National Library of Energy BETA

Sample records for muscle shoals alabama

  1. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  2. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  3. Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama

  4. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  5. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  6. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  7. "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"SHOAL CREEK MINE",85080,24.098,0.8,13.2,183.1 "FERC423",2003,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBEMOW",278810,23.498,0.56,4.3,141.7

  8. Shoal, Dribble, Gnome, Gasbuggy,

    Office of Legacy Management (LM)

    '1 (3JlpV Project Proposal - Evaluation of Tritium and Other Radionuclides in Groundwater in the Areas Surrounding the Sites of Projects Shoal, Dribble, Gnome, Gasbuggy, and ...

  9. Shoal, Nevada, Site Fact Sheet

    Office of Legacy Management (LM)

    Shoal, Nevada, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Shoal, Nevada, Site Location of the Shoal, Nevada, Site Site Description and History The Shoal site is situated on 2,560 acres of withdrawn federal lands within the north-central portion of the Sand Springs Range in Churchill County, Nevada. The town of Fallon is the largest populated area in the region and is about 30 miles northwest of the site. The region around the Shoal site is sparsely

  10. DOE - Office of Legacy Management -- Shoal

    Office of Legacy Management (LM)

    Nevada Shoal, Nevada, Site A Nevada Offsite shoalmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Shoal Site in ...

  11. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  12. DOE - Office of Legacy Management -- Shoal

    Office of Legacy Management (LM)

    Nevada Shoal, Nevada, Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Groundwater Monitoring Report Project Shoal Area, Subsurface Corrective Action Unit 447 May 2015 Groundwater Sampling at the Shoal, Nevada, Site Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447 NDEP Shoal Document Archives Disclaimer Please be green. Do not print these documents unless absolutely necessary. Submit a FOIA Request for

  13. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  14. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  15. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  16. Madison County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  17. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  18. Jefferson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  19. Limestone County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  20. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  1. DOE - Office of Legacy Management -- Shoal Test Site - NV 03

    Office of Legacy Management (LM)

    Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand ...

  2. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  3. Blount County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  4. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  5. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  6. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  7. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  8. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  9. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  10. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  11. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  12. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  13. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  14. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  15. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  16. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  17. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  18. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  19. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  20. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  1. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  2. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  3. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  4. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  5. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  6. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  7. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  8. Snapping Shoals El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Snapping Shoals El Member Corp Jump to: navigation, search Name: Snapping Shoals El Member Corp Place: Georgia Phone Number: 770-786-3484 Website: www.ssemc.com Twitter:...

  9. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  10. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  11. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  12. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  13. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  14. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  15. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  16. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  17. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  18. shoal_bk_10-03.book

    Office of Legacy Management (LM)

    3 MODELING TO SUPPORT GROUNDWATER CONTAMINANT BOUNDARIES FOR THE SHOAL UNDERGROUND NUCLEAR TEST prepared by Karl Pohlmann, Greg Pohll, Jenny Chapman, Ahmed E. Hassan, Rosemary Carroll, and Craig Shirley submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy OCTOBER 2003 Publication No. 45184 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or

  19. Alabama/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  20. Data Report Project Shoal Area Churchill County, Nevada

    Office of Legacy Management (LM)

    505 UCC-700 DATA REPORT PROJECT SHOAL AREA CHURCHILL COUNTY, NEVADA DOE Nevada Operations Office Las Vegas, Nevada July 1998 DATA REPORT PROJECT SHOAL AREA CHURCHILL COUNTY, NEVADA Approved by: Date: Monica Sanchez, Project Manager Off-Sites Subproject Approved by: Date: Runore C. Wycoff, Project Manager Nevada Environmental Restoration Project i Table of Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  1. DOE - Office of Legacy Management -- Tennessee Valley Authority...

    Office of Legacy Management (LM)

    Valley Authority, Muscle Shoals Alabama; Circa 1987 AL.01-3 - TVA Letter; Siegel to Mott; Subject: Comments on Radiological Report; May 15, 1980. Attachment: Preliminary Survey...

  2. Birmingham, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  3. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed

  4. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  5. Alabama Offshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

  6. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Alabama Region High School Regional Alabama Alabama High School Regional Science...

  7. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Alabama Regions Middle School Regional Alabama Alabama...

  8. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary ...

  9. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Energy Incentive Programs, Alabama Updated June 2015 Alabama utilities collectively budgeted $40 million for energy efficiency and load management programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Alabama has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Alabama Energy provides an on-line energy information system and various informational resources, but does not currently

  10. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  11. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  12. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  13. Haleburg, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  14. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  15. Abbeville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  16. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  17. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  18. Microsoft Word - 2005 Draft Shoal Monitoring Total Rpt.doc

    Office of Legacy Management (LM)

    39 Long-term Monitoring Plan for the Shoal Underground Nuclear Test Prepared by Ahmed E. Hassan submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada FEBRUARY 2005 Publication No. 45210 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

  19. Alabama -- SEP Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. File Alabama -- SEP Data Dashboard More Documents & Publications Massachusetts -- SEP Data Dashboard Austin Energy Data Dashboard Washington -- SEP Data Dashboard

  20. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

  1. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  2. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  3. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  6. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  7. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  9. City of Bessemer Utilities, Alabama | Open Energy Information

    Open Energy Info (EERE)

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  10. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  11. Energy Secretary Bodman Tours Alabama Red Cross Facility and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends ...

  12. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  13. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  14. Microsoft PowerPoint - Bull Shoals U1 repair MSB edit 3.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bull Shoals Unit 1 161kV Switchyard Feeder Repair Bull Shoals Unit 1 161kV Bull Shoals Unit 1 161kV Switchyard Feeder Repair Switchyard Feeder Repair Mark Dixson Little Rock District US Army Corps US Army Corps of Engineers of Engineers ® ® One Corps Serving The Army and the Nation * Original Equipment - 52 years old. * Unit 1 Oil filled cable pothead failed and exploded on Sept 6 2006. * Resulting fire and fire suppression damaged oil insulated cable system * Minor damage to power plant.

