaft and four secondary rotary cutters carried on the same support shaft and positioned behind the primary cutters for cutting corners in the hole cut by the latter.

  19. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  20. Wesleyan Student Assembly WSA Meeting

    E-Print Network [OSTI]

    Royer, Dana

    be like cutting studios - Motion to previous question passed Not Acceptable Label accepted by a 26-3-3 #12;Wesleyan Student Assembly - Phil: Joe Bruno said we will review it later Acceptable Label for Reorganizing Academic Departments 26-0-3 - David; did you consider selling off land? - Mike: Yes but not a good idea

  1. Assembly of quasicrystalline photonic heterostructures

    DOE Patents [OSTI]

    Grier, David G.; Roichman, Yael; Man, Weining; Chaikin, Paul Michael; Steinhardt, Paul Joseph

    2013-03-12

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  2. Assembly of quasicrystalline photonic heterostructures

    DOE Patents [OSTI]

    Grier, David G. (New York, NY); Roichman, Yael (New York, NY); Man, Weining (Princeton, NJ); Chaikin, Paul Michael (Pennington, NJ); Steinhardt, Paul Joseph (Princeton, NJ)

    2011-07-19

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  3. Solder self-assembly for MEMS fabrication

    E-Print Network [OSTI]

    Au, Hin Meng, 1977-

    2004-01-01

    This thesis examines and demonstrates self-assembly of MEMS components on the 25 micron scale onto substrates using the capillary force of solder. This is an order of magnitude smaller than current solder self-assembly in ...

  4. Multivariate Statistical Analysis of Assembly Tolerance Specifications

    E-Print Network [OSTI]

    i Multivariate Statistical Analysis of Assembly Tolerance Specifications A Thesis Presented ..........................................................................................................12 2.6.1 Multivariate Normal Distributions.8.3 Combined Assembly Specification Quality...............................................22 2.9 Multivariate

  5. Metal-templated assembly of protein cages

    E-Print Network [OSTI]

    Huard, Dustin Johnathen Edward

    2012-01-01

    Chapter 2. Generation of Metal-Responsive HuHF Buildingprotein interactions through metal coordination: Assembly ofSalgado, E.N. , et al. , Metal-mediated self-assembly of

  6. Transplanting assembly of individual carbon nanotubes

    E-Print Network [OSTI]

    Kim, Soohyung

    2009-01-01

    Handling and assembling individual nanostructures to bigger scale systems such as MEMS have been the biggest challenge. A deterministic assembly of individual carbon nanotubes by transplanting them to MEMS structures is ...

  7. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    SciTech Connect (OSTI)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  8. Non-latching relay switch assembly

    DOE Patents [OSTI]

    Duimstra, Frederick A. (Anaheim Hills, CA)

    1991-01-01

    A non-latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes a permanent magnet and an electromagnet. The respective sections are arranged in separate locations or cavities in the assembly. The switch has a "normal" position and is selectively switched by an overriding electromagnetic assembly. The switch returns to the "normal" position when the overriding electromagnetic assembly is inactive.

  9. Fringing Field Directed Assembly of Nanomaterials

    E-Print Network [OSTI]

    Jacobs, Heiko O.

    using electrostatics14-18 and electrospinning,12 are exclusive to the assembly from the liquid phase

  10. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    Questionnaires. Update the data that pertaining to MIT's contacts worldwide. #12;BOJNOURD CEMENT PLANT Location a database using the Structural Table of Mineral Industry, which includes the location of main mineral The mineral facilities database included: Type of facility: Mine (open pit, underground) Plant ( refineries

  11. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  12. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;In the NanoFab, you measurement and fabrication methods in response to national nanotechnology needs. www.nist.gov/cnst Robert) is the Department of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access

  13. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  14. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  15. ALSEP CASK ASSEMBLY GEARBOX THERMAL VACUUM TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ATM-835 ALSEP CASK ASSEMBLY GEARBOX · THERMAL VACUUM TEST 1 July 1969 Prepared by: Approved by: L. R. Lewis #12;: :, t · ALSEP Cask Assembly Gearbox Thermal Vacuum Test NO. ATM-835 PAGE 1 Aerospace Assembly CARR of 24 and 25 June 1969 the following summary of test results is submitted. This summary deals

  16. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  17. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  18. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  19. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  20. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  1. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  2. Case Study: Sustained Utility Cost Reduction in a Large Manufacturing Facility 

    E-Print Network [OSTI]

    Fiorino, D.

