National Library of Energy BETA

Sample records for mv millivolt napl

  1. NAPL Calculator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NAPL Calculator Software application that will determine if non-aqueous phase liquid (NAPL) contaminants are present in soil, groundwater, or soil vapor samples Savannah River National Laboratory Contact SRNL About This Technology Technology Marketing Summary An environmental engineer at the Savannah River Site has developed a software application that will determine if non-aqueous phase liquid (NAPL) contaminants are present in soil, groundwater, or soil vapor samples. The software will

  2. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739, -70.6092258 Show Map Loading map... "minzoom":false,"mappingservice":...

  3. Northeast Site Area A NAPL Remediation Final Report.doc

    Office of Legacy Management (LM)

    82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department

  4. Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Paper presented at the Third International Conference on Oxidation and Reduction Technologies for Soil and Groundwater. October 2004, San Diego, California. Michael Butherus, David S. Ingle, Randall Juhlin, Joseph Daniel PDF icon Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation More Documents &

  5. Final Report Northeast Site Area B NAPL Remediation Project

    Office of Legacy Management (LM)

    Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank

  6. Observation of 690 MV m^-1 Electron Accelerating Gradient with...

    Office of Scientific and Technical Information (OSTI)

    Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure Citation Details In-Document Search Title: Observation of 690 MV m-1...

  7. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) ...

  8. M&V Guidelines: Measurement and Verification for Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&V Guidelines: Measurement and Verification for Performance-Based Contracts (Version 4.0) M&V Guidelines: Measurement and Verification for Performance-Based Contracts (Version ...

  9. FEMP Seeking Public Comment on Draft M&V Guidelines

    Broader source: Energy.gov [DOE]

    FEMP is continuing its request for public comments on the Draft M&V Guidelines: Measurement and Verification for Performance-Based Contracts (Version 4.0).

  10. Assessment of Automated Measurement and Verification (M&V) Methods

    SciTech Connect (OSTI)

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael; Fernandes, Samuel; Jump, David

    2015-07-01

    This report documents the application of a general statistical methodology to assess the accuracy of baseline energy models, focusing on its application to Measurement and Verification (M&V) of whole-building energy savings.

  11. M&V Guidelines: Measurement and Verification for Federal Energy...

    Energy Savers [EERE]

    and Verification Protocol (IPMVP) Concepts and Options for Determining Energy and Water Savings Volume 1, April 2007. M&V Guidelines 3.0 FEMP ii Contents Section Page Section...

  12. State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V)

    Office of Energy Efficiency and Renewable Energy (EERE)

    State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) Webinar.

  13. COMMISSIONING AND OPERATION OF THE CEBAF 100 MV CRYOMODULES

    SciTech Connect (OSTI)

    Allison, Trent; Davis, G; Drury, Michael; Harwood, Leigh; Hogan, John; Kimber, Andrew; Lahti, George; Merz, William; Nelson, Richard; Plawski, Tomasz; Seidman, David; Spata, Michael; Wilson, Michael

    2012-07-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules and RF systems. The superconducting RF cavities are designed to operate CW at a maximum accelerating gradient of 19.3 MV/m. To support the higher gradients and higher Q{sub L} ({approx} 3 x 10{sup 7}), a new RF system has been developed and is being installed to power and control the cavities. The RF system employs digital control and 13 kW klystrons. Recently, two of these cryomodules and associated RF hardware and software have been installed and commissioned in the CEBAF accelerator. Electrons at linac currents up to 540 {micro}A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the RF system and cryomodules.

  14. Measurement and Verification (M&V) Guidelines for Federal Energy Projects, V3.0

    SciTech Connect (OSTI)

    2008-06-11

    FEMP's standard procedures and guidelines for M&V for federal energy managers, procurement officials, and energy service providers.

  15. M&V Guidelines: Measurement and Verification for Federal Energy Projects

    Broader source: Energy.gov [DOE]

    FEMP's standard procedures and guidelines for M&V for federal energy managers, procurement officials, and energy service providers.

  16. M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4.0

    SciTech Connect (OSTI)

    2015-11-02

    Document outlines the Federal Energy Management Program's standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.

  17. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Real-time automatic fiducial marker tracking in low contrast cine-MV images Citation Details In-Document Search Title: Real-time automatic fiducial marker tracking in low contrast cine-MV images Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have

  18. Low-Z linac targets for low-MV gold nanoparticle radiation therapy

    SciTech Connect (OSTI)

    Tsiamas, P.; Mishra, P.; Berbeco, R. I.; Marcus, K.; Zygmanski, P. E-mail: Erno-Sajo@uml.edu; Cifter, F.; Sajo, E. E-mail: Erno-Sajo@uml.edu

    2014-02-15

    Purpose: To investigate the potential of low-Z/low-MV (low-Z) linac targets for gold nanoparticle radiotherapy (GNPT) and to determine the microscopic dose enhancement ratio (DER) due to GNP for the alternative beamlines. In addition, to evaluate the degradation of dose enhancement arising from the increased attenuation of x rays and larger skin dose in water for the low-MV beams compared to the standard linac. Methods: Monte Carlo simulations were used to compute dose and DER for various flattening-filter-free beams (2.5, 4, 6.5 MV). Target materials were beryllium, diamond, and tungsten-copper high-Z target. Target thicknesses were selected based on 20%, 60%, 70%, and 80% of the continuous slowing down approximation electron ranges for a given target material and energy. Evaluation of the microscopic DER was carried out for 100 nm GNP including the degradation factors due to beam attenuation. Results: The greatest increase in DER compared to the standard 6.5 MV linac was for a 2.5 MV Be-target (factor of ?2). Skin dose ranged from ?10% (Be, 6.5 MV-80%) to ?85% (Be, 2.5 MV-20%) depending on the target case. Attenuation of 2.5 MV beams at 22 cm was higher by ?75% compared with the standard beam. Taking into account the attenuation at 22 cm depth, the effective dose enhancement was up to ?60% above the DER of the high-Z target. For these cases the effective DER ranged between ?1.6 and 6 compared with the standard linac. Conclusions: Low-Z (2.5 MV) GNPT is possible even after accounting for greater beam attenuation for deep-seated tumors (22 cm) and the increased skin dose. Further, it can lead to significant sparing of normal tissue while simultaneously escalating the dose in the tumor cells.

  19. Construction of MV-6 Well Pad at the Central Nevada Test Area Completed

    Broader source: Energy.gov [DOE]

    A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection ...

  20. Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0)

    Broader source: Energy.gov [DOE]

    Document describes the Federal Energy Management Program's (FEMP) standard procedures and guidelines for measurement and verification (M&V) for federal, state, and local government energy managers and procurement officials and utility and energy service providers.

  1. M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0)

    Broader source: Energy.gov [DOE]

    Document describes the Federal Energy Management Program's (FEMP) standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.

  2. Measurement and verifiction (M&V) guidelines for federal energy projects

    SciTech Connect (OSTI)

    1996-02-01

    This document provides procedures and guidelines for quantifying the savings resulting from the installation of Energy Conservation Measures (ECMs) implemented with federal Energy Savings Performance Contracts (ESPCs) or task orders implemented under a federal IDIQ contract. The first section of this document provides an overview of measurement and verification (M&V) options and procedures. The second, third, and fourth sections provide standardized measurement and verification (M&V) methods for common types of ECMs.

  3. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging

    SciTech Connect (OSTI)

    Wu, Meng; Keil, Andreas; Constantin, Dragos; Star-Lack, Josh; Zhu, Lei; Fahrig, Rebecca

    2014-12-15

    Purpose: The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Methods: Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. Results: The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10–15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%–10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. Conclusions: The authors have shown that it is possible to improve the image quality of kV CTs for patients with metal implants or fillings by completing the missing kV projection data with selectively acquired MV data that do not suffer from photon starvation. Numerical simulations demonstrated that dual-energy sinogram patch FBP and a modified kV/MV PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in kV projections. Combined kV/MV images may permit the improved delineation of structures of interest in CT images for patients with metal implants or fillings.

  4. Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager

    SciTech Connect (OSTI)

    Liu, Langechuan; Antonuk, Larry E. El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2015-04-15

    Purpose: In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beams eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectra used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators. Methods: Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination). Results: Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector, incorporate a BGO converter with a 0.508 mm pitch and a 2 cm thickness, and operate at full resolution for kV imaging and 2 2 binning mode for MV imaging. Such a dual energy imager design should provide soft tissue visualization at low, clinically practical doses under MV conditions, while helping to preserve the high spatial resolution and high contrast offered by kV imaging. Conclusions: The authors theoretical investigation suggests that a dual energy imager capable of largely preserving the desirable characteristics of both kV and MV imaging is feasible. Such an imager, when coupled to a dual energy radiation source, could facilitate simplification of current treatment room imaging systems (as well as their associated quality assurance), and facilitate more precise integration of kV and MV imaging information by virtue of reduced geometric uncertainties.

  5. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    SciTech Connect (OSTI)

    Zhang, Xiaoyong Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 0.20 mm, and VOI is 95.6% 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 0.08 mm and 96.7% 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 0.77 mm in the CLE and 72.1% 5.5% in the VOI. These results demonstrate the effectiveness of the authors proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  6. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    SciTech Connect (OSTI)

    Cho, Byungchul Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-07-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was {approx}450 ms. The tracking error using a prediction algorithm was 0.9 {+-} 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  7. Performance and Applications of the first HVE 5MV Tandetron{sup TM} at the University of Madrid

    SciTech Connect (OSTI)

    Mous, D.J.W.; Gottdang, A.; Haitsma, R.G.; Garcia Lopez, G.; Climent-Font, A.; Agullo-Lopez, F.; Boerma, D.O.

    2003-08-26

    The first HVE Tandetron{sup TM} with a nominal terminal voltage of 5 MV has been put into operation at the Universidad Autonoma de Madrid (Spain) as part of their new IBA facility. The accelerator features a coaxial structure in which the all-solid-state power supply is constructed around the high-energy acceleration tube, thereby avoiding the T-shaped tank that has characterized the HVE Tandetrons{sup TM} so far. The new IBA facility covers a number of different ion beam analysis techniques including ERD using heavy-element time-of-flight, RBS, as well as an external micro-beam for PIXE. During installation, tests have shown a stable terminal voltage of 5.5 MV. The terminal voltage ripple was deduced to be below 6 x 10-6 (RMS) for terminal voltages above 800 kV. Terminal voltage undershoot was measured to be 1.4 x 10-3 for a {approx}1 kW beam at 3 MV and recovered to 1 x 10-4 within 800 ms. IBA experiments that require low energy hydrogen beams are supported by a stable terminal voltage down to 100 kV.

  8. Design of a 7-MV Linear Transformer Driver (LTD) for down-hole flash x-ray radiography.

    SciTech Connect (OSTI)

    Cordova, Steve Ray; Welch, Dale Robert; Oliver, Bryan Velten; Rose, David Vincent; Johnson, David Lee; Bruner, Nichelle Lee; Leckbee, Joshua J.

    2008-09-01

    Pulsed power driven flash x-ray radiography is a valuable diagnostic for subcritical experiments at the Nevada Test Site. The existing dual-axis Cygnus system produces images using a 2.25 MV electron beam diode to produce intense x-rays from a small source. Future hydrodynamic experiments will likely use objects with higher areal mass, requiring increased x-ray dose and higher voltages while maintaining small source spot size. A linear transformer driver (LTD) is a compact pulsed power technology with applications ranging from pulsed power flash x-ray radiography to high current Z-pinch accelerators. This report describes the design of a 7-MV dual-axis system that occupies the same lab space as the Cygnus accelerators. The work builds on a design proposed in a previous report [1]. This new design provides increased diode voltage from a lower impedance accelerator to improve coupling to low impedance diodes such as the self magnetic pinch (SMP) diode. The design also improves the predicted reliability by operating at a lower charge voltage and removing components that have proven vulnerable to failure. Simulations of the new design and experimental results of the 1-MV prototype are presented.

  9. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect (OSTI)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Mller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44?pm.

  10. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David; Krompholz, Hermann G.; Vela, Russell; Jorgenson, Roy Eberhardt; Timoshkin, Igor (University of Strathclyde, Glasgow, Scotland); Woodworth, Joseph Ray; Prestwich, Kenneth Randel (Voss Scientific, Albuquerque, NM); Krile, John; Given, Martin (University of Strathclyde, Glasgow, Scotland); McKee, G. Randall; Rosenthal, Stephen Edgar; Struve, Kenneth William; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Benwell, Andrew L. (University of Missouri-Columbia, Columbia, Missouri); Kovaleski, Scott; LeChien, Keith, R.; Johnson, David (Titan Pulse Sciences Division); Fouracre, R.A. (University of Strathclyde, Glasgow, Scotland); Yeckel, Chris (University of Missouri-Columbia, Columbia, Missouri); Wakeland, Peter Eric; Miller, A. R. (Titan Pulse Sciences Division); Hodge, Keith Conquest (Ktech Corporation, Albuquerque, NM); Pasik, Michael Francis; Savage, Mark Edward; Maenchen, John Eric; Curry, Randy D.; Feltz, Greg; Bliss, David Emery; MacGregor, Scott (University of Strathclyde, Glasgow, Scotland); Corley, J. P. (Ktech Corporation, Albuquerque, NM); Anaya, Victor (Ktech Corporation, Albuquerque, NM); Wallace, Zachariah (Ktech Corporation, Albuquerque, NM); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Neuber, Andreas. (Texas Tech University, Lubbock, TX)

    2007-03-01

    In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

  11. TH-E-17A-11: Tracking Tumors Boundary in MV Image Sequences for Image-Guided Radiation Therapy

    SciTech Connect (OSTI)

    Zhang, X; Homma, N; Ichiji, K; Abe, M; Sugita, N; Yoshizawa, M; Narita, Y; Takai, Y

    2014-06-15

    Purpose: To develop a level set method (LSM)-based algorithm to track the tumors boundary in MV image sequences for image-guided radiation therapy (IGRT). Method: Four MV image sequences, each of which consists of 100 frames at frame rate of 7.5 Hz, are acquired by using the electronic portal imaging device (EPID) (Varian Medical Systems, Pal Alto, USA) during the treatment of lung cancer. In the first frame of each sequence, we roughly delineate an initial contour of the target tumor by hand. Using a LSM-based algorithm, the initial contour can automatically shape itself to fit the tumor, and eventually detect the tumors boundary. We then employ the tumors boundary obtained from the previous frame as the initial contour in the subsequent frame, so that the LSM-based method can drive this initial contour to the tumors boundary quickly and fulfill a tracking task. Results: The proposed method has been evaluated on four MV image sequences. The mean tracking errors were 0.23, 0.29, 0.37, and 1.18 mm, and their corresponding standard deviations were 0.97, 0.75, 1.2 and 1.48 mm, respectively. Conclusion: Compared with conventional tumor tracking techniques, the proposed system is capable not only of tracking the tumors position, but also of detecting the tumors boundary varying with the respiration during the treatment. Considering current radiation therapy technique, for example, dynamical multi-leaf collimator (DMLC) has been widely applied in clinical treatment, this study indicates the potential for significant accuracy improvement in radiation therapy. This work was partially supported by a research grant from Varian Medical Systems (Palo Alto, California)

  12. SU-E-T-322: The Evaluation of the Gafchromic EBT3 Film in Low Dose 6 MV X-Ray Beams with Different Scanning Modes

    SciTech Connect (OSTI)

    Lee, H; Sung, J; Yoon, M; Kim, D; Chung, W

    2014-06-01

    Purpose: We have evaluated the response of the Gafchromic EBT3 film in low dose for 6 MV x-ray beams with two scanning modes, the reflection scanning mode and the transmission scanning mode. Methods: We irradiated the Gafcromic EBT3 film using a 60 degree enhanced dynamic wedge (EDW) with 6 MV x-ray beams from Clinac iX Linear accelerator (Varian Medical Systems, Palo Alto, CA). The irradiated Gafchromic EBT3 film was scanned with different scanning modes, the reflection scanning mode and the transmission scanning mode. The scanned Gafchromic EBT3 film was analyzed with MATLAB. Results: When 7.2 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was 0.54 cGy with reflection scanning mode and was 0.88 cGy with transmission scanning mode. When 24 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was similar to the case of 7.2 cGy irradiation showing 0.51 cGy of uncertainty with reflection scanning mode and 0.87 cGy of uncertainty with transmission scanning mode. The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation. Conclusion: The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation.

  13. Metal Buildings M&V

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Atlas Bolt & Screw Behlen Manufacturing Butler Manufacturing Building Research Systems Kirby Building Systems DOW Lamtec Schulte Building Systems Participants: Bigbee Steel Chief ...

  14. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID: Investigating the influence of pulsing artifacts and artifact suppression techniques

    SciTech Connect (OSTI)

    Poels, Kenneth Verellen, Dirk; Van de Vondel, Iwein; El Mazghari, Rafik; De Ridder, Mark; Depuydt, Tom

    2014-10-15

    Purpose: Because frame rates on current clinical available electronic portal imaging devices (EPIDs) are limited to 7.5 Hz, a new commercially available PerkinElmer EPID (XRD 1642 AP19) with a maximum frame rate of 30 Hz and a new scintillator (Kyokko PI200) with improved sensitivity (light output) for megavolt (MV) irradiation was evaluated. In this work, the influence of MV pulse artifacts and pulsing artifact suppression techniques on fiducial marker and marker-less detection of a lung lesion was investigated, because target localization is an important component of uncertainty in geometrical verification of real-time tumor tracking. Methods: Visicoil markers with a diameter of 0.05 and 0.075 cm were used for MV marker tracking with a frame rate of, respectively, 7.5, 15, and 30 Hz. A 30 Hz readout of the detector was obtained by a 2 2 pixel binning, reducing spatial resolution. Static marker detection was conducted in function of increasing phantom thickness. Additionally, marker-less tracking was conducted and compared with the ground-truth fiducial marker motion. Performance of MV target detection was investigated by comparing the least-square sine wave fit of the detected marker positions with the predefined sine wave motion. For fiducial marker detection, a Laplacian-of-Gaussian enhancement was applied after which normalized cross correlation was used to find the most probable marker position. Marker-less detection was performed by using the scale and orientation adaptive mean shift tracking algorithm. For each MV fluoroscopy, a free running (FR-nF) (ignoring MV pulsing during readout) acquisition mode was compared with two acquisition modes intending to reduce MV pulsing artifacts, i.e., combined wavelet-FFT filtering (FR-wF) and electronic readout synchronized with respect to MV pulses. Results: A 0.05 cm Visicoil marker resulted in an unacceptable root-mean square error (RMSE) > 0.2 cm with a maximum frame rate of 30 Hz during FR-nF readout. With a 30 Hz synchronized readout (S-nF) and during 15 Hz readout (independent of readout mode), RMSE was submillimeter for a static 0.05 cm Visicoil. A dynamic 0.05 cm Visicoil was not detectable on the XRD 1642 AP19, despite a fast synchronized readout. For a 0.075 cm Visicoil, deviations of sine wave motion were submillimeter (RMSE < 0.08 cm), independent of the acquisition mode (FR, S). For marker-less tumor detection, FR-nF images resulted in RMSE > 0.3 cm, while for MV fluoroscopy in S-mode RMSE < 0.1 cm for 15 Hz and RMSE < 0.16 cm for 30 Hz. Largest consistency in target localization was experienced during 15 Hz S-nF readout. Conclusions: In general, marker contrast decreased in function of higher frame rates, which was detrimental for marker detection success. In this work, Visicoils with a thickness of 0.075 cm were showing best results for a 15 Hz frame rate, while non-MV compatible 0.05 cm Visicoil markers were not visible on the new EPID with improved sensitivity compared to EPID models based on a Kodak Lanex Fast scintillator. No noticeable influence of pulsing artifacts on the detection of a 0.075 cm Visicoil was observed, while a synchronized readout provided most reliable detection of a marker-less soft-tissue structure.

  15. Microsoft Word - N0075800-NAPL April to June 04.doc

    Office of Legacy Management (LM)

    April Through June 2004 July 2004 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Office of Legacy Management DOE LM/ 6 2004 - - GJ 93 N0075800 DOE-LM/GJ693-2004 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April

  16. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nEnergyPlus%2Bredirect%2B1 for discussion of simulation issues. 17 http:rredc.nrel.govsolarolddatansrdb1991-2005tmy3. 18 See ASHRAE Guideline 14-2015 and Section 4.2.2...

  17. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... temperature differential for various levels of temperature sensor accuracy (given a 5% error in flow measurement and a 2% error in in power measurement). 22 ...

  18. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    staff. The persistence of the changes can be addressed through checking performance benchmarks, conducting periodic tune-ups, or a more aggressive commissioning approach. This...

  19. MHK ISDB/Instruments/POS MV Surfmaster | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  20. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young- Rainey STAR Center

    Broader source: Energy.gov [DOE]

    Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds.May 2004, Monterey, California.Randall Juhlin, Michael Butherus, Joseph Daniel, David S....

  1. Microsoft Word - DOE_RM_DM-#100069-v1-NAPL_Quarterly_Oct-Dec_2004.DOC

    Office of Legacy Management (LM)

    1 U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report October through December 2004 January 2005 DOE-LM/GJ801-2005 Pinellas Environmental Restoration

  2. Microsoft Word - DOE_RM_DM-#341474-v1-NAPL_Quarterly_April_-_June_2005.DOC

    Office of Legacy Management (LM)

    7 2005 - -L U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report April Through June 2005 July 2005 DOE-LM/GJ927-2005 Pinellas Environmental Restoration

  3. Microsoft Word - DOE_RM_DM-#345139-v1-NAPL_Quarterly_Oct-Dec_2005.DOC

    Office of Legacy Management (LM)

    5 2006 - -L U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report October Through December 2005 January 2006 DOE-LM/GJ1105-2006 Pinellas Environmental

  4. Microsoft Word - DOE_RM_DM-#350832-v1-NAPL_Quarterly_April-June_2006.DOC

    Office of Legacy Management (LM)

    Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April through June 2006 July 2006 Office of Legacy Management DOE M/1253-2006 -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy DOE-LM/1253-2006 Pinellas Environmental Restoration Project

  5. Microsoft Word - N0071600-NAPL-Oct to Dec.doc

    Office of Legacy Management (LM)

    6-TAC U.S. Department of Energy Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report October Through December 2003 January 2004 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management N0071600

  6. Microsoft Word - N0074600-NAPL-Jan to March.doc

    Office of Legacy Management (LM)

    January Through March 2004 April 2004 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Office of Legacy Management DOE LM/ 646 2004 - - GJ N0074600 DOE-LM/GJ646-2004 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report January

  7. Microsoft Word - DOE_RM_DM-#102768-v1-NAPL_Quarterly_Report_Jan-March_2005.ƒ

    Office of Legacy Management (LM)

    6 U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report January through March 2005 April 2005 DOE-LM/GJ876-2005 Pinellas Environmental Restoration

  8. Microsoft Word - DOE_RM_DM-#344133-v1-Final_NAPL_Quarterly_July-Sept_2005.Dƒ

    Office of Legacy Management (LM)

    1 2005 - -L U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measure Progress Report July Through September 2005 October 2005 DOE-LM/GJ1011-2005 Pinellas Environmental

  9. Microsoft Word - DOE_RM_DM-#99768-v1-NAPL_Quarterly_Report_for_July-Sept_20ƒ

    Office of Legacy Management (LM)

    July Through September 2004 October 2004 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Office of Legacy Management DOE LM/ 2004 - - GJ751 DOE-LM/GJ751-2004 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report July through

  10. State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE’s Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs.

  11. Buffalo County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Modena, Wisconsin Mondovi, Wisconsin Montana, Wisconsin Naples, Wisconsin Nelson, Wisconsin Waumandee, Wisconsin Retrieved from "http:en.openei.orgw...

  12. Niagara Air Quality Survey Report, 1987: Occidental Chemical Corporation, Niagara Falls, New York, USA, non-aqueous phase liquid (NAPL) incineration test. Report no. ARB-166-87-AR/SP

    SciTech Connect (OSTI)

    Bell, R.W.; DeBrou, G.

    1988-01-01

    An ambient air quality survey was conducted in the Niagara Falls area of Ontario from October 8-12, 1987 to provide on-site real-time screening for selected polychlorinated biphenyl congeners and other chlorinated organics at times when the Occidental Chemical Corporation was conducting tests at its liquid hazardous waste incineration facility in Niagara Falls, N.Y. During the incineration tests, the winds were such that the gaseous emissions from the Occidental facility were carried into the U.S. Since the monitoring units were restricted to the Canadian side of the Niagara River, only upwind air quality parameters could be measured.

  13. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    SciTech Connect (OSTI)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  14. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect (OSTI)

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  15. Ontario County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New York Naples, New York Phelps, New York Richmond, New York Rushville, New York Seneca, New York Shortsville, New York South Bristol, New York Victor, New York West...

  16. Cumberland County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maine Freeport, Maine Frye Island, Maine Gorham, Maine Gray, Maine Harpswell, Maine Harrison, Maine Little Falls-South Windham, Maine Long Island, Maine Naples, Maine New...

  17. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  18. EIS-0409: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Draft Environmental Impact Statement EIS-0409: Final Environmental Impact Statement Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center...

  19. Scott County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Scott County, Illinois Alsey, Illinois Bluffs, Illinois Exeter, Illinois Glasgow, Illinois Manchester, Illinois Naples, Illinois Winchester, Illinois...

  20. Non-Aqueous Phase Liquid Calculator

    Energy Science and Technology Software Center (OSTI)

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  1. Measurement of the multiple-muon charge ratio in the MINOS Far...

    Office of Scientific and Technical Information (OSTI)

    R. ; Meier, J. R. ; Messier, M. D. ; Miller, W. H. ; Mishra, S. R. ; Moed Sher, S. ; Moore, C. D. ; Mualem, L. ; Musser, J. ; Naples, D. ; Nelson, J. K. ; Newman, H. B. ; Nichol, ...

  2. Microsoft Word - San Diego 2004 ORT Conference paper_1.doc

    Office of Environmental Management (EM)

    presented at the Third International Conference on Oxidation and Reduction Technologies for Soil and Groundwater in San Diego, CA, on October 24-28, 2004 PROJECT OVERVIEW: SUCCESSFUL FIELD-SCALE IN SITU THERMAL NAPL REMEDIATION ABSTRACT: The U.S. Department of Energy (DOE) successfully completed a field-scale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The

  3. State and Local Energy Savings Performance Contracting: Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Measurement and Verification (M&V) State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) DOE's Technical Assistance Program ...

  4. Measurement and Verification Options for Federal Energy- and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program measurement and verification (M&V) guidelines and International Performance Measurement and Verification Protocol M&V methodologies are broken ...

  5. Measurement and Verification for Federal Energy Savings Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts Measurement and verification (M&V) activities help agencies confirm that ... When done correctly, M&V: Appropriately allocates risks Reduces uncertainty of savings ...

  6. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new generation of energy efficient, high power density, high speed integrated MV ... This Financial Opportunity Announcement (FOA) is focused on developing medium voltage (MV) ...

  7. Measurement and Verification Options for Federal Energy- and Water-Saving Projects

    Broader source: Energy.gov [DOE]

    Federal Energy Management Program (FEMP) measurement and verification (M&V) guidelines and International Performance Measurement and Verification Protocol M&V methodologies are broken into four options.

  8. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  9. R&D 100: Battery Technology Goes Viral | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Technology Goes Viral R&D 100: Battery Technology Goes Viral July 24, 2013 - 3:55pm Addthis By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. By applying pressure to the generator, one is able to generate about six

  10. Structure and physical properties of single crystal PrCr{sub 2}Al{sub 20} and CeM{sub 2}Al{sub 20} (M=V, Cr): A comparison of compounds adopting the CeCr{sub 2}Al{sub 20} structure type

    SciTech Connect (OSTI)

    Kangas, Michael J.; Schmitt, Devin C.; Sakai, Akito; Nakatsuji, Satoru; Institute of Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 ; Chan, Julia Y.

    2012-12-15

    Crystal growth and full structure determination of compounds adopting the CeCr{sub 2}Al{sub 20} structure type, LnTi{sub 2}Al{sub 20} (Ln=La-Pr, Sm, and Yb), LnV{sub 2}Al{sub 20} (Ln=La-Pr, and Sm), and LnCr{sub 2}Al{sub 20} (Ln=La-Pr, Sm, and Yb), are reported. Resistivity, magnetic susceptibility, and heat capacity of flux grown single crystals of the nonmagnetic CeM{sub 2}Al{sub 20} (Ln=Ce, Yb; M=Ti, V) compounds are compared to PrCr{sub 2}Al{sub 20}. Of particular interest is PrCr{sub 2}Al{sub 20} which does not show any phase transition down to the lowest temperature of the measurement (400 mK in resistivity measurement and 1.8 K for magnetic susceptibility measurements) and exhibits Kondo behavior at low temperatures. - Graphical abstract: Crystal structure of SmV{sub 2}Al{sub 20} showing the interpenetrating diamond-like samarium network and pyrochlore-like vanadium network. Highlights: Black-Right-Pointing-Pointer Single crystals of LnM{sub 2}Al{sub 20} were grown from a molten aluminum flux. Black-Right-Pointing-Pointer Magnetic, electrical, and specific heat of single crystal LnM{sub 2}Al{sub 20} are presented. Black-Right-Pointing-Pointer PrCr{sub 2}Al{sub 20} exhibits evidence of Kondo effect.

  11. Cracking a Cold Case and Enduring Mystery | Department of Energy

    Office of Environmental Management (EM)

    Cracking a Cold Case and Enduring Mystery Cracking a Cold Case and Enduring Mystery July 1, 2013 - 3:04pm Addthis Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater dates back to roughly 37 B.C. | Photo courtesy of J.P. Oleson. Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater

  12. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  13. Spectroscopy of Supercapacitor Electrodes In Operando

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrode in 1 M NaCl (aq) under (a) constant dc biases between +250 and +1000 mV (green), (b) zero bias (orange), and (c) -1000 mV (dark blue). Fits to the experimental...

  14. 10 MeV/u experiments at RIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early years The early years 1959 6MV EN tandem accelerator 1964 ... Precision is king: Investigation of isobaric analog states 1970 9MV FN tandem accelerator FSU: to TAN...

  15. Using Measurement and Verification to Manage Risk in Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Risk," in the context of measurement and verification (M&V), refers to the uncertainty ... and holding certain parameters fixed in the M&V plan can match up responsibilities. ...

  16. Guide to Government Witnessing and Review of Measurement and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of measurement and verification (M&V) activities in Federal energy savings performance contract (ESPC) projects. Witnessing of M&V activities is a part of the process of ...

  17. Measurement and Verification Activities Required in the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Verification Activities Required in the Energy Savings Performance Contract Process M&V activities span three phases of the the ESPC process. M&V activities span ...

  18. Real-time automatic fiducial marker tracking in low contrast...

    Office of Scientific and Technical Information (OSTI)

    tracking in low contrast cine-MV images Citation Details In-Document Search Title: Real-time automatic fiducial marker tracking in low contrast cine-MV images Purpose: To ...

  19. Measurement and Verification Activities Required in the Energy Savings Performance Contract Process

    Broader source: Energy.gov [DOE]

    There are four major measurement and verification (M&V) activities in the energy savings performance contract (ESPC) procurement process.

  20. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop ... power electronics controller stages, embedded ... state estimation, energy network security assessment, etc. ...

  1. Microsoft Word - S05827_WCR_Final.doc

    Office of Legacy Management (LM)

    MV-5 Data This page intentionally left blank U.S. Department of Energy Well Completion Report for CAU 443 CNTA December 2009 Doc. No. S05827 Page C-1 Table C-1. MV-5 Chronology Date Time Depth (ft bgs) Activity 05/09/09 through 05/10/09 NA NA Move rig and equipment from MV-4 pad to MV-5 pad and prepare to drill MV-5. 05/10/09 12:10 0 Rig inspection and drill pad walk through inspection, continue with preparations for drilling. 05/10/09 14:00 0 Begin drilling 31-inch diameter conductor casing

  2. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  3. 1B-03.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1B-03, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds -2004. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). ISBN 1-57477-145-0, published by Battelle Press, Columbus, OH, www.battelle.org/bookstore. NONAQUEOUS-PHASE LIQUID CHARACTERIZATION AND POST-REMEDIATION VERIFICATION SAMPLING ABSTRACT: Light and dense nonaqueous-phase liquids (NAPLs) were identified in the

  4. 2B-01.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds -2004. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). ISBN 1-57477-145-0, published by Battelle Press, Columbus, OH, www.battelle.org/bookstore. SUCCESSFUL FIELD-SCALE IN SITU THERMAL NAPL REMEDIATION AT THE YOUNG-RAINEY STAR CENTER ABSTRACT: The U.S. Department of Energy (DOE) successfully completed a field-

  5. Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site

    SciTech Connect (OSTI)

    Nellis, Scott; Yoon, Hongkyu; Werth, Charlie; Oostrom, Martinus; Valocchi, Albert J.

    2009-05-01

    Surface and interfacial tensions that arise at the interface between different phases are key parameters affecting Nonaqueous Phase Liquid (NAPL) movement and redistribution in the vadose zone after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions are based upon carbon tetrachloride (CT) mixtures released at the Hanford site, where CT was discharged simultaneously with dibutyl butyl phosphonate (DBBP), tributyl phosphate (TBP), dibutyl phosphate (DBP), and a machining lard oil (LO). A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The tension values measured in this study revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared to pure CT, but had minimal effect on the surface tension of the NAPL itself. These results lead to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly, but form a higher residual NAPL saturation after equilibrium, as compared to pure CT. Over time, CT likely volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. Spreading coefficients are expected to increase and perhaps change the equilibrated organic mixtures from nonspreading to spreading in water-wetting porous media. These results show that the behavior of organic chemical mixtures should be accounted for in numerical flow and transport models.

  6. Lead in human blood from children living in Campania, Italy

    SciTech Connect (OSTI)

    Amodio-Cocchieri, R.; Arnese, A.; Prospero, E.; Roncioni, A.

    1996-03-01

    Blood lead (PbB) levels were determined in children living Campania (in Naples and in a rural zone in the district of Caserta). Atmospheric lead (PbA) concentration in these considered areas was monitored for 1 yr (1993-1994). The children tested were questioned about common sources of lead, other than atmospheric relating to their living and dietary habits. The PbB levels in children living in Naples were at the 50th percentile, 18.8 {mu}g/dl in males and 13.7 {mu}g/dl in females; in children living in the rural area the median PbB levels were 8.9{mu}g/dl in males, and 9.9 {mu}g/dl in females. The annual mean values of atmospheres lead were 1.15 {plus_minus} 0.24 {mu}g/dl in Naples and 0.23 {plus_minus} 0.07 {mu}g/dl in the rural area. Significant and congruent mean differences between urban and rural sites were found in children`s blood and concurrent air lead. Considering the PbB level of 10 {mu}g/dl as the maximum level that is not associated any known adverse effect in children, the Neapolitan group can be considered at risk of chronic intoxication by lead. 18 refs., 3 figs., 4 tabs.

  7. Microsoft Word - S05827_WCR_Final.doc

    Office of Legacy Management (LM)

    Miscellaneous Data This page intentionally left blank U.S. Department of Energy Well Completion Report for CAU 443 CNTA December 2009 Doc. No. S05827 Page F-1 Table F-1. MV-1 Tritium Results Sample Identification Date Time Depth (ft) MDA (dpm) Tritium (pCi/L) MDC (pCi/L) Upper Piezometer Development MV-1 - Air MV-1 Well Dev. 05/25/09 2250 WD 36.56 -1441 3294 MV-1 Well Dev. 05/26/09 0100 WD 35.86 540 3230 MV-1 Well Dev. 05/26/09 0216 WD 35.71 810 3217 MV-1 Well Dev. 05/26/09 0335 WD 36.80 450

  8. Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls

    Broader source: Energy.gov [DOE]

    This document provides a framework for measurement and verification (M&V) of energy savings, performance, and user satisfaction from lighting retrofit projects involving occupancy-sensor-based, daylighting, and/or other types of automatic lighting. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for retrofit projects and to assist in developing specific project M&V plans.