  15. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.

  16. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  17. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect (OSTI)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  18. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama ... SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and ...

  19. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data

  20. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Alabama, the project aimed to work with small, medium, and large industrial companies to reduce their energy intensity by a minimum of 2.5% each year and to increase their ...

  2. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  3. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  4. ALABAMA GETS WISE ABOUT SELLING UPGRADES

    Broader source: Energy.gov [DOE]

    With goal of sharing knowledge about each state’s efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO)...

  5. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  7. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  8. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  9. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  10. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  11. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  12. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  13. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  14. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  15. Alabama State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  16. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  17. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Broader source: Energy.gov [DOE]

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  18. March 2010 Groundwater Sampling at the Project Shoal Site, Nevada (Data Validation Package)

    SciTech Connect (OSTI)

    2011-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2010. Wells HC-4, HC-5, HC-7, HC-8, MV-1, MV-2 and MV-3 were sampled March 10-12, 2010, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Wells HC-1, HC-2, HC-3, and HC-6 were sampled March 24, 2010, by Desert Research Institute personnel.

  19. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  20. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  1. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  2. Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) PDF icon Proposed rate adjustment for the Georgia-Alabama-South Carolina System of Projects More Documents & Publications CX-001068: Categorical Exclusion Determination SOCO-4-E Wholesale Power Rate Schedule Regulation-1

  3. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  4. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  5. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  6. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  7. 2014 Well Completion Report for Corrective Action Unit 447 Project Shoal Area Churchill County, Nevada

    Office of Legacy Management (LM)

    Well Completion Report for Corrective Action Unit 447 Project Shoal Area Churchill County, Nevada November 2015 Approved for public release; further dissemination unlimited LMS/SHL/S12297 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at

  8. 2015 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    Office of Legacy Management (LM)

    Groundwater Monitoring Report Project Shoal Area: Subsurface Corrective Action Unit 447 April 2016 Approved for public release; further dissemination unlimited LMS/SHL/S13448 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at

  9. Addendum to the CAIP for CAU 447: Project Shoal Area, Nevada Subsurface Site

    Office of Legacy Management (LM)

    513-ADD ADDENDUM TO THE CORRECTIVE ACTION INVESTIGATION PLAN FOR CORRECTIVE ACTION UNIT 447: PROJECT SHOAL AREA, NEVADA SUBSURFACE SITE DOE Nevada Operations Office Las Vegas, Nevada Controlled Copy No.: Revision No.: 1 March 1999 Approved for public release; further dissemination unlimited. Available to the public from - U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Available electronically at

  10. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  11. Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  12. Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  14. FUPWG Meeting Agenda - Mobile, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile, Alabama FUPWG Meeting Agenda - Mobile, Alabama October 16-17, 2012 Hosted by Alabama Power Tuesday, October 16, 2012 8:30 am Welcome Greg Reardon, Alabama Power Bob Chappelle, Mobile Area Chamber of Commerce 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am Air Force Real Property Agency Enhanced Use Lease Program Brian Brown, Air Force Real Property Agency Strategic Asset Utilization Dave Swanson, Air Force Real Property Agency Strategic

  15. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  16. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  17. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  18. EECBG Success Story: Managing Storm Aftermath in Alabama

    Broader source: Energy.gov [DOE]

    Thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG), Montgomery, Alabama will revamp its landfill sorting efforts and retrofit its historical city. Learn more.

  19. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  2. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  3. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  4. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  9. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  10. Perry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  11. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  12. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  13. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  14. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  15. DOEINVIl0845-51 DC-703 GROUNDWATER FLOW NEAR THE SHOAL SITE,

    Office of Legacy Management (LM)

    DOEINVIl0845-51 DC-703 GROUNDWATER FLOW NEAR THE SHOAL SITE, SAND SPRINGS RANGE, NEVADA: IMPACT OF DENSITY-DRIVEN FLOW Prepared by Jenny Chapman, Todd Mihevc, and Alan McKay Submitted to Nevada Operations Office U.S. Department of Energy Las Vegas, Nevada September 1994 Publication #45130 This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty,

  16. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  17. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  18. March 2011 Groundwater Sampling at the Project Shoal Site (Data Validation Package)

    SciTech Connect (OSTI)

    2011-07-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2011. Wells HC-1, HC-2, HC-4, HC-5, HC-6, HC-7, MV-1, MV-2 and MV-3 were sampled as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Two extra tritium samples were collected from well HC-4, one sample (HC-4-400) was collected at about 1/3 of the purge volume (135 gallons), the second sample (HC-4-400) was collected at 2/3 of purge volume (270 gallons). These additional samples were collected prior to completing the well purging process to evaluate the effects well purging has on the analytical results. Samples were not collected from locations HC-3 and HC-8 at the direction of the S.M. Stoller Corporation site lead.

  19. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  20. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  1. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  3. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  4. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 ...

  5. Alabama Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880 ...

  6. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  7. Jackson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  8. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  9. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  10. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:39 AM" "Back to Contents","Data 1: Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  11. Lee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  12. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  13. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  14. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  15. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  16. Alabama - State Energy Profile Overview - U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska ...