    2004-01-01

    addition in 2003. Approximately 1,000 employees work at the facility. Business functions conducted at the facility include research, design, manufacturing, assembly, and testing of surface and sub-sea energy production equipment, plus engineering... resistance to heat transfer due to insulative oil accumulation (approximately 2% per year) on the refrigerant-side of heat exchange tubes in condensers and evaporators. This refrigerant-side ?fouling? can impede heat transfer by up to 30...

  3. Low-voltage switchgear and controlgear assemblies: part 1: type-tested and partially type-tested assemblies

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2004-01-01

    Low-voltage switchgear and controlgear assemblies: part 1: type-tested and partially type-tested assemblies

  4. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT will...

  5. Genome Sequence Databases (Overview): Sequencing and Assembly

    SciTech Connect (OSTI)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  6. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  7. Regenerator cross arm seal assembly

    DOE Patents [OSTI]

    Jackman, Anthony V. (Indianapolis, IN)

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  8. Abrasive swivel assembly and method

    DOE Patents [OSTI]

    Hashish, Mohamed (Kent, WA); Marvin, Mark (Tacoma, WA)

    1989-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, means for rotating a section of the tubular arrangement, and means for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  9. Pressure equalizing photovoltaic assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2003-05-27

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the peripheral edge of the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  10. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  11. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  12. Dismantlement of the TSF-SNAP Reactor Assembly

    SciTech Connect (OSTI)

    Peretz, Fred J

    2009-01-01

    This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassium (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.

  13. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  14. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  15. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  16. Rotor assembly and assay method

    DOE Patents [OSTI]

    Burtis, Carl A. (Oak Ridge, TN); Johnson, Wayne F. (Loudon, TN); Walker, William A. (Knoxville, TN)

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  17. Rotor assembly and assay method

    DOE Patents [OSTI]

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  18. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  19. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  20. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  1. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  2. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  3. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to granting access to a user facility. User Office User Program Manager Laura Morris Edwards 865.574.2966 Email User Office User Office User Program Manager Laura Morris...

  4. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  6. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  7. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  8. Fuel injection assembly for use in turbine engines and method of assembling same

    DOE Patents [OSTI]

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  9. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    E-Print Network [OSTI]

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  10. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  11. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  12. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  13. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect (OSTI)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  14. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGlovebox Facilities

  15. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  16. Method of monolithic module assembly

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  17. Nanoengineered membrane electrode assembly interface

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  18. Algorithm for a microfluidic assembly line

    E-Print Network [OSTI]

    Tobias M. Schneider; Shreyas Mandre; Michael P. Brenner

    2011-01-19

    Microfluidic technology has revolutionized the control of flows at small scales giving rise to new possibilities for assembling complex structures on the microscale. We analyze different possible algorithms for assembling arbitrary structures, and demonstrate that a sequential assembly algorithm can manufacture arbitrary 3D structures from identical constituents. We illustrate the algorithm by showing that a modified Hele-Shaw cell with 7 controlled flowrates can be designed to construct the entire English alphabet from particles that irreversibly stick to each other.

  19. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  20. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    SciTech Connect (OSTI)

    Rauch, J.S.; Kankam, M.D.; Santiago, W.; Madi, F.J.

    1992-08-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  1. Assembly and post-assembly manipulation of polyelectrolyte multilayers for control of bacterial attachment and viability

    E-Print Network [OSTI]

    Lichter, Jenny, 1982-

    2009-01-01

    The overall goal of this thesis was to exploit the versatility of the polyelectrolyte multilayer (PEM) platform to consider bacteria-substrata interactions by varying multilayer assembly and post-assembly conditions. We ...