  9. High Impact Technology Hub - Resources for Evaluators - General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) Assessment of Evaluation, Measurement, and Verification Methods - 2014 BTO Peer Review ...

  10. Wannier90

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wannier90 Wannier90 Description Wannier90 computes maximally-localised Wannier functions (MLWF) following the method of Marzari and Vanderbilt (MV). It can be used in conjunction...

  11. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Verification Protocol kWh Kilowatt-hour M&V Measurement and verification O&M operation and maintenance OAT outdoor air temperature RCx Retrocommissioning TMY typical ...

  12. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    SciTech Connect (OSTI)

    2009-12-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008).

  13. Notice of Intent: Upcoming Funding Opportunity for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NGEMs combine high power density, high RPM motors with integrated power electronics. Specifically, this upcoming FOA will facilitate efforts to integrate Medium Voltage (MV) class ...

  14. Measurement and Verification for Federal Energy Savings Performance Contracts

    Broader source: Energy.gov [DOE]

    Measurement and verification (M&V) activities help agencies confirm that legally and contractually required savings guarantees are met in federal energy savings performance contracts (ESPCs).

  15. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect (OSTI)

    Richman, Eric E.

    2012-10-31

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  16. Microsoft Word - DOE-ID-11-011 Michigan EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Acquisition of a 3 MV Tandem Accelerator for Research and Teaching in Nuclear Science and Engineering - University of Michigan SECTION B. Project...

  17. Federal Utility Partnership Working Group (FUPWG) Spring 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are determined before the project; custom savings: the savings are not pre-determined (M&V is required) UTILITY BUSINESS PRACTICES ISSUES COMPETITIVE SUBCONTRACTING - GORDON...

  18. C Example HYPRE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mvInterfaceInterpreter* interpreter; HYPREMatvecFunctions matvecfn; * Initialize MPI * MPIInit(&argc, &argv); MPICommrank(MPICOMMWORLD, &myid); MPICommsize(MPICOMM...

  19. SREL Reprint #3230

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Foraging Habitat Use by Breeding Wood Storks and the Core Foraging Area Concept A. Lawrence Bryan, Jr.1, Ken D. Meyer2, Bree A. Tomlinson3, Jason A. Lauritsen4, and William B. Brooks5 1Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA 2Avian Research and Conservation Institute, Gainesville, FL, 32601, USA 3College of Charleston, Charleston, SC, 29424, USA 4National Audubon Society, Corkscrew Swamp Sanctuary, Naples, FL, 34120, USA 5U.S. Fish and Wildlife Service, North

  20. Dynamic underground stripping to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.

    1995-09-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 26,500 liters (7000 gallons) of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat methods and vacuum extraction schemes for removing non-aqueous phase liquids (NAPLs) such as gasoline from deep subsurface plumes.

  1. N0057000.doc

    Office of Legacy Management (LM)

    000 GJO- 2002-380- TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report July through September 2002 October 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057000 Contents DOE/Grand Junction Office Northeast Site NAPL Interim Measures Progress Report October 2002 Page

  2. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002

    Office of Legacy Management (LM)

    700 GJO-2003-411-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002 January 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057700 Contents DOE/Grand Junction Office Northeast Site NAPL Interim Measures Progress Report January 2003 Page

  3. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOE Patents [OSTI]

    Ross, Jr., Philip N. (Kensington, CA)

    1990-01-01

    A novel carbonaceous electrode support material is disclosed characterized by a corrosion rate of 0.03 wt. %/hour or less when measured a5 550 millivolts vs. a Hg/HgO electrode in a 30 wt. % KOH electrolyte a5 30.degree. C. The electrode support material comprises a preselected carbon black material which has been heat-treated by heating the material to a temperature of from about 2500.degree. to about 3000.degree. C. over a period of from about 1 to about 5 hours in an inert atmosphere and then maintaining the preselected carbon black material at this temperature for a period of at least about 1 hour, and preferably about 2 hours, in the inert atmosphere. A carbonaceous electrode suitable for use as an air electrode in a metal-air cell may be made from the electrode support material by shaping and forming it into a catalyst support and then impregnating it with a catalytically active material capable of catalyzing the reaction with oxygen at the air electrode of metal-air cell.

  4. Appearance of thermochemical emf in some conducting materials

    SciTech Connect (OSTI)

    Petrov, Y.S.; Maslikhov, V.V.; Shcheglov, V.D.

    1983-05-01

    The appearance of an emf in conductors when they are heated is described by the Seebeck and Thompson effects. If some part of the surface of a conductor is covered by a pyrotechnical material and ignited, then while the pyrotechnical material is burning and after it has burned, an emf arises at the ends of the conductor. The direction of the emf depends on the location of maximum temperature of the heated section of the conductor. If the heating is terminated for some time and started up again, then the emf and current appear again, with no necessity for re-application of the pyrotechnical material. Conductors of Nichrome, Constantan and tungsten, as well as graphite rods were studied with small sections of the conductors covered with lead azide, black gunpowder, or match-head composition. The current ranged from -5 to 6 microamps, and the emf from -0.4 to 1 millivolt. The effects described can be used to convert thermal energy into electrical energy in sensors, etc.

  5. Measurement&verification reality check: A yawning gapbetween theory and practice

    SciTech Connect (OSTI)

    Kumar, Satish; Haberl, Jeff; Claridge, David; Turner, Dan; O'Neal, Dennis; Sharp, Terry; Sifuentes, Teresa; Lopez, Felix; Taylor, Dub

    2002-06-01

    The success of an energy efficiency program should bemeasured in terms of the actual energy savings, and not against"stipulated" or estimated energy savings.Although M&V guidelines andprotocols have standardized methods for verifying energy savings accruingfrom the implementation of an energy efficiency project, M&V islargely viewed as a cost center rather than a value proposition. The jurymay still be out on the real value of M&V because it is oftenperceived as very expensive and too technical. This paper will reviewmeasured energy savings data from the Texas LoanSTAR Program and analyzeavailable data and program requirements of Federal and state performancecontracting programs that require some level of M&V to verify energysavings. The intent is to determine the role of M&V in differentprograms and what implications it has on the success or failure of theprograms. The paper concludes with suggestions to use M&V as a riskmanagement tool wherein both the service provider and the customer have avested interest to perform appropriate level of M&V to reduceuncertainty in energy savings in a cost effective manner.

  6. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    SciTech Connect (OSTI)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W; Rozario, T; Bereg, S; Klash, S

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  7. March 2010 Groundwater Sampling at the Project Shoal Site, Nevada (Data Validation Package)

    SciTech Connect (OSTI)

    2011-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2010. Wells HC-4, HC-5, HC-7, HC-8, MV-1, MV-2 and MV-3 were sampled March 10-12, 2010, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Wells HC-1, HC-2, HC-3, and HC-6 were sampled March 24, 2010, by Desert Research Institute personnel.

  8. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic

    Office of Scientific and Technical Information (OSTI)

    system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new...

  9. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for MV photon beams Methods The Exradin W1 is a new small...

  10. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new...

  11. EMGeo Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods (QMR in one case, and IDR in the other), both solvers are dominated by memory bandwidth intensive operations like sparse matrix-vector multiply (SpMV), dot...

  12. BPA, in partnership with its customer utilities, conducted an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. 2. 1. 2. 3. BPA can improve reliability of savings estimates by clarifying BPA M&V protocols (e.g., first-year vs typical savings and current practice baseline), improve the...

  13. CEBAF SRF Performance during Initial 12 GeV Commissioning

    SciTech Connect (OSTI)

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  14. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band ...

  15. Maldives: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Maldives Population 393,500 GDP 1,944,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code MV 3-letter ISO code MDV Numeric ISO...

  16. Better Buildings Alliance, Advanced Rooftop Unit Campaign: Rooftop Unit Measurement and Verification (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This document provides facility managers and building owners an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects to estimate paybacks or to justify future projects.

  17. B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measure project, this should be the date when the M&V for all measures was completed. O Optional: Project Name Name assigned to project. Data Entry Fields: Columns B through AG...

  18. CX-009369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Regional Innovation Cluster (M&V Equipment) CX(s) Applied: A9, B2.2 Date: 09/17/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory

  19. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the individual researchers' needs. The core of the laboratory consists of a 3 MV NEC tandem accelerator, a 200 kV Varian ion implanter, and a 200 kV Danfysik ion implanter...

  20. Meet the CAMS Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet the CAMS Staff Members of the CAMS staff standing near the 10 MV Tandem Van de Graaff Accelerator at CAMS, Lawrence Livermore National Laboratory. Members of the CAMS staff...

  1. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state-of-the-art, accelerator-based technologies. Upper Left: The HVEC 10 MV Model FN Tandem Van de Graaff Accelerator and the lighter-ion AMS beamline. Upper Right: The NEC 1.0...

  2. A Brief History of CAMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beam went through the accelerator on June 45th, 1987. Continuous operation of 10-MV tandem began in 1988 and is now routinely operated on a 247 schedule. Since its inception,...

  3. Medium-Voltage Cables in Nuclear Plant Applications - State of Industry and Conditioning Monitoring

    SciTech Connect (OSTI)

    J.M. Braun

    2003-10-01

    OAK-B135 This report reviews the types of medium-voltage (MV) cables in use in nuclear power plants and the techniques that are currently available to assess the condition of MV cable systems. The project identified the types of cable systems in nuclear plants and their operating conditions and then assessed the aging and failure mechanisms of these cables and suitable diagnostic test techniques. In addition, ways to alleviate conditions that cause the most severe aging were identified.

  4. Sergey Maximoff | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Sergey Maximoff Previous Next List Maximoff Sergey Maximoff Formerly: Postdoctoral Fellow, Department of Chemical, Engineering University of California, Berkeley BA M.V. Lomonosov Moscow State University, Moscow, Russia MS M.V. Lomonosov Moscow State University, Moscow, Russia PhD Rice University, Houston TX EFRC research: Dr. Maximoff's interest within this EFRC centers on theory of adsorption, desorption, and chemical conversion of small molecules within

  5. Multipacting in a grooved choke joint at SRF gun for BNL ERL prototype

    SciTech Connect (OSTI)

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Burrill, A.; Holmes, D.; Kayran, D.; McIntyre, G.; Sheehy, B.

    2011-03-28

    The 703 MHz superconducting gun for BNL ERL prototype was tested at JLab with and without choke-joint and cathode stalk. Without choke-joint and cathode stalk, the gradient reached was 25 MV/m with Q{sup 0} {approx} 6E9. The gun cathode insertion port is equipped with a grooved choke joint for multipacting suppression. We carried out tests with choke-joint and cathode stalk. The test results show that there are at least two barriers at about 3.5 MV/m and 5 MV/m. We considered several possibilities and finally found that fine details of the grooved shape are important for multipacting suppression. A triangular groove with round crest may cause strong multipacting in the choke-joint at 3.5 MV/m, 5 MV/m and 10 MV/m. This paper presents the primary test results of the gun and discusses the multipacting analysis in the choke-joint. It also suggests possible solutions for the gun and multipacting suppressing for a similar structure.

  6. Leaching of BTEX from Aged Crude Oil Contaminated Model Soils: Experimental and Modeling Results

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2005-01-01

    It is generally assumed that soil properties such as organic matter content, porosity, and mineral surface area have a significant effect on the bioavailability and leachability of aged petroleum hydrocarbons. In order to test this hypothesis, nine model soils or sorbents (i.e., fine and coarse quartz sand, montmorillonite and kaolinite clay, peat, 60? and 150? silica gel, a loam soil, and non-porous glass beads) were spiked with a crude oil, aged for 27 months in the laboratory, and transferred to glass columns for the performance of continuous flow leaching experiments. The column effluents were periodically sampled for 43 days and analyzed for BTEX. A one-dimensional flow model for predicting the dissolution and dispersion of individual hydrocarbons from a multi-component NAPL such as crude oil was used to fit the leaching data (i.e., the BTEX concentration versus time curves) by adjusting the equilibrium oil-leachate partitioning coefficient (Kol) for each respective hydrocarbon. The Peclet number, which is a measure of dispersion and a required modeling parameter, was measured in separate chloride tracer experiments for each soil column. Results demonstrate that soil properties did not significantly affect the leaching kinetics of BTEX from the columns. Instead, BTEX leaching curves could be successfully fitted with the one-dimensional NAPL dissolution flow model for all sorbents with the exception of montmorillonite clay. The fitting parameter Kol for each hydrocarbon was found to be similar to the Kol values that were independently measured for the same crude oil by Rixey et al. (Journal of Hazardous Materials B, 65: 137-156, 1999). In addition, the fitted Kol values were very similar for BTEX leaching from aged compared to freshly spiked loam soil. These findings indicate that leaching of BTEX in the aged soils that are contaminated with crude oil at the high concentrations commonly found in the environment (i.e., >20,000 mg/kg) was not affected by soil properties or aging but rather was governed by the equilibrium dissolution of these hydrocarbons from the crude oil NAPL that is coating the soil particles.

  7. Spatial decision support for strategic environmental assessment of land use plans. A case study in southern Italy

    SciTech Connect (OSTI)

    Geneletti, Davide . E-mail: davide.geneletti@ing.unitn.it; Bagli, Stefano . E-mail: home@gecosistema.it; Napolitano, Paola . E-mail: home@gecosistema.it

    2007-07-15

    This paper presents and discusses the construction of a spatial decision-support tool for the Strategic Environmental Assessment (SEA) of a land use plan: the spatial coordination plan of the Province of Naples, in southern Italy. The decision-support tool organises the relevant information, spatially resolves the actions of the plan, predicts their environmental impacts, and generates overall performance maps. Its final goal is to provide a suitable technical support to a formal SEA procedure. The expected implications of the plan, such as changes in land use and traffic flows and urban expansion, were modelled and assessed against a set of environmental criteria using SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis and mapping. It was found that the SWOT analysis provided a good basis for assessment and strategy formulation. The paper also intends to contribute to the topic of data and scale issues in SEA, by exemplifying the role played by spatial data and spatial analyses to support informative SEA.

  8. Superfund record of decision amendment (EPA Region 2): Hooker (102nd Street Landfill), Niagara Falls, NY, June 9, 1995

    SciTech Connect (OSTI)

    1995-08-01

    This decision document presents the selected modification to the original remedial action (PB91-921417) for the 102nd Street Landfill Site (the `Site`), located in Niagara Falls, New York. The modification to the selected remedy addresses the river sediments within the shallow embayment of the Niagara River adjacent to the Site. The major components of the modification to the selected remedy include: dredging the Niagara River sediments to the `clean line` with respect to Site-related contamination. These sediments, after dewatering, will NOT be incinerated, but will be consolidated on the landfill. Any NAPL found within these sediments will be extracted, and will be incinerated at an off-site facility.

  9. Superfund Record of Decision (EPA Region 2): Hooker-102nd Street Landfill, Niagara Falls, NY. (First remedial action), September 1990. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-09-26

    The 22-acre Hooker-102nd Street site is a former industrial landfill in the city of Niagara Falls, Niagara County, New York. The site is adjacent to, and partially within the Niagara River's 100-year floodplain. These studies and the Remedial Investigation (RI) initiated in 1984, identified contamination in ground water, onsite and offsite soil, rivershore sediment, and within a storm sewer. Additionally, the presence of a leachate plume of non-aqueous phase liquids (NAPLs) was discovered emanating from the landfill area. The Record of Decision (ROD) is the final remedy which addresses all of the contaminated media. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene, TCE, and toluene; other organics including PCBs and phenols; and metals including arsenic.

  10. sup 40 Ar- sup 39 Ar and K-Ar dating of K-rich rocks from the Roccamonfina volcano, Roman Comagmatic Region, Italy

    SciTech Connect (OSTI)

    Di Brozolo, F.R.; Di Girolamo, P.; Turi, B.; Oddone, M. )

    1988-06-01

    Roccamonfina is the northernmost Volcano of the Campanian area of the K-rich Roman comagmatic Region of Italy. It erupted a huge amount of pyroclastics and lavas belonging to both the Leucite-Basanite and Leucitite Series (LBLS) and the Shoshonite Series (SS), spread over an area of about 300 km{sup 2}. The above series correspond to the High-K Series (HKS) and Low-K Series (LKS) of Appleton (1971), respectively. {sup 40}Ar-{sup 39}Ar and K-Ar dating of samples from both series gave ages ranging from 0.656 to 0.096 Ma for the SS and from 1.03( ) to 0.053 Ma for the LBLS. These results indicate that the products of the two series were outpoured together at least between 0.7 and 0.1 Ma age, i.e. during both the so-called pre-caldera phase and the post-caldera phase of activity. The latest products of the volcanism at Roccamonfina were erupted just before the deposition of the Grey Campanian Ignimbrite, which erupted from vents located about 50 km to the south in the Phlegrean Fields near Naples and has an age of about 33,000 years. Taking into account all the available all the available radiometric data the authors conclude that Roccamonfina was active between 1.5 and 0.05 Ma ago, in excellent agreement with the stratigraphic evidence. In this same time span is concentrated the activity of all the centers of the Roman Region north of Naples.

  11. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect (OSTI)

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  12. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets

    SciTech Connect (OSTI)

    Parsons, David; Robar, James L.

    2012-07-15

    Purpose: Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. Methods: The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. Results: After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp/mm and 0.40 lp/mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%.Conclusion: It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  13. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect (OSTI)

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200?C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.221.5 MV/m), Schottky emission (23.639.5 MV/m), Frenkel-Poole emission (63.8211.8 MV/m), trap-assisted tunneling (226280 MV/m), and Fowler-Nordheim tunneling (290447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  14. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect (OSTI)

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  15. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    SciTech Connect (OSTI)

    Li, Y. M.; Liu, Kexin; Geng, Rongli

    2014-02-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6–1.6 MV/m, 21–34 MV/m, 32–35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6–13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MP’s predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  16. The Effect of the iBEAM Evo Carbon Fiber Tabletop on Skin Sparing

    SciTech Connect (OSTI)

    Simpson, John B. Godwin, Guy A.

    2011-10-01

    Replicating the attenuation properties of the treatment tabletop are of primary importance for accurate treatment planning; however, the effect of the tabletop on the skin-sparing properties of x-rays can be overlooked. Under some conditions, the reaction of skin to the radiation can be so serious as to be the dose-limiting organ for radiotherapy treatment. Hence, an understanding of the magnitude of the reduction in skin sparing is important. Because of the development of image-guided radiotherapy, modern tabletops have been developed without the use of metal supports that otherwise provided the necessary level of rigidity. Rigidity is instead provided by compressed foam within a carbon-fiber shell, which, although it provides artefact-free imaging and high levels of rigidity, has an adverse affect on the dose in the build-up region. Representative of this type is the iBEAM evo tabletop, whose effect on the skin dose was determined at 6-MV, 10-MV, and 18-MV x-rays. Skin dose was found to increase by 60-70% owing to the tabletop, with the effect increasing with field size and decreasing with energy. By considering an endpoint of erythema, a radiobiological advantage of selecting 10 MV over 6 MV for applicable treatments was demonstrated.

  17. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect (OSTI)

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  18. On the determination of reference levels for quality assurance of flattening filter free photon beams in radiation therapy

    SciTech Connect (OSTI)

    Clivio, Alessandro; Belosi, Maria Francesca; Cozzi, Luca; Nicolini, Giorgia; Vanetti, Eugenio; Fogliata, Antonella; Bolard, Grgory; Fenoglietto, Pascal; Krauss, Harald

    2014-02-15

    Purpose: New definitions for some dosimetric parameters for use in quality assurance of flattening filter free (FFF) beams generated by medical linear accelerators have been suggested. The present study aims to validate these suggestions and to propose possible reference levels. Methods: The main characteristics of FFF photon beams were described in terms of: field size, penumbra, unflatness, slope, and peak-position parameters. Data were collected for 6 and 10 MV-FFF beams from three different Varian TrueBeam Linacs. Measurements were performed with a 2D-array (Starcheck system from PTW-Freiburg) and with the portal dosimetry method GLAaS utilizing the build-in portal imager of TrueBeam. Data were also compared to ion chamber measurements. A cross check validation has been performed on a FFF beam of 6 MV generated by a Varian Clinac-iX upgraded to FFF capability. Results : All the parameters suggested to characterize the FFF beams resulted easily measurable and little variation was observed among different Linacs. Referring to two reference field sizes of 10 10 and 20 20 cm{sup 2}, at SDD = 100 cm and d = dmax, from the portal dosimetry data, the following results (averaging X and Y profiles) were obtained. Field size: 9.95 0.02 and 19.98 0.03 cm for 6 MV-FFF (9.94 0.02 and 19.98 0.03 cm for 10 MV-FFF). Penumbra: 2.7 0.3 and 2.9 0.3 mm for 6 MV-FFF (3.1 0.2 and 3.3 0.3 for 10 MV-FFF). Unflatness: 1.11 0.01 and 1.25 0.01 for 6 MV-FFF (1.21 0.01 and 1.50 0.01 for 10 MV-FFF). Slope: 0.320 0.020%/mm and 0.43 0.015%/mm for 6 MV-FFF (0.657 0.023%/mm and 0.795 0.017%/mm for 10 MV-FFF). Peak Position ?0.2 0.2 and ?0.4 0.2 mm for 6 MV-FFF (?0.3 0.2 and 0.7 0.3 mm for 10 MV-FFF). Results would depend upon measurement depth. With thresholds set to at least 95% confidence level from the measured data and to account for possible variations between detectors and methods and experimental settings, a tolerance set of: 1 mm for field size and penumbra, 0.04 for unflatness, 0.1%/mm for slope, and 1 mm for peak position could be proposed from our data. Conclusions : The parameters proposed for the characterization and routine control of stability of profiles of FFF beams appear to be a viable solution with a strong similarity to the conventional parameters used for flattened beams. The results from three different TrueBeams and the cross-validation against a Clinac-iX suggested the possible generalization of the methods and the possibility to use common tolerances for the parameters. The data showed also the reproducibility of beam characteristics among different systems (of the same vendor) and the resulting parameter values could therefore be possibly generalized.

  19. Renewable Energy and the International Performance Measurement and Verification Protocol

    SciTech Connect (OSTI)

    Walker, A.; Thompson, A.; Mills, D.; Kats, G. H.

    1999-04-14

    The Renewables Subcommittee for the International Performance Measurement and Verification Protocol (IPMVP) is developing a section of the IPMVP treating the special issues related to performance measurement of renewable energy systems. An industry consensus framework for measuring project benefits is important in realizing the promise of renewable energy. This work represents a voluntary, consensus-building process among sponsoring organizations from 21 countries and several disciplines. Measurement and Verification (M&V) can provide a common tool for standardization to support performance-based contracting, financing, and emissions trading. M&V can ensure that savings and generation requirements in energy projects will be achieved accurately and objectively. The protocol defines procedures that are consistently applicable to similar projects, internationally accepted, and reliable. Actual M&V project results can demonstrate success and provide developers, investors, lenders, and customers with more confidence in the value of future projects.

  20. Performance of 3-cell Seamless Niobium cavities

    SciTech Connect (OSTI)

    Kneisel, Peter K. [JLAB; Ciovati, Gianluigi [JLBA; Jelezov, I. [DESY, Hamburg; Singer, W. [DESY, Hamburg; Singer, X. [DESY, Hamburg

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the Q-drop in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  1. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect (OSTI)

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  2. M & V Shootout: Setting the Stage For Testing the Performance of New Energy Baseline

    SciTech Connect (OSTI)

    Touzani, Samir; Custodio, Claudine; Sohn, Michael; Fernandes, Samuel; Granderson, Jessica; Jump, David; Taylor, Cody

    2015-07-01

    Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming data acquisition and often do not deliver results until years after the program period has ended. A spectrum of savings calculation approaches are used, with some relying more heavily on measured data and others relying more heavily on estimated or modeled data, or stipulated information. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. Energy management and information systems (EMIS) technologies, not only enable significant site energy savings, but are also beginning to offer M&V capabilities. This paper expands recent analyses of public-domain, whole-building M&V methods, focusing on more novel baseline modeling approaches that leverage interval meter data. We detail a testing procedure and metrics to assess the performance of these new approaches using a large test dataset. We also provide conclusions regarding the accuracy, cost, and time trade-offs between more traditional M&V and these emerging streamlined methods. Finally, we discuss the potential evolution of M&V to better support the energy efficiency industry through low-cost approaches, and the long-term agenda for validation of building energy analytics.

  3. Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes

    SciTech Connect (OSTI)

    Pisciotta, JM; Zaybak, Z; Call, DF; Nam, JY; Logan, BE

    2012-07-18

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO, was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.

  4. Kondo and mixed-valence regimes in multilevel quantum dots

    SciTech Connect (OSTI)

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-04-15

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect.

  5. Megavoltage imaging with a photoconductor based sensor

    DOE Patents [OSTI]

    Partain, Larry Dean (Los Altos, CA); Zentai, George (Mountain View, CA)

    2011-02-08

    A photodetector for detecting megavoltage (MV) radiation comprises a semiconductor conversion layer having a first surface and a second surface disposed opposite the first surface, a first electrode coupled to the first surface, a second electrode coupled to the second surface, and a low density substrate including a detector array coupled to the second electrode opposite the semiconductor conversion layer. The photodetector includes a sufficient thickness of a high density material to create a sufficient number of photoelectrons from incident MV radiation, so that the photoelectrons can be received by the conversion layer and converted to a sufficient of recharge carriers for detection by the detector array.

  6. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    SciTech Connect (OSTI)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  7. Max Tech and Beyond: High-Intensity Discharge Lamps (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect High-Intensity Discharge Lamps Citation Details In-Document Search Title: Max Tech and Beyond: High-Intensity Discharge Lamps High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light

  8. Fundamental Research in Superconducting RF Cavity Design

    SciTech Connect (OSTI)

    Georg Hoffstaetter

    2012-11-13

    This is a 3-year SRF R&D proposal with two main goals: 1) to benefit near term high gradient SRF applications by understanding the causes of quench at high fields in present-day niobium cavities 2) to open the long-range prospects for SRF applications by experimentally verifying the recent exciting theoretical predication for new cavity materials such as Nb3Sn and MgB2. These predictions shwo that ultimately gradients of 100Mv/m to 200MV/m may become possible as material imperfections are overcome.

  9. SU-E-T-583: Optimizing the MLC Model Parameters for IMRT in the RayStation Treatment Planning System

    SciTech Connect (OSTI)

    Chen, S; Yi, B; Xu, H; Yang, X; Prado, K; D'Souza, W

    2014-06-01

    Purpose: To optimize the MLC model parameters for IMRT in the RayStation v.4.0 planning system and for a Varian C-series Linac with a 120-leaf Millennium MLC. Methods: The RayStation treatment planning system models rounded leaf-end MLC with the following parameters: average transmission, leaf-tip width, tongue-and-groove, and position offset. The position offset was provided by Varian. The leaf-tip width was iteratively evaluated by comparing computed and measured transverse dose profiles of MLC-defined fields at dmax in water. The profile comparison was also used to verify the MLC position offset. The transmission factor and leaf tongue width were derived iteratively by optimizing five clinical patient IMRT QA Results: brain, lung, pancreas, head-and-neck (HN), and prostate. The HN and prostate cases involved splitting fields. Verifications were performed with Mapcheck2 measurements and Monte Carlo calculations. Finally, the MLC model was validated using five test IMRT cases from the AAPM TG119 report. Absolute gamma analyses (3mm/3% and 2mm/2%) were applied. In addition, computed output factors for MLC-defined small fields (22, 33, 44, 66cm) of both 6MV and 18MV were compared to those measured by the Radiological Physics Center (RPC). Results: Both 6MV and 18MV models were determined to have the same MLC parameters: 2.5% transmission, tongue-and-groove 0.05cm, and leaftip 0.3cm. IMRT QA analysis for five cases in TG119 resulted in a 100% passing rate with 3mm/3% gamma analysis for 6MV, and >97.5% for 18MV. With 2mm/2% gamma analysis, the passing rate was >94.6% for 6MV and >90.9% for 18MV. The difference between computed output factors in RayStation and RPC measurements was less than 2% for all MLCdefined fields, which meets the RPC's acceptance criterion. Conclusion: The rounded leaf-end MLC model in RayStation 4.0 planning system was verified and IMRT commissioning was clinically acceptable. The IMRT commissioning was well validated using guidance from the AAPMTG119 protocol.

  10. CAMS Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMS Capabilities HVEC 10 MV Model FN Tandem Of the three accelerators CAMS utilizes the largest is the HVEC 10 MV Model FN Tandem, which was obtained from the University of Washington and installed at LLNL in the mid-80s. During installation the accelerator's belt charging system was replaced with a NEC Pelletron, new Dowlish spiral-inclined beam tubes were installed, as were the gas-handling systems necessary for use of SF6 as the insulating tank gas. The FN accelerator is routinely operated

  11. Preliminary PBFA II design

    SciTech Connect (OSTI)

    Johnson, D. L.; VanDevender, J. P.; Martin, T. H.

    1980-01-01

    The upgrade of Sandia National Laboratories particle beam fusion accelerator, PBFA I, to PBFA II presents several interesting and challenging pulsed power design problems. PBFA II requires increasing the PBFA I output parameters from 2 MV, 30 TW, 1 MJ to 4 MV, 100 TW, 3.5 MJ with the constraint of using much of the same PBFA I hardware. The increased PBFA II output will be obtained by doubling the number of modules (from 36 to 72), increasing the primary energy storage (from 4 MJ to 15 MJ), lowering the pulse forming line (PFL) output impedance, and adding a voltage doubling network.

  12. Microsoft Word - S05827_WCR_Final.doc

    Office of Legacy Management (LM)

    MV-4 Data This page intentionally left blank U.S. Department of Energy Well Completion Report for CAU 443 CNTA December 2009 Doc. No. S05827 Page B-1 Table B-1. MV-4 Chronology Date Time Depth (ft bgs) Activity 04/16/09 through 04/22/09 NA NA Mobilization to CNTA and rig-up to drill 04/22/09 15:45 0 Rig inspection and drill pad walk through inspection, continue with preparations for drilling. 04/22/09 21:50 0 Begin drilling 31-inch diameter conductor casing borehole 04/23/09 10:10 100 Advanced

  13. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect (OSTI)

    Ganapati Rao Myneni; John F. OHanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINACs (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  14. Q0 Improvement of Large-Grain Multi-Cell Cavities by Using JLab's Standard ILC EP Processing

    SciTech Connect (OSTI)

    Geng, R. L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Eremeev, G. V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kneisel, P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Liu, K. X. [IHIP, Peking University, Beijing (China); Lu, X. Y. [IHIP, Peking University, Beijing (China); Zhao, K. [IHIP, Peking University, Beijing (China)

    2011-07-01

    As reported previously at the Berlin workshop, applying the JLab standard ILC electropolishing (EP) recipe on previously buffered chemical polishing (BCP) etched fine-grain multi-cell cavities results in improvement both in gradient and Q{sub 0}. We recently had the opportunity to experiment with two 1300 MHz 9-cell large-gain niobium cavities manufactured by JLab and Peking University. Both cavities were initially BCP etched and further processed by using JLab's standard ILC EP recipe. Due to fabrication defects, these two cavities only reached a gradient in the range of 20-30 MV/m. Interestingly both cavities demonstrated significant Q{sub 0} improvement in the gradient range of 15-20 MV/m. At 2K, a Q{sub 0} value of 2E10 is achieved at 20 MV/m. At a reduced temperature of 1.8K, a Q{sub 0} value of 3E10 is achieved at 20 MV/m. These results suggest that a possible path for obtaining higher Q{sub 0} in the medium gradient range is to use the large-grain material for cavity fabrication and EP and low temperature bake for cavity processing.

  15. Multipacting-free quarter-wavelength choke joint design for BNL SRF

    SciTech Connect (OSTI)

    Xu, W.; Belomestnykh, S.; Ben-Zvi, I.; Liaw, C. J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Weiss, D.; Zaltsman, A.

    2015-05-03

    The BNL SRF gun cavity operated well in CW mode up to 2 MV. However, its performance suffered due to multipacting in the quarter-wavelength choke joint. A new multipacting-free cathode stalk was designed and conditioned. This paper describes RF and thermal design of the new cathode stalk and its conditioning results.

  16. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Custom Programs: Pre-Approved M&V and Evaluated Custom Program March 2011 Summer Goodwin Lauren Gage B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Goal of the...

  17. Design of RF Feed System for Standing-Wave Accelerator Structures

    SciTech Connect (OSTI)

    Neilson, J.; Tantawi, S.; Dolgashev, V.; /SLAC

    2012-05-25

    We are investigating a standing wave accelerator structure that uses a rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

  18. Advanced Distributor Products: Noncompliance Determination (2010-SE-0304)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Advanced Distributor Products finding that basic model N2H348A(G)KB* + H,GE50560 + *8MPV125 and basic model N2H360A(G)KB* + H,GE50560 + MV16J22**B* do not comport with the energy conservation standards.

  19. SU-E-T-110: Development of An Independent, Monte Carlo, Dose Calculation, Quality Assurance Tool for Clinical Trials

    SciTech Connect (OSTI)

    Faught, A; Davidson, S; Kry, S; Ibbott, G; Followill, D; Fontenot, J; Etzel, C

    2014-06-01

    Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Purpose: To commission a multiple-source Monte Carlo model of Elekta linear accelerator beams of nominal energies 6MV and 10MV. Methods: A three source, Monte Carlo model of Elekta 6 and 10MV therapeutic x-ray beams was developed. Energy spectra of two photon sources corresponding to primary photons created in the target and scattered photons originating in the linear accelerator head were determined by an optimization process that fit the relative fluence of 0.25 MeV energy bins to the product of Fatigue-Life and Fermi functions to match calculated percent depth dose (PDD) data with that measured in a water tank for a 10x10cm2 field. Off-axis effects were modeled by a 3rd degree polynomial used to describe the off-axis half-value layer as a function of off-axis angle and fitting the off-axis fluence to a piecewise linear function to match calculated dose profiles with measured dose profiles for a 4040cm2 field. The model was validated by comparing calculated PDDs and dose profiles for field sizes ranging from 33cm2 to 3030cm2 to those obtained from measurements. A benchmarking study compared calculated data to measurements for IMRT plans delivered to anthropomorphic phantoms. Results: Along the central axis of the beam 99.6% and 99.7% of all data passed the 2%/2mm gamma criterion for 6 and 10MV models, respectively. Dose profiles at depths of dmax, through 25cm agreed with measured data for 99.4% and 99.6% of data tested for 6 and 10MV models, respectively. A comparison of calculated dose to film measurement in a head and neck phantom showed an average of 85.3% and 90.5% of pixels passing a 3%/2mm gamma criterion for 6 and 10MV models respectively. Conclusion: A Monte Carlo multiple-source model for Elekta 6 and 10MV therapeutic x-ray beams has been developed as a quality assurance tool for clinical trials.