  17. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  18. Temporal and spatial variability of ooid sand shoals: Comparison of Mississippian of Kentucky and Quaternary of Bahamas

    SciTech Connect (OSTI)

    Boardman, M.R. (Miami Univ., Oxford, OH (USA))

    1989-08-01

    An examination of the lithology and topography of Andros Island, Bahamas, reveals it is a Pleistocene ooid sand shoal. A comparison with Joulters Cays (a modern ooid sand shoal directly to the north) shows that much of the original depositional topography is preserved through at least one cycle of sea level highstand and lowstand. Both the Pleistocene and the Holocene ooid sand bodies are a few kilometers to tens of kilometers wide. The total vertical relief of a single episode of Quaternary ooid sand deposition is more than 10 m and includes accumulation in tidal channels, shallow flat areas, and eolian dunes. Today, much of Andros Island is within 2 m of present sea level and is the site of a belt several kilometers wide consisting of muddy tidal flat sediments overlying an exposure surface. The site of ooid sand deposition and shoal complex formation is not continuous along shorelines, especially windward margins, but shifts abruptly along the margins of platforms as a result of minor fluctuations of sea level. Thus, it should be expected that ooid sand shoals (ancient and modern) should be in direct lateral and vertical contact with lagoons, tidal flats, and reefs. The Mississippian Slade Formation contains many of the features of Quaternary ooid sand accumulation: abrupt vertical and lateral gradations between oolitic grainstones, packstones, and lime mudstones, vertical relief of individual oolitic sedimentary packages up to 30 m (perhaps with eolian dunes) and numerous exposure surfaces of varying intensities. These characteristics suggest that this formation represents a time of rapid fluctuations of relative sea level and abrupt shifts in the sites of ooid sand shoal complexes.

  19. 2010 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    SciTech Connect (OSTI)

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended March 2010) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes the results from the groundwater monitoring program during fiscal year 2010.

  20. 2009 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    SciTech Connect (OSTI)

    2010-03-01

    This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the PSA during fiscal year 2009.

  1. Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447

    SciTech Connect (OSTI)

    2008-05-19

    Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.

  2. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  3. Alabama Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590 -

  4. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  5. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Alabama Shale Gas Proved Reserves, Reserves Changes, and Production Shale Gas

  6. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  7. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  8. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  9. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from Proof of Concept to true deployment through the activity described in this Final Report. This Project Integrated Distribution Management Systems in Alabama advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  10. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  11. Alabama Justice Center Expands its Solar Capabilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alabama Justice Center Expands its Solar Capabilities Alabama Justice Center Expands its Solar Capabilities March 22, 2010 - 4:56pm Addthis The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission The roof-mounted solar array at the T.K. Davis Justice Center in Opelika, Ala. | Photo courtesy of Lee County Commission Joshua DeLung What are the key facts? A $162,000 EECBG grant awarded to Lee County through the Recovery Act

  12. 2014 Well Completion Report for Corrective Action Unit 447 Project Shoal Area Churchill County, Nevada October 2015

    SciTech Connect (OSTI)

    Findlay, Rick

    2015-11-01

    This report summarizes the drilling program conducted by the U.S. Department of Energy (DOE) Office of Legacy Management at the Project Shoal Area (Shoal) Subsurface Corrective Action Unit 447 in Churchill County, Nevada. Shoal was the location of an underground nuclear test conducted on October 26, 1963, as part of the Vela Uniform program sponsored jointly by the U.S. Department of Defense and the U.S. Atomic Energy Commission (a predecessor to DOE). The test consisted of detonating a 12-kiloton nuclear device in granitic rock at a depth of approximately 1,211 feet (ft) below ground surface (bgs) (AEC 1964). The corrective action strategy for the site is focused on revising the site conceptual model and evaluating the adequacy of the monitoring well network at the site. Field activities associated with the project were conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended) and applicable Nevada Division of Environmental Protection (NDEP) policies and regulations.

  13. DOE - Office of Legacy Management -- Alabama Ordnance Works ...

    Office of Legacy Management (LM)

    - Referred to DoD AL.02-1 Also see Documents Related to Alabama Ordnance Works AL.02-1 - DOE Letter; J.Fiore to C.Shafer; Subject: Information on various DoD Sites; May 29, 1987

  14. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  15. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 120,502 143,703 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  16. Alabama Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 59,051 56,685 42,925 34,164 35,674 45,488 41,614 1990's 37,229 35,972 51,219 75,474 70,489 54,964 493,069 583,370 560,414 544,020 2000's 521,215 376,241 370,753 348,722 304,212 285,237 274,176 259,062

  17. 2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    SciTech Connect (OSTI)

    2013-03-01

    The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized.

  18. EECBG Success Story: Solar LED Light Pilot Project Illuminates the Way in Alabama

    Broader source: Energy.gov [DOE]

    A strip of new solar-powered LED streetlights in Boaz, Alabama were installed with grant funds from the Alabama Department of Economic and Community Affairs and $221,900 from the Energy Department through the Energy Efficiency and Conservation Block Grant (EECBG) program. Learn more.

  19. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its Talladega, Alabama, campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills. Learn more.

  20. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 1980's 33 25 35 50 48 39 38 34 36 38 1990's 48 35 53 55 51 48 52 34 31 57 2000's 104 32 28 33 29 31 41 32 92 55 2010's 68 68 55 51 59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  6. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  7. Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79,294 86,515 120,502 143,703 152,055 194,677 170,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Marketed Production

  8. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 256 230 223 223 278 1990's 258 253 226 235 233 305 422 433 435 430 2000's 433 325 300 251 205 196 185 163 151 134 2010's 129 129 98 88 108 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  12. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  13. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  17. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  18. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  20. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 655 908 754 353 838 512 581 465 607 512 1990's 893 511 501 612 944 524 979 960 501 564 2000's 729 504 871 655 509 493 704 868 1,003 1,676 2010's 946 754 562 822 1,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  1. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 470 878 688 933 379 971 449 511 444 934 1990's 437 530 262 396 497 688 1,282 535 469 783 2000's 1,014 641 573 607 528 606 698 1,078 1,076 1,498 2010's 968 829 583 759 1,869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  3. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alabama

  4. The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test

    Office of Legacy Management (LM)

    NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily

  5. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 537 1990's 1,224 1,714 1,968 1,237 976 972 823 1,077 1,029 1,060 2000's 1,241 1,162 1,283 1,665 1,900 1,773 2,068 2,126 1,727 1,342 2010's 1,298 1,210 1,006 413 978 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 514 652 1980's 636 648 1990's 4,125 5,414 5,802 5,140 4,830 4,868 5,033 4,968 4,604 4,287 2000's 4,149 3,915 3,884 4,301 4,120 3,965 3,911 3,994 3,290 2,871 2010's 2,629 2,475 2,228 1,597 2,036 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980