  2. Metal-templated assembly of protein cages

    E-Print Network [OSTI]

    Huard, Dustin Johnathen Edward

    2012-01-01

    self- assembly. Far-UV CD measurements show that the MIC1spectrometry to UV-VIS absorbance measurements to ensure

  3. Method of cleaning a spent fuel assembly

    SciTech Connect (OSTI)

    Chung, D.K.; Jones, C.E. Jr.

    1989-05-09

    A method is described of cleaning a fuel assembly including surfaces thereof prior to decladding, each assembly surface contaminated with a radioactive alkali metal and comprising a plurality of pressurized metallic fuel pins containing a spent fissible material, the method comprising the sequential steps of: (a) placing the fuel assembly in a sealed chamber; (b) passing a heated, inert gas through the chamber to heat the fuel assembly to a temperature sufficient to cause volatilization of the alkali metal but insufficient to rupture the pressurized metal pins; (c) evacuating the chamber to a pressure of less than 0.5 mm of Hg to further enhance volatilization and removal of the alkali metal and maintaining the chamber at that pressure until the decay heat of the fissile materials causes the temperature of the fuel assembly to increase to a level which would be detrimental to the integrity of the metal pins; (d) cooling the fuel assembly by passing a cool, inert gas through the chamber to reduce the temperature of the fuel assembly to a desired level; (e) repeating the evacuation and cooling steps as required to insure removal of substantially all of the radioactive alkali metal from the assembly surface; and (f) recovering the cleaned fuel assembly from the chamber.

  4. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Bahns, J. T.; Sankaranarayanan, S. K. R. S.; Gray, S. K.; Chen, L. Not Available American Physical Society None USDOE...

  5. Valve stem and packing assembly

    DOE Patents [OSTI]

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  6. Valve stem and packing assembly

    DOE Patents [OSTI]

    Wordin, John J. (Bingham County, ID)

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  7. Corner-cutting mining assembly

    DOE Patents [OSTI]

    Bradley, J.A.

    1981-07-01

    This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.

  8. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  9. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  10. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRICRashiFacilitiesFacilities

  11. Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4 DOE/CF-0074Facilities Facilities

  12. Part X. The Faculty Assembly of the University of North Carolina I. Faculty Assembly Organization

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    Part X. The Faculty Assembly of the University of North Carolina I. Faculty Assembly Organization The University of North Carolina Faculty Assembly was formed in 1972 when all of the State's public senior institutions were brought into the University of North Carolina. The Charter of the University of North

  13. Optimizing Robot Motion Strategies for Assembly with Stochastic Models of`the Assembly Process

    E-Print Network [OSTI]

    Hutchinson, Seth

    at this level) address the flow of parts through the assembly system. Production control deter- mines what at Urbana-Champaign 405 N. Mathews Avenue, Urbana, IL 61801 Abstract Gross-motion planning for assembly-motion planning. In this pa- per we formulate the problem of gross-motion planning for assembly in a manner

  14. Assembly and Installation of the Daya Bay Antineutrino Detectors

    E-Print Network [OSTI]

    H. R. Band; R. L. Brown; R. Carr; X. C. Chen; X. H. Chen; J. J. Cherwinka; M. C. Chu; E. Draeger; D. A. Dwyer; W. R. Edwards; R. Gill; J. Goett; L. S. Greenler; W. Q. Gu; W. S. He; K. M. Heeger; Y. K. Heng; P. Hinrichs; T. H. Ho; M. Hoff; Y. B. Hsiung; Y. Jin; L. Kang; S. H. Kettell; M. Kramer; K. K. Kwan; M. W. Kwok; C. A. Lewis; G. S. Li; N. Li; S. F. Li; X. N. Li; C. J. Lin; B. R. Littlejohn; J. L. Liu; K. B. Luk; X. L. Luo; X. Y. Ma; M. C. McFarlane; R. D. McKeown; Y. Nakajima; J. P. Ochoa-Ricoux; A. Pagac; X. Qian; B. Seilhan; K. Shih; H. Steiner; X. Tang; H. Themann; K. V. Tsang; R. H. M. Tsang; S. Virostek; L. Wang; W. Wang; Z. M. Wang; D. M. Webber; Y. D. Wei; L. J. Wen; D. L. Wenman; J. Wilhelmi; M. Wingert; T. Wise; H. L. H. Wong; F. F. Wu; Q. Xiao; L. Yang; Z. J. Zhang; W. L. Zhong; H. L. Zhuang

    2013-09-06

    The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of 300 - 2000m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.