  20. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    SciTech Connect (OSTI)

    Wakai, Nobuhide; Sumida, Iori; Otani, Yuki; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Hasegawa, Masatoshi

    2015-05-15

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (?3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient index (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (V shape). The optimal leaf margins for conformity index and modified GI were ?1.1 0.3 mm (mean 1 SD) and ?0.2 0.9 mm, respectively, for 7 MV FFF compared to ?1.0 0.4 and ?0.3 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were ?0.9 0.6, ?1.1 0.8, and ?2.1 1.2 mm, respectively, for 7 MV FFF compared to ?0.9 0.6, ?1.1 0.8, and ?2.2 1.3 mm, respectively, for 6 MV FF. With the heart inside the radiation field, the mean heart dose showed a V-shaped relationship with leaf margins. The optimal leaf margins were ?1.0 0.6 mm for both beams. Dmax to the spinal cord showed no clear trend for changes in leaf margin. Conclusions: The differences in doses to OARs between FFF and FF beams were negligible. Conformity index, modified GI, MLD, lung V20 Gy, lung V5 Gy, and mean heart dose showed a V-shaped relationship with leaf margins. There were no significant differences in optimal leaf margins to minimize these parameters between both FFF and FF beams. The authors results suggest that a leaf margin of ?1 mm achieves high conformity and minimizes doses to OARs for both FFF and FF beams.

  1. Use of Quantitative Uncertainty Analysis to Support M&VDecisions in ESPCs

    SciTech Connect (OSTI)

    Mathew, Paul A.; Koehling, Erick; Kumar, Satish

    2005-05-11

    Measurement and Verification (M&V) is a critical elementof an Energy Savings Performance Contract (ESPC) - without M&V, thereisno way to confirm that the projected savings in an ESPC are in factbeing realized. For any given energy conservation measure in an ESPC,there are usually several M&V choices, which will vary in terms ofmeasurement uncertainty, cost, and technical feasibility. Typically,M&V decisions are made almost solely based on engineering judgmentand experience, with little, if any, quantitative uncertainty analysis(QUA). This paper describes the results of a pilot project initiated bythe Department of Energy s Federal Energy Management Program to explorethe use of Monte-Carlo simulation to assess savings uncertainty andthereby augment the M&V decision-making process in ESPCs. The intentwas to use QUA selectively in combination with heuristic knowledge, inorder to obtain quantitative estimates of the savings uncertainty withoutthe burden of a comprehensive "bottoms-up" QUA. This approach was used toanalyze the savings uncertainty in an ESPC for a large federal agency.The QUA was seamlessly integrated into the ESPC development process andthe incremental effort was relatively small with user-friendly tools thatare commercially available. As the case study illustrates, in some casesthe QUA simply confirms intuitive or qualitative information, while inother cases, it provides insight that suggests revisiting the M&Vplan. The case study also showed that M&V decisions should beinformed by the portfolio risk diversification. By providing quantitativeuncertainty information, QUA can effectively augment the M&Vdecision-making process as well as the overall ESPC financialanalysis.

  2. Comments on shielding for dual energy accelerators

    SciTech Connect (OSTI)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-06-15

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm{sup 2} for 6 MV and 14.1x16.8 cm{sup 2} for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm{sup 2}, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm{sup 2} for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  3. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy

    SciTech Connect (OSTI)

    Smith, David W.; Christophides, Damianos; Dean, Christopher; Naisbit, Mitchell; Mason, Joshua; Morgan, Andrew

    2010-07-15

    Purpose: This study characterizes the dosimetric properties of the iBEAM evo carbon fiber couch manufactured by Medical Intelligence and examines the accuracy of the CMS XiO and Nucletron Oncentra Masterplan (OMP) treatment planning systems for calculating beam attenuation due to the presence of the couch. Methods: To assess the homogeneity of the couch, it was CT scanned at isocentric height and a number of signal intensity profiles were generated and analyzed. To simplify experimental procedures, surface dose and central axis depth dose measurements were performed in a solid water slab phantom using Gafchromic film for 6 and 10 MV photon beams at gantry angles of 0 deg. (normal incidence), 30 deg., and 60 deg. with an inverted iBEAM couch placed on top of the phantom. Attenuation measurements were performed in a cylindrical solid water phantom with an ionization chamber positioned at the isocenter. Measurements were taken for gantry angles from 0 deg. to 90 deg. in 10 deg. increments for both 6 and 10 MV photon beams. This setup was replicated in the XiO and OMP treatment planning systems. Dose was calculated using the pencil beam, collapsed cone, convolution, and superposition algorithms. Results: The CT scan of the couch showed that it was uniformly constructed. Surface dose increased by (510{+-}30)% for a 6 MV beam and (600{+-}20)% for a 10 MV beam passing through the couch at normal incidence. Obliquely incident beams resulted in a higher surface dose compared to normally incident beams for both open fields and fields with the couch present. Depth dose curves showed that the presence of the couch resulted in an increase in dose in the build up region. For 6 and 10 MV beams incident at 60 deg., nearly all skin sparing was lost. Attenuation measurements derived using the ionization chamber varied from 2.7% (0 deg.) to a maximum of 4.6% (50 deg.) for a 6 MV beam and from 1.9% (0 deg.) to a maximum of 4.0% (50 deg.) for a 10 MV beam. The pencil beam and convolution algorithms failed to accurately calculate couch attenuation. The collapsed cone and superposition algorithms calculated attenuation within an absolute error of {+-}1.2% for 6 MV and {+-}0.8% for 10 MV for gantry angles from 0 deg. to 40 deg. Some differences in attenuation were observed dependent on how the couch was contoured. Conclusions: These results demonstrate that the presence of the iBEAM evo carbon fiber couch increases the surface dose and dose in the build up region. The inclusion of the couch in the planning scan is limited by the field of view employed and the couch height at the time of CT scanning.

  4. P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) - evidence for the magma chamber

    SciTech Connect (OSTI)

    Ferrucci, F.; Hirn, A.; De Natale, G.; Virieux, J.; Mirabile, L. Inst. de Physique du Globe, Paris Osservatorio Vesuviano, Naples CNRS, Inst. de Geodynamique, Valbonne Ist. Universitario Navale, Naples )

    1992-10-01

    Seismograms from an active seismic experiment carried out at Campi Flegrei caldera (near Naples, Italy), show a large-amplitude SV-polarized shear wave, following by less than 1.5-s P waves reflected at wide angle from a deep crustal interface. Early arriving SV-polarized waves, with the same delay to direct P waves, are also observed in seismograms from a regional 280 km-deep, magnitude 5.1 earthquake. Such short delays of S to P waves are consistent with a P-SV conversion on transmission occurring at a shallow boundary beneath the receivers. The large amplitude of the converted-SV phase, along with that the P waves are near vertical, requires a boundary separating a very low rigidity layer from the upper caldera fill. The converted phases are interpreted as a seismic marker of a magma chamber. The top of this magma chamber is located slightly deeper than the deepest earthquakes observed during the 1982-1984 unrest of Campi Flegrei. 8 refs.

  5. Particle Physics at the University of Pittsburgh Summary Report for Proposal Period FY'09-11

    SciTech Connect (OSTI)

    Boudreau, Joe; Dytman, Steven; Mueller, James; Naples, Donna; Paolone, Vittorio; Savinov, Vladimir

    2012-10-01

    Presented is the final summary report for grant DOE-FG02-91ER40646. The HEP group at the University consists of three tasks: B,D and L. Task B supports Pitt's CDF group at the energy frontier which includes Joe Boudreau and Paul Shepard. Work of the group includes Hao Song's thesis on the measurement of the B_c lifetime using exclusive J/psi+pion decays, and an update of the previous B_c semi-leptonic analyses under the supervision of Paul Shepard. Task D supports Pitt's neutrino group at the intensity frontier which includes PIs Dytman, Naples and Paolone. The group also includes postdoctoral research associate Danko, and thesis students Isvan (MINOS), Eberly (Minerva ), Ren (Minerva )and Hansen (T2K). This report summarizes their progress on ongoing experiments which are designed to make significant contributions to a detailed understanding of the neutrino mixing matrix. Task L supports Pitt's ATLAS group at the energy frontier and includes investigators Vladimir Savinov, James Mueller and Joe Boudreau. This group contributed both to hardware (calorimeter electronics, Savinov) and to software (Simulation, Detector Description, and Visualization: Boudreau and Mueller; MC generators: Savinov) and a summary of their progress is presented.

  6. Sorption of colloids, organics, and metals onto gas-water interfaces: Transport mechanisms and potential remediation technology. 1998 annual progress report

    SciTech Connect (OSTI)

    Wan, J.; Tokunaga, T.K.

    1998-06-01

    'Although contaminant sorption at mineral surfaces has received much recognition as a major mechanism controlling contaminant behavior in subsurface environments, virtually no attention has been given to the possibility of contaminant sorption at gas-water interfaces. Moreover, no effort has yet been advanced to optimize such interactions for the purpose of facilitating in-situ remediation. Gas-water interfaces, unlike water-solid interfaces, are mobile. Therefore, associations of contaminants with gas-water interfaces can be very important not only in subsurface contaminant distributions, but also in contaminant transport, and potentially in remediation. The first objective of this research is to develop a quantitative understanding of interactions between contaminants and gas-water interfaces. The anticipated results will provide insights into the poorly understood phenomenon of contaminant interactions with the gas-water interface, and improve the current conceptual models of contaminant behavior in subsurface environments. The second purpose of this research is to explore the possibility of using surfactant stabilized microbubbles for in-situ remediation. Both pump-and-treat, and air sparging remediation methods are ineffective at displacing contaminants in zones which are advectively inaccessible. Stable microbubbles can migrate beyond preferential flow pathways and enter lower permeability zones by buoyant rise. The microbubbles can deliver oxygen and nutrients for promoting aerobic degradation of organic contaminants, and also deliver surfactants for emulsifying NAPLs.'

  7. Mass transfer and biodegradation of PAH compounds from coal tar. Quarterly technical report, January--March 1993

    SciTech Connect (OSTI)

    Ramaswami, A.; Ghoshal, S.; Luthy, R.G.

    1994-09-01

    This study examines the role of physico-chemical mass transfer processes on the rate of biotransformation of polycyclic aromatic hydrocarbon (PAH) compounds released from non-aqueous phase liquid (NAPL) coal tar present at residual saturation within a microporous medium. A simplified coupled dissolution-degradation model is developed that describes the concurrent mass transfer and biokinetic processes occurring in the system. Model results indicate that a dimensionless Damkohler number can be utilized to distinguish between systems that are mass transfer limited, and those that are limited by biological phenomena. The Damkohler number is estimated from independent laboratory experiments that measure the rates of aqueous phase dissolution and biodegradation of naphthalene from coal tar. Experimental data for Stroudsburg coal tar imbibed within 236 {mu}m diameter silica particles yield Damkohler numbers smaller than unity, indicating, for the particular system under study, that the overall rate of biotransformation of naphthalene is not limited by the mass transfer of naphthalene from coal tar to the bulk aqueous phase. There is a need for investigation of mass transfer for larger particles and/or other PAH compounds, and study of microbial rate-limiting phenomena including toxicity, inhibition and competitive substrate utilization.

  8. SU-E-T-625: Use and Choice of Ionization Chambers for the Commissioning of Flattened and Flattening-Filter-Free Photon Beams: Determination of Recombination Correction Factor (ks)

    SciTech Connect (OSTI)

    Stucchi, C; Mongioj, V; Carrara, M; Pignoli, E; Bonfantini, F; Bresolin, A

    2014-06-15

    Purpose: To evaluate the recombination effect for some ionization chambers to be used for linacs commissioning for Flattened Filter (FF) and Flattening Filter Free (FFF) photon beams. Methods: A Varian TrueBeam linac with five photon beams was used: 6, 10 and 15 MV FF and 6 and 10 MV FFF. Measurements were performed in a water tank and in a plastic water phantom with different chambers: a mini-ion chamber (IC CC01, IBA), a plane-parallel ion chamber (IC PPC05, IBA) and two Farmer chambers (NE2581 and FPC05-IBA). Measurement conditions were Source- Surface Distance of 100 cm, two field sizes (10x10 and 40x40 cm2) and five depths (1cm, maximum buildup, 5cm, 10cm and 20cm). The ion recombination factors (kS), obtained from the Jaffe's plots (voltage interval 50-400 V), were evaluated at the recommended operating voltage of +300V. Results: Dose Per Pulse (DPP) at dmax was 0.4 mGy/pulse for FF beams, 1.0 mGy/pulse and 1.9 mGy/pulse for 6MV and 10 MV FFF beams respectively. For all measurement conditions, kS ranged between 0.996 and 0.999 for IC PPC05, 0.997 and 1.008 for IC CC01. For the FPC05 IBA Farmer IC, kS varied from 1.001 to 1.011 for FF beams, from 1.004 to 1.015 for 6 MV FFF and from 1.009 to 1.025 for 10 MV FFF. Whereas, for NE2581 IC the values ranged from 1.002 to 1.009 for all energy beams and measurement conditions. Conclusion: kS depends on the chamber volume and the DPP, which in turn depends on energy beam but is independent of dose rate. Ion chambers with small active volume can be reliably used for dosimetry of FF and FFF beams even without kS correction. On the contrary, for absolute dosimetry of FFF beams by Farmer ICs it is necessary to evaluate and apply the kS correction. Partially supported by Lega Italiana Lotta contro i Tumori (LILT)

  9. Hydroforming of elliptical cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  10. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect (OSTI)

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  11. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect (OSTI)

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  12. High Efficiency Organic Solar Cells: December 16, 2009 - February 2, 2011

    SciTech Connect (OSTI)

    Walker, K.; Joslin, S.

    2011-05-01

    Details on the development of novel organic solar cells incorporating Trimetasphere based acceptors are presented including: baseline performance for Lu-PCBEH acceptor blended with P3HT demonstrated at 4.89% PCE exceeding the 4.5% PCE goal; an increase of over 250mV in Voc was demonstrated for Lu-PCBEH blended with low band gap polymers compared to a comparable C60-PCBM device. The actual Voc was certified at 260mV higher for a low band gap polymer device using the Lu-PCBEH acceptor; and the majority of the effort was focused on development of a device with over 7% PCE. While low current and fill factors suppressed overall device performance for the low band gap polymers tested, significant discoveries were made that point the way for future development of these novel acceptor materials.

  13. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect (OSTI)

    Hovater, J. Curt; Allison, Trent L.; Bachimanchi, Ramakrishna; Daly, Edward F.; Drury, Michael A.; Lahti, George E.; Mounts, Clyde I.; Nelson, Richard M.; Plawski, Tomasz E.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  14. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  15. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    SciTech Connect (OSTI)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Sklute, Elizabeth; Dyare, Melinda D

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.

  16. The effects of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii

    SciTech Connect (OSTI)

    Jarrell, K.F.; Sprott, G.D.

    1983-08-01

    The effects of numerous ionophores and inhibitors were tested on methane synthesis, intracellular ATP and potassium concentrations, and the proton motive force of the methanogenic archaebacterium Methanobacterium bryantii. M. bryantii had an internal pH near 6.8 (and hence little delta pH during growth) with an electrical potential of --127 mV in growth medium and --105 mV in a pH 6.5 buffer. The study has identified agents which, in M. bryantii, can effectively cause a decline of intracellular ATP (gramicidin, acetylene) and potassium concentrations (gramicidin, nigericin), inhibit methane synthesis (acetylene, gramicidin, nigericin, triphenylmethylphosphonium bromide), eliminate the electrical potential (high extracellular potassium ion concentrations), and dissipate artificially imposed, inside alkaline, pH gradients (monensin, nigericin, carbonyl cyanide m-chlorophenylhydrazone). Carbonyl cyanide m-chlorophenylhydrazone was generally ineffective in media or buffers reduced with cysteine-sulfide but could be effective in cysteine-free solutions reduced with hydrogen sulfide.

  17. ELECTROCHEMICAL CORROSION REPORT FOR TANKS 241-AW-103 & 241-AZ-102 & 241-AN-106 & 241-AN-107 & 241-AY-101 & 241-AY-102

    SciTech Connect (OSTI)

    DUNCAN JB

    2007-08-22

    Corrosion rates using supernatant samples retrieved from near the top of the liquid layer were determined for the tanks. Corrosion rates using settled solids (saltcake) were determined. The supernatant samples were tested as received without argon sparging. The settled solid sample segments were extruded under anaerobic condition and kept under a sweep of humidified argon gas during 'the electrochemical corrosion testing. The class of steel used to construct the tank in question was used, and test coupons were allowed to equilibrate for a minimum of 18 hours before a Tafel scan was initiated. The coupons were scanned from -250 mV to +250 mV from the rest or open circuit potential. The corrosion rate is reported along with the corrosion current measurement, open circuit potential, and a chi-square statistic generated by the instrument controlling and analysis algorithm.

  18. Two-klystron Binary Pulse Compression at SLAC

    SciTech Connect (OSTI)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.

    1993-04-01

    The Binary Pulse Compression system installed at SLAC was tested using two klystrons, one with 10 MW and the other with 34 MW output. By compressing 560 ns klystron pulses into 70 ns, the measured BPC output was 175 MW, limited by the available power from the two klystrons. This output was used to provide 100-MW input to a 30-cell X-band structure in which a 100-MV/m gradient was obtained. This system, using the higher klystron outputs expected in the future has the potential to deliver the 350 MW needed to obtain 100 MV/m gradients in the 1.8-m NLC prototype structure. This note describes the timing, triggering, and phase coding used in the two-klystron experiment, and the expected and measured net-work response to three- or two-stage modulation.

  19. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  20. Section 60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Extinction of 0.44 to 12 M Radiation by Atmospheric Hazes (Continent, Coastal and Arid Zones) Yu.A. Pkhalagov, M.V. Panchenko, V.N. Uzhegov, and N.N. Shchelkanov Institute of Atmospheric Optics, Tomsk, Russia The atmospheric haze is known to enhance the earth's albedo, characterization of meteorological conditions at the time of and this must be accounted for in radiation calculations. Since measurements being discussed is given in Table 1, listing the the optical properties of

  1. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect (OSTI)

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  2. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, Harold H. (Wilmette, IL); Chaar, Mohamed A. (Homs, SY)

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  3. High gradient rf gun studies of CsBr photocathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  4. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relative Content of Black Carbon in Submicron Aerosol as a Sign of the Effect of Forest Fire Smokes V.S. Kozlov, M.V. Panchenko, and E.P. Yausheva Institute of Atmospheric Optics Tomsk, Russia Introduction Biomass burning occurs often in regions containing vast forest tracts and peat-bogs. These processes are accompanied by the emission of aerosol particles and crystal carbon (black carbon [BC], soot). BC is the predominant source of solar absorption in atmospheric aerosol, which impacts

  5. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect (OSTI)

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  6. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    SciTech Connect (OSTI)

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  7. First Structural Characterization of a Protactinium(V) Single Oxo Bond in

    Office of Scientific and Technical Information (OSTI)

    Aqueous Media (Journal Article) | SciTech Connect First Structural Characterization of a Protactinium(V) Single Oxo Bond in Aqueous Media Citation Details In-Document Search Title: First Structural Characterization of a Protactinium(V) Single Oxo Bond in Aqueous Media No abstract prepared. Authors: Le Naour, C. ; Trubert, D. ; Di Giandomenico, M.V. ; Fillaux, C. ; Den Auwer, C. ; Moisy, P. ; Hennig, C. ; /Orsay, IPN /Rossendorf, Forschungszentrum /ESRF, Grenoble Publication Date: 2006-10-04

  8. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Broader source: Energy.gov (indexed) [DOE]

    Motors | Department of Energy This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) natural gas infrastructure; and (3) general industrial

  9. Real-Time Target Position Estimation Using Stereoscopic Kilovoltage/Megavoltage Imaging and External Respiratory Monitoring for Dynamic Multileaf Collimator Tracking

    SciTech Connect (OSTI)

    Cho, Byungchul; Poulsen, Per Rugaard; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2011-01-01

    Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motion platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.

  10. Poster Thur Eve 62: A Retrospective Assessment of the Prevalence and Dosimetric Effect of Lateral Electron Disequilibrium in a Population of Lung Cancer Patients Treated by Stereotactic Body Radiation Therapy

    SciTech Connect (OSTI)

    Disher, Brandon; Wade, Laura; Hajdok, George; Gaede, Stewart; Battista, Jerry J.; Palma, David

    2014-08-15

    Stereotactic Body Radiation Therapy (SBRT) is a treatment option for early stage non-small cell lung cancer (NSCLC). SBRT uses tightly conformed megavoltage (MV) x-ray beams to ablate the tumour. However, small MV x-ray fields may produce lateral electron disequilibrium (LED) within lung tissue, which can reduce the dose to tumour. The goal of this work is to estimate the prevalence of LED in NSCLC patients treated with SBRT, and determine dose effects for patients prone or averse to LED. Thirty NSCLC patients were randomly selected for analysis. 4-dimensional CT lung images were segmented into the right and left upper and lower lobes (RUL, RLL, LUL, LLL), and the right middle lobe. Dose calculations were performed using volume-modulated arc therapy in the Pinnacle{sup 3} TPS. Most tumours were located in the upper lobes (RUL 53%, LUL 27%) where density was significantly lower (RUL ?80846 HU vs. RLL ?74371 HU; LUL ?808 56 HU vs. LLL ?74670 HU; p<0.001). In general, the prevalence of LED increased with higher beam energy. Using 6MV photons, patients with a RUL tumour experienced moderate (81 %), and mild (19%) levels of LED. At 18MV, LED became more prominent with severe (50%) and moderate (50%) LED exhibited. Dosimetrically, for patients prone to LED, poorer target coverage (i.e. increased R100 by 20%) and improved lung sparing (i.e. reduced V20 by ?46%) was observed. The common location of lung cancers in the upper lobes, coupled with lower lung density, results in the potential occurrence of LED, which may underdose the tumour.

  11. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    SciTech Connect (OSTI)

    Cybart, Shane A. Dynes, R. C.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.

    2014-05-05

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30?000 Josephson junctions fabricated by ion damage of 30?nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8?mV.

  12. Annual Report Outline (IDIQ Attachment J-10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Outline (IDIQ Attachment J-10) Annual Report Outline (IDIQ Attachment J-10) Document offers an annual report outline sample for an energy savings performance contract. Microsoft Office document icon mv_annual_report.doc More Documents & Publications Post-Installation Report Outline (IDIQ Attachment J-9) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) ESPC Task Order Financial Schedules (IDIQ Attachment J-6)

  13. Poster — Thur Eve — 18: Cherenkov Emission By High-Energy Radiation Therapy Beams: A Characterization Study

    SciTech Connect (OSTI)

    Zlateva, Y.; El Naqa, I.; Quitoriano, N.

    2014-08-15

    We investigate Cherenkov emission (CE) by radiotherapy beams via radiation dose-versus-CE correlation analyses, CE detection optimization by means of a spectral shift towards the near-infrared (NIR) window of biological tissue, and comparison of CE to on-board MV imaging. Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissue-simulating phantom composed of water, Intralipid®, and beef blood; plastic phantom with solid water insert. The detector system comprises an optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated CCD. The NIR shift was carried out with CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm. CE and MV images were acquired with a CMOS camera and electronic portal imaging device. MC and experimental studies indicate a strong linear dose-CE correlation (Pearson coefficient > 0.99). CE by an 18-MeV beam was effectively NIR-shifted in water and a tissue-simulating phantom, exhibiting a significant increase at 650 nm for QD depths up to 10 mm. CE images exhibited relative contrast superior to MV images by a factor of 30. Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing and QDs can be used to improve CE detectability, potentially yielding image quality superior to MV imaging for the case of low-density-variability, low-optical-attenuation materials (ex: breast/oropharynx). Ongoing work involves microenvironment functionalization of QDs and application of multi-channel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals.

  14. High gradient rf gun studies of CsBr photocathodes

    SciTech Connect (OSTI)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 210?? torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient silicon solar cells with dopant-free asymmetric heterocontacts Light JV characteristic and schematic of the dopant-free asymmetric heterocontact (DASH) silicon solar cell showing a conversion efficiency of 19.4%, with a high Voc above 710 mV, has been achieved at the proof-of-concept stage. TCO refers to a Transparent Conductive Oxide stack. Scientific Achievement Demonstration of efficient crystalline silicon solar cells by Molecular Foundry users and staff without the use of

  16. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at LENA| Reaction Rates| UNC Astrophysics| Laboratory for Experimental Nuclear Astrophysics (LENA) The LENA is among only a few accelerator facilities in the world dedicated entirely to nuclear astrophysics experiments. It has two low-energy electrostatic accelerators that are capable of delivering high-current charged-particle beams to a common target. One is an ECR source on a 200-kV platform and the other one is a 1-MV JN Van de Graaff accelerator. Both accelerators are fully

  17. Example Measurement and Verification Plan for an ESPC Project | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Measurement and Verification Plan for an ESPC Project Example Measurement and Verification Plan for an ESPC Project Report features a comprehensive measurement and verification plan for a fictitious energy savings performance contract (ESPC) project. PDF icon sample_mv_plan.pdf More Documents & Publications M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) Reviewing Measurement and Verification Plans for Federal ESPC Projects ESPC ENABLE

  18. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    SciTech Connect (OSTI)

    Xiao, B.; Alberty, L.; Belomestnykh, S.; Ben-Zvi, I.; Calaga, R.; Cullen, C.; Capatina, O.; Hammons, L.; Li, Z.; Marques, C.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  19. Post-Installation Report Outline (IDIQ Attachment J-9) | Department of

    Energy Savers [EERE]

    Energy Post-Installation Report Outline (IDIQ Attachment J-9) Post-Installation Report Outline (IDIQ Attachment J-9) Document offers a post-installation report outline sample for an energy savings performance contract. Microsoft Office document icon mv_post_report.doc More Documents & Publications Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Annual Report Outline (IDIQ Attachment J-10) ESPC Task Order Financial Schedules (IDIQ

  20. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Next Generation Electric Machines Next Generation Electric Machines AMO's Next Generation Electric Machines (NGEM) program is an RD&D effort leveraging recent technology advancements in power electronics and electric motors to develop a new generation of energy efficient, high power density, high speed, integrated MV drive systems for a wide variety of critical energy applications. Industrial electric motor systems are employed in a wide range of applications including

  1. AMO FOA Targets Advanced Components for Next-Generation Electric Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOA Targets Advanced Components for Next-Generation Electric Machines AMO FOA Targets Advanced Components for Next-Generation Electric Machines March 19, 2015 - 10:21am Addthis AMO's Next Generation Electric Machines (NGEM) program announced up to $20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy applications. This Financial Opportunity

  2. MEMORANDUM TO: FROM:

    Office of Legacy Management (LM)

    7 .i$, I Db ' MEMORANDUM TO: FROM: 25- DATE m---v ---B--B SUBJECT: , SITE . NAME: cc4 % * : ---------------- . ---------w--- C -----I CITY: c-c---a. ---------------'--,,,,,,,, STATE: &&.&- BMW OWNER (" --Lz;:[ ---------B-B- &j J?-~~~,,, ------w- -------------------------- Owner contacted 0 yes 0 no; if yes1 date contacted me-----w-m--- TYPE OF OPERATION -- * --w------w--- esearch & Development 0 Production scale testing Bench Scale Process 0 Theoretical Studies 0 Sample

  3. Measurement and Verification Plan and Savings Calculations Methods Outline

    Office of Environmental Management (EM)

    (IDIQ Attachment J-8) | Department of Energy Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon mv_plan_outline.doc More Documents & Publications Post-Installation Report Outline (IDIQ

  4. Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Ozcan, Ayse; Alkis, Sabri; Okyay, Ali K.; Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara

    2014-01-06

    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2?nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (?V{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying ?1?V for 5?s at the gate of the memory with nanoparticles results in a ?V{sub t} of 3.4?V, and the memory window can be up to 8?V with an excellent retention characteristic (>10 yr). Without nanoparticles, at ?1?V programming voltage, the ?V{sub t} is negligible. In order to get ?V{sub t} of 3.4?V without nanoparticles, programming voltage in excess of 10?V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1?V the electric field across the 3.6?nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ?V{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E?MV/cm) and a square dependence at higher fields (E?>?2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.

  5. March 2011 Groundwater Sampling at the Project Shoal Site (Data Validation Package)

    SciTech Connect (OSTI)

    2011-07-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2011. Wells HC-1, HC-2, HC-4, HC-5, HC-6, HC-7, MV-1, MV-2 and MV-3 were sampled as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Two extra tritium samples were collected from well HC-4, one sample (HC-4-400) was collected at about 1/3 of the purge volume (135 gallons), the second sample (HC-4-400) was collected at 2/3 of purge volume (270 gallons). These additional samples were collected prior to completing the well purging process to evaluate the effects well purging has on the analytical results. Samples were not collected from locations HC-3 and HC-8 at the direction of the S.M. Stoller Corporation site lead.

  6. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  7. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect (OSTI)

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  8. Fission Spectrum

    DOE R&D Accomplishments [OSTI]

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  9. TU-C-BRE-02: A Novel, Highly Efficient and Automated Quality Assurance Tool for Modern Linear Accelerators

    SciTech Connect (OSTI)

    Goddu, S; Sun, B; Yaddanapudi, S; Kamal, G; Mutic, S; Baltes, C; Rose, S; Stinson, K

    2014-06-15

    Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. Varians Machine Performance Check (MPC) uses IsoCal phantom to test geometric and dosimetric aspects of the TrueBeam systems in <5min. In this study we independently tested the accuracy and robustness of the MPC tools. Methods: MPC is automated for simultaneous image-acquisition, using kV-and-MV onboard-imagers (EPIDs), while delivering kV-and-MV beams in a set routine of varying gantry, collimator and couch angles. MPC software-tools analyze the images to test: i) beam-output and uniformity, ii) positional accuracy of isocenter, EPIDs, collimating jaws (CJs), MLC leaves and couch and iii) rotational accuracy of gantry, collimator and couch. 6MV-beam dose-output and uniformity were tested using ionization-chamber (IC) and ICarray. Winston-Lutz-Tests (WLT) were performed to measure isocenter-offsets caused by gantry, collimator and couch rotations. Positional accuracy of EPIDs was evaluated using radio-opaque markers of the IsoCal phantom. Furthermore, to test the robustness of the MPC tools we purposefully miscalibrated a non-clinical TrueBeam by introducing errors in beam-output, energy, symmetry, gantry angle, couch translations, CJs and MLC leaves positions. Results: 6MV-output and uniformity were within 0.6% for most measurements with a maximum deviation of 1.0%. Average isocenter-offset caused by gantry and collimator rotations was 0.3160.011mm agreeing with IsoLock (0.274mm) and WLT (0.41mm). Average rotation-induced couch-shift from MPC was 0.3780.032mm agreeing with WLT (0.35mm). MV-and-kV imager-offsets measured by MPC were within 0.15mm. MPC predicted all machine miscalibrations within acceptable clinical tolerance. MPC detected the output miscalibrations within 0.61% while the MLC and couch positions were within 0.06mm and 0.14mm, respectively. Gantry angle miscalibrations were detected within 0.1. Conclusions: MPC is a useful tool for QA of TrueBeam systems and its automation makes it highly efficient for testing both geometric and dosimetric aspects of the machine. This is very important for hypo-fractionated SBRT treatments. Received support from Varian Medical Systems, Palo Alto, CA 94304-1038.

  10. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    SciTech Connect (OSTI)

    Lonski, P; Kron, T; Franich, R; Keehan, S; Siva, S; Taylor, M

    2014-06-15

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. The variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU at 18 MV.

  11. Cobalt-60 tomotherapy: Clinical treatment planning and phantom dose delivery studies

    SciTech Connect (OSTI)

    Dhanesar, Sandeep; Darko, Johnson; Joshi, Chandra P.; Kerr, Andrew; John Schreiner, L.

    2013-08-15

    Purpose: Investigations have shown that a Cobalt-60 (Co-60) radioactive source has the potential to play a role in intensity modulated radiation therapy (IMRT). In this paper, Co-60 tomotherapy's conformal dose delivery potential is evaluated by delivering conformal dose plans on a cylindrical homogeneous phantom containing clinical structures similar to those found in a typical head and neck (H and N) cancer. Also, the clinical potential of Co-60 tomotherapy is investigated by generating 2D clinical treatment plans for H and N and prostate anatomical regions. These plans are compared with the 6 MV based treatment plans for modalities such as linear accelerator-based tomotherapy and broad beam IMRT, and 15 MV based 3D conformal radiation therapy (3DCRT).Methods: For experimental validation studies, clinical and nonclinical conformal dose patterns were delivered on circular, homogeneous phantoms containing GafChromic film. For clinical planning study, dose calculations were performed with the EGSnrc Monte Carlo program, where a Theratronics 780C Co-60 unit and a 6 MV linear accelerator were modeled with a MIMiC binary multileaf collimator. An inhouse inverse treatment planning system was used to optimize tomotherapy plans using the same optimization parameters for both Co-60 and 6 MV beams. The IMRT and 3DCRT plans for the clinical cases were generated entirely in the Eclipse treatment planning system based on inhouse IMRT and 3DCRT site specific protocols.Results: The doses delivered to the homogeneous phantoms agreed with the calculations, indicating that it is possible to deliver highly conformal doses with the Co-60 unit. The dose distributions for Co-60 tomotherapy clinical plans for both clinical cases were similar to those obtained with 6 MV based tomotherapy and IMRT, and much more conformal compared to 3DCRT plans. The dose area histograms showed that the Co-60 plans achieve the dose objectives for the targets and organs at risk.Conclusions: These results confirm that Co-60 tomotherapy is capable of providing state-of-the-art conformal dose delivery and could be used for the treatment of targets in both small and larger separation anatomical regions.

  12. The RR Lyrae stars: New perspectives

    SciTech Connect (OSTI)

    McNamara, D. H.; Barnes, J. E-mail: jonathan.barnes@slcc.edu

    2014-02-01

    We demonstrate that the Oosterhoff II (Oo II) RR Lyrae ab variables are hotter by ?270 K, at the same period, than Oo I variables. Or, at the same ((B) (V)){sub 0} value the Oo II variables have larger radii than Oo I variables. This accounts for the reason Oo II variables are brighter (0.12-0.20 mag) than Oo I variables. The dependence of the light amplitude of RR Lyrae variables on temperature is independent of Oo type. This makes it possible to derive an accurate set of equations to relate intrinsic (B V){sub 0} color indices to light amplitudes, which in turn can be used to determine the interstellar reddening (E (B V)). With just a few variables (?5), it is possible to determine the E (B V) to an accuracy of <0.01 mag in the absence of systematic photometric errors. We discuss the errors introduced in color excess determinations by including the Blazhko stars in a solution. A comparison of color excess values of 23 globular clusters and two regions of the Large Magellanic Cloud (LMC), determined with the aid of our newly developed equations, are found to compare favorably (?0.01 mag) with color excess values found in the literature. Four new Oo III variables, some found in metal-poor clusters, are discussed. An analysis of the galactic-field variables indicates the majority are Oo I and Oo II variables, but a few short-period (log P < 0.36) metal-strong variables, so far not found in galactic globular clusters are evidently ?0.30 mag fainter than Oo I variables. Oo III variables may also be present in the field. We conclude that the RR Lyrae ab variables are primarily restricted to four sequences or groups. If we assume that the Oo I variables' mean absolute magnitude is Mv = 0.61, the mean absolute magnitudes of the other three sequences are: short-period variables Mv ? 0.89 mag, Oo II Mv ? 0.43 mag, and Oo III Mv ? 0.29 mag. The Oo I fundamental RR Lyrae ab red edge (FRE) and fundamental blue edge (FBE) occur at approximately the following temperatures: FRE T ? 6180 K and FBE T ? 6750 K. There is a strong dependence of Mv on [Fe/H] as we proceed from the short-period variables to the Oo I variables and to the Oo II variables, but there seems to be little or no dependence of Mv on [Fe/H] for stars within a group, at least for the Oo I and Oo II groups. The Oo II variables exhibit a weak period luminosity relation in V in many globular clusters unlike the Oo II-like variables in Oo I clusters which do not exhibit a P-L relation. The properties of some intermediate LMC clusters are discussed.