  10. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 106,586 125,302 220,233 202,559 198,509 203,021 209,752 202,475 2000's 191,550 191,188 193,448 183,621 156,097 143,349 136,805 125,828 117,483 101,272 2010's 94,738 78,649 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  14. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  15. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  16. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 50 23 91 9 54 14 3 2 17 16 1990's 320 332 171 410 69 0 18 21 2 4 2000's 0 0 0 22 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  17. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  3. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  4. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Alabama Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 324,158 329,134 337,270 2000's 353,614 332,693 379,343 350,345 382,367 353,156 391,093 418,512 404,157 454,456 2010's 534,779 598,514 666,712 615,407 634,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  6. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  7. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  8. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

    Broader source: Energy.gov [DOE]

    Carbon dioxide injection -- an important part of carbon capture and storage technology -- is underway as part of a pilot study of CO2 enhanced oil recovery in the Citronelle Field of Mobile County, Alabama.

  9. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced

    Energy Savers [EERE]

    Methane Recovery | Department of Energy Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast

  10. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566

  11. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  13. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  14. A Literature Survey Kathleen C. Pugh, Ph.D. Waste Management and Remediation

    Office of Scientific and Technical Information (OSTI)

    Toxicity and Physical Properties of Atrazine and its Degradation Products: A Literature Survey Kathleen C. Pugh, Ph.D. Waste Management and Remediation Environmental Research Center Muscle Shoals, Alabama DECLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabiiity or responsibility for

  15. A Lithium Getter Pump System ---- nventors Richard Majeski, Eugene Kearns,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toxicity and Physical Properties of Atrazine and its Degradation Products: A Literature Survey Kathleen C. Pugh, Ph.D. Waste Management and Remediation Environmental Research Center Muscle Shoals, Alabama DECLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabiiity or responsibility for

  16. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  17. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  18. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley

    Broader source: Energy.gov [DOE]

    MONTGOMERY, AL – Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National Day of Prayer and Remembrance in honor of victims of Hurricane Katrina.      ...

  19. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect (OSTI)

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  20. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin

  1. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 3,194 350 0 0 0 0 2000's 0 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  3. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  4. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  7. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  9. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  10. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sal_2a.xls"

  16. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290al2m.xls"

  19. ,"Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Alabama Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5030al2m.xls"

  1. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. ,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of Total U.S. Natural Gas Delivered to Consumers" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Share of Total U.S. Natural Gas Delivered to Consumers",5,"Annual",2014,"6/30/1993" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  5. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1060_ralsf_2a.xls"

  6. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. Alabama Profile

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Hunt Refining (Tuscaloosa), Shell Chemical (Saraland) find more Major Non-Nuclear ... sector combined.10 The automotive, chemical, metals manufacturing, technology, ...

  10. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 117,308 143,353 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 1,128 1,133 2000's 1,267 2,352 2,530 2,801 2,581 2,591 1,816 2,231 2,229 2,013 2010's 1,595 2,597 2,130 2,406 2,204 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201

  15. Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 162 152 150 1970's 214 476 1,070 1,329 1,301 1,968 2,714 5,444 3,371 21,454 1980's 9,990 5,804 5,037 4,729 5,332 5,476 5,442 6,878 6,655 6,152 1990's 9,881 8,627 12,868 13,365 0 14,274 13,319 9,488 10,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  17. Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.74 6.46 4.60 4.24 3.51 2.92 2.42 1.98 2000's -- -- -- -- 17.32 19.17 2010's 16.24 11.45 17.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  18. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA

  19. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment; compliance with appropriate requirements; long-term effectiveness; reduction of the toxicity, mobility, or volume of contamination; short-term effectiveness; implementability; cost; state acceptance; and community acceptance. Based on the results of this evaluation, the preferred alternative for CAU 447 is Alternative 2, Proof-of-Concept and Monitoring with Institutional Controls. The preferred corrective action alternative was chosen for its technical implementability, focusing on performance, reliability, feasibility, safety, and cost. Alternative 2 was judged to meet all requirements for the technical components evaluated and will control inadvertent exposure to contaminated groundwater at CAU 447.

  20. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  1. [High Energy Physics Program at the University of Alabama. Final report

    SciTech Connect (OSTI)

    Baksay, L.; Busenitz, J.K.

    1993-10-01

    The High Energy Physics group at University of Alabama is a member of the L3 collaboration studying e+e{minus} collisions near the Z{degree} pole at the LEP accelerator at CERN. About 2 million Z{degree} events have been accumulated and the experiment has been prolific in publishing results on the Z resonance parameters, the Z couplings to all leptons and quarks with mass less than half the Z mass, searches for new particles and interactions, and studies of strong interactions and/or weak charged current decays of the quarks and leptons abundantly produced in Z decays. The group is contributing to data analysis as well as to detector hardware. In particular, the authors are involved in a major hardware upgrade for the experiment, namely the design, construction and commissioning of a Silicon Microvertex Detector (SMD) which has successfully been installed for operation during the present grant period. The authors present here a report on their recent L3 activities and their plans for the next grant period of twelve months (April 1, 1994--March 31, 1995). Their main interests in data analysis are in the study of single photon final states and the physics made more accessible by the SMD, such as heavy flavor physics. Their hardware efforts continue to be concentrated on the high precision capacitive and optical alignment monitoring systems for the SMD and also includes gas monitoring for the muon system. They are also planning to participate in the coming upgrade of the L3 detector.

  2. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04

  3. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  4. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  5. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  6. Effect of increases in energy-related labor forces upon retailing in Alabama

    SciTech Connect (OSTI)

    Robicheaux, R.A.