  15. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  16. NISCO Cogeneration Facility 

    E-Print Network [OSTI]

    Zierold, D. M.

    1994-01-01

    The NISCO Cogeneration facility utilizes two fluidized bed boilers to generate 200 MW of electricity and up to 80,000 LBS/HR of steam for process use. The partnership, of three industrial electricity users, Citgo, Conoco, and Vista Chemical...

  17. Sequence Assembly Validation by Restriction Digest Fingerprint

    E-Print Network [OSTI]

    Rouchka, Eric

    Sequence Assembly Validation by Restriction Digest Fingerprint Comparison Eric C. Rouchka and David examines the use of restriction digest analysis as a method for testing the fidelity of sequence assembly. Restriction digest fingerprint matching is an established technology for high resolution physical map

  18. Assembly mechanism of recombinant spider silk proteins

    E-Print Network [OSTI]

    engineered and recombinantly produced spider dragline silk proteins eADF3 (engineered Araneus diadematus and identification of the essential parameters of dragline silk assembly. Changes in ionic conditions and pH result of these results, we propose a model for dragline silk aggregation and early steps of fiber assembly

  19. Redevelopment and smart growth at Assembly Square

    E-Print Network [OSTI]

    Savage, Alice (Alice Augusta)

    2006-01-01

    The story of Assembly Square is not yet finished. To tell the complete story of Assembly Square would require much more time to write than I had, and more time to read than the reader would likely care to devote. An earlier ...

  20. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  1. Three-dimensional colorimetric assay assemblies

    DOE Patents [OSTI]

    Charych, Deborah (Albany, CA); Reichert, Anke (Albany, CA)

    2001-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  2. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  3. Multi-component assembly casting

    DOE Patents [OSTI]

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  4. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  5. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  6. Snubber assembly for turbine blades

    DOE Patents [OSTI]

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  7. Dual contact pogo pin assembly

    SciTech Connect (OSTI)

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  8. Nanocrystal assembly for tandem catalysis

    DOE Patents [OSTI]

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  9. Low inductance power electronics assembly

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  10. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  11. Liquid-liquid interfacial nanoparticle assemblies

    DOE Patents [OSTI]

    Emrick, Todd S. (South Deerfield, MA); Russell, Thomas P. (Amherst, MA); Dinsmore, Anthony (Amherst, MA); Skaff, Habib (Amherst, MA); Lin, Yao (Amherst, MA)

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  12. Forwardly movable assembly for a firearm

    DOE Patents [OSTI]

    Crandall, David L. (Idaho Falls, ID); Watson, Richard W. (Blackfoot, ID)

    2007-06-05

    A forwardly movable assembly for a firearm, the forwardly movable assembly adapted to be disposed in operative relationship relative to the other operative parts of a firearm, the firearm having in operative relationship each with one or more of the others: a barrel, a receiver, and at least one firing mechanism; the forwardly movable assembly comprising: the barrel and the receiver operatively connected with each other; a movable hand support structure to which at least one of the barrel and the receiver is connected, the barrel being movable therewith, the movable hand support structure being adapted to be gripped by an operator of the firearm; the forwardly movable assembly being adapted to be moved forward by an operator upon gripping the movable hand support structure and manually maneuvering the hand support structure forwardly; and, as the forwardly movable assembly is moved forwardly, the firing mechanism is completely disengaged therefrom and held substantially stationary relative thereto.