  13. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect (OSTI)

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  14. SciThur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

    SciTech Connect (OSTI)

    Koger, B; Kirkby, C

    2014-08-15

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360 arc-therapy with monoenergetic photon energies 50 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.

  15. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect (OSTI)

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(?,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  16. RF Processing Experience with the GTF Prototype RF Gun

    SciTech Connect (OSTI)

    Schmerge, J.F.

    2010-11-24

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a {pi} mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note [1].

  17. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  18. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for Use in the LCLS-II Baseline Prototype Cryomodule at Jefferson Laboratory

    SciTech Connect (OSTI)

    Palczewski, Ari; Geng, Rongli; Eremeev, Grigory; Reece, Charles

    2015-09-01

    Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. [1] Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q 0) of 2.7·1010 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping. Initially, five cavities achieved an average Q0 of 3.3·1010 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q 0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q 0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.

  19. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  20. Remnant PbI{sub 2}, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?

    SciTech Connect (OSTI)

    Cao, Duyen H.; Stoumpos, Constantinos C.; Malliakas, Christos D.; Katz, Michael J.; Hupp, Joseph T. E-mail: m-kanatzidis@northwestern.edu; Kanatzidis, Mercouri G. E-mail: m-kanatzidis@northwestern.edu; Farha, Omar K.

    2014-09-01

    Perovskite-containing solar cells were fabricated in a two-step procedure in which PbI{sub 2} is deposited via spin-coating and subsequently converted to the CH{sub 3}NH{sub 3}PbI{sub 3} perovskite by dipping in a solution of CH{sub 3}NH{sub 3}I. By varying the dipping time from 5 s to 2 h, we observe that the device performance shows an unexpectedly remarkable trend. At dipping times below 15 min the current density and voltage of the device are enhanced from 10.1 mA/cm{sup 2} and 933 mV (5 s) to 15.1 mA/cm{sup 2} and 1036 mV (15 min). However, upon further conversion, the current density decreases to 9.7 mA/cm{sup 2} and 846 mV after 2 h. Based on X-ray diffraction data, we determined that remnant PbI{sub 2} is always present in these devices. Work function and dark current measurements showed that the remnant PbI{sub 2} has a beneficial effect and acts as a blocking layer between the TiO{sub 2} semiconductor and the perovskite itself reducing the probability of back electron transfer (charge recombination). Furthermore, we find that increased dipping time leads to an increase in the size of perovskite crystals at the perovskite-hole-transporting material interface. Overall, approximately 15 min dipping time (?2% unconverted PbI{sub 2}) is necessary for achieving optimal device efficiency.

  1. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect (OSTI)

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  2. Influence of compensator thickness, field size, and off-axis distance on the effective attenuation coefficient of a cerrobend compensator for intensity-modulated radiation therapy

    SciTech Connect (OSTI)

    Haghparast, Abbas; Hashemi, Bijan; Eivazi, Mohammad Taghi

    2013-04-01

    Intensity-modulated radiation therapy (IMRT) can be performed by using compensators. To make a compensator for an IMRT practice, it is required to calculate the effective attenuation coefficient (?{sub eff}) of its material, which is affected by various factors. We studied the effect of the variation of the most important factors on the calculation of the ?{sub eff} of the cerrobend compensator for 6-MV photon beams, including the field size, compensator thickness, and off-axis distance. Experimental measurements were carried out at 100 cm source-to-surface distance and 10 cm depth for the 6-MV photon beams of an Elekta linac using various field size, compensator thickness, and off-axis settings. The field sizes investigated ranged from 4 4 to 25 25 cm{sup 2} and the cerrobend compensator thicknesses from 0.56 cm. For a fixed compensator thickness, variation of the ?{sub eff} with the field size ranged from 3.76.8%, with the highest value attributed to the largest compensator thickness. At the reference field size of 10 10 cm{sup 2}, the ?{sub eff} varied by 16.5% when the compensator thickness was increased from 0.56 cm. However, the variation of the ?{sub eff} with the off-axis distance was only 0.99% at this field size, whereas for the largest field size, it was more significant. Our results indicated that the compensator thickness and field size have the most significant effect on the calculation of the compensator ?{sub eff} for the 6-MV photon beam. Therefore, it is recommended to consider these parameters when calculating the compensator thickness for an IMRT practice designed for these beams. The off-axis distance had a significant effect on the calculation of the ?{sub eff} only for the largest field size. Hence, it is recommended to consider the effect of this parameter only for field sizes larger than 25 25 cm{sup 2}.

  3. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab

    SciTech Connect (OSTI)

    Geng, Rongli [JLAB

    2009-11-01

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF testing has been enhanced with added surface mapping and T-mapping instrumentations. 12 new 9-cell cavities (10 of them are baseline fine-grain TESLA-shape cavities: 5 built by ACCEL/Research Instruments, 4 by AES and 1 by JLab; 2 of them are alternative cavities: 1 fine-grain ICHIRO-shape cavity built by KEK/Japan industry and 1 large-grain TESLA-shape cavity built by JLab) are EP processed and tested. 76 EP cycles are accumulated, corresponding to more than 200 hours of active EP time. Field emission (FE) and quench behaviors of electropolished 9-cell cavities are studied. EP process continues to be optimized, resulting in advanced procedures and hence improved cavity performance. Several 9-cell cavities reached 35 MV/m after the first light EP processing. FE-free performance has been demonstrated in 9-cell cavities in 35-40 MV/m range. 1-cell cavity studies explore new techniques for defect removal as well as advanced integrated cavity processing. Surface studies of niobium samples electropolished together with real cavities provide new insight into the nature of field emitters. Close cooperation with the US cavity fabrication industry has been undertaking with the successful achievement of 41 MV/m for the first time in a 9-cell ILC cavity built by AES. As the size of the data set grows, it is now possible to construct gradient yield curves, from which one can see that significant progress has been made in raising the high gradient yield.

  4. SU-E-T-570: Management of Radiation Oncology Patients with Cochlear Implant and Other Bionic Devices in the Brain and Head and Neck Regions

    SciTech Connect (OSTI)

    Guo, F.Q; Chen, Z; Nath, R

    2014-06-01

    Purpose: To investigate the current status of clinical usage of cochlear implant (CI) and other bionic devices (BD) in the brain and head and neck regions (BH and N) and their management in patients during radiotherapy to ensure patient health and safety as well as optimum radiation delivery. Methods: Literature review was performed with both CIs and radiotherapy and their variants as keywords in PubMed, INSPEC and other sources. The focus was on CIs during radiotherapy, but it also included other BDs in BHȦN, such as auditory brainstem implant, bionic retinal implant, and hearing aids, among others. Results: Interactions between CIs and radiation may cause CIs malfunction. The presence of CIs may also cause suboptimum dose distribution if a treatment plan was not well designed. A few studies were performed for the hearing functions of CIs under irradiations of 4 MV and 6 MV x-rays. However, x-rays with higher energies (10 to 18 MV) broadly used in radiotherapy have not been explored. These higher energetic beams are more damaging to electronics due to strong penetrating power and also due to neutrons generated in the treatment process. Modern CIs are designed with more and more complicated integrated circuits, which may be more susceptible to radiation damage and malfunction. Therefore, careful management is important for safety and treatment outcomes. Conclusion: Although AAPM TG-34, TG-63, and TG-203 (update of TG-34, not published yet) reports may be referenced for management of CIs and other BDs in the brain and H and N regions, a site- and device-specified guideline should be developed for CIs and other BDs. Additional evaluation of CI functions under clinically relevant set-ups should also be performed to provide clinicians with better knowledge in clinical decision making.

  5. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    SciTech Connect (OSTI)

    Charles, P. H. Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Knight, R. T.; Kenny, J.

    2014-04-15

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ?15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ?12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ?12 mm. Source occlusion also caused a large change in OPF for field sizes ?8 mm. Based on the results of this study, field sizes ?12 mm were considered to be theoretically very small for 6 MV beams. Conclusions: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ?12 mm and more conservatively?15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.

  6. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    SciTech Connect (OSTI)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong, E-mail: lizhongh@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024 (China); Yang, Dechao [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian 116024 (China); Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ?10?mV to 7?V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  7. Crab Crossing Schemes and Studies for Electron Ion Collider

    SciTech Connect (OSTI)

    S. Ahmed, Y. Derbenev, V. Morozov, A. Castilla, G.A. Krafft, B. Yunn, Y. Zhang, J.R. Delayen

    2011-09-01

    This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon.

  8. BNl 703 MHz superconducting RF cavity testing

    SciTech Connect (OSTI)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  9. Detailed high-accuracy megavoltage transmission measurements: A sensitive experimental benchmark of EGSnrc

    SciTech Connect (OSTI)

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-10-15

    Purpose: There are three goals for this study: (a) to perform detailed megavoltage transmission measurements in order to identify the factors that affect the measurement accuracy, (b) to use the measured data as a benchmark for the EGSnrc system in order to identify the computational limiting factors, and (c) to provide data for others to benchmark Monte Carlo codes. Methods: Transmission measurements are performed at the National Research Council Canada on a research linac whose incident electron parameters are independently known. Automated transmission measurements are made on-axis, down to a transmission value of {approx}1.7%, for eight beams between 10 MV (the lowest stable MV beam on the linac) and 30 MV, using fully stopping Be, Al, and Pb bremsstrahlung targets and no fattening filters. To diversify energy differentiation, data are acquired for each beam using low-Z and high-Z attenuators (C and Pb) and Farmer chambers with low-Z and high-Z buildup caps. Experimental corrections are applied for beam drifts (2%), polarity (2.5% typical maximum, 6% extreme), ion recombination (0.2%), leakage (0.3%), and room scatter (0.8%)-the values in parentheses are the largest corrections applied. The experimental setup and the detectors are modeled using EGSnrc, with the newly added photonuclear attenuation included (up to a 5.6% effect). A detailed sensitivity analysis is carried out for the measured and calculated transmission data. Results: The developed experimental protocol allows for transmission measurements with 0.4% uncertainty on the smallest signals. Suggestions for accurate transmission measurements are provided. Measurements and EGSnrc calculations agree typically within 0.2% for the sensitivity of the transmission values to the detector details, to the bremsstrahlung target material, and to the incident electron energy. Direct comparison of the measured and calculated transmission data shows agreement better than 2% for C (3.4% for the 10 MV beam) and typically better than 1% for Pb. The differences can be explained by acceptable photon cross section changes of Less-Than-Or-Slanted-Equal-To 0.4%. Conclusions: Accurate transmission measurements require accounting for a number of influence quantities which, if ignored, can collectively introduce errors larger than 10%. Accurate transmission calculations require the use of the most accurate data and physics options available in EGSnrc, particularly the more accurate bremsstrahlung angular sampling option and the newly added modeling of photonuclear attenuation. Comparison between measurements and calculations implies that EGSnrc is accurate within 0.2% for relative ion chamber response calculations. Photon cross section uncertainties are the ultimate limiting factor for the accuracy of the calculated transmission data (Monte Carlo or analytical).

  10. SU-E-T-52: Beam Data Comparison for 20 Linear Accelerators in One Network

    SciTech Connect (OSTI)

    LoSasso, T; Lim, S; Tang, G; Chan, M; Li, J; Obcemea, C; Song, Y; Ma, R; Yang, G; Xiong, W; Huang, D; Burman, C; Mechalakos, J; Hunt, M

    2014-06-01

    Purpose: To compare photon beam data for the 20 Varian linear accelerators (TrueBeam, iX, and EX models) in use at five centers in the same network with the intent to model with one set of beam data in Eclipsec. Methods: Varian linear accelerators, TrueBeam (3), 21 EX, iX, and Trilogy (14), and 6 EX (3), installed between 1999 and 2014 have their 6 MV and 15 MV x-ray beams reevaluated. Full commissioning, including output factors (St), percent depth doses (PDD), and off-axis profiles, was recently performed for a TrueBeam with a cc04 ion chamber in an IBA Blue phantom. Similarly, a subset of beam data for each of the other accelerators was measured recently as follows: for 33, 1010, and 3030 cm{sup 2} field sizes, flatness and penumbra (8020%) were measured at dmax and 10 cm depths, PDD were measured at 10 and 20 cm depths, and St were measured at 5 cm depth. Measurement results for all machines were compared. Results: For 15 high-energy (6 and 15 MV) and 3 low-energy machines (6MV only): 1) PDD agreed within 1.4% at 10 and 20 cm depths; 2) penumbra agreed within 1.0 mm at dmax and 10 cm depths; 3) flatness was within 1.3% at dmax and 10 cm depths; and 4) with exception of the three low energy machines, output factors were within 1.1% and 0.5% for 33 and 3030 cm{sup 2}, respectively. Measurement uncertainty, not quantified here, accounts for some of these differences. Conclusion: Measured beam data from 15 high-energy Varian linacs are consistent enough that they can be classified using one beam data set in Eclipse. Two additional high-energy machines are removed from this group until their data are further confirmed. Three low-energy machines will be in a separate class based upon differences in output factors (St)

  11. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect (OSTI)

    Vaezzadeh, Seyedali [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Allahverdi, Mahmoud, E-mail: alahverdi@sina.tums.ac.ir [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of RadiotherapyOncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nedaie, Hasan A. [Department of RadiotherapyOncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ay, Mohammadreza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shirazi, Alireza; Yarahmadi, Mehran [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (55, 1010, and 2020 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 2020 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose verification and quality assurance of compensator-based C-IMRT.

  12. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements V.N. Uzhegov, V.S. Kozlov, M.V. Panchenko, Yu.A.Pkhalagov, V.V. Pol'kin, S.A. Terpugova, V.P. Shmargunov, and E.P. Yausheva Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia Introduction The problem with the aerosol optical constants and, in particular, the imaginary part of the refractive index of particles in the visible and

  13. 1.TIF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -one unit, therefore, it has been broken down into sections. EDMC#: r1i 11i 1 SECTION: 5 OF 11 DOCUMENT #: DOE/EIS-0113 TITLE: Final EIS Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes C^^3 DOEIEIS-0113 VOLUME VOLUME 3of5 APPENDICES M-V FINAL ENVIRONMENTAL IMPACT STATEMENT DISPOSAL OF HANFORD DEFENSE HIGH-LEVEL, TRANSURANIC AND TANK WASTES Hanford Si te Richland, Washington DECEMBER 1987. U.S. DEPARTMENT OF ENERGY PLEASE RETURN TO: ENVIRONMENTAL DIVISION RESOURCE CENTER This

  14. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    SciTech Connect (OSTI)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  15. Experimental and simulational result multipactors in 112 MHz QWR injector

    SciTech Connect (OSTI)

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Brutus, J. C.; Skaritka, J.; Wu, Q.; Xiao, B.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsed mode after several round of conditioning processes.

  16. Determining the release of radionuclides from tank waste residual solids. FY2015 report

    SciTech Connect (OSTI)

    King, William D.; Hobbs, David T.

    2015-09-11

    Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH and Eh at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an Eh range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, Eh values observed for the ORIII condition were approximately 160 mV less positive than the target. Eh values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative Eh values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.

  17. 1.TIF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -one unit, therefore, it has been broken down into sections. EDMC#: r1i 11i 1 SECTION: 5 OF 11 DOCUMENT #: DOE/EIS-0113 TITLE: Final EIS Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes C^^3 DOEIEIS-0113 VOLUME VOLUME 3of5 APPENDICES M-V FINAL ENVIRONMENTAL IMPACT STATEMENT DISPOSAL OF HANFORD DEFENSE HIGH-LEVEL, TRANSURANIC AND TANK WASTES Hanford Si te Richland, Washington DECEMBER 1987. U.S. DEPARTMENT OF ENERGY PLEASE RETURN TO: ENVIRONMENTAL DIVISION RESOURCE CENTER This

  18. Result of MHI 2-Cell Seamless Dumb-Bell Cavity Vertical Test

    SciTech Connect (OSTI)

    Okihira, K.; Hara, H.; Ikeda, N.; Inoue, F.; Sennyu, K.; Geng, Rongli; Rimmer, Robert A.; Kako, E.

    2014-12-01

    MHI have supplied several 9-cell cavities for STF (R&D of ILC project at KEK) and have been considering production method for stable quality and cost reduction, seamless dumb-bell cavity was one of them. We had fabricated a 2 cell seamless dumb-bell cavity for cost reduction and measured RF performance in collaboration with JLab, KEK and MHI. Surface treatment recipe for ILC was applied for MHI 2-cell cavity and vertical test was performed at JLab. The cavity reached Eacc=32.4MV/m after BCP and EP. Details of the result are reported.

  19. High-field half-cycle terahertz radiation from relativistic laser interaction with thin solid targets

    SciTech Connect (OSTI)

    Ding, W. J.; Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore)] [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2013-11-11

    It is found that half-cycle terahertz (THz) pulses with the peak field over 100 MV/cm can be produced in ultrashort intense laser interactions with thin solid targets. These THz pulses are shown to emit from both the front and rear sides of the solid target and are attributed to the coherent transition radiation by laser-produced ultrashort fast electron bunches. After the primary THz pulses, subsequent secondary half-cycle pulses are generated while some refluxing electrons cross the vacuum-target interfaces. Since such strong THz radiation is well synchronized with the driving lasers, it is particularly suitable for applications in various pump-probe experiments.

  20. Department of Energy Finalizes $50 Million Loan for Vehicle Production

    Energy Savers [EERE]

    Group | Department of Energy 50 Million Loan for Vehicle Production Group Department of Energy Finalizes $50 Million Loan for Vehicle Production Group March 10, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today that the Department of Energy finalized a nearly $50 million loan to The Vehicle Production Group LLC. The loan will support the development of the six-passenger MV-1, a purpose-built wheelchair accessible vehicle that will run on compressed

  1. Competing charge, spin, and superconducting orders in underdoped

    Office of Scientific and Technical Information (OSTI)

    YBa[subscript 2]Cu[subscript 3]O[subscript y] (Journal Article) | SciTech Connect YBa[subscript 2]Cu[subscript 3]O[subscript y] Citation Details In-Document Search Title: Competing charge, spin, and superconducting orders in underdoped YBa[subscript 2]Cu[subscript 3]O[subscript y] Authors: Hucker, M. ; Christensen, N.B. ; Holmes, A.T. ; Blackburn, E. ; Forgan, E.M. ; Liang, Ruixing ; Bonn, D.A. ; Hardy, W.N. ; Gutowski, O. ; Zimmermann, M.v. ; Hayden, S.M. ; Chang, J. [1] ; Denmark) [2] ;

  2. Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions

    SciTech Connect (OSTI)

    Cybart, Shane A. Dynes, R. C.; Cho, E. Y.; Wong, T. J.; Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H.; Beeman, J. W.; Ulin-Avila, E.; Wu, S. M.

    2014-02-10

    We have fabricated and tested two-dimensional arrays of YBa{sub 2}Cu{sub 3}O{sub 7??} superconducting quantum interference devices. The arrays contain over 36?000 nano Josephson junctions fabricated from ion irradiation of YBa{sub 2}Cu{sub 3}O{sub 7??} through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30?mV.

  3. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    SciTech Connect (OSTI)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.10.24, 5.60.07, and 5.90.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.

  4. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect (OSTI)

    Xu, Ming Jaffr, Alexandre Alvarez, Jos Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [110] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  5. TH-C-17A-04: Shining Light On the Implementation of Cherenkov Emission in Radiation Therapy

    SciTech Connect (OSTI)

    Zlateva, Y; Quitoriano, N

    2014-06-15

    Purpose: We hypothesize that Cherenkov emission (CE) by radiotherapy beams is correlated with radiation dose, CE detection can be maximized by a spectral shift towards the near-infrared (NIR) window of biological tissue, and in certain tissue types (ex. breast/oropharynx), it could prove superior to mega-voltage (MV) imaging. Therefore, we compare CE imaging to onboard MV imaging. Methods: Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissuesimulating phantom composed of water, fat emulsion, and beef blood; plastic phantom with solid water insert. The optical spectrometry system consisted of a multi-mode optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated charge-coupled device (CCD). CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm, were used to achieve NIR shift of the CE signal. CE and MV images were acquired with a complementary metal-oxide-semiconductor (CMOS) camera and an electronic portal imaging device (EPID), respectively. Results: MC and experimental studies indicate a strong linear correlation between radiation dose and CE (Pearson coefficient > 0.99). CE by an 18 MeV beam was effectively shifted towards the NIR in water and in a tissue-simulating phantom, exhibiting a 50% increase at 650 nm for QD depths of ∼3 mm. CE images exhibited relative contrast superior to EPID images by a factor of 30. Conclusion: Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing, and QDs can be used to improve CE detectability, yielding image quality superior to MV imaging for the case of low density variability, low optical attenuation materials, such as breast or oropharyngeal cavities. Ongoing work involves microenvironment functionalization of QDs and application of multichannel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals. Funding received from the following organizations: Natural Sciences and Engineering Research Council of Canada, McGill University. YZ acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)

  6. HSI Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HSI Usage HSI is a flexible and powerful command-line utility to access the NERSC HPSS storage systems. Like FTP, you can use it to store and retrieve files but it has a much larger set of commands for listing your files and directories, creating directories, changing file permissions, etc. The command set has a UNIX look and feel (e.g. mv, mkdir, rm, cp, cd, etc.) so that moving through your HPSS directory tree is almost identical to what you would find on a UNIX file system. HSI can be

  7. Continuous On-Line Partial Discharge Monitor for Medium-Voltage Cable Feasibility Study

    SciTech Connect (OSTI)

    M. Fenger

    2005-11-30

    Partial discharge (PD) assessment is one method of detecting cable conditions that predict approaching failure. While not all PDs in cable systems lead to failure, PDs within the cable's insulation can lead to relatively rapid failure. Accordingly, on-line PD assessment may be more useful than periodic PD assessment because the period of partial discharging at the end of a cable's life may be quite short. The research described in this report studied the feasibility of developing an on-line PD monitor for assessing both shielded and unshielded MV cables.

  8. Oak Ridge National Laboratory: Recent Accomplishments and Challenges in the Environmental Management Program

    Office of Environmental Management (EM)

    ‹#› Oak Ridge National Laboratory: Recent Accomplishments and Challenges in the Environmental Management Program Bill McMillan ORNL Portfolio Federal Project Director Office of Environmental Management October 8, 2014 www.energy.gov/EM ‹#› Oak Ridge National Laboratory (ORNL) ETTP ORNL Y-12 City of Oak Ridge www.energy.gov/EM ‹#› ORNL Scope MV: MSRE Salt Drain Tanks * Bethel Valley D&D and RA scope - 160 facilities - Isotope processing facilities with hot cells - Reactor

  9. Axis-1 diode simulations I: standard 2-inch cathode

    SciTech Connect (OSTI)

    Ekdahl, Carl [Los Alamos National Laboratory

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  10. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line via prompt gamma ray spectroscopy

  11. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect (OSTI)

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  12. Microsoft Word - Appendix A Alluvial GW Samples.doc

    Office of Legacy Management (LM)

    Groundwater Samples, January 2000 through April 2011 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4

  13. Microsoft Word - Appendix B Bedrock GW Samples.doc

    Office of Legacy Management (LM)

    Analytical Results for Bedrock Groundwater Samples, January 2000 through April 2011 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3

  14. SUBJIHX:

    Office of Legacy Management (LM)

    : SUBJIHX: ?%w P ~.~i~~~~~ I' - 6*:&b d-h tQ @ i -" i" 1 s..?F?ew% ,~~~.~~~~,~ ,l Aesisrtmxt ?Xrarctmr for DATE Jitx;;r 6, I.955 l' lmPmfiQn, mv3.sion of R&w Materials 060. G, Marvin, Qirsctor for PrfXess Developnsnt 4: :.- p, J. Picario, stz.uction and n - f',_' h j::... ; Supply Branch, Division of Raw Materials -T 17 -L, 3c &j 0 DATA BE RESTORATION, ABANJIONMENT OR SELLING BU%3ING AND CERTAIN . " L) CURRIES ON FBCPEB'E OFU. S. PHOSPHO~C PRCDUCTS, EAST TAMPA, --

  15. The analysis of leakage current in MIS Au/SiO{sub 2}/n-GaAs at room temperature

    SciTech Connect (OSTI)

    Altuntas, H.; Ozcelik, S.

    2013-10-15

    The aim of this study is to determine the reverse-bias leakage current conduction mechanisms in Au/SiO{sub 2}/n-GaAs metal-insulator-semiconductor type Schottky contacts. Reverse-bias current-voltage measurements (I-V) were performed at room temperature. The using of leakage current values in SiO{sub 2} at electric fields of 1.46-3.53 MV/cm, ln(J/E) vs. {radical}E graph showed good linearity. Rom this plot, dielectric constant of SiO{sub 2} was calculated as 3.7 and this value is perfect agreement with 3.9 which is value of SiO{sub 2} dielectric constant. This indicates, Poole-Frenkel type emission mechanism is dominant in this field region. On the other hand, electric fields between 0.06-0.73 and 0.79-1.45 MV/cm, dominant leakage current mechanisms were found as ohmic type conduction and space charge limited conduction, respectively.

  16. NBS/Los Alamos RTM. Progress report

    SciTech Connect (OSTI)

    Penner, S.; Ayres, R.L.; Cutler, R.I.; Debenham, P.H.; Lindstrom, E.R.; Mohr, D.L.; Rose, J.E.; Unterweger, M.P.; Wilson, M.A.D.; Biddle, R.

    1985-01-01

    The NBS-Los Alamos 200 MeV Racetrack Microtron (RTM) is being built under a program aimed at developing the technology needed for high-current intermediate-energy CW electron accelerators. In this report we give an overview of the present status of the project. Recent progress includes: (1) completion of testing of the 100 keV chopper-buncher system demonstrating a normalized emittance well under the design goal of 2.6 ..pi.. mm mrad at currents exceedings the design goal of 600 ..mu..A; (2) operation of the rf structures comprising the 5 MeV injector linac at power levels up to 50 kW/m, resulting in an accelerating gradient at ..beta.. = 1 of 2 MV/m (compared to a design goal of 1.5 MV/m). The measured shunt impedance is 82.5 M..cap omega../m; (3) construction and installation of the 30 ton end magnets of the RTM. Field mapping of one magnet has been completed and its uniformity exceeds the design goal of +-2 parts in 10/sup 4/; (4) performance tests (with beam) of prototype rf beam monitors which measure current, relative phase, and beam position in both transverse plants; and (5) installation and initial operation of the primary control system.

  17. Latest Results of ILC High-Gradient R&D 9-cell Cavities at JLAB

    SciTech Connect (OSTI)

    Rongli Geng

    2008-02-11

    It has been over a year since JLAB started processing and testing ILC 9-cell cavities in the frame work of ILC high-gradient cavity R&D, aiming at the goal of a 35 MV/m gradient at a Q #4; of 1E10 with a yield of 90%. The necessary cavity processing steps include field flatness tuning, electropolishing (EP), hydrogen out-gassing under vacuum, high-pressure water rinsing, clean room assembly, and low temperature bake. These are followed by RF test at 2 Kelvin. Ultrasonic cleaning with Micro-90, an effective post-EP rinsing recipe discovered at JLAB, is routinely used. Seven industry manufactured 9-cell TESLAshape cavities are processed and tested repeatedly. So far, 33 EP cycles are accumulated, corresponding to more than 65 hours of active EP time. An emphasis put on RF testing is to discern cavity quench characteristics, including its nature and its location. Often times, the cavity performance is limited by thermal-magnetic quench instead of field emission. The quench field in some cavities is lower than 20 MV/m and remains unchanged despite repeated EP, implying material and/or fabrication defects. The quench field in some other cavities is high but changes unpredictably after repeated EP, suggesting processing induced defects. Based on our experience and results, several areas are identified where improvement is needed to improve cavity performance as well as yield.

  18. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production

    SciTech Connect (OSTI)

    Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang

    2015-07-03

    In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10-3 mA cm-2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.

  19. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    SciTech Connect (OSTI)

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  20. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, Jim; Doktycz, Mitchel John; Gu, Baohua; Roeder, Ryan; Wang, Wei; et al

    2015-03-02

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and 10 easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), wasmorebetween 90 110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate 15 functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi/mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-20 radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of less

  1. Construction and Test of a Novel Superconducting RF Electron gun

    SciTech Connect (OSTI)

    Bisognano, Joseph J.

    2014-04-16

    The University of Wisconsin-Madison has completed installation of a superconducting electron gun. Its concept was optimized to be the source for a CW free electron laser facility with multiple megahertz repetition rate end stations. This VHF superconducting configuration holds the promise of the highest performance for CW injectors. Initial commissioning efforts show that the cavity can achieve gradients of 35 MV/m at the cathode position. With the cathode inserted CW operation has been achieved at 20 MV/m with good control of microphonics, negligible dark current, and Q0 > 3×109 at 4 K. Bunch charges of ~100 pC have been delivered, and first simple beam measurements made. These preliminary results are very encouraging for production of 100s pC bunches with millimeter-milliradian or smaller normalized emittances. Plans are in place to carry out more definitive studies to establish the full capabilities. However, since the grant was not renewed, the electron gun is currently mothballed, and without supplemental fund the opportunity for further work will be lost.

  2. Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

    2012-06-01

    We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

  3. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at Jlab

    SciTech Connect (OSTI)

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 10E10 and was limited by the high field Q-slope at Eacc about 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5 10E9 at 4.3 K and 7 10E9 at 2.0 K decreasing with field to about 1 10E9 at Eacc about 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  4. Effect of sulfur isotopic composition of zinc and lead sulfides on the E. M. F. of electrochemical cells

    SciTech Connect (OSTI)

    Lusk, J.; Krouse, H.R.; Batts, B.D.

    1988-03-01

    A new effect is reported in which unexpectedly large voltages are produced by electrochemical cells containing sulfides at natural isotopic abundance levels. Room temperature experiments were undertaken to determine whether electrochemical cells employing silver bromide and silver beta alumina as solid electrolytes would be sufficiently sensitive to detect small variations in sulfur isotopic composition for zinc and lead sulfides. Voltages obtained for silver bromide cells tended to increase progressively over at least 20 days, and increased in a regular fashion with increasing differences in isotopic composition between charges. Voltages exceeding 150 mV were obtained for /sup delta/S/sup 3,4/ differences up to 85 per mil for zinc sulfide, but reached only about 20 mV for lead sulfide. Silver beta alumina cells with opposing zinc and lead sulfide charges yielded larger voltages and E.M.F. minimum corresponding to a +8(/plus minus/2) per mil difference. This value shows reasonable agreement with interpolated 20/degrees/C equilibrium values of between +7.5 to +9.8 obtained from the literature. Matured silver bromide cells with opposed zinc and lead sulfide charges behaved similarly but yielded lower voltages. Silver concentration cells of the opposed type are thus able to detect isotopic equilibrium and this will permit calibration of sulfur isotope thermometers down to unexpectedly low temperatures.

  5. Rheology and microstructure of concentrated zirconia-alumina suspensions for gelcasting composites

    SciTech Connect (OSTI)

    Bleier, A.; Omatete, O.O.

    1992-12-31

    The relations among colloidal stability, suspension rheology, and solids loading are elucidated for zirconia-alumina mixtures containing 20 volt ZrO{sub 2}, based on solids. The lower colloidal stability of ZrO{sub 2} limits the rheological properties of this system. If the zeta potential of ZrO{sub 2} is less than 49 mV, high degrees of pseudoplasticity, high yield stress, high viscosity, and long relaxation times characterize the binary suspensions. These effects occur, despite the fact that ZrO{sub 2} is the minor ceramic constituent. If the zeta potential of ZrO{sub 2} is maintained above 49 mV, suspensions with high solids loading (55 vol%) can be prepared which behave as Newtonian fluids over the 0-to-200 s-1 shear rate range and as an elastic solid at higher rates. As the solids loading of a highly stable binary suspension is increased, the rheological properties change. They evolve from those of a near Newtonian-like fluid with nearly independent particles (40 vol%) to those of a pseudoplastic fluid with a weakly interacting particle network (50 vol%) to those of an elastic-like solid composed of crowded, strongly repulsive particles (55 vol%). Low-shear conditions for suspension-transport and mold-filling operations that ensure a homogeneous arrangement of ZrO{sub 2} and Al{sub 2}O{sub 3} particles in a gelcast ceramic seem promising.

  6. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang

    2015-07-03

    In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10-3 mAmore » cm-2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.« less

  7. Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

    SciTech Connect (OSTI)

    Hogan, John P.; Burrill, Andrew B.; Drury, Michael A.; Harwood, Leigh H.; Hovater, J. Curt; Reece, Charles E.; Wiseman, Mark A.

    2013-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465 {micro}A.

  8. Performance status of 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtczuk, S.; Colter, P.; Charache, G.; DePoy, D.

    1998-10-01

    Data on {approximately} 0.55 eV In{sub 0.72}Ga{sub 0.28}As cells with an average open-circuit voltage (Voc) of 298 mV (standard deviation 7 mV) at an average short-circuit current density of 1.16 A/cm{sup 2} (sdev. 0.1 A/cm{sup 2}) and an average fill-factor of 61.6% (sdev. 2.8%) is reported. The absorption coefficient of In{sub 0.72}Ga{sub 0.28}As was measured by a differential transmission technique. The authors use a numerical integration of the absorption data to determine the radiative recombination coefficient for In{sub 0.72}Ga{sub 0.28}As. Using this absorption data and simple one-dimensional analytical formula the above cells are modeled. The models show that the cells may be limited more by Auger recombination rather than Shockley-Read-Hall (SRH) recombination at dislocation centers caused by the 1.3% lattice mismatch of the cell to the host InP wafer.

  9. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    SciTech Connect (OSTI)

    Di Pendina, G. E-mail: eldar.zianbetov@cea.fr Zianbetov, E. E-mail: eldar.zianbetov@cea.fr; Beigne, E. E-mail: eldar.zianbetov@cea.fr

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28?nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160?mV up to 920?mV. The leakage current can be reduced to 154?pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  10. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  11. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  12. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    SciTech Connect (OSTI)

    Price, Phillip

    2014-12-22

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

  13. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    SciTech Connect (OSTI)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard; Shalf, John; Yelick, Katherine; Demmel, James

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one of the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.

  14. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  15. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect (OSTI)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

    2013-06-01

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

  16. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    SciTech Connect (OSTI)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-09

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s?1, the specific capacitance of the pillared GP is 138 F g^?1 and 83.2 F g^?1 with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s ^?1, the specific capacitance can reach 80 F g^?1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.