    1983-06-01

    The heightened mining employment that will result from increased extraction of coal from Alabama's Warrior Coal Basin will boost retail sales and employment. The Warrior Coal Basin counties (Fayette, Jefferson, Tuscaloosa and Walker) are heavily dependent upon coal mining as a source of employment and wages. Further, since the counties' economies grew increasingly dependent upon coal mining activities throughout the 1970s, it was believed that it would be possible to measure, with some acceptable level of reliability, the impact of the steadily rising mining activity upon the area's retailing sector. Therefore, a small scale econometric model was developed which represents the interrelationships among income, mining and trade employment and retail sales in the four-county Warrior Coal Basin area. The results of two versions of the model are presented. In the first version, area-wide retail sales are treated in the aggregate. In the second version, retail sales are disaggregated into twelve categories (e.g., food, apparel, furniture, etc.). The models were specified using 1960 to 1976 data. The mining employment growth scenario used in this report called for steady increases in mining employment that culminated in an employment level that is 4000 above the baseline employment projections by 1985. Both versions of the model predicted that cumulative real regional income would increase by $1.39 billion over seven years with the added mining employment. The predicted impacts on trade employment and real retail sales varied between the two models, however. The aggregate model predicts the addition of 7500 trade workers and an additional $1.35 billion in real retail sales. The disaggregate model suggests that food stores, automobile dealers, general merchandise stores, gas stations and lumber and building materials retailers would enjoy the greatest positive benefits.

  7. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  11. ,"Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  12. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. Artificial Muscle Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: California Zip: CA 94085 Product: Artificial Muscle develops electroactive polymer technology used for sensing, actuating and electric power generation applications....

  15. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  16. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  17. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  18. cx-bull-shoals-dam.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  19. cx-malden-neosho-bull-shoals.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  20. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  1. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  2. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  4. OTEC energy via methanol production

    SciTech Connect (OSTI)

    Avery, W.H.; Richards, D.; Niemeyer, W.G.; Shoemaker, J.D.

    1983-01-01

    The conceptual design of an 160 MW/sub e/ OTEC plantship has been documented; it is designed to produce 1000 tonne/day of fuel-grade methanol from coal slurry shipped to the plantship, using oxygen and hydrogen from the on-board electrolysis of water. Data and components are used that were derived by Brown and Root Development, Inc. (BARDI) in designing a barge-mounted plant to make methanol from natural gas for Litton Industries and in the design and construction of a coal-to-ammonia demonstration plant in operation at Muscle Shoals, Alabama, for the Tennessee Valley Authority (TVA). The OTEC-methanol plant design is based on the use of the Texaco gasifier and Lurgi synthesis units. The sale price of OTEC methanol delivered to port from this first-of-a-kind plant is estimated to be marginally competitive with methanol from other sources at current market prices.

  5. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of ...

  6. ,"Alabama Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusalm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusalm.htm" ,"Source:","Energy ...

  7. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  8. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  9. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Citygate Price 3.81 3.83 3.61 3.27 3.22 3.18 1989-2016 Residential Price 20.38 19.12 17.67 14.30 12.00 11.12 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 11.75 11.40 11.47 10.73 9.81 9.70 1989-2016 Percentage of Total Commercial Deliveries included in Prices 69.7 68.6 69.9 76.2 77.4 84.3 1989-2016 Industrial Price 3.68 3.48 3.33 3.48 3.54 3.55 2001-2016

  10. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1

  11. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","22016","1151989" ,"Data 2","Production",10,"Monthly","22016","1151989" ,"Data 3","Underground Storage",7,"Monthly","22016","1151993" ,"Data ...

  12. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.81 3.83 3.61 3.27 3.22 3.18 1989-2016 Residential 20.38 19.12 17.67 14.30 12.00 11.12 1989-2016 Commercial 11.75 11.40 11.47 10.73 9.81 9.70 1989-2016 Industrial 3.68 3.48 3.33 3.48 3.54 3.55 2001-2016 Electric Power 3.07 2.78 W W 2.95 W 2002-2016 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA

  13. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  14. MHK Technologies/Electroactive Polymer Artificial Muscle EPAM...

    Open Energy Info (EERE)

    that it uses SRI s Electroactive Polymer Artificial Muscle EPAM technology a rubbery material that can generate electricity by simply being stretched and allowed to return to its...

  15. Scientist's Quest For Artificial Muscle Aided by PPPL | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the development of electro-responsive "smart materials" - electrically-driven polymers that are strong and durable enough to act as artificial muscles in prosthetic devices...

  16. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  17. Synthetic muscle experiment will likely return to Earth in March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetic muscle experiment will likely return to Earth in March By Jeanne Jackson DeVoe October 26, 2015 Tweet Widget Google Plus One Share on Facebook A photo taken by Astronaut...

  18. "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",273020,22.846,0.62,6.4,192.4 "FERC423",2006,1,195,"Alabama Power Co",3,"Barry","AL","I",,"Gas","NG",,,,,,"BAY GAS PIPELINE",597198,1.053,0,0,1185.7 "FERC423",2006,1,195,"Alabama Power

  19. Synthetic muscle developed with PPPL scientists' help ready for launch |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Synthetic muscle developed with PPPL scientists' help ready for launch By Jeanne Jackson DeVoe April 8, 2015 Tweet Widget Google Plus One Share on Facebook Gallery: The Dragon spacecraft in orbit. Photo courtesy of NASA) (Photo by Photo courtesy of NASA) The Dragon spacecraft in orbit. Photo courtesy of NASA) The synthetic muscle material before it was packed for transport to the International Space Station. ( Photo courtesy of NASA ) (Photo by Photo courtesy of

  20. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  1. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  2. DC Students Flex Their Mental Muscles in Regional Science Bowl Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DC Students Flex Their Mental Muscles in Regional Science Bowl Competition DC Students Flex Their Mental Muscles in Regional Science Bowl Competition February 23, 2015 - 3:12pm Addthis DC Students Flex Their Mental Muscles in Regional Science Bowl Competition Students across the country are flexing their mental muscles to earn a top spot in the Department of Energy's National Science Bowl® competition. High school students in the nation's capital were able to showcase

  3. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 9 0 -21 -70 -106 -95 -102 -92 -85 -54 -20 -4 1995 60 2 264 0 -27 -42 -35 -218 -592 73 189 400 1996 54 17 162 -153 -367 -670 -205 -395 -440 -117 129 761 1997 531 184 -25 -130 -271 -93 -43 -286 -262 -251 243 243 1998 396 187 248 -245 -144 -623 9 -200 401 -613 -1 139 1999 813 114 312 -137 -471 -210 -235 -81 -402 77 -134 189 2000 916 -307 -8 66 -90 -606 -82 0 110 142 203 85 2001 330 -241 604 -195 44 -576

  4. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  5. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  6. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  7. 1999 Well Installation Report, Project Shoal Area, Churchill...