  13. Forwardly-placed firearm fire control assembly

    DOE Patents [OSTI]

    Frickey, Steven J. (Rigby, ID)

    2001-12-22

    A firearm fire control assembly for disposition in a forwardly placed support-hand operative relationship within a firearm having a combination of a firing pin and a firearm hammer adapted to engage and fire a cartridge, a sear assembly to alternately engage and disengage the combination of the firearm hammer and firing pin, and a trigger assembly including a movable trigger mechanism that is operable to engage the sear assembly to cause the firearm hammer firing pin combination to fire the firearm, a fire control assembly including a fire control depression member and a fire control rod operably connected to the depression member, and being positioned in a forward disposition disposed within a forestock of the firearm, and the depression member adapted to be operably engaged and depressed by the user's conventional forwardly placed support hand to maneuver the fire control rod to provide firing control of the firing of the firearm.

  14. Modular fuel-cell stack assembly

    DOE Patents [OSTI]

    Patel, Pinakin (Danbury, CT)

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  15. Safety analysis of the MYRRHA facility with different core configurations

    SciTech Connect (OSTI)

    Arien, B.; Heusdains, S.; Alt Abderrahim, H.; Malambu, E. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2006-07-01

    In the framework of the IAEA Coordinated Research Project on 'Studies of Innovative Reactor Technology Options for Effective Incineration of Radioactive Waste', a benchmark exercise was undertaken to analyse the behaviour of the MYRRHA facility in various accidental conditions. The transients were simulated by means of the RELAP and SITHER codes and the following set of accident scenarios was considered: loss of flow, loss of heat sink, overpower transient, overcooling and partial blockage of a subassembly. In addition, those accidents were simulated in two different situations depending on whether the proton beam is cut off (protected case) or not (unprotected case). In the IAEA benchmark two subcritical core configurations are considered: a typical core configuration composed only of (U-Pu)O{sub 2} MOX fuel assemblies and another one including additional U-free minor actinides fuel assemblies. The present paper summarized the main results obtained with the first core configuration. (authors)

  16. High temperature control rod assembly

    DOE Patents [OSTI]

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  17. An evolutionary fuel assembly design for high power density BWRs

    E-Print Network [OSTI]

    Karahan, Aydin

    2007-01-01

    An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

  18. On-Orbit Assembly of Flexible Space Structures with SWARM

    E-Print Network [OSTI]

    Mohan, Swati

    On-orbit assembly is an enabling technology for many space applications. However, current methods of human assisted assembly are high in cost and risk to the crew, motivating a desire to automate the on-orbit assembly ...

  19. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  20. Virginia Commonwealth University Facilities Management

    E-Print Network [OSTI]

    Hammack, Richard

    .3 Solid Waste Management 14 018.4 Pest Management Plan 14 Facilities Management Construction & Design Virginia Commonwealth University Facilities Management Construction & Design Construction Management (804) 6285199 VCU Construction & Inspection Management jghosh

  1. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  2. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured...

  3. Bio-inspired nanocomposite assemblies as smart skin components...

    Office of Scientific and Technical Information (OSTI)

    Bio-inspired nanocomposite assemblies as smart skin components. Citation Details In-Document Search Title: Bio-inspired nanocomposite assemblies as smart skin components. There is...

  4. The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    E-Print Network [OSTI]

    Nakagawa, Terunaga

    2010-01-01

    to understanding the precise mechanisms of AMPA-R-mediatedSubunit assembly mechanism . Subunit assembly . Subunit .selectivity and mechanisms at recombinant heteromeric

  5. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  6. Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to...

  7. Analysis of the Durability of PEM FC Membrane Electrode Assemblies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications...

  8. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  9. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  10. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and...

  11. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  12. Proton beam therapy facility

    SciTech Connect (OSTI)

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  13. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  14. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    . These operations can result in elevated radiological risks to the facility and workers. ARG-US -- meaning and should be developed for and deployed in nuclear and radiological facilities to aid operation and reduceAlpha Gamma Hot Cell Facility Argonne National Laboratory is a U.S. Department of Energy laboratory

  15. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  16. Facilities Design and Construction Services

    E-Print Network [OSTI]

    Frantz, Kyle J.

    for custodial materials as well as maintenance equipment. (The Facilities Maintenance and Operations Department be in written request to University's Facilities Maintenance and Operations Department and the Communication, corridors and facilities shall provide maximum flexibility and access for routine maintenance. (Reference

  17. Flashback resistant pre-mixer assembly

    DOE Patents [OSTI]

    Laster, Walter R. (Oviedo, FL); Gambacorta, Domenico (Oviedo, FL)

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  18. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  19. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the directed self-assembly of anisotropic nanoparticles and their unique physical properties.