  17. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect (OSTI)

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 060??V in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28?mV, Fabry-Perot interference with a period of 2.35??V under nonmagnetic conditions, and a Fano effect with a period of 0.26?mV for Vg and 0.2?T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  18. The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor

    SciTech Connect (OSTI)

    Feng, Jicheng; Zhao, Jiachang; Tang, Bohejin; Liu, Ping; Xu, Jingli

    2010-12-15

    A series of high performance ordered mesoporous carbon/nickel compounds composites have been synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. X-ray diffraction (XRD), N{sub 2} adsorption/desorption isotherms and transmission electron microscopy (TEM) are used to characterize the composites derived at the hydrothermal temperature of 125, 150, 175, 200, 250, 275 and 300 {sup o}C. The formation of nanosized nickel compounds, fully inside the mesopore system, was confirmed with XRD and TEM. An N{sub 2} adsorption/desorption isotherms measurements still revealed mesoporosity for the host/guest compounds. It is noteworthy that an OMC/nickel nitrate hydroxide hydrate composite (OMCN-150) exhibits more excellent performance. Based on the various hydrothermal temperatures of the composite, the capacitance of an OMCN-150 delivering the best electrochemical performance is about 2.4 (5 mV s{sup -1}) and 1.5 (50 mV s{sup -1}) times of the pristine OMC. The capacitance retention of an OMCN-150 is 96.1%, which indicates that the electrochemical performance of the supercapacitor is improved greatly, and represents novel research and significant advances in the field of electrode composite materials for supercapacitor. -- Graphical abstract: A series of high performance nickel compound/ordered mesoporous carbon composites were synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. Display Omitted

  19. Experimental study of self magnetic pinch diode as flash radiography source at 4 megavolt

    SciTech Connect (OSTI)

    Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno; Desanlis, Thierry; Voisin, Luc; Maisonny, Rémi; Toury, Martial; Hourdin, Laurent; Cartier, Frédéric; Cartier, Stéphanie; D'Almeida, Thierry; Delbos, Christophe; Garrigues, Alain; Plouhinec, Damien; Ritter, Sandra; Sol, David; Zucchini, Frédéric; Caron, Michel

    2013-10-15

    The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size (<3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode plasmas evolution, responsible for the gap closure.

  20. Development of a CW Superconducting RF Booster Cryomodule for Future Light Sources

    SciTech Connect (OSTI)

    Grimm, Terry L; Bogle, Andrew; Deimling, Brian; Hollister, Jerry; II, Randall Jecks; Kolka, Ahren; Romel, Chandra

    2009-04-13

    Future light sources based on seeded free electron lasers (FEL) have the potential to increase the soft xray flux by several orders of magnitude with short bunch lengths to probe electron structure and dynamics. A low emittance, high rep-rate radio frequency (RF) photocathode electron gun will generate the electron beam that will require very stringent beam control and manipulation through the superconducting linear accelerator to maintain the high brightness required for an x-ray FEL. The initial or booster cavities of the superconducting radio frequency (SRF) linear accelerator will require stringent control of transverse kicks and higher order modes (HOM) during the beam manipulation and conditioning that is needed for emittance exchange and bunch compression. This SBIR proposal will develop, fabricate and test a continuous-wave SRF booster cryomodule specifically for this application. Phase I demonstrated the technical feasibility of the project by completing the preliminary SRF cavity and cryomodule design and its integration into an R&D test stand for beam studies at Lawrence Berkeley National Laboratory (LBNL). The five-cell bulk niobium cavities operate at 750 MHz, and generate 10 MV each with strong HOM damping and special care to eliminate transverse kicks due to couplers. Due to continuous-wave operation at fairly modest beam currents and accelerating gradients the complexity of the two cavity cryomodule is greatly reduced compared to an ILC type system. Phase II will finalize the design, and fabricate and test the booster cryomodule. The cryomodule consists of two five-cell cavities that will accelerate megahertz bunch trains with nano-coulomb charge. The accelerating gradient is a very modest 10 MV/m with peak surface fields of 20 MV/m and 42.6 mT. The cryogenic system operates at 2 K with a design dynamic load of 20 W and total required cryogenic capacity of 45 W. The average beam current of up to 1 mA corresponds to a beam power of 10 kW per 5- cell cavity and will require 20 kW of RF power for transmission, control and regulation. The RF power will be supplied by a commercial tetrode. Cryogenic tests will be carried out at LBNL to make use of their test facilities, cryogenics and laser systems, and for future use with beam. Demonstration of this new type of booster cryomodule will open many new applications of SRF linear accelerators.

  1. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study

    SciTech Connect (OSTI)

    Glide-Hurst, C.; Bellon, M.; Wen, N.; Zhao, B.; Chetty, I. J.; Foster, R.; Speiser, M.; Solberg, T.; Altunbas, C.; Westerly, D.; Miften, M.; Altman, M.

    2013-03-15

    Purpose: Latest generation linear accelerators (linacs), i.e., TrueBeam (Varian Medical Systems, Palo Alto, CA) and its stereotactic counterpart, TrueBeam STx, have several unique features, including high-dose-rate flattening-filter-free (FFF) photon modes, reengineered electron modes with new scattering foil geometries, updated imaging hardware/software, and a novel control system. An evaluation of five TrueBeam linacs at three different institutions has been performed and this work reports on the commissioning experience. Methods: Acceptance and commissioning data were analyzed for five TrueBeam linacs equipped with 120 leaf (5 mm width) MLCs at three different institutions. Dosimetric data and mechanical parameters were compared. These included measurements of photon beam profiles (6X, 6XFFF, 10X, 10XFFF, 15X), photon and electron percent depth dose (PDD) curves (6, 9, 12 MeV), relative photon output factors (Scp), electron cone factors, mechanical isocenter accuracy, MLC transmission, and dosimetric leaf gap (DLG). End-to-end testing and IMRT commissioning were also conducted. Results: Gantry/collimator isocentricity measurements were similar (0.27-0.28 mm), with overall couch/gantry/collimator values of 0.46-0.68 mm across the three institutions. Dosimetric data showed good agreement between machines. The average MLC DLGs for 6, 10, and 15 MV photons were 1.33 {+-} 0.23, 1.57 {+-} 0.24, and 1.61 {+-} 0.26 mm, respectively. 6XFFF and 10XFFF modes had average DLGs of 1.16 {+-} 0.22 and 1.44 {+-} 0.30 mm, respectively. MLC transmission showed minimal variation across the three institutions, with the standard deviation <0.2% for all linacs. Photon and electron PDDs were comparable for all energies. 6, 10, and 15 MV photon beam quality, %dd(10){sub x} varied less than 0.3% for all linacs. Output factors (Scp) and electron cone factors agreed within 0.27%, on average; largest variations were observed for small field sizes (1.2% coefficient of variation, 10 MV, 2 Multiplication-Sign 2 cm{sup 2}) and small cone sizes (<1% coefficient of variation, 6 Multiplication-Sign 6 cm{sup 2} cone), respectively. Conclusions: Overall, excellent agreement was observed in TrueBeam commissioning data. This set of multi-institutional data can provide comparison data to others embarking on TrueBeam commissioning, ultimately improving the safety and quality of beam commissioning.

  2. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  3. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    SciTech Connect (OSTI)

    Marsh, R. A.; Anderson, G. G.; Anderson, S. G.; Gibson, D. J.; Barty, C. J.

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  4. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vaporliquidsolid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 m) and low surface recombination velocities (S << 70 cms-1). Single-wire radial pn junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  5. BNL 703 MHz SRF cryomodule demonstration

    SciTech Connect (OSTI)

    Burrill,A.; Ben-Zvi, I.; Calaga, R.; Dalesio, L.; Dottavio, T.; Gassner, D.; Hahn, H.; Hoff, L.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, d.; Litvinenko, v.; Mahler, G.; McIntyre, G.; et al.

    2009-05-04

    This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary cavity tests, carried out at Thomas Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1 x 10{sup 10}, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines.

  6. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    SciTech Connect (OSTI)

    Pea-Jimnez, Salvador Gamboa-deBuen, Isabel; Lrraga-Gutirrez, Jos Manuel E-mail: amanda.garcia.g@gmail.com; Garca-Garduo, Olivia Amanda E-mail: amanda.garcia.g@gmail.com

    2014-11-07

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (111 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurologa y Neurociruga (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (22 cm2 and 1010 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  7. Vertical stability requirements for ARIES-I reactor

    SciTech Connect (OSTI)

    Bathke, C.G.; Jardin, S.C.; Leuer, J.A.; Ward, D.J.; Princeton Univ., NJ . Plasma Physics Lab.; General Atomics, San Diego, CA; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-01-01

    The vertical stability of the ARIES-I reactor design is analyzed with the NOVA-W, PSTAB, and TSC codes. A growth rate of {approximately}5.7 s{sup -1} is predicted for a vacuum vessel positioned behind the scrapeoff, first wall, and blanket (0.7 in inboard and 0.9 in outboard thickness) and acting as a passive stabilizer. A reactive power of {approximately}2 MV A would be required for active feedback coils located outside of the TF coils {approximately}3 m to correct a 50-mm vertical displacement of the magnetic axis. A multipolar expansion technique used in the TSC analysis is also used to examine options that minimize stored energy. 10 refs., 8 figs., 2 tabs.

  8. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrentsmore » around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  9. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    SciTech Connect (OSTI)

    Beleggia, M.; Kasama, T.; Larson, D. J.; Kelly, T. F.; Dunin-Borkowski, R. E.; Pozzi, G.

    2014-07-14

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) images for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.

  10. Electrocatalytic H2 production with a turnover frequency >107 s?1: The medium provides an increase in rate but not overpotential

    SciTech Connect (OSTI)

    Hou, Jianbo; Fang, Ming; Cardenas, Allan J.; Shaw, Wendy J.; Helm, Monte L.; Bullock, R. Morris; Roberts, John A.; O'Hagan, Molly J.

    2014-11-12

    Exceptionally fast electrocatalytic H2 production (up to 3 x 107 s -1) at overpotentials of ~400 mV are catalysed by [Ni(PPh2NC6H4X2)2]2+ complexes in an acidic ionic liquid - water medium ([(DMF)H]NTf2-H2O, ?H2O = 0.71). This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences and the Office of Science Early Career Research Program through the US DOE, BES (W.J.S.). Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. An X-Band Gun Test Area at SLAC

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  12. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    SciTech Connect (OSTI)

    Maxson, Jared Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan

    2015-06-08

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, hν≤E{sub g}+E{sub a}. These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4−4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ∼10{sup −4}. The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  13. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  14. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.; Lewandowski, J.; Limborg, Cecile; Weathersby, S.; /SLAC

    2012-06-06

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program. Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.

  15. Cavity Design, Fabrication and Commission Performance of a 750MHz, 4-rod Separator for CEBAF 4-Hall Beam Delivery System

    SciTech Connect (OSTI)

    Wang, Haipeng; Cheng, Guangfeng; Turlington, Larry T.; Wissmann, Mark J.

    2015-09-01

    A short version of the original CEBAF normal conducting 4-rod separator cavity has been developed into a 750MHz one * since the concept of simultaneous 4-hall operation for CEBAF is introduced **. This work has been advanced further based on the EM design optimization, bench measurement and by conducting RF-thermal coupled simulation using CST and ANSYS to confirm the cavity tuning and thermal performance. The cavity fabrication used matured technology like copper plating and machining. The cavity flanges, couplers, tuners and cooling channels adopted consistent/compatible hardware with the existing 500MHz cavities. The electromagnetic and thermal design simulations have greatly reduced the prototyping and bench tuning time of the first prototype. Four production cavities have reached a typical 1.94MV kick voltage or 3.0kW wall loss on each cavity after a minor multipactoring or no processing, 7.5% overhead power than the design specification.

  16. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao

    2014-07-01

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities’ depth profiles were made on samples heat treated with the cavities.

  17. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  18. Si/SiGe electron resonant tunneling diodes with graded spacer wells

    SciTech Connect (OSTI)

    Paul, D. J.; See, P.; Bates, R.; Griffin, N.; Coonan, B. P.; Redmond, G.; Crean, G. M.; Zozoulenko, I. V.; Berggren, K.-F.; Hollander, B.

    2001-06-25

    Resonant tunneling diodes have been fabricated using graded Si{sub 1{minus}x}Ge{sub x} (x=0.3{r_arrow}0.0) spacer wells and strained Si{sub 0.4}Ge{sub 0.6} barriers on a relaxed Si{sub 0.7}Ge{sub 0.3} n-type substrate which demonstrates negative differential resistance at up to 100 K. This design is aimed at reducing the voltage at which the peak current density is achieved. Peak current densities of 0.08A/cm{sup 2} with peak-to-valley current ratios of 1.67 have been achieved for a low peak voltage of 40 mV at 77 K. This represents an improvement of over an order of magnitude compared to previous work. {copyright} 2001 American Institute of Physics.

  19. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    SciTech Connect (OSTI)

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

  20. INFLUENCE OF TEMPERATURE ON THE CORROSION POTENTIAL OF THE 241-AN-102 MULTI PROBE CORROSION MONITORING SYSTEM SECONDARY REFERENCE ELECTRODES

    SciTech Connect (OSTI)

    EDGEMON GL; TAYLOR TM

    2008-09-30

    A test program using 241-AN-102 waste simulants and metallic secondary reference electrodes similar to those used on the 241-AN-102 MPCMS was performed to characterize the relationship between temperature and secondary reference electrode open-circuit corrosion potential. This program showed that the secondary reference electrodes can be used to make tank and tank steel corrosion potential measurements, but that a correction factor of approximately 2 mV per degree Celsius of temperature difference must be applied, where temperature difference is defined as the difference between tank temperature at the time of measurement and 30 C, the average tank temperature during the first several months of 241-AN-102 MPCMS operation (when the corrosion potentials of the secondary reference electrodes were being recorded relative to the primary reference electrodes).

  1. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  2. Analysis of New High-Q0 SRF Cavity Tests by Nitrogen Gas Doping at Jefferson Lab

    SciTech Connect (OSTI)

    Palczewski, Ari D.; Geng, Rongli; Reece, Charles E.

    2014-12-01

    In order to refine systematic understanding and establish confident process control, Jefferson Lab has joined with partners to investigate and thoroughly characterize the dramatically higher Q0 of 1.3 GHz niobium cavities first reported by FNAL in 2013[1]. With partial support from the LCLS-II project, JLab has undertaken a parametric study of nitrogen doping in vacuum furnace at 800 C followed by variable depth surface removal in the 5 - 20 ?m range. Q0 above 31010 are typical at 2.0 K and 16 MV/m accelerating field. We report observations from the single cell study and current interpretations. In addition to the parametric single cell study, we also report on the ongoing serial testing of six nitrogen-doped 9-cell cavities as baseline prototypes for LCLS-II.

  3. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect (OSTI)

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 ?m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e? rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  4. High power test results of the first SRRC/ANL high current L-band RF gun.

    SciTech Connect (OSTI)

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  5. Low-Potential Stable NADH Detection at Carbon-Nanotube-Modified Glassy Carbon Electrodes

    SciTech Connect (OSTI)

    Musameh, Mustafa; Wang, Joseph; Merkoci, Arben; Lin, Yuehe )

    2002-11-22

    Carbon-nanotube (CNT) modified glassy-carbon electrodes exhibiting strong and stable electrocatalytic response toward NADH are described. A substantial (490 mV) decrease in the overvoltage of the NADH oxidation reaction (compared to ordinary carbon electrodes) is observed using single-wall and multi-wall carbon-nanotube coatings, with oxidation starting at ca.?0.05V (vs. Ag/AgCl; pH 7.4). Furthermore, the NADH amperometric response of the coated electrodes is extremely stable, with 96 and 90% of the initial activity remaining after 60min stirring of 2x10-4M and 5x10-3M NADH solutions, respectively (compared to 20 and 14% at the bare surface). The CNT-coated electrodes thus allow highly-sensitive, low-potential, stable amperometric sensing. Such ability of carbon-nanotubes to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.

  6. Field Emission Measurements from Niobium Electrodes

    SciTech Connect (OSTI)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  7. Modeling of cable terminations with embedded electrodes

    SciTech Connect (OSTI)

    Nikolajevic, S.V.; Pekaric-Nadj, N.M.; Dimitrijevic, R.M.; Djurovic, M.

    1996-12-31

    The paper describes a study of various cable termination constructions for medium voltage cross-linked polyethylene (MV XLPE) cables. A special device was used for electrical field measurements around the cable termination, which made it possible to monitor how stress relief materials with different relative permittivity, thickness of stress relief layer and placement of isolated or grounding embedded electrodes (EE) affect electrical stress grading. The results of measurement for each construction were examined by mathematical modeling based on finite element method (FEM). Also, the influence of dielectric losses in the termination was considered, when relative permittivity of the stress relief material is high. Finally, the selected constructions of cable termination were tested in service conditions with load cycling.

  8. Studies in the photogalvanic effect in mixed reductants system for solar energy conversion and storage: Dextrose and Ethylenediaminetetraacetic acid-Azur A system

    SciTech Connect (OSTI)

    Gangotri, K.M.; Indora, Vinod

    2010-02-15

    A mixture of two reductants (Dextrose and ethylenediamine tetraacetic acid) is used as a mixed reductants with Azur A as photosensitizer in the photogalvanic cell for solar energy conversion and storage with the aim to reduce the cost of construction for commercial viability. The photogeneration of photopotential and photocurrent were 778.0 mV and 55.0 {mu}A, respectively, whereas maximum power of the cell was 42.79 {mu}W. The observed power at power point of the cell was 10.87 {mu}W and conversion efficiency was 0.1045%.The determined fill factor was 0.1942. The photogalvanic cell so developed can work for 115.0 min in dark where it was irradiated for 175.0 min. A mechanism for the photogeneration of electricity has also been proposed. (author)

  9. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1990--31 March 1991

    SciTech Connect (OSTI)

    Sites, J.R.

    1991-12-31

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  10. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  11. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect (OSTI)

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (?1001000 m)

  12. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Tsai, J.-H. Chiu, S.-Y.; Lour, W.-S.; Guo, D.-F.

    2009-07-15

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  13. Cold RF test and associated mechanical features correlation of a TESLA-style 9-cell superconducting niobium cavity built in China

    SciTech Connect (OSTI)

    Dai, Jing; Quan, Sheng-Wen; Zhang, Bao-Cheng; Lin, Lin; Hao, Jian-Kui; Zhu, Feng; Xu, Wen-Can; He, Fei-Si; Jin, Song; Wang, Fang; Liu, Ke-Xin; Geng, R L

    2012-02-01

    The RF performance of a 1.3 GHz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe. The cavity is a TESLA-style 9-cell superconducting niobium cavity, with complete end group components including a higher order mode coupler, built in China for practical applications. An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 x 10{sup 9}. The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection. Correlation between the observed mechanical features and the RF performance of the cavity is attempted.

  14. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    SciTech Connect (OSTI)

    Sites, J.R. )

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  15. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect (OSTI)

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120?meV and 200?meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37?ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724?mV was achieved, demonstrating excellent silicon surface passivation.

  16. Alluvial Groundwater -- Upgradient -- 92-05&

    Office of Legacy Management (LM)

    09 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5

  17. Appendix H biomonitoring data table H-1.xls

    Office of Legacy Management (LM)

    Baseline Surface Water, Sediment, and Benthic Macroinvertebrate Samples This page intentionally left blank Table H-1: Biomonitoring Sediment and Surface Water Data a Sediment Surface Location Date Sampled Se (mg/kg) Se (µg/L) Se b (µg/L) Alkalinity b (mg/L) Conductivity (µmhos/cm) ORP (mV) pH (s.u.) Temperature (C) Turbidity (NTU) 10/06/04 3.3 3.7 3 273 1481 -- 8.1 14.5 -- 10/06/04 -- 3.6 2.9 -- -- -- -- -- -- 04/05/05 1.3 2.9 2.2 170 810 -- 7.92 12.08 38.5 10/11/05 1.9 3 2.8 -- -- -- -- --

  18. Bedrock Groundwaters -- Upgradient -- 92-06a,b

    Office of Legacy Management (LM)

    09 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride μg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98

  19. Microsoft Word - S02459_2006Annual GW Rpt.doc

    Office of Legacy Management (LM)

    Page 1 Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity b µmhos/cm 1520 1250 1366 1350 DO b mg/L -- 7.7 -- -- ORP b mV 84 71 -- 38 pH b s.u. 7.05 7.66 6.42 6.99 Temperature b C 9.4 7.7 9.7 10 Turbidity b NTU 42.6 4.05 60.3 70.5 Common Ions Ca mg/L 266 214 206

  20. Microsoft Word - S02459_2006Annual GW Rpt.doc

    Office of Legacy Management (LM)

    Page 1 Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity b µmhos/cm 560 560 DO b mg/L 1.4 -- ORP b mV -51 -46 pH b s.u. 7.24 7.52 Temperature b C 11.3 11.6 Turbidity b NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride µg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98 1.81 Mg mg/L 10.5 9.99 Na mg/L

  1. Microsoft Word - S03623_2007AnnRep_091007.doc

    Office of Legacy Management (LM)

    Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5 Common Ions Ca mg/L 266 214 206 207

  2. Microsoft Word - S03623_2007AnnRep_091007.doc

    Office of Legacy Management (LM)

    Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride μg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98 1.81 Mg mg/L 10.5 9.99 Na mg/L 32.1

  3. Microsoft Word - S06596_GW.doc

    Office of Legacy Management (LM)

    10 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c μmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5

  4. Microsoft Word - S06596_GW.doc

    Office of Legacy Management (LM)

    10 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c μmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride μg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98

  5. Formation of BaSi{sub 2} heterojunction solar cells using transparent MoO{sub x} hole transport layers

    SciTech Connect (OSTI)

    Du, W.; Takabe, R.; Baba, M.; Takeuchi, H.; Toko, K.; Hara, K. O.; Usami, N.; Suemasu, T.

    2015-03-23

    Heterojunction solar cells that consist of 15?nm thick molybdenum trioxide (MoO{sub x}, x?mV and a short circuit current density of 0.5?mA/cm{sup 2} were obtained under AM1.5 illumination. The photocurrent density under a reverse bias voltage of ?1 V reached 25?mA/cm{sup 2}, which demonstrates the significant potential of BaSi{sub 2} for solar cell applications.

  6. Electrochemically induced deposition method to prepare {gamma}-MnO{sub 2}/multi-walled carbon nanotube composites as electrode material in supercapacitors

    SciTech Connect (OSTI)

    Fan Zhen

    2008-08-04

    The {gamma}-MnO{sub 2}/multi-walled carbon nanotube ({gamma}-MnO{sub 2}/MWNT) composite has been prepared by electrochemically induced deposition method. The morphology and crystal structure of the composite were investigated by X-ray diffraction and scanning electron microscopy, respectively. The capacitive properties of the {gamma}-MnO{sub 2}/MWNT composite have been investigated by cyclic voltammetry (CV). A specific capacitance (based on {gamma}-MnO{sub 2}) as high as 579 F g{sup -1} is obtained at a scan rate of 10 mV s{sup -1} in 0.1 M Na{sub 2}SO{sub 4} aqueous solution. Additionally, the {gamma}-MnO{sub 2}/MWNT composite electrode shows excellent long-term cycle stability (only 2.4% decrease of the specific capacitance is observed after 500 CV cycles)

  7. TiN/VN composites with core/shell structure for supercapacitors

    SciTech Connect (OSTI)

    Dong, Shanmu; Chen, Xiao; Gu, Lin; Zhou, Xinhong; Wang, Haibo; Liu, Zhihong; Han, Pengxian; Yao, Jianhua; Wang, Li; Cui, Guanglei; Chen, Liquan; Institute of Physics, Chinese Academy of Sciences, Beijing 100080

    2011-06-15

    Research highlights: {yields} Vanadium and titanium nitride nanocomposite with core-shell structure was prepared. {yields} TiN/VN composites with different V:Ti molar ratios were obtained. {yields} TiN/VN composites can provide promising electronic conductivity and favorable capacity storage. -- Abstract: TiN/VN core-shell composites are prepared by a two-step strategy involving coating of commercial TiN nanoparticles with V{sub 2}O{sub 5}.nH{sub 2}O sols followed by ammonia reduction. The highest specific capacitance of 170 F g{sup -1} is obtained when scanned at 2 mV s{sup -1} and a promising rate capacity performance is maintained at higher voltage sweep rates. These results indicate that these composites with good electronic conductivity can deliver a favorable capacity performance.

  8. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. F.; Han, Prof. X. F.; Zhang, Xiaoguang; Coey, J. M. D

    2014-01-01

    We provide experimental evidence that zero bias anomaly in the di erential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon e ect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kB T ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for Pmore » and AP states, while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.« less

  9. Y

    Office of Legacy Management (LM)

    _. - - 0' Y j MO . I-3 % V. B&m, MvUlen at Rmt Bf~terWa %lBh.%r#on I, B. Dauling, M- ?d muh& Mvirr;iaa 08lt M&a OpuFdlwn c&m YxZfXBUW~l~7Wzllltsl AT&T. XoUIs anrwlllif +t3&v: /s j.y;, ) &%! 19 11 .' 4 8R -0 rYlof / -s&l9s6 ~8~~8~nr~~~arvbiobU#tsrtni$~rlo&~tgbaa o#t-a~f~babmak*.=*m ~dfuww8uranq1zp, 1956, givtng UI UtiJmta of the total qwrnti* of -7 )iWzu#b rriiinrk fn8bra#aatbhr,S&krrirdrport. ~wrtgrorr~~tof#oraturl~liror~~ bobel&6dJ,I$lq

  10. M S

    Office of Legacy Management (LM)

    % "s .J' /:, * & 1 $&; i e' 3 ' M S , 4- Monthly Report / hw4~ 3. SuhumaP @&gstlo~ (5. S&umxr, C. Smnson) 3ik&wd.on of xllymaloy rod3 Qnd berylll~ ahapes ma conductf3d at Rew3x3 Brass and Copper co. 0.. i7-Lm .3 6, 194.6. One pure bwylUm L&" billet m m &r&d into a 1 l/8' * rod and one pure beryllium #' billet n-as extrLlc-!c?c into 1,53om disn. PC& Ro5ults V"mv3 good. Two pm0 bcrylliwn cp billets andc<me3C$U,7C$Be billet were csxtmded :nto

  11. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  12. Demonstration of forward inter-band tunneling in GaN by polarization engineering

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Park, Pil Sung; Rajan, Siddharth

    2011-12-05

    We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm{sup 2} at 10 mV, and 17.7 A/cm{sup 2} peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.

  13. Normal Conducting CLIC Technology

    SciTech Connect (OSTI)

    Jensen, Erk

    2006-01-03

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.

  14. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  15. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beckwith, Christopher R.; Edwards, Marcus J.; Lawes, Matthew; Shi, Liang; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-04-28

    The autotrophic Sideroxydans lithotrophicus ES-1 can grow by coupling the oxidation of ferrous iron to the reduction of oxygen. Soluble ferrous iron is oxidized at the surface of the cell by an MtoAB porin-cytochrome complex that functions as an electron conduit through the outer membrane. Electrons are then transported to the cytoplasmic membrane where they are used to generate proton motive force (PMF) (for ATP synthesis) and NADH for autotrophic processes such as carbon fixation. As part of the mtoAB gene cluster, S. lithotrophicus also contains the gene mtoD that is proposed to encode a cytochrome c protein. We isolatedmore » mtoD from a Shewanella oneidensis expression system where the mtoD gene was expressed on a pBAD plasmid vector. Biochemical, biophysical, and crystallographic characterization of the purified MtoD revealed it as an 11 kDa monomeric protein containing a single heme. Sequence and structural alignment indicated that MtoD belonged to the class-1 cytochrome c family and had a similar fold to ferricytochrome c552 family, however the MtoD heme is bis-histidine coordinated and is substantially more exposed than the hemes of other family members. The reduction potential of the MtoD heme at pH 7 was +155 mV vs. Standard Hydrogen Electrode, which is approximately 100 mV lower than that of mitochondrial cytochrome c. Consideration of the properties of MtoD in the context of the potential respiratory partners identified from the genome suggests that MtoD could associate to multiple electron transfer partners as the primary periplasmic electron shuttle.« less

  16. SU-E-J-204: Radiation Dose to Patients Resulting From Image Guidance Procedures and AAPM TG-180 Update

    SciTech Connect (OSTI)

    Ding, G; Alaei, P

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is the new paradigm for patient positioning and target localization in radiotherapy. Daily imaging procedures add additional dose to the patient's treatment volume and normal tissues and may expose the organs at risk to unaccounted doses. This presentation is to update the progress of AAPM TG-180 which aims to provide strategies to quantify and account the dose from both MV and kV imaging in patient treatment planning. Methods: Our current knowledge on image guidance dose is presented. A summary of doses from image guidance procedures delivered to patients in relationship with therapeutic doses is given. Different techniques in reducing the image guidance dose are summarized. Typical organ doses resulting from different image acquisition procedures used in IGRT are tabulated. Results: Many techniques to reduce the imaging doses are available in clinical applications. There are large variations between dose to bone and dose to soft tissues for x-rays at kilovoltage energy range. Methods for clinical implementation of accounting for the imaging dose from an imaging procedure are available. Beam data from imaging systems can be generated by combining Monte Carlo simulations and experimental measurements for commissioning imaging beams in the treatment planning. Conclusion: The current treatment planning systems are not yet equipped to perform patient specific dose calculations resulting from kV imaging procedures. The imaging dose from current kV image devices has been significantly reduced and is generally much less than that resulting from MV. Because the magnitude of kV imaging dose is significantly low and the variation between patients is modest, it is feasible to estimate dose based on imaging producers or protocols using tabulated values which provides an alternative to accomplish the task of accounting and reporting imaging doses.

  17. Physics Division progress report for period ending September 30, 1988

    SciTech Connect (OSTI)

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  18. SU-E-T-359: Measurement of Various Metrics to Determine Changes in Megavoltage Photon Beam Energy

    SciTech Connect (OSTI)

    Gao, S; Balter, P; Rose, M; Simon, W

    2014-06-01

    Purpose: To examine the relationship between photon beam energy and various metrics for energy on the flattened and flattening filter free (FFF) beams generated by the Varian TrueBeam. Methods: Energy changes were accomplished by adjusting the bending magnet current 10% from the nominal value for the 4, 6, 8, and 10 MV flattened and 6 and 10 MV FFF beams. Profiles were measured for a 3030 cm{sup 2} field using a 2D ionization chamber array and a 3D water Scanner which was also used to measure PDDs. For flattened beams we compared several energy metrics; PDD at 10 cm depth in water (PDD(10)); the variation over the central 80% of the field (Flat); and the average of the highest reading along each diagonal divided by the CAX value, diagonal normalized flatness (FDN). For FFF beams we examined PDD(10), FDN, and the width of a chosen isodose level in a 3030 cm{sup 2} field (W(d%)). Results: Changes in PDD(10) were nearly linear with changes in energy for both flattened and FFF beams as were changes in FDN. Changes in W(d%) were also nearly linear with energy for the FFF beams. PDD(10) was not as sensitive to changes in energy compared to the other metrics for either flattened or FFF beams. Flat was not as sensitive to changes in energy compared to FDN for flattened beams and its behavior depends on depth. FDN was the metric that had the highest sensitivity to the changes in energy for flattened beams while W(d%) was the metric that had highest sensitivity to the changes in energy for FFF beams. Conclusions: The metric FDN was found to be most sensitive to energy changes for flattened beams, while the W(d%) was most sensitive to energy changes for FFF beams.

  19. Topical Non-Invasive Gene Delivery using Gemini Nanoparticles in Interferon-gamma-deficient Mice

    SciTech Connect (OSTI)

    Badea,I.; Wettig, S.; Verrall, R.; Foldvari, M.

    2007-01-01

    Cutaneous gene therapy, although a promising approach for many dermatologic diseases, has not progressed to the stage of clinical trials, mainly due to the lack of an effective gene delivery system. The main objective of this study was to construct and evaluate gemini nanoparticles as a topical formulation for the interferon gamma (IFN-{gamma}) gene in an IFN-{gamma}-deficient mouse model. Nanoparticles based on the gemini surfactant 16-3-16 (NP16-DNA) and another cationic lipid cholesteryl 3{beta}-(-N-[dimethylamino-ethyl] carbamate) [Dc-chol] (NPDc-DNA) were prepared and characterized. Zetasizer measurement indicated a bimodal distribution of 146 and 468 nm average particle sizes for the NP16-DNA ({zeta}-potential +51 mV) nanoparticles and monomodal distribution of 625 nm ({zeta}-potential +44 mV) for the NPDc-DNA. Circular dichroism studies showed that the gemini surfactant compacted the plasmid more efficiently compared to the Dc-chol. Small-angle X-ray scattering measurements revealed structural polymorphism in the NP16-DNA nanoparticles, with lamellar and Fd3m cubic phases present, while for the NPDc-DNA two lamellar phases could be distinguished. In vivo, both topically applied nanoparticles induced higher gene expression compared to untreated control and naked DNA (means of 0.480 and 0.398 ng/cm{sup 2} vs 0.067 and 0.167 ng/cm{sup 2}). However, treatment with NPDc-DNA caused skin irritation, and skin damage, whereas NP16-DNA showed no skin toxicity. In this study, we demonstrated that topical cutaneous gene delivery using gemini surfactant-based nanoparticles in IFN-{gamma}-deficient mice was safe and may provide increased gene expression in the skin due to structural complexity of NP16 nanoparticles (lamellar-cubic phases).

  20. Application of a radiophotoluminescent glass plate dosimeter for small field dosimetry

    SciTech Connect (OSTI)

    Aaki, Fujio; Ishidoya, Tatsuya; Ikegami, Tohru; Moribe, Nobuyuki; Yamashita, Yasuyuki

    2005-06-15

    We have recently developed a prototypical radiophotoluminescent glass plate dosimeter (GPD) system as a device for small field dosimetry. The purpose of this study is to examine the usefulness of the GPD system for small field dosimetry. The profiles measured with the GPD were evaluated by comparing them to those from Kodak X-Omat V and GAFCROMIC XR type R film dosimeters for 2, 5, 9, and 15 mm circular collimators created by a linear accelerator-based radiosurgery system. The GPD output factors were compared with those of various detectors including an ion chamber, a p-type silicon diode detector, a glass rod dosimeter (GRD), and a diamond detector. The results measured with the GPD were also confirmed by comparing them to those from Monte Carlo simulations. The accuracy of a simulated beam is validated by the excellent agreement between Monte Carlo calculated and measured central axis depth-dose curves for 9- and 15 mm circular collimators using 4- and 10 MV photon beams. The GPD profiles show almost the same full width at half maximum as those of film dosimeters and Monte Carlo simulations at 4- and 10 MV photon beams, but a little narrower penumbrae than the film dosimeters and Monte Carlo simulations. The output factors measured with the GPD are in good agreement with those from a diode detector, a diamond detector, and the GRD with a small active volume and Monte Carlo simulations, except for a very small 2 mm circular collimator. It was found that the GPD is a very useful detector for small field dosimetry.

  1. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  2. The role of solvent and the outer coordination sphere on H2 oxidation using [Ni(PCy2NPyz2)2]2+

    SciTech Connect (OSTI)

    Dutta, Arnab; Lense, Sheri J.; Roberts, John A.; Helm, Monte L.; Shaw, Wendy J.

    2015-05-01

    Hydrogenase enzymes are reversible catalysts for H2 production/oxidation, operating with fast rates and minimal overpotentials in water. Many synthetic catalyst mimics of hydrogenase operate in organic solvents. However, recent work has demonstrated the importance of water in the performance of some model complexes. In this work, the H2oxidation activity of [Ni(PCy2N(3pyridazyl)methyl2)2]2+ (CyPyz) was compared as a function of acetonitrile, methanol, and water. The reactivity was compared under neutral and acidic conditions in all three solvents and improvement in catalytic activity, from 2 to 40 s-1, was observed with increasing hydrogen bonding ability of the solvent. In addition, the overpotential for catalysis drops significantly in the presence of acid in all solvents, from as high as 600 mV to as low as 70 mV, primarily due to the shift in the equilibrium potential under these conditions. Finally, H2 production was also observed in the same solution, demonstrating bidirectional (irreversible) homogeneous H2 production/oxidation. A structurally and electronically similar complex with a benzyl instead of a pyridazyl group was not stable under these conditions, limiting the evaluation of the contributions of the outer coordination sphere. Collectively, we show that by tuning conditions we can promote fast, efficient H2 oxidation and bidirectional catalysis.