    Office of Legacy Management (LM)

    ... . . . . . . . . . 6-1 6.2 Waste Management . . . . . . . . ... A-61 A-13 Well HC-5 Water Level Measurements. . . . . . . . ... A-79 A-18 Fluid Management Samples and Results from ...

  8. May 2015 Groundwater Sampling at the Shoal, Nevada, Site

    Office of Legacy Management (LM)

    ... met when purging a Category I well: Was one pumptubing volume purged prior to sampling? ... NA Was one pumptubing volume removed prior to sampling? 9. Were duplicates taken at a ...

  9. A Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki...

    Open Energy Info (EERE)

    or temporary storage in shoreline or shallow water environments prior to redeposition. Red, oxidised lava and scoria clasts in bedded breccia and conglomerate also imply that the...

  10. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped

  11. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  12. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    ... They are upgrading four units at three different ... study of the Citronelle Oil Field to determine the ... and separates nails, heavy staples, door knobs and ...

  13. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  14. "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",289050,22.732,0.5,5.2,217.3 "FERC423",2007,1,195,"Alabama Power Co",3,"Barry","AL","C","application/vnd.ms-excel","Coal","BIT",45,"IM","SU","County

  15. "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",358990,22.722,0.6,6.1,209.8 "FERC423",2005,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",45,"IM","SU","County Unknown",999,"MINA PRIBBENOW",45260,22.926,0.59,5.7,196.8

  16. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    SciTech Connect (OSTI)

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  17. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  18. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    SciTech Connect (OSTI)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy; Platt, Leanne; Thomas, Mark; Siriett, Victoria; Kambadur, Ravi; School of Biological Sciences, Nanyang Technological University, Singapore ; Sharma, Mridula

    2009-07-15

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1 resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.

  19. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    DOE Patents [OSTI]

    Culiat, Cymbeline T

    2014-11-04

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  20. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  1. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    DOE Patents [OSTI]

    Culiat, Cymbeline T.

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  2. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...58,155143,148238,6905,,,17850,1356,18697,117241,112354 32324,175054,168484,6570,,,23444,1824,20262,129524,124750 32689,180300,174345,5955,,,28256,1503,22131,128411,123389 ...

  3. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 36814,32632,32087,545,,,884,98,1824,29825 36845,32139,31611,528,,,1003,88,1819...30352,467,,10111,339,145,1481,28854 37848,31824,31342,482,,10139,405,126,1772,29521 ...

  4. Alabama Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 20 28 3 0 0 2 1977-2014 New Field Discoveries 0 3 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 14 1977-2014 Estimated Production 254 223 218 214 ...

  5. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes...

  6. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  7. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusalm.xls" ...

  8. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. Alabama Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35 99 241 1970's 452 1,085 2,860 2,718 3,383 1980's 3,134 3,805 8,304 11,042 12,557 14,769 18,238 17,850 23,444 28,256 1990's 28,540 30,689 29,996 31,179 33,961 30,949 22,601 17,724 14,002 13,793 2000's 13,988 12,758 10,050 4,062 1,307 478 301 311 475 783 2010's 736 531 0

  10. Alabama Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,458 2,389 2,720 2,493 2,406 2,588 2,821 2,744 2,725 1,738 2,719 2,889 1992 2,814 2,535 2,529 2,618 2,573 2,492 2,655 2,556 2,255 2,467 2,183 2,320 1993 2,339 2,156 2,542 2,270 2,745 2,742 2,772 2,790 2,755 2,719 2,632 2,717 1994 2,547 2,348 2,769 2,473 2,990 2,986 3,019 3,039 3,001 2,961 2,867 2,959 1995 2,321 2,140 2,523 2,254 2,725 2,722 2,751 2,770 2,735 2,699 2,613 2,697 1996 2,244 1,340 2,142 2,001 2,003 1,786 1,891 2,000 1,957

  11. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,874,"6,577",85.9,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,860,"6,592",87.5,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  12. Alabama Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 3,272 10.1 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  13. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    454,456 534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,460 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,470 6,441 6,939...

  14. Alabama Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818

  15. Alabama Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.13 1.10 1.09 1970's 1.13 1.19 1.27 1.37 1.55 1.57 1.99 2.31 2.71 3.65 1980's 4.04 4.77 5.58 6.22 6.26 6.41 6.52 6.64 6.51 6.27 1990's 6.57 7.05 6.74 7.10 7.41 6.86 7.22 8.35 8.21 8.34 2000's 9.19 12.06 10.53 11.82 13.34 15.82 18.80 18.14 18.30 18.12 2010's 15.79 15.08 16.20 15.47 14.59 13.95 Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  16. Alabama Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6,900 26,900 32,900 35,400 35,400 35,400 1995-2013 Salt Caverns 15,900 15,900 21,900 21,900 21,900 21,900 1999-2013 Aquifers 0 1999-2012 Depleted Fields 11,000 11,000 11,000 13,500...