  20. Self-assembled lipid bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  1. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, S.B.; Milanovich, F.P.

    1995-11-14

    A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

  2. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, Steve B. (Livermore, CA); Milanovich, Fred P. (Lafayette, CA)

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  3. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect (OSTI)

    Stout, Daniel S [ORNL] [ORNL; Assadi, Saeed [ORNL] [ORNL; Campisi, Isidoro E [ORNL] [ORNL; Casagrande, Fabio [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; DeVan, Bill [ORNL] [ORNL; Hardek, Thomas W [ORNL] [ORNL; Henderson, Stuart D [ORNL] [ORNL; Howell, Matthew P [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Stone Jr, William C [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Williams, Derrick C [ORNL] [ORNL; Wright, Paul Alan [ORNL] [ORNL

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  4. Direct sunlight facility for testing and research in HCPV

    SciTech Connect (OSTI)

    Sciortino, Luisa Agnello, Simonpietro Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa; Barbera, Marco; Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo; Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  5. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014 Capital Projects Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities

  6. DNA Assembly Line for Nano-Construction

    ScienceCinema (OSTI)

    Oleg Gang

    2010-01-08

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  7. Method of forming and assembly of parts

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2010-12-28

    A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  8. Rack assembly for mounting solar modules

    DOE Patents [OSTI]

    Plaisted, Joshua Reed (Oakland, CA); West, Brian (San Francisco, CA)

    2010-12-28

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  9. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  10. Helicopter final assembly critical path analysis

    E-Print Network [OSTI]

    Daigh, Sara L. (Sarah Louise), 1981-

    2012-01-01

    Helicopter final assembly involves the installation of hundreds of components into the aircraft and takes thousands of man-hours. Meeting production targets such as total build days and total aircraft man-hours can be ...

  11. Method of making a unitized electrode assembly

    DOE Patents [OSTI]

    Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.

    1988-12-06

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.

  12. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  13. Nozzle and shroud assembly mounting structure

    DOE Patents [OSTI]

    Faulder, Leslie J. (San Diego, CA); Frey, deceased, Gary A. (late of Seattle, WA); Nielsen, Engward W. (El Cajon, CA); Ridler, Kenneth J. (San Diego, CA)

    1997-01-01

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion.

  14. Nozzle and shroud assembly mounting structure

    DOE Patents [OSTI]

    Faulder, L.J.; Frey, G.A.; Nielsen, E.W.; Ridler, K.J.

    1997-08-05

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion. 3 figs.

  15. Productivity Improvement of a Manual Assembly Line 

    E-Print Network [OSTI]

    Yerasi, Pranavi

    2012-10-19

    The current project addresses the productivity improvement of a manual assembly line by making use of operations analysis in the framework of Lean production. A methodology is proposed that helps to improve the productivity of any production process...

  16. Rack assembly for mounting solar modules

    DOE Patents [OSTI]

    Plaisted, Joshua Reed; West, Brian

    2012-09-04

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  17. Defects in Self Assembled Colloidal Crystals

    E-Print Network [OSTI]

    Koh, Yaw Koon

    Colloidal self assembly is an efficient method for making 3-D ordered nanostructures suitable for materials such as photonic crystals and macroscopic solids for catalysis and sensor applications. Colloidal crystals grown ...

  18. Carbon nanotubes : a study on assembly methods

    E-Print Network [OSTI]

    Quiñones, Lisandro E. (Quiñones Ortiz)

    2008-01-01

    The urgent stipulation is to manufacture CNTs of desired properties and dimensions. The heart of this yearning lies in understanding the growth and assembly methods of CNTs, which are not yet clear. In this study, hence, ...

  19. Project Profile: Flexible Assembly Solar Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BrightSource Energy logo BrightSource Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and deploying an automated collector-assembly...