  3. TH-C-19A-10: Systematic Evaluation of Photodetectors Performances for Plastic Scintillation Dosimetry

    SciTech Connect (OSTI)

    Boivin, J; Beaulieu, L; Beddar, S; Guillemette, M

    2014-06-15

    Purpose: To assess and compare the performance of different photodetectors likely to be used in a plastic scintillation detector (PSD). Methods: The PSD consists of a 1 mm diameter, 10 mm long plastic scintillation fiber (BCF-60) which is optically coupled to a clear 10 m long optical fiber of the same diameter. A light-tight plastic sheath covers both fibers and the scintillator end is sealed. The clear fiber end is connected to one of the following six studied photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens); a monochromatic camera with the same optical lens; a PIN photodiode; an avalanche photodiode (APD); and a photomultiplier tube (PMT). Each PSD is exposed to both low energy beams (120, 180, and 220 kVp) from an orthovoltage unit, and high energy beams (6 MV and 23 MV) from a linear accelerator. Various dose rates are explored to identify the photodetectors operating ranges and accuracy. Results: For all photodetectors, the relative uncertainty remains under 5 % for dose rates over 3 mGy/s. The taper camera collects four times more signal than the optical lens camera, although its standard deviation is higher since it could not be cooled. The PIN, APD and PMT have higher sensitivity, suitable for low dose rate and out-of-field dose monitoring. PMT's relative uncertainty remains under 1 % at the lowest dose rate achievable (50 ?Gy/s), suggesting optimal use for live dosimetry. Conclusion: A set of 6 photodetectors have been studied over a broad dose rate range at various energies. For dose rate above 3 mGy/s, the PIN diode is the most effective photodetector in term of performance/cost ratio. For lower dose rate, such as those seen in interventional radiology, PMTs are the optimal choice. FQRNT Doctoral Research Scholarship.

  4. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  5. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth

    SciTech Connect (OSTI)

    Beckwith, Christopher R.; Edwards, Marcus J.; Lawes, Matthew; Shi, Liang; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-04-28

    The autotrophic Sideroxydans lithotrophicus ES-1 can grow by coupling the oxidation of ferrous iron to the reduction of oxygen. Soluble ferrous iron is oxidized at the surface of the cell by an MtoAB porin-cytochrome complex that functions as an electron conduit through the outer membrane. Electrons are then transported to the cytoplasmic membrane where they are used to generate proton motive force (PMF) (for ATP synthesis) and NADH for autotrophic processes such as carbon fixation. As part of the mtoAB gene cluster, S. lithotrophicus also contains the gene mtoD that is proposed to encode a cytochrome c protein. We isolated mtoD from a Shewanella oneidensis expression system where the mtoD gene was expressed on a pBAD plasmid vector. Biochemical, biophysical, and crystallographic characterization of the purified MtoD revealed it as an 11 kDa monomeric protein containing a single heme. Sequence and structural alignment indicated that MtoD belonged to the class-1 cytochrome c family and had a similar fold to ferricytochrome c552 family, however the MtoD heme is bis-histidine coordinated and is substantially more exposed than the hemes of other family members. The reduction potential of the MtoD heme at pH 7 was +155 mV vs. Standard Hydrogen Electrode, which is approximately 100 mV lower than that of mitochondrial cytochrome c. Consideration of the properties of MtoD in the context of the potential respiratory partners identified from the genome suggests that MtoD could associate to multiple electron transfer partners as the primary periplasmic electron shuttle.

  6. SciFri PM: Dosimetry06: Commissioning of a 3D patient specific QA system for hypofractionated prostate treatments

    SciTech Connect (OSTI)

    Rivest, R; Venkataraman, S; McCurdy, B

    2014-08-15

    The objective of this work is to commission the 6MV-SRS beam model in COMPASS (v2.1, IBA-Dosimetry) and validate its use for patient specific QA of hypofractionated prostate treatments. The COMPASS system consists of a 2D ion chamber array (MatriXX{sup Evolution}), an independent gantry angle sensor and associated software. The system can either directly calculate or reconstruct (using measured detector responses) a 3D dose distribution on the patient CT dataset for plan verification. Beam models are developed and commissioned in the same manner as a beam model is commissioned in a standard treatment planning system. Model validation was initially performed by comparing both COMPASS calculations and reconstructions to measured open field beam data. Next, 10 hypofractionated prostate RapidArc plans were delivered to both the COMPASS system and a phantom with ion chamber and film inserted. COMPASS dose distributions calculated and reconstructed on the phantom CT dataset were compared to the chamber and film measurements. The mean ( standard deviation) difference between COMPASS reconstructed dose and ion chamber measurement was 1.4 1.0%. The maximum discrepancy was 2.6%. Corresponding values for COMPASS calculation were 0.9 0.9% and 2.6%, respectively. The average gamma agreement index (3%/3mm) for COMPAS reconstruction and film was 96.7% and 95.3% when using 70% and 20% dose thresholds, respectively. The corresponding values for COMPASS calculation were 97.1% and 97.1%, respectively. Based on our results, COMPASS can be used for the patient specific QA of hypofractionated prostate treatments delivered with the 6MV-SRS beam.

  7. Commissioning the neutron production of a Linac: Development of a simple tool for second cancer risk estimation

    SciTech Connect (OSTI)

    Romero-Expsito, M.; Snchez-Nieto, B.; Terrn, J. A.; Lopes, M. C.; Ferreira, B. C.; Grishchuk, D.; Sandn, C.; Moral-Snchez, S.; Melchor, M.; Domingo, C.; and others

    2015-01-15

    Purpose: Knowing the contribution of neutron to collateral effects in treatments is both a complex and a mandatory task. This work aims to present an operative procedure for neutron estimates in any facility using a neutron digital detector. Methods: The authors previous work established a linear relationship between the total second cancer risk due to neutrons (TR{sup n}) and the number of MU of the treatment. Given that the digital detector also presents linearity with MU, its response can be used to determine the TR{sup n} per unit MU, denoted as m, normally associated to a generic Linac model and radiotherapy facility. Thus, from the number of MU of each patient treatment, the associated risk can be estimated. The feasibility of the procedure was tested by applying it in eight facilities; patients were evaluated as well. Results: From the reading of the detector under selected irradiation conditions, m values were obtained for different machines, ranging from 0.25 10{sup ?4}% per MU for an Elekta Axesse at 10 MV to 6.5 10{sup ?4}% per MU for a Varian Clinac at 18 MV. Using these values, TR{sup n} of patients was estimated in each facility and compared to that from the individual evaluation. Differences were within the range of uncertainty of the authors methodology of equivalent dose and risk estimations. Conclusions: The procedure presented here allows an easy estimation of the second cancer risk due to neutrons for any patient, given the number of MU of the treatment. It will enable the consideration of this information when selecting the optimal treatment for a patient by its implementation in the treatment planning system.

  8. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect (OSTI)

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  9. A voltage-gated pore for translocation of tRNA

    SciTech Connect (OSTI)

    Koley, Sandip; Adhya, Samit

    2013-09-13

    Highlights: A tRNA translocating complex was assembled from purified proteins. The complex translocates tRNA at a membrane potential of ?60 mV. Translocation requires Cys and His residues in the FeS center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ?20 nm rim diameter and ?1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ?6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 6070 mV. Point mutations in the Cys{sub 2}His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III FeS protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the FeS binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  10. COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

    SciTech Connect (OSTI)

    ALLAN,M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  11. Coatings for protection of equipment for biochemical processing of geothermal residues: Progress report FY`97

    SciTech Connect (OSTI)

    Allan, M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobacillus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  12. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached ?225?kV bias voltage while generating less than 100?pA of field emission (<10?pA) using a 40?mm cathode/anode gap, corresponding to field strength of 13.7?MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ?22.5 MV/m with field emission less than 100?pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  13. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  14. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  15. SU-E-T-354: Peak Temperature Ratio of TLD Glow Curves to Investigate the Spatial Dependence of LET in a Clinical Proton Beam

    SciTech Connect (OSTI)

    Reft, C [UniversityChicago, Chicago, IL (United States); Pankuch, M; Ramirez, H [ProCure Treatment Centers, Warrenville, IL (United States)

    2014-06-01

    Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiation than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.310.310.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/? via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.

  16. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    SciTech Connect (OSTI)

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  17. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    SciTech Connect (OSTI)

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal; Devic, Slobodan

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.

  18. SU-E-T-403: Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

    SciTech Connect (OSTI)

    Harvey, M; Pollard, J; Wen, Z; Gao, S

    2014-06-01

    Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head. Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter. Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies. Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.

  19. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

    2010-04-14

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and in

  20. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ?2.0?eV (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P and ?1.9?eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30?V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.351.37?V for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc}?=?E{sub g}/q???V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ?575?mV to ?565?mV, while that of (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620?mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  1. SU-D-18A-02: Towards Real-Time On-Board Volumetric Image Reconstruction for Intrafraction Target Verification in Radiation Therapy

    SciTech Connect (OSTI)

    Xu, X; Iliopoulos, A; Zhang, Y; Pitsianis, N; Sun, X; Yin, F; Ren, L

    2014-06-01

    Purpose: To expedite on-board volumetric image reconstruction from limited-angle kVMV projections for intrafraction verification. Methods: A limited-angle intrafraction verification (LIVE) system has recently been developed for real-time volumetric verification of moving targets, using limited-angle kVMV projections. Currently, it is challenged by the intensive computational load of the prior-knowledge-based reconstruction method. To accelerate LIVE, we restructure the software pipeline to make it adaptable to model and algorithm parameter changes, while enabling efficient utilization of rapidly advancing, modern computer architectures. In particular, an innovative two-level parallelization scheme has been designed: At the macroscopic level, data and operations are adaptively partitioned, taking into account algorithmic parameters and the processing capacity or constraints of underlying hardware. The control and data flows of the pipeline are scheduled in such a way as to maximize operation concurrency and minimize total processing time. At the microscopic level, the partitioned functions act as independent modules, operating on data partitions in parallel. Each module is pre-parallelized and optimized for multi-core processors (CPUs) and graphics processing units (GPUs). Results: We present results from a parallel prototype, where most of the controls and module parallelization are carried out via Matlab and its Parallel Computing Toolbox. The reconstruction is 5 times faster on a data-set of twice the size, compared to recently reported results, without compromising on algorithmic optimization control. Conclusion: The prototype implementation and its results have served to assess the efficacy of our system concept. While a production implementation will yield much higher processing rates by approaching full-capacity utilization of CPUs and GPUs, some mutual constraints between algorithmic flow and architecture specifics remain. Based on a careful analysis of the prototype performance, it will be feasible to resolve such issues through appropriate algorithmic modifications or special-purpose hardware, thus enabling target verification in seconds with the LIVE system. This work was partially supported by a research grant from Varian Medical Systems.

  2. SU-F-BRE-06: Evaluation of Patient CT Dose Reconstruction From 3D Diode Array Measurements Using Anthropomorphic Phantoms

    SciTech Connect (OSTI)

    Huang, M; Benhabib, S; Cardan, R; Brezovich, I; Popple, R; Faught, A; Followill, D

    2014-06-15

    Purpose: To compare 3D reconstructed dose of IMRT plans from 3D diode array measurements with measurements in anthropomorphic phantoms. Methods: Six IMRT plans were created for the IROC Houston (RPC) head and neck (H and N) and lung phantoms following IROC Houston planning protocols. The plans included flattened and unflattened beam energies ranging from 6 MV to 15 MV and both static and dynamic MLC tecH and Niques. Each plan was delivered three times to the respective anthropomorphic phantom, each of which contained thermoluminescent dosimeters (TLDs) and radiochromic films (RCFs). The plans were also delivered to a Delta4 diode array (Scandidos, Uppsala, Sweden). Irradiations were done using a TrueBeam STx (Varian Medical Systems, Palo Alto, CA). The dose in the patient was calculated by the Delta4 software, which used the diode measurements to estimate incident energy fluence and a kernel-based pencil beam algorithm to calculate dose. The 3D dose results were compared with the TLD and RCF measurements. Results: In the lung, the average difference between TLDs and Delta4 calculations was 5% (range 2%7%). For the H and N, the average differences were 2.4% (range 0%4.5%) and 1.1% (range 0%2%) for the high- and low-dose targets, respectively, and 12% (range 10%-13%) for the organ-at-risk simulating the spinal cord. For the RCF and criteria of 7%/4mm, 5%/3mm, and 3%/3mm, the average gamma-index pass rates were 95.4%, 85.7%, and 76.1%, respectively for the H and N and 76.2%, 57.8%, and 49.5% for the lung. The pass-rate in the lung decreased with increasing beam energy, as expected for a pencil beam algorithm. Conclusion: The H and N phantom dose reconstruction met the IROC Houston acceptance criteria for clinical trials; however, the lung phantom dose did not, most likely due to the inaccuracy of the pencil beam algorithm in the presence of low-density inhomogeneities. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)

  3. Investigation of the spatial resolution of an online dose verification device

    SciTech Connect (OSTI)

    Asuni, G.; Rickey, D. W.; McCurdy, B. M. C.

    2012-02-15

    Purpose: The aim of this work is to characterize a new online dose verification device, COMPASS transmission detector array (IBA Dosimetry, Schwarzenbruck, Germany). The array is composed of 1600 cylindrical ionization chambers of 3.8 mm diameter, separated by 6.5 mm center-to-center spacing, in a 40 x 40 arrangement. Methods: The line spread function (LSF) of a single ion chamber in the detector was measured with a narrow slit collimator for a 6 MV photon beam. The 0.25 x 10 mm{sup 2} slit was formed by two machined lead blocks. The LSF was obtained by laterally translating the detector in 0.25 mm steps underneath the slit over a range of 24 mm and taking a measurement at each step. This measurement was validated with Monte Carlo simulation using BEAMnrc and DOSXYZnrc. The presampling modulation transfer function (MTF), the Fourier transform of the line spread function, was determined and compared to calculated (Monte Carlo and analytical) MTFs. Two head-and-neck intensity modulated radiation therapy (IMRT) fields were measured using the device and were used to validate the LSF measurement. These fields were simulated with the BEAMnrc Monte Carlo model, and the Monte Carlo generated incident fluence was convolved with the 2D detector response function (derived from the measured LSF) to obtain calculated dose. The measured and calculated dose distributions were then quantitatively compared using {chi}-comparison criteria of 3% dose difference and 3 mm distance-to-agreement for in-field points (defined as those above the 10% maximum dose threshold). Results: The full width at half-maximum (FWHM) of the measured detector response for a single chamber is 4.3 mm, which is comparable to the chamber diameter of 3.8 mm. The pre-sampling MTF was calculated, and the resolution of one chamber was estimated as 0.25 lp/mm from the first zero crossing. For both examined IMRT fields, the {chi}-comparison between measured and calculated data show good agreement with 95.1% and 96.3% of in-field points below {chi} of 1.0 for fields 1 and 2, respectively (with an average {chi} of 0.29 for IMRT field 1 and 0.24 for IMRT field 2). Conclusions: The LSF for a new novel online detector has been measured at 6 MV using a narrow slit technique, and this measurement has been validated by Monte Carlo simulation. The detector response function derived from line spread function has been applied to recover measured IMRT fields. The results have shown that the device measures IMRT fields accurately within acceptable tolerance.

  4. Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing

    SciTech Connect (OSTI)

    Price, Phillip N.; Granderson, Jessica; Sohn, Michael; Addy, Nathan; Jump, David

    2013-09-01

    The overarching goal of this work is to advance the capabilities of technology evaluators in evaluating the building-level baseline modeling capabilities of Energy Management and Information System (EMIS) software. Through their customer engagement platforms and products, EMIS software products have the potential to produce whole-building energy savings through multiple strategies: building system operation improvements, equipment efficiency upgrades and replacements, and inducement of behavioral change among the occupants and operations personnel. Some offerings may also automate the quantification of whole-building energy savings, relative to a baseline period, using empirical models that relate energy consumption to key influencing parameters, such as ambient weather conditions and building operation schedule. These automated baseline models can be used to streamline the whole-building measurement and verification (M&V) process, and therefore are of critical importance in the context of multi-measure whole-building focused utility efficiency programs. This report documents the findings of a study that was conducted to begin answering critical questions regarding quantification of savings at the whole-building level, and the use of automated and commercial software tools. To evaluate the modeling capabilities of EMIS software particular to the use case of whole-building savings estimation, four research questions were addressed: 1. What is a general methodology that can be used to evaluate baseline model performance, both in terms of a) overall robustness, and b) relative to other models? 2. How can that general methodology be applied to evaluate proprietary models that are embedded in commercial EMIS tools? How might one handle practical issues associated with data security, intellectual property, appropriate testing blinds, and large data sets? 3. How can buildings be pre-screened to identify those that are the most model-predictable, and therefore those whose savings can be calculated with least error? 4. What is the state of public domain models, that is, how well do they perform, and what are the associated implications for whole-building measurement and verification (M&V)? Additional project objectives that were addressed as part of this study include: (1) clarification of the use cases and conditions for baseline modeling performance metrics, benchmarks and evaluation criteria, (2) providing guidance for determining customer suitability for baseline modeling, (3) describing the portfolio level effects of baseline model estimation errors, (4) informing PG&Es development of EMIS technology product specifications, and (5) providing the analytical foundation for future studies about baseline modeling and saving effects of EMIS technologies. A final objective of this project was to demonstrate the application of the methodology, performance metrics, and test protocols with participating EMIS product vendors.

  5. Response to high-energy photons of PTW31014 PinPoint ion chamber with a central aluminum electrode

    SciTech Connect (OSTI)

    Agostinelli, S.; Garelli, S.; Piergentili, M.; Foppiano, F.

    2008-07-15

    Since its introduction the PinPoint (PTW-Freiburg) micro-ionization chamber has been proposed for relative dosimetry (output factors, depth dose curves, and beam profiles) as well as for determination of absolute dose of small high-energy photon beams. This paper investigates the dosimetric performance of a new design (type 31014) of the PinPoint ion chamber with a central aluminum electrode. The study included characterization of inherent and radiation-induced leakage, ion collection efficiency and polarity effect, relative response of the chamber, measurement of beam profiles, and depth dose curves. The 6 and 15 MV photon beams of a Varian 2100 C/D were considered. At the nominal operating voltage of 400 V the PinPoint type 31014 chamber was found to present a strong field size dependence of the polarity correction factor and an excess of the collected charge, which can lead to an underestimation of the collection efficiency if determined with the conventional ''two-voltage'' method. In comparison to the original PinPoint design (type 31006) the authors found for type 31014 chamber no overresponse to large-area fields if polarity correction is applied. If no correction is taken into consideration, the authors found the chamber's output to be inaccurate for large-area fields (0.5% accuracy limited up to the 12x12 and 20x20 cm{sup 2} field for the 6 and 15 MV beams, respectively), which is a direct consequence of the stem and polarity effects due to the chamber's very small sensitive volume (0.015 cc) and cable irradiation. Beam profiles and depth dose curves measured with type 31014 PinPoint chamber for small and medium size fields were compared to data measured with a 0.125 cc ion chamber and with high-resolution Kodak EDR2 films. Analysis of the penumbra (80%-20% distance) showed that the spatial resolution of type 31014 PinPoint ion chamber approaches (penumbra broadening {<=}0.6 mm) EDR2 film results.

  6. X-Band Photoinjector Beam Dynamics

    SciTech Connect (OSTI)

    Zhou, Feng; Adolphsen, Chris; Ding, Yuantao; Li, Zenghai; Vlieks, Arnold; /SLAC

    2011-12-13

    SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as a mono-energetic MeV {gamma} ray source (in collaboration with LLNL) and a photoinjector for a compact FEL. Beam dynamics studies are being done for a configuration consisting of a 5.5-cell X-band gun followed by several 53-cell high-gradient X-band accelerator structures. A fully 3D program, ImpactT, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields, and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements, including the drive-laser, gun, solenoid and accelerator structures, are evaluated. This paper presents these results and estimates of the expected bunch emittance vs cathode gradient, and the effects of mixing between the fundamental and off-frequency longitudinal modes. An X-band gun at SLAC has been shown to operate reliably with a 200 MV/m acceleration gradient at the cathode, which is nearly twice the 115 MV/m acceleration gradient in the LCLS gun. The higher gradient should roughly balance the space charge related transverse emittance growth for the same bunch charge but provide a 3-4 times shorter bunch length. The shorter length would make the subsequent bunch compression easier and allow for a more effective use of emittance exchange. Such a gun can also be used with an X-band linac to produce a compact FEL or g ray source that would require rf sources of only one frequency for beam generation and acceleration. The feasibility of using an X-band rf photocathode gun and accelerator structures to generate high quality electron beams for compact FELs and g ray sources is being studied at SLAC. Results from the X-band photoinjector beam dynamics studies are reported in this paper.

  7. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    SciTech Connect (OSTI)

    Keall, Paul J. O’Brien, Ricky; Huang, Chen-Yu; Aun Ng, Jin; Colvill, Emma; Rugaard Poulsen, Per; Fledelius, Walther; Juneja, Prabhjot; Booth, Jeremy T.; Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew

    2015-01-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy.

  8. TU-F-17A-06: Motion Stability and Dosimetric Impact of Spirometer-Based DIBH-RT of Left-Sided Breast Cancer

    SciTech Connect (OSTI)

    McKenzie, E; Yang, W; Burnison, M; Mirhadi, A; Hakimian, B; Stephen, S; Robert, R; Yue, Y; Sandler, H; Fraass, B

    2014-06-15

    Purpose: Patients undergoing radiotherapy (RT) for left-sided breast cancer have increased risk of coronary artery disease. Deep Inhalation Breath Hold assisted RT (DIBH-RT) is shown to increase the geometric separation of the target area and heart, reducing cardiac radiation dose. The purposes of this study are to use Cine MV portal images to determine the stability of spirometer-guided DIBH-RT and examine the dosimetric cardiopulmonary impact of this technique. Methods: Twenty consecutive patients with left-sided breast cancer were recruited to the IRB-approved study. Free-breathing (FB) and DIBH-CT's were acquired at simulation. Rigid registration of the FB-CT and DIBH-CT was performed using primarily breast tissue. Treatment plans were created for each FB-CT and DIBH-CT using identical paired tangent fields with field-in-field or electronic compensation techniques. Dosimetric evaluation included mean and maximum (Dmax) doses for the left anterior descending artery (LAD), mean heart dose, and left lung V20. Cine MV portal images were acquired for medial and lateral fields during treatment. Analysis of Cine images involved chest wall segmentation using an algorithm developed in-house. Intra- and inter-fractional chest wall motion were determined through affine registration to the first frame of each Cine. Results: Dose to each cardiac structure evaluated was significantly (p<0.001) reduced with the DIBH plans. Mean heart dose decreased from 2.9(0.96.6) to 1.6(0.65.3) Gy; mean LAD dose from 16.6(343.6) to 7.4(1.732.7) Gy; and LAD Dmax from 35.4 (6.153) to 18.4(2.551.2) Gy. No statistically significant reduction was found for the left lung V20. Average AP and SI median chest wall motion (intrafractional) was 0.1 (SD=0.9) and 0.5 (SD=1.1) mm, respectively. Average AP inter-fractional chest wall motion was 2.0 (SD=1.4) mm. Conclusion: Spirometer-based DIBH treatments of the left breast are reproducible both inter- and intra-fractionally, and provide a statistically and potentially clinically useful dosimetric advantage to cardiac structures.

  9. SU-D-9A-07: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    SciTech Connect (OSTI)

    Zhou, L; Bai, S; Zhang, Y; Ming, X; Zhang, Y; Deng, J

    2014-06-01

    Purpose: To systematically evaluate the imaging doses and cancer risks associated with various imaging procedures involving ionizing radiation during image-guided radiotherapy of an increasingly large number of cancer patients. Methods: 141 patients (52 brain cases, 47 thoracic cases, 42 abdominal cases, aged 3 to 91 years old) treated between October 2009 and March 2010 were included in this IRB-approved retrospective study. During the whole radiotherapy course, each patient underwent at least one type of imaging procedures, i.e., kV portal, MV portal and kVCBCT, besides CT simulations. Based on Monte Carlo modeling and particle transport in human anatomy of various dimensions, the correlations between the radiation doses to the various organs-at-risk (OARs) at the head, the thoracic and the abdominal regions and one's weight, circumference, scan mAs and kVp have been obtained and used to estimate the radiation dose from a specific imaging procedure. The radiation-induced excess relative risk (ERR) was then estimated with BEIR VII formulism based on one's gender, age and radiation dose. 1+ ERR was reported in this study as relative cancer risk. Results: For the whole cohort of 141 patients, the mean imaging doses from various imaging procedures were 8.3 cGy to the brain, 10.5 cGy to the lungs and 19.2 cGy to the red bone marrow, respectively. Accordingly, the cancer risks were 1.140, 1.369 and 2.671, respectively. In comparison, MV portal deposited largest doses to the lungs while kVCBCT delivered the highest doses to the red bone marrow. Conclusion: The compiled imaging doses to a patient during his/her treatment course were patient-specific and site-dependent, varying from 1.2 to 263.5 cGy on average, which were clinically significant and should be included in the treatment planning and overall decision-making. Our results indicated the necessity of personalized imaging to maximize its clinical benefits while reducing the associated cancer risks. Sichuan University Scholarship.

  10. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties

    SciTech Connect (OSTI)

    Osipov, Evgeny [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Polyakov, Konstantin [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Engelhardt Institute of Molecular Biology, Vavilova Str. 32, Moscow 119991 (Russian Federation); Kittl, Roman [BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Shleev, Sergey [RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Malm University, 205 06 Malm (Sweden); Dorovatovsky, Pavel [RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Tikhonova, Tamara, E-mail: ttikhonova@inbi.ras.ru [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Hann, Stephan; Ludwig, Roland [BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Popov, Vladimir [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2014-11-01

    The structures of the ascomycetous B. aclada laccase and its L499M T1-site mutant have been solved at 1.7 resolution. The mutant enzyme shows a 140 mV lower redox potential of the type 1 copper and altered kinetic behaviour. The wild type and the mutant have very similar structures, which makes it possible to relate the changes in the redox potential to the L499M mutation Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E{sub 0} = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.

  11. Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H2

    SciTech Connect (OSTI)

    Liu, Tianbiao L.; Liao, Qian; O'Hagan, Molly J.; Hulley, Elliott; DuBois, Daniel L.; Bullock, R. Morris

    2015-06-22

    The synthesis and spectroscopic characterization of CpC5F4NFe(PtBu2NBn2)Cl, [3-Cl] (where C5F4N is the tetrafluorpyridyl substituent and PtBu2NBn2 = 1,5-di(tert-butyl)-3,7-di(benzyl)-1,5-diaza-3,7-diphosphacyclooctane) are reported. Complex 3-Cl and previously reported [CpC5F4NFe(PtBu2NtBu2)Cl], 4-Cl, are precursors to intermediates in the catalytic oxidation of H2, including CpC5F4NFe(PtBu2NBn2)H (3-H), CpC5F4NFe(PtBu2NtBu2)H (4-H), [CpC5F4NFe(PtBu2NBn2)]BArF4 ([3](BArF4), [CpC5F4NFe(PtBu2NtBu2)]BArF4 ([4](BArF4), [CpC5F4NFe(PtBu2NBn2)(H2)]BArF4 ([3-H2]BArF4), and [CpC5F4NFe(PtBu2NtBu2H)H]BArF4 ([4-FeH(NH)]BArF4). All of these complexes were characterized by spectroscopic and electrochemical studies; 3-Cl, 3-H and 4-Cl were also characterized by single crystal diffraction studies. 3-H and 4-H are electrocatalysts for H2 (1.0 atm) oxidation in the presence of a excess of the amine base N-methylpyrrolidine, with turnover frequencies at 22 °C of 2.5 s-1 and 0.5 s-1, and overpotentials at Ecat/2 of 235 mV and 95 mV, respectively. Studies of individual chemical and/or electrochemical reactions of the various intermediates provide important insights into the factors governing the overall catalytic activity for H2 oxidation, and provide important insights into the role of the pendant base of the [FeFe] hydrogenase active site. This work was supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  12. Quality assurance for the clinical implementation of kilovoltage intrafraction monitoring for prostate cancer VMAT

    SciTech Connect (OSTI)

    Ng, J. A.; Booth, J. T.; OBrien, R. T.; Huang, C.-Y.; Keall, P. J.; Colvill, E.; Poulsen, P. R.

    2014-11-01

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time 3D tumor monitoring system for cancer radiotherapy. KIM uses the commonly available gantry-mounted x-ray imager as input, making this method potentially more widely available than dedicated real-time 3D tumor monitoring systems. KIM is being piloted in a clinical trial for prostate cancer patients treated with VMAT (NCT01742403). The purpose of this work was to develop clinical process and quality assurance (QA) practices for the clinical implementation of KIM. Methods: Informed by and adapting existing guideline documents from other real-time monitoring systems, KIM-specific QA practices were developed. The following five KIM-specific QA tests were included: (1) static localization accuracy, (2) dynamic localization accuracy, (3) treatment interruption accuracy, (4) latency measurement, and (5) clinical conditions accuracy. Tests (1)(4) were performed using KIM to measure static and representative patient-derived prostate motion trajectories using a 3D programmable motion stage supporting an anthropomorphic phantom with implanted gold markers to represent the clinical treatment scenario. The threshold for system tolerable latency is <1 s. The tolerances for all other tests are that both the mean and standard deviation of the difference between the programmed trajectory and the measured data are <1 mm. The (5) clinical conditions accuracy test compared the KIM measured positions with those measured by kV/megavoltage (MV) triangulation from five treatment fractions acquired in a previous pilot study. Results: For the (1) static localization, (2) dynamic localization, and (3) treatment interruption accuracy tests, the mean and standard deviation of the difference are <1.0 mm. (4) The measured latency is 350 ms. (5) For the tests with previously acquired patient data, the mean and standard deviation of the difference between KIM and kV/MV triangulation are <1.0 mm. Conclusions: Clinical process and QA practices for the safe clinical implementation of KIM, a novel real-time monitoring system using commonly available equipment, have been developed and implemented for prostate cancer VMAT.

  13. SU-E-T-631: Commissioning and Comprehensive Evaluation of the ArcCHECK Cylindrical Diode Array for VMAT QA

    SciTech Connect (OSTI)

    Chaswal, V; Weldon, M; Gupta, N; Rong, Y

    2014-06-15

    Purpose: Commissioning and comprehensive evaluation of ArcCHECK phantom for dosimetry of VMAT QA, using 6MV photon beam with and without the flattening filter. Methods: ArcCHECK was evaluated for response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle and couch insertion. Scatter dose characterization, consistency and symmetry of response, dosimetric accuracy of fixed aperture arcs and clinical VMAT plans were investigated. Measurements were done using TrueBeam STx accelerator (Console version 1.6) with a 6 MV beam with and without flattening filter. Reference dose-grids were calculated using Eclipse TPS Analytical Anisotropic Algorithm (AAA version 10.0.39). Planned doses were calculated using symmetric 2mm 3D dose grids with 4 degree angular resolution defaulted to each control point. Gamma evaluations were performed in absolute dose mode, with default normalization to maximum dose in the curved plane and a low dose threshold of 10% to restrict the analysis to clinically relevant areas. Global and local gamma indices at 3mm/3% and 2mm/2% level were computed using SNC software (version 6.0). Results: Results of gamma analysis demonstrated an overall agreement between ArcCHECK measured and TPS calculated reference doses. Field size dependency was within 0.5% of the reference. Dose-rate based dependency was well within 1% of the TPS reference and the angular dependency was 3% of the reference, as tested for BEV angles. At the level of 3%/3mm, narrow and wide open arcs as well as clinical VMAT cases demonstrated high level of dosimetry accuracy in global gamma passing rates for both 6X and 6F beams. At the level of 2%/2mm two VMAT cases involving the narrow heavily modulated arcs demonstrated lower passing rates. Conclusion: ArcCHECK phantom with latest software and hardware upgrades is suitable for VMAT QA. For higher sensitivity of 2%/2mm gamma analysis, we intend to use it as one of the VMAT QA evaluation metrics.

  14. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam

    SciTech Connect (OSTI)

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766; Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755

    2013-10-15

    Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams.Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm{sup 2}), incident angles (0°–70°) and imaging regions were all varied.Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom.Conclusions: This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams.

  15. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  16. THE CRYOPLANT FOR THE ITER NEUTRAL BEAM TEST FACILITY TO BE BUILT AT RFX IN PADOVA, ITALY

    SciTech Connect (OSTI)

    Pengo, R.; Fellin, F.; Sonato, P.

    2010-04-09

    The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

  17. Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments

    SciTech Connect (OSTI)

    Sbruev, I. S.; Sbruev, S. B.

    2010-10-15

    The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

  18. Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Okyay, Ali K.

    2014-07-21

    A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage V{sub t} shift (4?V) at low operating voltage (6/?6?V), good retention (>10 yr), and good endurance characteristic (>10{sup 4} cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced V{sub t} shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger V{sub t} shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E???5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications.

  19. Oligomeric Dithienopyrrole-Thienopyrroledione (DTP-TPD) Donor-Acceptor Copolymer for Organic Photovoltaics

    SciTech Connect (OSTI)

    Hammond, S. R.; Braunecker, W.; Garcia, A.; Larsen, R.; Owczarczyk, Z.; Olson, D.; Ginley, D.

    2011-01-01

    A new donor-acceptor copolymer system based upon a dithienopyrrole (DTP) donor moiety and a thienopyrrolodione (TPD) accepting moiety has been designed and synthesized for organic photovoltaic (OPV) applications. The TPD accepting moiety has recently gained significant attention in the OPV community and is being incorporated into a number of different polymer systems. In contrast, the DTP donor moiety has received only limited attention, likely due in part to synthetic difficulties relating to the monomer. In our hands, the bis(trimethyltin)-DTP monomer was indelibly contaminated with {approx}5% of the mono-destannylated DTP, which limited the Stille polymerization with the dibromo-TPD monomer (>;99% pure) to produce material with M{sub n} {approx} 4130 g/mol (PDI = 1.10), corresponding to around eight repeat units. Despite this limitation, UV-visible absorption spectroscopy demonstrates strong absorption for this material with a band gap of {approx}1.6 eV. Cyclic voltammetry indicates a highest occupied molecular orbital (HOMO) energy level of -5.3 eV, which is much lower than calculations predicted. Initial bulk heterojunction OPV devices fabricated with the fullerene acceptor phenyl C61 butyric acid methyl ester (PCBM) exhibit V{sub oc} {approx} 700 mV, which supports the deep HOMO value obtained from CV. These results suggest the promise of this copolymer system.

  20. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  1. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; et al

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  2. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  3. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; Shao, Yuchuan; Huang, Jinsong

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV largermore » open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.« less

  4. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    SciTech Connect (OSTI)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  5. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  6. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, J. B.; Andonian, G.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Muggli, P.; Yakimenko, V.

    2010-11-04

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  7. Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation

    SciTech Connect (OSTI)

    Vlasenko, N. A. Oleksenko, P. F.; Mukhlyo, M. A.; Veligura, L. I.