  17. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,501 32,916 34,133 34,382 29,595 30,309 1995-2016 Base Gas 9,640 9,640 9,640 9,640 9,640 9,640 1995-2016 Working Gas 22,861 23,276 24,493 24,742 19,955 20,669 1995-2016 Net Withdrawals -2,416 -415 -1,217 -249 4,787 -713 1993-2016 Injections 3,800 1,746 3,084 1,867 1,260 3,081 1994-2016 Withdrawals 1,384 1,331 1,867 1,618 6,047 2,367 1994-2016 Change in Working Gas from Same Period Previous Year Volume 6,998 4,187 5,725 4,628 4,615 13,768 1996-2016 Percent 44.1 21.9 30.5 23.0 30.1 199.5 1

  18. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2016 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2016 Total Number of Existing Fields 2 2 2 2 2 2

  19. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,278 -6,286 -7,357 2,456 5,002 -5,603 1968-2014 Injections 21,020 23,026 22,766 21,195 17,966 34,286 1968-2014 Withdrawals 23,298 16,740 15,408 23,651 22,968 28,683 1968...

  20. Tuscaloosa, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":33.2098407,"lon":-87.5691735,"alt":0,"address":"","i...

  1. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 39217,16077,3075,13002,-1929,2255,326 39248,16105,3075,13030,-28,815,78... 41014,28324,8050,20274,-11,1940,1929 41044,27960,8050,19910,364,1999,2363 ...

  2. Categorical Exclusion Determinations: Alabama | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... September 17, 2013 CX-010944: Categorical Exclusion Determination Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte CX(s) Applied: B3.6 Date: 09172013 ...

  3. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. Tennessee Valley Authority (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    396,141 24 22,005 396,141 24 2008-12 21,402 332,767 24 21,402 332,767 24 2008-11 23,132 375,492 22 23,132 375,492 22 2008-10 26,207 406,129 22 26,207 406,129 22 2008-09 20,896...

  5. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 55,659,872 MWh Gas Power 32,369,863 MWh Petroleum Power 163,054 MWh Nuclear Power 39,716,204 MWh Other 7,137 MWh Total Energy Production 142,960,819 MWh...

  6. AlabamaWISE Home Energy Program

    Broader source: Energy.gov [DOE]

    The program also provides financing for energy efficiency measures identified in the assessment. To be eligible for the loan, the homeowner must have a minimum credit score of 660 and must be a...

  7. Alabama Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015

  8. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

  9. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  10. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    SciTech Connect (OSTI)

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann; Jim Xiao, Zhi-Xiong

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  11. Ultrastructural features of masseter muscle exhibiting altered occlusal relationship - a study in a rodent model

    SciTech Connect (OSTI)

    Lisboa, Marcio V.; Aciole, Gilberth T. S.; Oliveira, Susana C. P. S.; Marques, Aparecida M. C.; Pinheiro, Antonio L. B.; Santos, Jean N.; Baptista, Abrahao F.; Aguiar, Marcio C.

    2010-05-31

    The role of occlusion on Tempormandibular Disorders (TMD) is still unclear, mainly regarding muscular function. The aim of this study was to evaluate the occlusion highlights on masseter ultra morphology. Twenty Wistar rats were randomly divided in four groups: 10 for control group, 10 for occlusal alteration group (CCO). Rats underwent unilateral amputation of the left inferior and superior molar cusps to simulate an occlusal wear situation. The rats of control group had no occlusal wear. Half of the animals of each group was sacrificed in 14 days after the occlusal consuming and half 30 days after the occlusal consuming. The masseter muscles ipsilateral to the amputated molars were excised and processed for light microscopy, electron microscopy. The light microscopy did not show differences between the groups. The electron microscopy was able to detect a degree of intracellular damage in muscle fibers of CCO group: swollen mitochondria with disrupted cristae and cleared matrix, signs of hypercontraction of I bands and myofibril disorganization.

  12. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes

    SciTech Connect (OSTI)

    Otsu, K.; Fujii, J.; MacLennan, D.H. (Charles H. Best Institute, Univ. of Toronto, Ontario (Canada)); Periasamy, M. (Univ. of Cincinnati College of Medicine, OH (United States)); Difilippantonio, M.; Uppender, M.; Ward, D.C. (Yale Univ. School of Medicine, New Haven, CT (United States))

    1993-08-01

    Fluorescence in situ hybridization (FISH) experiments were performed using genomic and complementary DNA probes in order to determine the location on human chromosomes for five genes expressed in cardiac and skeletal muscle sarcoplasmic reticulum. The chromosome location of each gene was determined in terms of both cytogenetic bands and fractional chromosome length. The ATP2A2 gene, expressing the SERCA2 isoform of the Ca[sup 2+] pump, maps to bands 12q23-q24.1, the phospholamban gene (PLN) to 6q22.1, the human skeletal muscle calsequestrin gene (CASQ1) to band 1q21, the cardiac calsequestrin gene (CASQ2) to bands 1p11-p13.3, and the cardiac calcium release channel gene (RYR2) to the interval between band 1q42.1 (distal) and band 1q43 (proximal). 13 refs., 1 fig.

  13. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation

    SciTech Connect (OSTI)

    Hirai, Hiroyuki; Romanova, Liudmila; Kellner, Steven; Verma, Mayank; Rayner, Samuel; Asakura, Atsushi; Kikyo, Nobuaki

    2010-01-01

    Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary to support increased protein synthesis during this process. Downregulation of NS inhibited differentiation of myoblasts to myotubes, accompanied by striking downregulation of key myogenic transcription factors, such as myogenin and MyoD. In contrast, upregulation of NS inhibited proliferation and promoted muscle differentiation in a p53-dependent manner. Our findings provide evidence that NS has an unexpected role in post-mitotic terminal differentiation. Importantly, these findings also indicate that, contrary to suggestions in the literature, the expression of NS cannot always be used as a reliable indicator for undifferentiated cells or proliferating cells.