  20. Thermal Analysis of a TREAT Fuel Assembly

    SciTech Connect (OSTI)

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  1. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  2. Fuel cell with electrolyte matrix assembly

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Pudick, Sheldon (Sayreville, NJ); Wang, Chiu L. (Edison, NJ)

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists1

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists11

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists113

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM2

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60 ARM

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6029

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60290

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602907

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM Climate

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6 ARM

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]New

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [FacilityIntensive

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecemberDisasterMay30, 2004 [Facility

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us Help

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us27,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade to

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay 15,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year 2012

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe Tale

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddy

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddyRecord

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility5,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim Mather

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,May

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJuneAugust

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19, 2013

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,15,

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril 30,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustAprilARM

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31, 2013

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,February

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary 28,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruaryApril

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility News]

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25, 2015

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,March

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility6,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger of

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] MergerNew

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22, 2008

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay 8,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMayApril

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30, 2009

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30,

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptemberARM

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009January 21, 2008 [Facility

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2, 2006 [Facility

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility7,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5,15, 2006 [Facility

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE Seeks

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOEMarch

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]Increased

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 2010

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026, 2010

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,April

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM Exhibit

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARMSPARTICUS

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility News]

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay 31,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,10,

  15. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links Virtual Tour

  16. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links

  17. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /AreasResearch Facilities

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility News]

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [FacilityOctober

  1. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL| NationalFacilities

  2. Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to: navigation,FREDName Facility

  3. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNational User Facilities Our

  4. ORPS Facility Registration Form

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO. 3357:ORMATORPS FACILITY

  5. HIG - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEP User Facilities6-000

  6. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855 m,Daniel J.Facilities

  7. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver ToyotaFacilities

  8. Sandia Energy - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhaseFacilities Home Analysis An

  9. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

  10. Modeling Thermal Fatigue in CPV Cell Assemblies (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.; Panchagade, D.; Kurtz, S.

    2011-02-01

    This presentation outlines the modeling of thermal fatigue in concentrating photovoltaic (CPV) assemblies.

  11. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars (Northville, MI)

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  12. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect (OSTI)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  13. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect (OSTI)

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  14. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  15. Method of making hermetic seals for hermetic terminal assemblies

    DOE Patents [OSTI]

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  16. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  17. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  18. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  19. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect (OSTI)

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of ``noxious facilities`` be identified and measured? To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  20. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    SciTech Connect (OSTI)

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of noxious facilities'' be identified and measured To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  1. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

    SciTech Connect (OSTI)

    Reece, Charles E.; Reilly, Anthony V.

    2012-09-01

    The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

  2. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  3. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  4. Templated Self Assemble of Nano-Structures

    SciTech Connect (OSTI)

    Suo, Zhigang [Harvard University

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  5. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  6. Complex Assembly Variant Design in Agile Manufacturing. Part I: System Architecture and Assembly Modeling Methodology

    E-Print Network [OSTI]

    Nagi, Rakesh

    ;1 Introduction Having experienced Mass Production, Lean Manufacturing, and Follow the Leader, American manufacComplex Assembly Variant Design in Agile Manufacturing. Part I: System Architecture and Assembly 14260, USA March 31, 2004 Abstract In the distributed and horizontally integrated manufacturing

  7. Optimizing Robot Motion Strategies for Assembly with Stochastic Models of the Assembly Process

    E-Print Network [OSTI]

    LaValle, Steven M.

    , ranging from long­term production control, which deals with entire factories and time scales on the order. Production control determines what the assembly plant should be producing from, for example, month to month­motion planning for assembly is commonly considered as a distinct, isolated step between task sequencing

  8. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the...

  9. Facility Safety | Department of Energy

    Office of Environmental Management (EM)

    improved DOE program and field implementation of nuclear safety management programs and fire protection and natural phenomena hazard control requirements. Nuclear facility program...

  10. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  11. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of...