    2013-08-15

    The causes of changes that occur in a thin-film electroluminescent metal-insulator-semiconductor-insulator-metal waveguide structure based on ZnS:Cr (Cr concentration of {approx}4 Multiplication-Sign 10{sup 20} cm{sup -3}) upon lasing ({lambda} Almost-Equal-To 2.6 {mu}m) and that induce lasing cessation are studied. It is established that lasing ceases because of light-scattering inhomogeneities formed in the structure and, hence, optical losses enhance. The origin of the inhomogeneities and the causes of their formation are clarified by studying the surface topology and the crystal structure of constituent layers of the samples before and after lasing. The studies are performed by means of atomic force microscopy and X-ray radiography. It is shown that a substantial increase in the sizes of grains on the surface of the structure is the manifestation of changes induced in the ZnS:Cr film by recrystallization. Recrystallization is initiated by local heating by absorbed laser radiation in existing Cr clusters and quickened by a strong electric field (>1 MV cm{sup -1}). The changes observed in the ZnS:Cr film are as follows: the textured growth of ZnS crystallites, an increase in the content of Cr clusters, and the appearance of some CrS and a rather high ZnO content. Some ways for improving the stability of lasing in the ZnS:Cr-based waveguide structures are proposed.

  8. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses

    SciTech Connect (OSTI)

    atl?, Serap; Tan?r, Gne?

    2013-10-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  9. Source Catalog Data from FIRST (Faint Images of the Radio Sky at Twenty-Centimeters)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Becker, Robert H.; Helfand, David J.; White, Richard L.; Gregg, Michael D.; Laurent-Muehleisen, Sally A.

    FIRST, Faint Images of the Radio Sky at Twenty-Centimeters, is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid using 2?7 3-MHz frequency channels centered at 1365 and 1435 MHz. The data were edited, self-calibrated, mapped, and CLEANed using an automated pipeline based largely on routines in the Astronomical Image Processing System (AIPS). A final atlas of maps is produced by coadding the twelve images adjacent to each pointing center. Source catalogs with flux densities and size information are generated from the coadded images also. The 2011 catalog is the latest version and has been tested to ensure reliability and completness. The catalog, generated from the 1993 through 2004 images, contains 816,000 sources and covers more than 9000 square degrees. A specialized search interface for the catalog resides at this website, and the catalog is also available as a compressed ASCII file. The user may also view earlier versions of the source catalog. The FIRST survey area was chosen to coincide with that of the Sloan Digital Sky Survey (SDSS); at the m(v)~24 limit of SDSS, ~50% of the optical counterparts to FIRST sources will be detected.

  10. FIRST: Faint Images of the Radio Sky at Twenty-Centimeters (Data Catalogs from the Very Large Array (VLA) First Survey)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Becker, Robert H.; Helfand, David J.; White, Richard L.; Gregg, Michael D.; Laurent-Muehleisen, Sally A.

    FIRST, Faint Images of the Radio Sky at Twenty-cm, is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid using 27 3-MHz frequency channels centered at 1365 and 1435 MHz. The data were edited, self-calibrated, mapped, and cleaned using an automated pipeline based largely on routines in the Astronomical Image Processing System (AIPS). Data were collected from 1993 through 2002, with enhanced images produced up through 2011. The Data Catalogs have been cleaned and reissued over time, with the latest version coming out in March, 2014. They contain maps, images, and binary data. The FIRST survey area was chosen to coincide with that of the Sloan Digital Sky Survey (SDSS); at the m(v)~24 limit of SDSS, ~50% of the optical counterparts to FIRST sources will be detected.

  11. A low-noise transimpedance amplifier for the detection of Violin-Mode resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    SciTech Connect (OSTI)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-15

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level Violin-Mode (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent noise-gain peaking arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillationsthis output being derived from the difference of the photodiodes two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 1.20) MV(rms) m{sup ?1}(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 13) picometres/?Hz at this frequency, over a measuring span of 0.1 mm.

  12. PIXE analysis of medieval silver coins

    SciTech Connect (OSTI)

    Abdelouahed, H. Ben; Gharbi, F.; Roumie, M.; Baccouche, S.; Romdhane, K. Ben; Nsouli, B.; Trabelsi, A.

    2010-01-15

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135{sup o} to the beam direction. The elements Cu, Pb, and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.

  13. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  14. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect (OSTI)

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  15. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A.

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  16. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect (OSTI)

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  17. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    SciTech Connect (OSTI)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-08-15

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D{sub max} were found to be 2.8, 3.0, 3.2, and 3.4 mm ({+-}0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm{+-}0.2 mm (Kodak EDR2) and 3.6 mm{+-}0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D{sub max} was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams.

  18. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect (OSTI)

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxideplasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666?mV, J{sub SC} of 29.5?mA-cm{sup ?2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  19. Electrocatalytic Hydrogen Production by [Ni(7PPh2NH)2]2+: Removing the Distinction Between Endo- and Exo- Protonation Sites

    SciTech Connect (OSTI)

    Brown, Houston JS; Wiese, Stefan; Roberts, John A.; Bullock, R. Morris; Helm, Monte L.

    2015-04-03

    A new Ni(II) complex, [Ni(7PPh2NH)2]2+ (7PPh2NH = 3,6-triphenyl-1-aza-3,6-diphosphacycloheptane) has been synthesized, and its electrochemical properties are reported. The 7PPh2NH ligand features an NH, ensuring properly positioned protonated amine groups (NH+) for electrocatalysis, regardless of whether protonation occurs exo- or endo- to the metal center. The compound is an electrocatalyst for H2 production in the presence of organic acids (pKa range 1013 in CH3CN) with turnover frequencies ranging from 160770 s-1 at overpotentials between 320470 mV, as measured at the half peak potential of the catalytic wave. In stark contrast to [Ni(PR2NR'2)2]2+ and other [Ni(7PPh2NR')]2+ complexes, catalytic turnover frequencies for H2 production by [Ni(7PPh2NH)2]2+ do not show catalytic rate enhancement upon the addition of H2O. This finding supports the assertion that [Ni(7PPh2NH)2]2+ eliminates the distinction between the endo- and exo-protonation isomers. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  20. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect (OSTI)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  1. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    SciTech Connect (OSTI)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.; Stan, Mark S.; Weizer, Victor G.; Jenkins, Phillip P.; Khan, Osman S.; Murray, Christopher S.; Scheiman, David; Brinker, David

    1998-10-01

    High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6% at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.

  2. Pressurized H_{2} rf Cavities in Ionizing Beams and Magnetic Fields

    SciTech Connect (OSTI)

    Chung, M.; et al.

    2013-10-01

    A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10−18 to 10−16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

  3. Booster Synchrotron RF System Upgrade for SPEAR3

    SciTech Connect (OSTI)

    Park, Sanghyun; Corbett, Jeff; /SLAC

    2012-07-06

    Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.

  4. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  5. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    SciTech Connect (OSTI)

    Mller, Ralph Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674?mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

  6. Dirac point and transconductance of top-gated graphene field-effect transistors operating at elevated temperature

    SciTech Connect (OSTI)

    Hopf, T.; Vassilevski, K. V., E-mail: k.vasilevskiy@ncl.ac.uk; Escobedo-Cousin, E.; King, P. J.; Wright, N. G.; O'Neill, A. G.; Horsfall, A. B.; Goss, J. P. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Wells, G. H.; Hunt, M. R. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-21

    Top-gated graphene field-effect transistors (GFETs) have been fabricated using bilayer epitaxial graphene grown on the Si-face of 4H-SiC substrates by thermal decomposition of silicon carbide in high vacuum. Graphene films were characterized by Raman spectroscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy, and Hall measurements to estimate graphene thickness, morphology, and charge transport properties. A 27?nm thick Al?O? gate dielectric was grown by atomic layer deposition with an e-beam evaporated Al seed layer. Electrical characterization of the GFETs has been performed at operating temperatures up to 100?C limited by deterioration of the gate dielectric performance at higher temperatures. Devices displayed stable operation with the gate oxide dielectric strength exceeding 4.5 MV/cm at 100?C. Significant shifting of the charge neutrality point and an increase of the peak transconductance were observed in the GFETs as the operating temperature was elevated from room temperature to 100?C.

  7. SU-E-J-16: A Review of the Magnitude of Patient Imaging Shifts in Relation to Departmental Policy Changes

    SciTech Connect (OSTI)

    O'Connor, M; Sansourekidou, P

    2014-06-01

    Purpose: To evaluate how changes in imaging policy affect the magnitude of shifts applied to patients. Methods: In June 2012, the department's imaging policy was altered to require that any shifts derived from imaging throughout the course of treatment shall be considered systematic only after they were validated with two data points that are consistent in the same direction. Multiple additions and clarifications to the imaging policy were implemented throughout the course of the data collection, but they were mostly of administrative nature. Entered shifts were documented in MOSAIQ (Elekta AB) through the localization offset. The MOSAIQ database was queried to identify a possible trend. A total of 25,670 entries were analyzed, including four linear accelerators with a combination of MV planar, kV planar and kV three dimensional imaging. The monthly average of the magnitude of the vector was used. Plan relative offsets were excluded. During the evaluated period of time, one of the satellite facilities acquired and implemented Vision RT (AlignRT Inc). Results: After the new policy was implemented the shifts variance and standard deviation decreased. The decrease is linear with time elapsed. Vision RT implementation at one satellite facility reduced the number of overall shifts, specifically for breast patients. Conclusion: Changes in imaging policy have a significant effect on the magnitude of shifts applied to patients. Using two statistical points before applying a shift as persistent decreased the overall magnitude of the shifts applied to patients.

  8. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  9. {sup 12}C formation: A classical quest in new light

    SciTech Connect (OSTI)

    Tengblad, O.; Alcorta, M.; Borge, M. J. G.; Madurga, M.; Perea, A.; Cubero, M.; Fynbo, H. O. U.; Riisager, K.; Kirsebom, O.; Hyldegaard, S.; Jonson, B.; Nyman, G.; Nilsson, T.; Diget, D. G.; Fulton, B.

    2011-10-28

    In this work we have studied the break-up of {sup 12}C following the reactions {sup 10}B({sup 3}He,p{alpha}{alpha}{alpha}) and {sup 11}B({sup 3}He,d{alpha}{alpha}{alpha}). The study was performed at the 5 MV tandem in Madrid. The break-up gives us information on excited states in {sup 12}C from the famous Hoyle state up to an energy of almost 18 MeV. Using a highly segmented experimental set-up the simultaneous detection of the three alpha particles in coincidence with a proton or deuteron respectively made possible a full kinematic reconstruction of the break-up. On the basis of the energies of the 3 {alpha} particles and their angular correlations it has been possible to determine the spin and parity of states for cases in which the assignment has been doubtful. Some of these levels will also de-excite via electromagnetic emission. The comparison between the energy of proton that populate a state of {sup 12}C and the sum of the energies of the 3{alpha} emitted from the same state makes possible to determine the presence of electromagnetic disintegration ({gamma}) to lower states within {sup 12}C followed by the 3{alpha} break-up.

  10. Production data on 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtzuk, S.; Colter, P.; Charache, G.; Campbell, B.

    1996-05-01

    Low bandgap 0.55 eV (2.25 {micro}m cutoff wavelength) indium gallium arsenide (In{sub 0.72}Ga{sub 0.28}As) thermophotovoltaic (TPV) cells use much more of the long wavelength energy emitted from low temperature (< 1,200 C) thermal sources than either Si or GaSb cells. Data are presented on a statistically significant number (2,500) of these TPV cells, indicating the performance obtainable in large numbers of cells. This data should be useful in the design and modeling of TPV system performance. At 1.2 A/cm{sup 2} short-circuit current, an average open-circuit voltage of 283 mV is obtained with a 60% fill factor. The peak external quantum efficiency for uncoated cells is 65% and is over 50% from 1.1 to 2.2 {micro}m. Internal quantum efficiency is over 76% in this range assuming an estimated 34% reflectance loss.

  11. Power Dependence of the RF Surface Resistance of MgB2 Superconductor.

    SciTech Connect (OSTI)

    Tajima, T.; Findikoglu, A. T.; Jason, A. J.; Krawczyk, F. L.; Mueller, F. M.; Shapiro, A. H.; Geng, R. L.; Padamsee, Hasan,; Romanenko, A.; Moeckly, B. H.

    2005-01-01

    Magnesium diboride (MgB{sub 2}) is a superconducting material that has a transition temperature (T{sub c}) of {approx}40 K, which is {approx}30 K higher than niobium (Nb) that has been used for most superconducting RF cavities in the past decades. Last year, it was demonstrated that the RF surface resistance of MgB{sub 2} can be lower than Nb at 4 K. One of the problems with other high-T{sub c} materials such as YBCO was its rapid increase in RF surface resistance with higher surface magnetic fields. Recently, we have shown that MgB2 shows little increase in the surface resistance up to {approx}120 Oe, equivalent of an accelerating field of {approx}3 MV/m. The highest field tested was limited by available power. This result is encouraging and has made us consider fabrication of a cavity coated with MgB{sub 2} and test it. Also, there is a potential that this material has a higher critical magnetic field that enables the cavity to run at a higher gradient than Nb cavities in addition to the possibility of operation at higher temperatures.

  12. Eight new Milky Way companions discovered in first-year Dark Energy Survey data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bechtol, K.

    2015-06-30

    We report the discovery of eight new Milky Way companions inmore » $$\\sim 1800\\;{\\mathrm{deg}}^{2}$$ of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (MV from $-2.2$ to $$-7.4\\;\\mathrm{mag}$$), physical sizes ($$10-170\\;\\mathrm{pc}$$), and heliocentric distances ($$30-330\\;\\mathrm{kpc}$$). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. As a result, we also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.« less

  13. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    SciTech Connect (OSTI)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

  14. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect (OSTI)

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9?kA/cm{sup 2}) and low ON-resistance (0.4 m? cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  15. A micro seismometer based on molecular electronic transducer technology for planetary exploration

    SciTech Connect (OSTI)

    Huang, Hai; Tang, Rui; Carande, Bryce; Oiler, Jonathan; Zaitsev, Dmitri; Agafonov, Vadim; Yu, Hongyu; School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287

    2013-05-13

    This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1{mu}m and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s{sup 2}) was measured under acceleration of 400{mu}g(g{identical_to}9.81m/s{sup 2}) at 0.32 Hz. A -115 dB (relative to (m/s{sup 2})/{radical}(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

  16. Stand-alone microprocessor controlled fast sweep Langmuir probe driver

    SciTech Connect (OSTI)

    Cheetham, A.D.; Davidson, L.; Jakobsen, J.; Lund, T.; Rayner, J.P.

    1997-09-01

    This article describes a power supply and data logger for a Langmuir probe interfaced to a personal computer. The system provides a voltage sweep range from {minus}125 to +100 V in 100 steps in a time {approximately}0.15 s. Restricted sweep ranges and single point operation are also possible. Probe current measurements are in the range from {minus}1.0 to +100 mA with a precision of 5 {mu}A on the most sensitive range, while the voltage may be set with a precision of 56 mV. Novel features of the system include: the use of integrate-and-dump techniques to implement the process of analog-to-digital conversion and to provide effective noise suppression; a solution to the problem of floating the power supply on top of the potential developed across the grounded current sensing resistor based on the power supply rejection ratio characteristics of a high voltage operational amplifier; and the development of an interface and control board employing the GPIB protocol to communicate with a host computer. Successful operation of the system has been demonstrated in the electrically noisy environment of a helicon plasma source. {copyright} {ital 1997 American Institute of Physics.}

  17. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect (OSTI)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  18. ILC Electron Source Injector Simuations

    SciTech Connect (OSTI)

    Lakshmanan, Manu; /Cornell U., LNS /SLAC

    2007-08-29

    As part of the global project aimed at proposing an efficient design for the ILC (International Linear Collider), we simulated possible setups for the electron source injector, which will provide insight into how the electron injector for the ILC should be designed in order to efficiently accelerate the electron beams through the bunching system. This study uses three types of software: E-Gun to simulate electron beam emission, Superfish to calculate solenoidal magnetic fields, and GPT (General Particle Tracer) to trace charged particles after emission through magnetic fields and subharmonic bunchers. We performed simulations of the electron source injector using various electron gun bias voltages (140kV - 200kV), emitted beam lengths (500ps - 1ns) and radii (7mm - 10mm), and electromagnetic field strengths of the first subharmonic buncher (5 - 20 MV/m). The results of the simulations show that for the current setup of the ILC, a modest electron gun bias voltage ({approx}140kV) is sufficient to achieve the required bunching of the beam in the injector. Extensive simulations of parameters also involving the second subharmonic buncher should be performed in order to gain more insight into possible efficient designs for the ILC electron source injector.

  19. Code cases for implementing risk-based inservice testing in the ASME OM code

    SciTech Connect (OSTI)

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  20. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    SciTech Connect (OSTI)

    Kazemi, Sayed Habib; Maghami, Mostafa Ghaem; Kiani, Mohammad Ali

    2014-12-15

    Highlights: We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup ?1} was achieved at a scan rate of 5 mV s{sup ?1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

  1. Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch

    SciTech Connect (OSTI)

    Yeckel, Christopher; Curry, Randy

    2011-09-15

    A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

  2. Electrodeposition of zinc on glassy carbon from ZnCl/sub 2/ and ZnBr/sub 2/ electrolytes

    SciTech Connect (OSTI)

    McBreen, J.; Gannon, E.

    1983-08-01

    The initial stages of the electrocrystallization of zinc from 3M ZnCl/sub 2/ and 3M ZnBr/sub 2/ on glassy carbon has been investigated using cyclic voltametry, the potential step method, and scanning electron microscopy. Particular care was taken to ensure electrolyte purity and to eliminate resistance effects in the measurements. The nucleation overvoltage in 3M ZnCl/sub 2/ was about 17 and about 12 mV in 3M ZnBr/sub 2/. In 3M ZnCl/sub 2/, the current transients from the potential step measurements could be fitted to a simple model that assumes instantaneous nucleation followed by growth of three dimensional centers under kinetic control. A similar mechanism is operative for 3M ZnBr/sub 2/ at low overvoltages. At higher overvoltages, the current transient is governed by mixed kinetic and diffusion control and cannot be fitted to a simple model. The lower nucleation overvoltage and the faster kinetics in 3M ZnBr/sub 2/ is correlated with the lower stability constants for the zinc bromide complexes. Erroneous results are obtained when resistance effects are not accounted for.

  3. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    SciTech Connect (OSTI)

    Bailey, David H; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine; Bailey, David H

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.

  4. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  5. Study the performance of photogalvanic cells for solar energy conversion and storage: Rose Bengal-D-Xylose-NaLS system

    SciTech Connect (OSTI)

    Gangotri, K.M.; Bhimwal, Mahesh Kumar

    2010-07-15

    The Rose Bengal is used as photosensitizer with D-Xylose as reductant and sodium lauryl sulphate (NaLS) as surfactant for the enhancement of the conversion efficiency and storage capacity of photogalvanic cell for its commercial viability. The observed value of the photogeneration of photopotential was 885.0 mV and photocurrent was 460.0 {mu}A whereas maximum power of the cell was 407.10 {mu}W. The observed power at power point was 158.72 {mu}W and the conversion efficiency was 1.52%. The fill factor 0.3151 was experimentally determined at the power point of the cell. The rate of initial generation of photocurrent was 63.88 {mu}A min{sup -1}. The photogalvanic cell so developed can work for 145.0 min in dark on irradiation for 165.0 min, i.e. the storage capacity of the photogalvanic cell is 87.87%. A simple mechanism for the photogeneration of photocurrent has also been proposed. (author)

  6. High precision predictions for exclusive VH production at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading ordermore » calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  7. Effect of non-uniform slow wave structure in a relativistic backward wave oscillator with a resonant reflector

    SciTech Connect (OSTI)

    Chen, Changhua; Xiao, Renzhen; Sun, Jun; Song, Zhimin; Huo, Shaofei; Bai, Xianchen; Shi, Yanchao; Liu, Guozhi

    2013-11-15

    This paper provides a fresh insight into the effect of non-uniform slow wave structure (SWS) used in a relativistic backward wave oscillator (RBWO) with a resonant reflector. Compared with the uniform SWS, the reflection coefficient of the non-uniform SWS is higher, leading to a lower modulating electric field in the resonant reflector and a larger distance to maximize the modulation current. Moreover, for both types of RBWOs, stronger standing-wave field takes place at the rear part of the SWS. In addition, besides Cerenkov effects, the energy conversion process in the RBWO strongly depends on transit time effects. Thus, the matching condition between the distributions of harmonic current and standing wave field provides a profound influence on the beam-wave interaction. In the non-uniform RBWO, the region with a stronger standing wave field corresponds to a higher fundamental harmonic current distribution. Particle-in-cell simulations show that with a diode voltage of 1.02 MV and beam current of 13.2 kA, a microwave power of 4 GW has been obtained, compared to that of 3 GW in the uniform RBWO.

  8. Progress on the Los Alamos heavy-ion injector

    SciTech Connect (OSTI)

    Wilson, D.C.; Riepe, K.B.; Ballard, E.O.; Meyer, E.A.; Shurter, R.P.; Van Haaften, F.W.; Humphries, S. Jr.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al/sup +/ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid will control plasma flux into the ion extraction region. This source has achieved a normalized emittance of epsilon/sub n/ < 3.10/sup -7/..pi..-m-rad with Al/sup +/ ions. An 800 kV Marx prototype with a laser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 ..mu..s, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  9. Low-lying dipole excitations in vibrational nuclei: The Cd isotopic chain studied in photon scattering experiments

    SciTech Connect (OSTI)

    Kohstall, C.; Belic, D.; Kneissl, U.; Nord, A.; Pitz, H.H.; Scheck, M.; Stedile, F.; Brentano, P. von; Fransen, C.; Gade, A.; Herzberg, R.-D.; Jolie, J.; Linnemann, A.; Pietralla, N.; Werner, V.; Yates, S.W.

    2005-09-01

    High-resolution nuclear resonance fluorescence experiments (NRF) were performed on {sup 110,111,112,114,116}Cd at the bremsstrahlung facility of the 4.3-MV Dynamitron accelerator in Stuttgart to study the low-lying dipole strength distributions in these vibrational nuclei. Numerous excited states, most of them previously unknown, were observed in the excitation energy range up to 4 MeV. Detailed spectroscopic information has been obtained on excitation energies, spins, decay widths, decay branchings, and transition probabilities. For states in the even-even isotopes {sup 110,112,114,116}Cd, parities could be assigned from linear polarization measurements. Together with our previous results for {sup 108,112,113,114}Cd from NRF studies without polarization measurements, systematics was established for the dipole strength distributions of the stable nuclei within the Cd isotopic chain. The results are discussed with respect to the systematics of E1 two-phonon excitations and mixed-symmetry states in even-even nuclei near the Z=50 shell closure and the fragmentation of these excitation modes in the odd-mass Cd isotopes.

  10. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  11. An analysis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic for efficient refrigeration and thermal energy harvesting

    SciTech Connect (OSTI)

    Vats, Gaurav; Vaish, Rahul; Bowen, Chris R.

    2014-01-07

    This article demonstrates the colossal energy harvesting capability of a lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic using the Olsen cycle. The maximum harvestable energy density estimated for this system is found to be 1523 J/L (1523 kJ/m{sup 3}) where the results are presented for extreme ambient conditions of 20–160 °C and electric fields of 0.1–4 MV/m. This estimated energy density is 1.7 times higher than the maximum reported to date for the lanthanum-doped lead zirconate titanate (thin film) system. Moreover, this study introduces a generalized and effective solid state refrigeration cycle in contrast to the ferroelectric Ericson refrigeration cycle. The cycle is based on a temperature induced polarization change on application of an unipolar electric field to ferroelectric ceramics.

  12. Low-Dose Hyper-Radiosensitivity Is Not a Common Effect in Normal Asynchronous and G2-Phase Fibroblasts of Cancer Patients

    SciTech Connect (OSTI)

    S?onina, Dorota; Biesaga, Beata; Janecka, Anna; Kabat, Damian; Bukowska-Strakova, Karolina; Gasi?ska, Anna

    2014-02-01

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells were irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.

  13. Improving the performance of stainless-steel DC high voltage photoelectron gun cathode electrodes via gas conditioning with helium or krypton

    SciTech Connect (OSTI)

    Bastaninejad, Mahzad; Elmustafa, Abdelmageed; Forman, Eric I.; Clark, James; Covert, Steven R.; Grames, Joseph M.; Hansknecht, John C.; Hernandez-Garcia, Carlos; Poelker, Bernard; Suleiman, Riad S.

    2014-10-01

    Gas conditioning was shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns, thus providing a reliable means to operate photoguns at higher voltages and field strengths. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. We have studied five stainless steel electrodes (304L and 316LN) that were polished to approximately 20 nm surface roughness using diamond grit, and evaluated inside a high voltage apparatus to determine the onset of field emission as a function of voltage and field strength. The field emission characteristics of each electrode varied significantly upon the initial application of voltage but improved to nearly the same level after gas conditioning using either helium or krypton, exhibiting less than 10 pA field emission at ?225 kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength of ~13 MV/m. Field emission could be reduced with either gas, but there were conditions related to gas choice, voltage and field strength that were more favorable than others.

  14. Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics

    SciTech Connect (OSTI)

    Baryshev, Sergey V. Antipov, Sergey; Jing, Chunguang; Qiu, Jiaqi; Shao, Jiahang; Liu, Wanming; Gai, Wei; Prez Quintero, Kenneth J.; Sumant, Anirudha V.; Kanareykin, Alexei D.

    2014-11-17

    A case performance study of a planar field emission cathode (FEC) based on nitrogen-incorporated ultrananocrystalline diamond, (N)UNCD, was carried out in an RF 1.3?GHz electron gun. The FEC was a 100?nm (N)UNCD film grown on a 20?mm diameter stainless steel disk with a Mo buffer layer. At surface gradients 4565?MV/m, peak currents of 180?mA (equivalent to 0.325?mA/cm{sup 2}) were achieved. Imaging with two YAG screens confirmed emission from the (N)UNCD surface with (1) the beam emittance of 1.5?mm??mrad/mm-rms and (2) longitudinal FWHM and rms widths of non-Gaussian energy spread of 0.7% and 11% at an electron energy of 2?MeV. Current stability was tested over the course of 36??10{sup 3} RF pulses (equivalent to 288??10{sup 6?}GHz oscillations)

  15. Comparison of the calculated absorbed dose using the Cadplan treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    SciTech Connect (OSTI)

    Gutirrez Castillo, J. G.; lvarez Romero, J. T. E-mail: fisarmandotorres@gmail.com Caldern, A. Torres E-mail: fisarmandotorres@gmail.com M, V. Tovar E-mail: fisarmandotorres@gmail.com

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < 3%.

  16. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    SciTech Connect (OSTI)

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  17. Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    2009-04-01

    This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity criteria, is described in Shonder and Florita (2003) and Shonder and Hughes (2005). To address the first objective of the Level 2 analysis, we first assembled all the necessary information, and then repeated the ESCOs' calculations of reported annual cost savings. Only minor errors were encountered, the most common being the use of incorrect escalation rates to calculate utility prices or O&M savings. Altogether, our corrected calculations of the ESCO's reported cost savings were within 0.6% of the ESCOs' reported cost savings, and errors found were as likely to favor the government as they were the ESCO. To address the second objective, we gathered data on utility use and cost from central databases maintained by the Department of Defense and the General Services Administration, and directly from some of the sites, to determine the prices of natural gas and electricity actually paid at the sites during the periods addressed by the annual reports. We used these data to compare the actual utility costs at the sites to the contract utility prices. For natural gas, as expected, we found that prices had risen much faster than had been anticipated in the contracts. In 17 of the 18 projects for which the comparison was possible, contract gas prices were found to be lower than the average actual prices being paid. We conclude that overall in the program, the estimates of gas prices and gas price escalation rates used in the Super ESPC projects have been conservative. For electricity, it was possible to compare contract prices with the actual (estimated) marginal prices of electricity in 20 projects. In 14 of these projects, the overall contract electricity price was found to be lower than the marginal price of electricity paid to the serving utility. Thus it appears that conservative estimates of electricity prices and escalation rates have been used in the program as well. Finally we calculated the value of the reported energy savings using the prices of utilities actually paid by the sites instead of the contract prices. In 16 of the 22 projects (

  18. Seeing Savings from an ESPC Project in Fort Polk's Utility Bills

    SciTech Connect (OSTI)

    Shonder, J.A.

    2005-03-08

    Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

  19. Understanding biogeobatteries: Where geophysics meets microbiology

    SciTech Connect (OSTI)

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

    2009-08-15

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  20. Galvanic interpretation of self-potential signals associated withmicrobial sulfate-reduction

    SciTech Connect (OSTI)

    Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2007-05-02

    We have evaluated the usefulness of the self-potential (SP)geophysical method to track the onset and location of microbialsulfate-reduction in saturated sediments during organic carbon amendment.Following stimulation of sulfate-reducing bacteria (SRB) by addition oflactate, anomalous voltages exceeding 600 mV correlated in space and timewith the accumulation of dissolved sulfide. Abiotic experiments in whichthe sulfide concentration at the measurement electrode was systematicallyvaried showed a positive correlation between the magnitude of the SPanomaly and differences in the half-cell potential associated with themeasurement and reference electrodes. Thus, we infer that the SPanomaliesresulted from electrochemical differences that developedbetween sulfide-rich regions and areas having higher oxidation potential.In neither experiment did generation of an SP anomaly require thepresence of an in situ electronic conductor, as is required by othermodels. These findings emphasize the importance of incorporation ofelectrochemical effects at electrode surfaces in interpretation of SPdata from geophysical studies. We conclude that SP measurements provide aminimally invasive means for monitoring stimulated sulfate-reductionwithin saturated sediments.

  1. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect (OSTI)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  2. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    SciTech Connect (OSTI)

    Mckel, V. Meissl, W.; Ikeda, T.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Ogiwara, K.; Yamazaki, Y.; Clever, M.; Imamoto, N.

    2014-01-15

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He{sup 2+}. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 12 ?m, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a ?m{sup 3} resolution, while monitoring the target in real time during and after irradiation.

  3. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  4. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films

    SciTech Connect (OSTI)

    Hassani, Hossein; Nedaie, Hassan Ali; Zahmatkesh, Mohammad Hassan; Shirani, Kaveh

    2014-04-01

    The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 5 mm{sup 2}, 10 10 mm{sup 2}, 20 20 mm{sup 2}, and 30 30 mm{sup 2} are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.

  5. An analytical method to calculate equivalent fields to irregular symmetric and asymmetric photon fields

    SciTech Connect (OSTI)

    Tahmasebi Birgani, Mohamad J.; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima

    2014-04-01

    Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 2.5% and 1.5 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.

  6. Sensitive fast electron spectrometer in adjustable triode configuration with pulsed tunable laser for research on photo-induced field emission cathodes

    SciTech Connect (OSTI)

    Mingels, S. Porshyn, V.; Bornmann, B.; Lützenkirchen-Hecht, D.; Müller, G.

    2015-04-15

    We have completed an ultra-high vacuum system for sensitive fast electron spectroscopy from cold cathodes in triode configuration under high electric fields E (<100 MV/m) and pulsed tunable laser illumination (3.5 ns, 10 Hz, hν = 0.5-5.9 eV, and 0.3-17 mJ). The cathodes are prepared and inserted under clean room conditions and can be precisely 3D-positioned, cooled or heated (77-400 K). Commissioning results with the upgraded system are presented. Field emission measurements with a W tip yielded an energy resolution of 14 meV at 4 eV pass energy and a precise determination of the emitter work function, size, and temperature. Photoemission spectroscopy of short electron bunches from a virgin and laser-ablated S-GaP crystal and quantum efficiency measurements revealed surface states, energy relaxation, and band structure effects. In conclusion, this novel system is ready now for the development and characterization of photo-induced field emission cathodes.

  7. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  8. Beam position monitor calibration for the Advanced Photon Source

    SciTech Connect (OSTI)

    Chung, Y.; Decker, G.; Kahana, E.; Lenkszus, F.; Lumpkin, A.; Sellyey, W.

    1993-07-01

    This paper describes the sensitivity and offset calibration for the beam position monitors (BPMs) using button-type pickups in the injector synchrotron, storage ring, and insertion devices of the Advanced Photon Source (APS). In order to reduce the overall offset and to isolate the error ({approx_lt} 100 {mu}m) due to the low fabrication tolerance in the extruded storage ring vacuum chamber, the electrical offset is minimized by carefully sorting and matching the buttons and cables according to the button capacitance and the characteristic impedances of the cable and the button feedthrough. The wire method is used for the sensitivity calibration, position-to-signal mapping, and measurement of resolution and long-term drift ({approx_lt} 1 mV) of the processing electronics. The processing electrons was also tested at Stanford Synchrotron Radiation Laboratory (SSRL) using a real beam, with results indicating better than 25 {mu}m resolution for the APS storage ring. Conversion between the BPM signal and the actual beam position is done by using polynomial expansions fit to the mapping data with absolute accuracy better than 25 {mu}m within {plus_minus}5 mm square. Measurement of the effect of button mispositioning and mechanical inaccuracy of the extruded storage ring vacuum chamber, including deformation under vacuum, will be also discussed.

  9. Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching -Hwa; et al

    2015-05-07

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less

  10. Eight new Milky Way companions discovered in first-year Dark Energy Survey data

    SciTech Connect (OSTI)

    Bechtol, K.; et al.

    2015-06-30

    We report the discovery of eight new Milky Way companions in $\\sim 1800\\;{\\mathrm{deg}}^{2}$ of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (MV from $-2.2$ to $-7.4\\;\\mathrm{mag}$), physical sizes ($10-170\\;\\mathrm{pc}$), and heliocentric distances ($30-330\\;\\mathrm{kpc}$). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. As a result, we also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.

  11. Carbon paint anode for reinforced concrete bridges in coastal environments

    SciTech Connect (OSTI)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  12. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; Desireddy, Anil; Artyushkova, Kateryna; Boncella, Amy E.; Atanassov, Plamen; Martinez, Jennifer S.

    2015-08-19

    We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonicmore » gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O2 to H2O with minimal production of H2O2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.« less

  13. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; Ng, Cho -Kuen; Qi, Minghao H.; England, Robert J.

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  14. PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells

    SciTech Connect (OSTI)

    Junghanns, Marcus; Plentz, Jonathan Andr, Gudrun; Gawlik, Annett; Hger, Ingmar; Falk, Fritz

    2015-02-23

    We fabricated an efficient hybrid solar cell by spin coating poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) on planar multicrystalline Si (mc-Si) thin films. The only 5??m thin Si absorber layers were prepared by diode laser crystallization of amorphous Si deposited by electron beam evaporation on glass. On these absorber layers, we studied the effect of SiO{sub x} and Al{sub 2}O{sub 3} terminated Si surfaces. The short circuit density and power conversion efficiency (PCE) of the mc-Si/Al{sub 2}O{sub 3}/PEDOT:PSS solar cell increase from 20.6 to 25.4?mA/cm{sup 2} and from 7.3% to 10.3%, respectively, as compared to the mc-Si/SiO{sub x}/PEDOT:PSS cell. Al{sub 2}O{sub 3} lowers the interface recombination and improves the adhesion of the polymer film on the hydrophobic mc-Si thin film. Open circuit voltages up to 604?mV were reached. This study demonstrates the highest PCE so far of a hybrid solar cell with a planar thin film Si absorber.

  15. Preparation and characterization of nanostructured NiO/MnO{sub 2} composite electrode for electrochemical supercapacitors

    SciTech Connect (OSTI)

    Liu Enhui Li Wen; Li Jian; Meng Xiangyun; Ding Rui; Tan Songting

    2009-05-06

    Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO{sub 2} samples exhibit higher surface area of 130-190 m{sup 2} g{sup -1}. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO{sub 2}. When the mass ratio of MnO{sub 2} and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO{sub 2} calculated from the cyclic voltammetry curves is 453 F g{sup -1}, for pure NiO and MnO{sub 2} are 209, 330 F g{sup -1} in 6 mol L{sup -1} KOH electrolyte and at scan rate of 10 mV s{sup -1}, respectively. The specific capacitance of NiO/MnO{sub 2} electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.

  16. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhancedmore » significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  17. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect (OSTI)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Minerao (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  18. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect (OSTI)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  19. Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector

    SciTech Connect (OSTI)

    Morales, Johnny E.; Crowe, Scott B.; Trapp, J. V.; Hill, Robin; Freeman, Nigel

    2014-11-01

    Purpose: Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods: Small field sizes were defined by BrainLAB circular cones (430 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ?{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were calculated by Monte Carlo methods using BEAMnrc and correction factors, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were derived for the PTW 60019 microDiamond detector. Results: For the small fields of 430 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ?{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}, were derived for the PTW 60019 microDiamond detector. Conclusions: The authors conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

  20. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect (OSTI)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging doses, soft tissue contrast was more easily differentiated on IBL + SPA head and neck and pelvic images than TBL + LFB and IBL + LFB. IBL + SPA thoracic images were comparable to IBL + LFB images, but less noisy than TBL + LFB images at all imaging doses considered. The mean MTFs over all imaging doses were comparable, at within 3%, for all imaging system configurations for both the head- and pelvis-sized phantoms. Conclusions: Since CNR scales with the square root of imaging dose, changing from TBL + LFB to IBL + LFB and IBL + LFB to IBL + SPA reduces the imaging dose required to obtain a given CNR by factors of 0.38 and 0.37, respectively. MTFs were comparable between imaging system configurations. IBL + SPA patient image quality was always better than that of the TBL + LFB system and as good as or better than that of the IBL + LFB system, for a given dose.

  1. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect (OSTI)

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanners HU calibration curve. Results: The ELAC was 0.0516 0.0063 cm{sup ?1} and 0.0580 0.0091 cm{sup ?1} for n-BCA without and with tantalum, respectively, compared to 0.0487 0.0009 cm{sup ?1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of ?0.29% and ?0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. Conclusions: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.

  2. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect (OSTI)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within 0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of 2.6% from the reference condition for the setup used. The ?-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 0.25) mm at 6 MV and (0.74 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup ?1}, respectively. For the inner 5 5 cm{sup 2} region and the outer 11 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup ?1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.

  3. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    SciTech Connect (OSTI)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.; Lallena, A. M.

    2012-05-15

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbed doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.

  4. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnationreduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.

  5. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    SciTech Connect (OSTI)

    Slattery, Bob S.

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  6. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect (OSTI)

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  7. Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Non-Aqueous Electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canepa, Pieremanuele; Gautam, Gopalakrishnan Sai; Malik, Rahul; Jayaraman, Saivenkataraman; Rong, Ziqin; Zavadil, Kevin R.; Persson, Kristin; Ceder, Gerbrand

    2015-04-08

    Multivalent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (~3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion-based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg2+ and Cl–dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at the interfacemore » but also explain how this system can support reversible Mg deposition, and as such, we provide insights in how to design other electrolytes for Mg plating and stripping. Furthermore, the active depositing species are identified to be (MgCl)+ monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl2 complexes). We found that upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge transfer is shown to be small (~61–46.2 kJ mol–1 to remove three THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl)+ complexes appear to be favorable for charge transfer. Finally, observations of Mg–Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction.« less

  8. SU-E-T-275: Radiobiological Evaluation of Intensity Modulated Radiotherapy Treatment for Locally Advanced Head and Neck Squamous Cell Carcinomas

    SciTech Connect (OSTI)

    Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R; Anil Kumar, M.R; Varatharaj, C.; Pyakuryal, A; Narayanasamy, Ganesh

    2014-06-01

    Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involved lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89 0.01) of primary tumor and the NTCP for parotids (0.200.12), spinal cord (0.050.01), esophagus (0.300.2), mandible (0.350.21), Oral cavity (0.370.18), Larynx (0.300.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.

  9. SU-E-T-291: Sensitivity of a Simple 2D EPID in Vivo Dosimetry

    SciTech Connect (OSTI)

    Peca, S; Brown, D

    2014-06-01

    Purpose: As radiotherapy (RT) increases in complexity, so does motivation for in vivo dosimetry (IVD), which may detect errors such as: setup, beam shaping and dose delivered. We have recently developed an easy-toimplement method for two-dimensional IVD based on images taken with the electronic portal imaging device (EPID) in cine mode during treatment. The purpose of this work is to characterize its sensitivity to possible RT delivery errors. Methods: We introduced a series of modifications to a simple RT field (1010, 100MU, 300RR, 20cm homogeneous phantom) to simulate errors. These modifications included multi-leaf collimator (MLC) position, number of MUs, and collimator angle. We quantified the sensitivity to inhomogeneities by inserting variable amounts of solid lung and bone. Finally we delivered realistic fields to an anthropomorphic phantom to estimate sensitivity to gantry angle and setup errors. Results: Our EPIDIVD is sensitive to MLC positioning errors of 1mm and 3mm in the closed and open directions respectively, and to 3% MU variations. Sensitivity to collimator angle depends on field shape irregularity; in the case of a 10x10 field, we are sensitive to errors of 0.8. The sensitivity to inhomogeneities is limited by the nature of MV imaging: approximately 1% signal change is noted when switching 5cm of water to equal amounts of bone or lung. This suggests that the EPID-IVD is likely not sensitive to small setup or gantry angle errors, as confirmed by anthropomorphic tests. Conclusion: We have characterized a simple method of 2D dose reconstruction at isocenter depth inside the patient, which is sensitive to possible RT delivery errors. This method may be useful as a secondary safety check, to prevent large errors from being carried on to following fractions, and to record delivered dose. By using readily available hardware, it is easily implemented and may prove especially useful in centers with limited resources.

  10. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Drlica-Wagner, A.

    2015-11-04

    We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (MV > -4.7 ) and span a range of physical sizes (17 pc < r1/2more » < 181pc) and heliocentric distances (25 kpc < D⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ 27.5 mag arcsec -2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10-3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Furthermore, our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  11. Structural and photovoltaic properties of a-Si (SNc)/c-Si heterojunction fabricated by EBPVD technique

    SciTech Connect (OSTI)

    Demiro?lu, D.; Kazmanli, K.; Urgen, M.; Tatar, B.

    2013-12-16

    In last two decades sculptured thin films are very attractive for researches. Some properties of these thin films, like high porosity correspondingly high large surface area, controlled morphology; bring into prominence on them. Sculptured thin films have wide application areas as electronics, optics, mechanics, magnetic and chemistry. Slanted nano-columnar (SnC) thin films are a type of sculptured thin films. In this investigation SnC thin films were growth on n-type crystalline Si(100) and p-type crystalline Si(111) via ultra-high vacuum electron beam evaporation technique. The structural and morphological properties of the amorphous silicon thin films were investigated by XRD, Raman and FE-SEM analysis. According to the XRD and Raman analysis the structure of thin film was amorphous and FE-SEM analysis indicated slanted nano-columns were formed smoothly. Slanted nano-columns a-Si/c-Si heterojunction were prepared as using a photovoltaic device. In this regard we were researched photovoltaic properties of these heterojunction with current-voltage characterization under dark and illumination conditions. Electrical parameters were determined from the current-voltage characteristic in the dark conditions zero-bias barrier height ?{sub B0}?=?0.83?1.00eV; diode ideality factor ??=?11.71?10.73; series resistance R{sub s}?=?260?31.1 k? and shunt resistance R{sub sh}?=?25.71?63.5 M? SnC a-Si/n-Si and SnC a-Si/p-Si heterojunctions shows a pretty good photovoltaic behavior about 10{sup 3}- 10{sup 4} times. The obtained photovoltaic parameters are such as short circuit current density J{sub sc} 83-40 mA/m{sup 2}, open circuit voltage V{sub oc} 900-831 mV.

  12. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect (OSTI)

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a FeldkampDavisKress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 400 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  13. SU-E-T-98: Dependence of Radiotherapy Couch Transmission Factors On Field Size and Couch-Isocenter Distance

    SciTech Connect (OSTI)

    Benhabib, S; Duan, J; Wu, X; Cardan, R; Shen, S; Huang, M; Popple, R; Brezovich, I

    2014-06-01

    Purpose: The dosimetric effect of the treatment couch is non-negligible in today's radiotherapy treatment. To accurately include couch in dose calculation, we investigated the dependence of couch transmission factors on field size and couch-isocenter distance. Methods: Couch transmission factors for Varian Exact Couch were determined by taking the ratios of ionization of a posterior-anterior beam with and without the couch in the beam path. Measurements were performed at the isocenter using a PTW cylindrical ionization chamber (Model 31030) with an Aluminum buildup cap of 1.1 cm thick for the 6 MV photon beam. Ionization readings for beam sizes ranging from 2 2 cm2 to 40 40 cm2 were taken. Transmission factors for couch-isocenter distances ranging from 3 cm to 20 cm were also investigated. Results: The couch transmission factors increased with the field size approximately in an exponential manner. For the field sizes that we tested, the transmission factor ranged from 0.976 to 0.992 for couch-isocenter distance of 3 cm. The transmission factor was also monotonically dependent on couch-isocenter separation distance, but in a lighter magnitude. For the tested couch heights, the transmission factor ranged from 0.974 0.972 for 2 2 cm2 field size and 0.992 0.986 for 40 40 cm2 field size. The dependence on couch-isocenter distance is stronger for larger field size. Conclusions: The transmission factor of a radiotherapy treatment couch increases with field size of the radiation beam and its distance from the isocenter. Such characterization of the couch transmission factor helps improve the accuracy of couch modeling for radiotherapy treatment planning.

  14. MO-F-16A-01: Implementation of MPPG TPS Verification Tests On Various Accelerators

    SciTech Connect (OSTI)

    Smilowitz, J; Bredfeldt, J; Geurts, M; Miller, J

    2014-06-15

    Purpose: To demonstrate the implementation of the Medical Physics Practice Guideline (MPPG) for dose calculation and beam parameters verification of treatment planning systems (TPS). Methods: We implemented the draft TPS MPPG for three linacs: Varian Trilogy, TomoHDA and Elekta Infinity. Static and modulated test plans were created. The static fields are different than used in commissioning. Data was collected using ion chambers and diodes in a scanning water tank, Delta4 phantom and a custom phantom. MatLab and Microsoft Excel were used to create analysis tools to compare reference DICOM dose with scan data. This custom code allowed for the interpolation, registration and gamma analysis of arbitrary dose profiles. It will be provided as open source code. IMRT fields were validated with Delta4 registration and comparison tools. The time for each task was recorded. Results: The tests confirmed the strengths, and revealed some limitations, of our TPS. The agreement between calculated and measured dose was reported for all beams. For static fields, percent depth dose and profiles were analyzed with criteria in the draft MPPG. The results reveal areas of slight mismatch with the model (MLC leaf penumbra, buildup region.) For TomoTherapy, the IMRT plan 2%/2 mm gamma analysis revealed poorest agreement in the low dose regions. For one static test plan for all 10MV Trilogy photon beams, the plan generation, scan queue creation, data collection, data analysis and report took 2 hours, excluding tank setup. Conclusions: We have demonstrated the implementation feasibility of the TPS MPPG. This exercise generated an open source tool for dose comparisons between scan data and DICOM dose data. An easily reproducible and efficient infrastructure with streamlined data collection was created for repeatable robust testing of the TPS. The tests revealed minor discrepancies in our models and areas for improvement that are being investigated.

  15. CBCT with specification of imaging dose and CNR by anatomical volume of interest

    SciTech Connect (OSTI)

    Leary, Del; Robar, James L.

    2014-01-15

    Purpose: A novel method has been developed for volume of interest (VOI) cone-beam CT (CBCT) imaging using a 2.35 MV/Carbon target linac imaging beam line combined with dynamic multileaf collimator sequences. Methods: The authors demonstrate the concept of acquisition of multiple, separate imaging volumes, where volumes can be either completely separated or nested, and are associated with predetermined imaging dose and contrast-to-noise ratio (CNR) characteristics. Two individual MLC sequences were established in the planning system (Eclipse, Varian Medical) to collimate the beam according to a defined inner VOI (e.g., containing a target volume under image guidance) and an outer VOI (e.g., including surrounding landmarks or organs-at-risk). MLC sequences were interleaved as a function of gantry angle to produce a reconstructed CBCT image with nested VOIs. By controlling the ratio of inner-to-outer ratio of MLC segments (and thus Monitor Units) during acquisition, the relative dose and CNR in the two volumes can be controlled. Inner-to-outer ratios of 2:1 to 6:1 were examined. Results: The concept was explored using an anatomical head phantom to assess image quality. A geometric phantom was used to quantify absolute dose and CNR values for the various sequences. The authors found that the dose in the outer VOI decreased by a functional relationship dependent on the inner-to-outer sequence ratio, while the CNR varied by the square root of dose, as expected. Conclusions: In this study the authors demonstrate flexibility in VOI CBCT by tailoring the imaging dose and CNR distribution in separate volumes within the patient anatomy. This would allow for high quality imaging of a target volume for alignment purposes, with simultaneous low dose imaging of the surrounding anatomy (e.g., for coregistration)

  16. SU-E-T-145: Effects of Temporary Tachytherapy Inhibition Magnet On MOSFET Dose Measurements of Cardiovascular Implantable Electronic Devices (CIED) in Radiation Therapy Patients

    SciTech Connect (OSTI)

    P, Joshi; Salomons, G; Kerr, A; Peters, C; Lalonde, M

    2014-06-01

    Purpose: To determine the effects of temporary tachytherapy inhibition magnet on MOSFET dose measurements of cardiovascular implantable electronic devices (CIED) in radiation therapy patients. Methods: Infield and peripheral MOSFET dose measurements with 6MV photon beams were performed to evaluate dose to a CIED in the presence of a doughnut shaped temporary tachytherapy inhibition magnet. Infield measurements were done to quantify the effects of the magnetic field alone and shielding by the magnet. MOSFETs were placed inside a 2020cm{sup 2} field at a depth of 3cm in the isocentre plane in the presence and absence of the magnet. Peripheral dose measurements were done to determine the impact of the magnet on dose to the CIED in a clinical setting. These measurements were performed at the centre, under the rim and half way between a 1010cm{sup 2} field edge and the magnet with MOSFETS placed at the surface, 0.5cm and 1cm depths in the presence and absence of the magnet. Results: Infield measurements showed that effects of magnetic field on the MOSFET readings were within the 2% MOSFET dose measurement uncertainty; a 20% attenuation of dose under the magnet rim was observed. Peripheral dose measurements at the centre of the magnet show an 8% increase in surface dose and a 6% decrease in dose at 1cm depth. Dose under the magnet rim was reduced by approximately 68%, 45% and 25% for MOSFET placed at 0.0, 0.5 and 1.0cm bolus depths, respectively. Conclusions: The magnetic field has an insignificant effect on MOSFET dose measurements. Dose to the central region of CIED represented by centre of the magnet doughnut increases at the surface, and decreases at depths due to low energy scattering contributions from the magnet. Dose under the magnet rim, representing CIED edges, decreased significantly due to shielding.

  17. Characterization of radiation beams used to determinate the correction factor for a CyberKnife unit reference field using ionization chambers

    SciTech Connect (OSTI)

    Aragn-Martnez, Nestor Massillon-JL, Guerda; Gmez-Muoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm 10 cm and 5.4 cm 5.4 cm fields was obtained in order to simulate the CyberKnife conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  18. Electrochemical performance studies of MnO{sub 2} nanoflowers recovered from spent battery

    SciTech Connect (OSTI)

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-12-15

    Highlights: MnO{sub 2} is recovered from spent zinccarbon batteries as nanoflowers structure. Recovered MnO{sub 2} nanoflowers show high specific capacitance. Recovered MnO{sub 2} nanoflowers show stable electrochemical cycling up to 900 cycles. Recovered MnO{sub 2} nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO{sub 2} nanoflowers recovered from spent household zinccarbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO{sub 2} nanoflowers are recovered from spent zinccarbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO{sub 2} nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO{sub 2} in birnessite phase, while electron microscopy analysis shows the MnO{sub 2} is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO{sub 2} nanoflowers exhibit high specific capacitance (294 F g{sup ?1} at 10 mV s{sup ?1}; 208.5 F g{sup ?1} at 0.1 A g{sup ?1}) in 1 M Na{sub 2}SO{sub 4} electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO{sub 2} nanoflowers recovered from spent zinccarbon battery in the development of high performance energy storage supercapacitor system.

  19. SU-E-T-242: Monte Carlo Simulations Used to Test the Perturbation of a Reference Ion Chamber Prototype Used for Small Fields

    SciTech Connect (OSTI)

    Vazquez Quino, L; Calvo, O; Huerta, C; DeWeese, M

    2014-06-01

    Purpose: To study the perturbation due to the use of a novel Reference Ion Chamber designed to measure small field dosimetry (KermaX Plus C by IBA). Methods: Using the Phase-space files for TrueBeam photon beams available by Varian in IAEA-compliant format for 6 and 15 MV. Monte Carlo simulations were performed using BEAMnrc and DOSXYZnrc to investigate the perturbation introduced by a reference chamber into the PDDs and profiles measured in water tank. Field sizes ranging from 11, 22,33, 55 cm2 were simulated for both energies with and without a 0.5 mm foil of Aluminum which is equivalent to the attenuation equivalent of the reference chamber specifications in a water phantom of 303030 cm3 and a pixel resolution of 2 mm. The PDDs, profiles, and gamma analysis of the simulations were performed as well as a energy spectrum analysis of the phase-space files generated during the simulation. Results: Examination of the energy spectrum analysis performed shown a very small increment of the energy spectrum at the build-up region but no difference is appreciated after dmax. The PDD, profiles and gamma analysis had shown a very good agreement among the simulations with and without the Al foil, with a gamma analysis with a criterion of 2% and 2mm resulting in 99.9% of the points passing this criterion. Conclusion: This work indicates the potential benefits of using the KermaX Plus C as reference chamber in the measurement of PDD and Profiles for small fields since the perturbation due to in the presence of the chamber the perturbation is minimal and the chamber can be considered transparent to the photon beam.

  20. Evaluation of the Gafchromic{sup Registered-Sign} EBT2 film for the dosimetry of radiosurgical beams

    SciTech Connect (OSTI)

    Larraga-Gutierrez, Jose M.; Garcia-Hernandez, Diana; Garcia-Garduno, Olivia A.; Galvan de la Cruz, Olga O.; Ballesteros-Zebadua, Paola; Esparza-Moreno, Karina P.

    2012-10-15

    Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{sup Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.

  1. Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PRO trade mark sign film scanners for use in IMRT dosimetry using Gafchromic and radiographic film

    SciTech Connect (OSTI)

    Wilcox, Ellen; Daskalov, George; Nedialkova, Lucy

    2007-01-15

    Intensity-modulated radiotherapy (IMRT) treatment plan verification is often done using Kodak EDR2 film and a Vidar Dosimetry PRO trade mark sign film digitizer. However, since many hospitals are moving towards a filmless environment, access to a film processor may not be available. Therefore, we have investigated a newly available Gafchromic[reg] EBT film for IMRT dosimetry. Planar IMRT dose distributions are delivered to both EBT and EDR2 film and scanned with the Vidar VXR-16 as well as an Epson Expression 1680 flatbed scanner. The measured dose distributions are then compared to those calculated with a Pinnacle treatment planning system. The IMRT treatments consisted of 7-9 6 MV beams for treatment of prostate, head and neck, and a few other sites. The films were analyzed using FilmQA trade mark sign (3cognition LLC) software. Comparisons between measured and calculated dose distributions are reported as dose difference (DD) (pixels within {+-}5%), distance to agreement (DTA) (3 mm), as well as gamma values ({gamma}) (dose={+-}3%, dist.=2 mm). Using EDR2 with the Vidar scanner is an established technique and agreement between calculated and measured dose distributions was better than 90% in all indices (DD, DTA, and {gamma}). However, agreement with calculations deteriorated reaching the lower 80% for EBT film scans with the Vidar scanner in logarithmic mode. The EBT Vidar scans obtained in linear mode showed an improved agreement to the upper 80% range, but artifacts were still observed across the scan. These artifacts were very distinct in all EBT scans and can be attributed to the way the film is transported through the scanner. In the Epson scanner both films are rigidly immobilized and the light source scans over the film. It was found that the Epson scanner performed equally well with both types of film giving agreement to better than 90% in all indices.

  2. SU-E-T-209: Independent Dose Calculation in FFF Modulated Fields with Pencil Beam Kernels Obtained by Deconvolution

    SciTech Connect (OSTI)

    Azcona, J; Burguete, J

    2014-06-01

    Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.

  3. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification

    SciTech Connect (OSTI)

    Kirov, Assen S.; Caravelli, Gregory; Palm, Aasa; Chui, Chen; LoSasso, Thomas

    2006-10-15

    The higher sensitivity to low-energy scattered photons of radiographic film compared to water can lead to significant dosimetric error when the beam quality varies significantly within a field. Correcting for this artifact will provide greater accuracy for intensity modulated radiation therapy (IMRT) verification dosimetry. A procedure is developed for correction of the film energy-dependent response by creating a pencil beam kernel within our treatment planning system to model the film response specifically. Film kernels are obtained from EGSnrc Monte Carlo simulations of the dose distribution from a 1 mm diameter narrow beam in a model of the film placed at six depths from 1.5 to 40 cm in polystyrene and solid water phantoms. Kernels for different area phantoms (50x50 cm{sup 2} and 25x25 cm{sup 2} polystyrene and 30x30 cm{sup 2} solid water) are produced. The Monte Carlo calculated kernel is experimentally verified with film, ion chamber and thermoluminescent dosimetry (TLD) measurements in polystyrene irradiated by a narrow beam. The kernel is then used in convolution calculations to predict the film response in open and IMRT fields. A 6 MV photon beam and Kodak XV2 film in a polystyrene phantom are selected to test the method as they are often used in practice and can result in large energy-dependent artifacts. The difference in dose distributions calculated with the film kernel and the water kernel is subtracted from film measurements to obtain a practically film artifact free IMRT dose distribution for the Kodak XV2 film. For the points with dose exceeding 5 cGy (11% of the peak dose) in a large modulated field and a film measurement inside a large polystyrene phantom at depth of 10 cm, the correction reduces the fraction of pixels for which the film dose deviates from dose to water by more than 5% of the mean film dose from 44% to 6%.

  4. SU-E-T-577: Commissioning of a Deterministic Algorithm for External Photon Beams

    SciTech Connect (OSTI)

    Zhu, T; Finlay, J; Mesina, C; Liu, H

    2014-06-01

    Purpose: We report commissioning results for a deterministic algorithm for external photon beam treatment planning. A deterministic algorithm solves the radiation transport equations directly using a finite difference method, thus improve the accuracy of dose calculation, particularly under heterogeneous conditions with results similar to that of Monte Carlo (MC) simulation. Methods: Commissioning data for photon energies 6 15 MV includes the percentage depth dose (PDD) measured at SSD = 90 cm and output ratio in water (Spc), both normalized to 10 cm depth, for field sizes between 2 and 40 cm and depths between 0 and 40 cm. Off-axis ratio (OAR) for the same set of field sizes was used at 5 depths (dmax, 5, 10, 20, 30 cm). The final model was compared with the commissioning data as well as additional benchmark data. The benchmark data includes dose per MU determined for 17 points for SSD between 80 and 110 cm, depth between 5 and 20 cm, and lateral offset of up to 16.5 cm. Relative comparisons were made in a heterogeneous phantom made of cork and solid water. Results: Compared to the commissioning beam data, the agreement are generally better than 2% with large errors (up to 13%) observed in the buildup regions of the FDD and penumbra regions of the OAR profiles. The overall mean standard deviation is 0.04% when all data are taken into account. Compared to the benchmark data, the agreements are generally better than 2%. Relative comparison in heterogeneous phantom is in general better than 4%. Conclusion: A commercial deterministic algorithm was commissioned for megavoltage photon beams. In a homogeneous medium, the agreement between the algorithm and measurement at the benchmark points is generally better than 2%. The dose accuracy for a deterministic algorithm is better than a convolution algorithm in heterogeneous medium.

  5. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    SciTech Connect (OSTI)

    Trefny, J.U.; Mao, D.

    1998-01-01

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  6. Constraints on particle dark matter from cosmic-ray antiprotons

    SciTech Connect (OSTI)

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2014-04-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints.

  7. SciThur PM: Imaging 03: A novel ?erenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect (OSTI)

    Teymurazyan, A; Rowlands, J A; Pang, G

    2014-08-15

    Electronic Portal Imaging Devices (EPIDs) have been used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Recently a new concept of a high quantum efficiency (QE) ?erenkov Portal Imaging Device (CPID) for MV x-ray imaging in radiation therapy was introduced. It relies on ?erenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibres aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few ?erenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required. In this work we propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index, a much superior light collection efficiency is achieved. Our Monte Carlo studies have shown that the modified new CPID has a QE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current flat-panel based EPIDs. Furthermore it has been demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.

  8. Flattening filter removal for improved image quality of megavoltage fluoroscopy

    SciTech Connect (OSTI)

    Christensen, James D.; Kirichenko, Alexander; Gayou, Olivier

    2013-08-15

    Purpose: Removal of the linear accelerator (linac) flattening filter enables a high rate of dose deposition with reduced treatment time. When used for megavoltage imaging, an unflat beam has reduced primary beam scatter resulting in sharper images. In fluoroscopic imaging mode, the unflat beam has higher photon count per image frame yielding higher contrast-to-noise ratio. The authors goal was to quantify the effects of an unflat beam on the image quality of megavoltage portal and fluoroscopic images.Methods: 6 MV projection images were acquired in fluoroscopic and portal modes using an electronic flat-panel imager. The effects of the flattening filter on the relative modulation transfer function (MTF) and contrast-to-noise ratio were quantified using the QC3 phantom. The impact of FF removal on the contrast-to-noise ratio of gold fiducial markers also was studied under various scatter conditions.Results: The unflat beam had improved contrast resolution, up to 40% increase in MTF contrast at the highest frequency measured (0.75 line pairs/mm). The contrast-to-noise ratio was increased as expected from the increased photon flux. The visualization of fiducial markers was markedly better using the unflat beam under all scatter conditions, enabling visualization of thin gold fiducial markers, the thinnest of which was not visible using the unflat beam.Conclusions: The removal of the flattening filter from a clinical linac leads to quantifiable improvements in the image quality of megavoltage projection images. These gains enable observers to more easily visualize thin fiducial markers and track their motion on fluoroscopic images.

  9. WE-E-18A-08: Towards a Next-Generation Electronic Portal Device for Simultaneous Imaging and Dose Verification in Radiotherapy

    SciTech Connect (OSTI)

    Blake, S; Vial, P; Holloway, L; Kuncic, Z

    2014-06-15

    Purpose: This work forms part of an ongoing study to develop a next-generation electronic portal imaging device (EPID) for simultaneous imaging and dose verification in radiotherapy. Monte Carlo (MC) simulations were used to characterize the imaging performance of a novel EPID that has previously been demonstrated to exhibit a water-equivalent response. The EPID ' s response was quantified in several configurations and model parameters were empirically validated against experimental measurements. Methods: A MC model of a novel a-Si EPID incorporating an array of plastic scintillating fibers was developed. Square BCF-99-06A scintillator fibers with PMMA cladding (Saint-Gobain Crystals) were modelled in a matrix with total area measuring 150150 mm{sup 2}. The standard electromagnetic and optical physics Geant4 classes were used to simulate radiation transport from an angled slit source (6 MV energy spectrum) through the EPID and optical photons reaching the photodiodes were scored. The prototype's modulation transfer function (MTF) was simulated and validated against experimental measurements. Several optical transport parameters, fiber lengths and thicknesses of an air gap between the scintillator and photodiodes were investigated to quantify their effects on the prototype's detection efficiency, sensitivity and MTF. Results: Simulated EPID response was more sensitive to variations in geometry than in the optical parameters studied. The MTF was particularly sensitive to the introduction of a 0.51.0 mm air gap between the scintillator and photodiodes, which lowered the MTF relative to that simulated without the gap. As expected, increasing the fiber length increased the detector efficiency and sensitivity while decreasing the MTF. Conclusion: A model of a novel water-equivalent EPID has been developed and benchmarked against measurements using a physical prototype. We have demonstrated the feasibility of this new device and are continuing to optimize the design to achieve an imaging response that warrants the development of a next-generation prototype.

  10. Poster Thur Eve 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    SciTech Connect (OSTI)

    Grfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the ?-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ?10 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 0.9%, and the maximum percentage difference was ?3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.

  11. Binding and Direct Electrochemistry of OmcA, an Outer-Membrane Cytochrome from an Iron Reducing Bacterium, with Oxide Electrodes: A Candidate Biofuel Cell System

    SciTech Connect (OSTI)

    Eggleston, Carrick M.; Voros, Janos; Shi, Liang; Lower, Brian H.; Droubay, Timothy C.; Colberg, Patricia J.

    2008-02-15

    Dissimilatory iron-reducing bacteria transfer electrons to solid ferric respiratory electron acceptors. Outer-membrane cytochromes expressed by these organisms are of interest in both microbial fuel cells and biofuel cells. We use optical waveguide lightmode spectroscopy (OWLS) to show that OmcA, an 85 kDa decaheme outer-membrane c-type cytochrome from Shewanella oneidensis MR-1, adsorbs to isostructural Al2O3 and Fe2O3 in similar amounts. Adsorption is ionic-strength and pH dependent (peak adsorption at pH 6.57.0). The thickness of the OmcA layer on Al2O3 at pH 7.0 [5.8 1.1 (2r) nm] from OWLS is similar, within error, to that observed using atomic force microscopy (4.8 2 nm). The highest adsorption density observed was 334 ng cm 2 (2.4 1012 molecules cm 2), corresponding to a monolayer or 9.9 nm diameter spheres or submonolayer coverage by smaller molecules. Direct electrochemistry of OmcA on Fe2O3 electrodes was observed using cyclic voltammetry, with cathodic peak potentials of 380 to 320 mV versus Ag/AgCl. Variations in the cathodic peak positions are speculatively attributed to redox-linked conformation change or changes in molecular orientation. OmcA can exchange electrons with ITO electrodes at higher current densities than with Fe2O3. Overall, OmcA can bind to and exchange electrons with several oxides, and thus its utility in fuel cells is not restricted to Fe2O3.

  12. SU-E-T-578: MCEBRT, A Monte Carlo Code for External Beam Treatment Plan Verifications

    SciTech Connect (OSTI)

    Chibani, O; Ma, C; Eldib, A

    2014-06-01

    Purpose: Present a new Monte Carlo code (MCEBRT) for patient-specific dose calculations in external beam radiotherapy. The code MLC model is benchmarked and real patient plans are re-calculated using MCEBRT and compared with commercial TPS. Methods: MCEBRT is based on the GEPTS system (Med. Phys. 29 (2002) 835846). Phase space data generated for Varian linac photon beams (6 15 MV) are used as source term. MCEBRT uses a realistic MLC model (tongue and groove, rounded ends). Patient CT and DICOM RT files are used to generate a 3D patient phantom and simulate the treatment configuration (gantry, collimator and couch angles; jaw positions; MLC sequences; MUs). MCEBRT dose distributions and DVHs are compared with those from TPS in absolute way (Gy). Results: Calculations based on the developed MLC model closely matches transmission measurements (pin-point ionization chamber at selected positions and film for lateral dose profile). See Fig.1. Dose calculations for two clinical cases (whole brain irradiation with opposed beams and lung case with eight fields) are carried out and outcomes are compared with the Eclipse AAA algorithm. Good agreement is observed for the brain case (Figs 2-3) except at the surface where MCEBRT dose can be higher by 20%. This is due to better modeling of electron contamination by MCEBRT. For the lung case an overall good agreement (91% gamma index passing rate with 3%/3mm DTA criterion) is observed (Fig.4) but dose in lung can be over-estimated by up to 10% by AAA (Fig.5). CTV and PTV DVHs from TPS and MCEBRT are nevertheless close (Fig.6). Conclusion: A new Monte Carlo code is developed for plan verification. Contrary to phantombased QA measurements, MCEBRT simulate the exact patient geometry and tissue composition. MCEBRT can be used as extra verification layer for plans where surface dose and tissue heterogeneity are an issue.

  13. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. MnO? nanowires, which are a promising replacement for RuO?, were synthesized PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. PVDF films were developed with breakdown strengths of > 600MVm?, a maximum energy density of approximately 15 Jcm?, and an average dielectric constant of 9.8 (1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  14. Optimized design for PIGMI

    SciTech Connect (OSTI)

    Hansborough, L.; Hamm, R.; Stovall, J.; Swenson, D.

    1980-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, and RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28 mA. The beam pulse length is 60 ..mu..s at a 60-Hz repetition rate, resulting in a 100-..mu..A average beam current. The total cost of the accelerator is estimated to be approx. $10 million.

  15. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect (OSTI)

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  16. The development of a one microsecond pulse length, repetitively pulsed, high power modulator and a long-pulse electron beam diode for the production of intense microwaves

    SciTech Connect (OSTI)

    Stringfield, R.M.; Faehl, R.J.; Fazio, M.V.; Hoeberling, R.F.; Kwan, T.J.T.; Rickel, D.G.; VanHaaften, F.; Wasierski, R.F.; Erickson, A.; Rust, K.

    1992-07-01

    This paper discusses the pulse power and explosive emission electron beam diode development effort we have undertaken to power a relativistic klystron amplifier (RKA) microwave source. The pulsed power and electron beam must enable the RKA to Produce one kilojoule of 13 GHz radiation per pulse at a 5 Hz repetition frequency. These efforts include tests and improvements of a 1 {mu}s pulse length thyratron switched modulator, and the computational and experimental design of a 1-{mu}s-pulse-length explosive emission electron gun. The one microsecond pulse length is almost an order of magnitude beyond what has been achieved heretofore with an RKA. Achieving a peak power approaching 1 GW for 1 {mu}s requires a well behaved electron beam on that time scale. An electron beam diode has been developed that delivers a peak current of 4 to 5 kA for a pulse duration exceeding 1 {mu}s, at a beam kinetic energy above 600 keV. BANSHEE is the high voltage modulator designed for use as an electron beam driver for high power microwave tube development. The BANSHEE output pulse design parameters are 1 MV and 10 kA, with a 1 {mu}s pulse width at a repetition rate of 3--5 Hz, driving a load of impedance of 100 ohms. BANSHEE is a thyratron-switched line-type modular with a pulse transformer output stage. The modulator design is pushing the state of the art in thyratron technology and capacitor lifetime. The results of the BANSHEE modulator testing are described.

  17. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect (OSTI)

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment process on an MR accelerator.

  18. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect (OSTI)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  19. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the Activation Plateau

    SciTech Connect (OSTI)

    Li, Yan; Bareno, Javier; Bettge, Martin; Abraham, Daniel P

    2015-01-01

    A common feature of lithium-excess layered oxides, nominally of composition xLi2MnO3(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li1.2Ni0.15Mn0.55Co0.1O2 vs. Li cells after 20 cycles in the 24.1 V range at 55C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.

  20. SU-E-J-129: A Strategy to Consolidate the Image Database of a VERO Unit Into a Radiotherapy Management System

    SciTech Connect (OSTI)

    Yan, Y; Medin, P; Yordy, J; Zhao, B; Jiang, S

    2014-06-01

    Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO, was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.