  12. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  13. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  14. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  15. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect (OSTI)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  17. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  18. Solar central receiver heliostat reflector assembly

    DOE Patents [OSTI]

    Horton, Richard H. (Schenectady, NY); Zdeb, John J. (Clifton Park, NY)

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  19. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  20. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Berkeley, CA)

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  1. Simplified flangeless unisex waveguide coupler assembly

    DOE Patents [OSTI]

    Michelangelo, Dimartino (La Mesa, CA); Moeller, Charles P. (Del Mar, CA)

    1993-01-01

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150.degree. C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.

  2. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  3. Tomorrow's manufacturing facilities : the design of a car assembly plant for the 21st century

    E-Print Network [OSTI]

    Medioni, Bertrand

    1987-01-01

    Spatial reorganization of production conditions (resulting from technical progress in the field of fabrication), on both, a large and a small scale, implies that an important effort from industrial companies has been made ...

  4. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  5. Photovoltaic assemblies and methods for transporting

    DOE Patents [OSTI]

    Almy, Charles; Campbell, Matt; Sandler, Reuben; Wares, Brian; Wayman, Elizabeth

    2014-08-05

    A PV assembly including framework, PV laminate(s), and a stiffening device. The framework includes a perimeter frame at least 10 feet in length and at least 5 feet in width. The PV laminate(s) are assembled to the perimeter frame to define a receiving zone having a depth of not more than 8 inches. The stiffening device is associated with the framework and is configured to provide a first state and a second state. In the first state, an entirety of the stiffening device is maintained within the receiving zone. In the second state, at least a portion of the stiffening device projects from the receiving zone. The stiffening device enhances a stiffness of the PV assembly in a plane of the perimeter frame, and can include rods defining truss structures.

  6. Head assembly for multiposition borehole extensometer

    DOE Patents [OSTI]

    Frank, Donald N. (Livermore, CA)

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  7. Photovoltaic assemblies and methods for transporting

    DOE Patents [OSTI]

    Almy, Charles; Campbell, Matt; Sandler, Reuben; Wares, Brian; Wayman, Elizabeth

    2013-09-17

    A PV assembly including framework, PV laminate(s), and a stiffening device. The framework includes a perimeter frame at least 10 feet in length and at least 5 feet in width. The PV laminate(s) are assembled to the perimeter frame to define a receiving zone having a depth of not more than 8 inches. The stiffening device is associated with the framework and is configured to provide a first state and a second state. In the first state, an entirety of the stiffening device is maintained within the receiving zone. In the second state, at least a portion of the stiffening device projects from the receiving zone. The stiffening device enhances a stiffness of the PV assembly in a plane of the perimeter frame, and can include rods defining truss structures.

  8. Microcomponent assembly for efficient contacting of fluid

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA); Wegeng, Robert S. (Richland, WA); Friedrich, Michele (Prosser, WA); Hanna, William T. (Gahanna, OH); Call, Charles J. (Pasco, WA); Kurath, Dean E. (Richland, WA)

    2000-01-01

    The present invention is a fundamental method and apparatus of a microcomponent assembly that overcomes the inherent limitations of state of the art chemical separations. The fundamental element enabling miniaturization is the porous contactor contained within a microcomponent assembly for mass transfer of a working compound from a first medium to a second medium. The porous contactor has a thickness, and a plurality of pores extending through the thickness. The pores are of a geometry cooperating with a boundary tension of one or the other or both of the media thereby preventing migration of one, other or both through the microporous contactor while permitting passage of the working compound. In the microcomponent assembly, the porous contactor is placed between a first laminate such that a first space or first microplenum is formed between the microporous contactor and the first laminate. Additionally, a cover sheet provides a second space or second plenum between the porous contactor and the cover sheet.

  9. Self-assembly of nanocomposite materials

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Sellinger, Alan (Palo Alto, CA); Lu, Yunfeng (New Orleans, LA)

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  10. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  11. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  12. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  13. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  14. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  15. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  16. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  17. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  18. Shipping device for heater unit assembly

    DOE Patents [OSTI]

    Blaushild, Ronald M. (Export, PA); Abbott, Stephan L. (Monroeville, PA); Miller, Phillip E. (Greensburg, PA); Shaffer, Robert (Swissvale, PA)

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  19. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  20. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.