  14. Spatial heterogeneity of metabolism in skeletal muscle in vivo studied by sup 31 P-NMR spectroscopy

    SciTech Connect (OSTI)

    Challiss, R.A.J.; Blackledge, M.J.; Radda, G.K. )

    1988-03-01

    Phase modulated rotating-frame imaging, a localization technique for phosphorus nuclear magnetic resonance spectroscopy, has been applied to obtain information on heterogeneity of phosphorus-containing metabolites in skeletal muscle of the rat in vivo. The distal muscles of the rat hindlimb have been studied at rest and during steady-state isometric twitch contraction; the use of a transmitter surface coil and an electrically isolated, orthogonal receiver Helmholtz coil ensure accurate spatial assignment (1 mm resolution). At rest, intracellular pH was higher and PCr/(PCr + P{sub i}) was lower in deeper muscle compared with superficial muscle of the distal hindlimb. Upon steady-state stimulation, the relatively more alkaline pH of deep muscle was maintained, whereas greater changes in PCr/(PCr + P{sub i}) and P{sub i}/ATP occurred in the superficial muscle layer. This method allows rapid (75 min for each spectral image) acquisition of quantitative information on metabolic heterogeneity in vivo.

  15. U.S. DEPARTMENT OF ENERGY\tProject Shoal Site\tENVIRONMENTAL MANAGEMENT...

    Office of Legacy Management (LM)

    ... site, and fulfilled requirements for a Notice of ... Under the DOE land withdrawal agreement and the military ... Restriction Record OilGas Owner and Leases Water Well ...

  16. Farmstead production of fuel alcohol

    SciTech Connect (OSTI)

    Badger, P.C.; Pile, R.S.; Waddell, E.L. Jr.

    1981-01-01

    The Tennessee Valley Authority Agricultural Energy Applications Section (Muscle Shoals, AL) has designed and constructed a small-scale fuel alcohol production facility which can produce 10 gph of 190-proof alcohol. Information presented includes some factors relative to facility design, layout, and construction, plus operation and performance experiences.

  17. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect (OSTI)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: The three ERM proteins are expressed in vascular smooth muscle cell. ERM depletion inhibited PDGF-evoked migration redundantly. ERM depletion increased cell adhesion redundantly. ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  18. Free radicals release vasodilator(s) from endothelial and smooth muscle cells

    SciTech Connect (OSTI)

    Chen, X.; Hu, Y.C.; Gillis, C.N. )

    1991-03-15

    Electrolysis-generated free radicals (ES-FR) injure the endothelium (EC) of rabbit lungs perfused in situ. The authors now report that ES-FR release EDRF-like substance(s) from both vascular EC and smooth muscle sources. Rabbit aortic segments with or without endothelium or columns of bovine aortic EC grown on biosilon beads were perfused with Krebs solution containing 6 uM indomethacin and 10 units/ml SOD. Effluent passed over two endothelial-denuded aortic rings precontracted with phenylephrine. Electrolysis of perfusion medium, released a vasodilator substance(s) from both. Vasodilatation was directly related to the current used and had t{sub 1/2} similar to that of EDRF released from EC columns by ADP. Release was attenuated by N-{omega}-nitro-L-arginine or sodium salicylate perfused through the cell column or aortic segments, or by 0.5% hemoglobin passed over the bioassay aortic rings. Finally, prompt transfer of 0.3-0.5 ml of medium, subjected to ES off-line, also relaxed pre-contracted aortic rings. Thus ES-FR can release EDRF-like substance(s) from both aortic EC and EC-denuded aortic smooth muscle. Since release was attenuated by salicylate, a specific trapping agent for hydroxyl radicals, the authors suggest that the latter is related to release of the vasodilator.

  19. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    SciTech Connect (OSTI)

    Viitanen, Matti; Department of Geriatrics, Turku City Hospital and University of Turku, Turku ; Sundstrm, Erik; Baumann, Marc; Tikka, Saara; Karolinska Institutet Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (??{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ? CADASIL is an inherited disease of cerebral vascular cells. ? Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ? Lower proliferation rates in CADASIL VSMC. ? Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ? Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  20. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    SciTech Connect (OSTI)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  1. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    SciTech Connect (OSTI)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of ?-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  2. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect (OSTI)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  3. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    SciTech Connect (OSTI)

    Guo, Xiaoxia; Zhou, Chunyan; Sun, Ningling

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  4. Disruption of TGF-? signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect (OSTI)

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: TGF-? signaling in SMC contributes to the flow-induced vascular remodeling. Disruption of TGF-? signaling in SMC can prevent this process. Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-? (TGF-?) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-? signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-? pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-? type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-? signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  5. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect (OSTI)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodrguez-Rey, J.C.

    2014-04-04

    Highlights: NR5A2 expression in C2C12 is associated with myotube differentiation. DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  6. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect (OSTI)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  7. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study

    SciTech Connect (OSTI)

    Solovchuk, Maxim A.; Hwang, San Chao; Chang, Hsu; Thiriet, Marc; Sheu, Tony W. H.

    2014-05-15

    Purpose: High-intensity focused ultrasound is a rapidly developing medical technology with a large number of potential clinical applications. Computational model can play a pivotal role in the planning and optimization of the treatment based on the patient's image. Nonlinear propagation effects can significantly affect the temperature elevation and should be taken into account. In order to investigate the importance of nonlinear propagation effects, nonlinear Westervelt equation was solved. Weak nonlinear propagation effects were studied. The purpose of this study was to investigate the correlation between the predicted and measured temperature elevations and lesion in a porcine muscle. Methods: The investigated single-element transducer has a focal length of 12 cm, an aperture of 8 cm, and frequency of 1.08 MHz. Porcine muscle was heated for 30 s by focused ultrasound transducer with an acoustic power in the range of 24–56 W. The theoretical model consists of nonlinear Westervelt equation with relaxation effects being taken into account and Pennes bioheat equation. Results: Excellent agreement between the measured and simulated temperature rises was found. For peak temperatures above 85–90 °C “preboiling” or cavitation activity appears and lesion distortion starts, causing small discrepancy between the measured and simulated temperature rises. From the measurements and simulations, it was shown that distortion of the lesion was caused by the “preboiling” activity. Conclusions: The present study demonstrated that for peak temperatures below 85–90 °C numerical simulation results are in excellent agreement with the experimental data in three dimensions. Both temperature rise and lesion size can be well predicted. Due to nonlinear effect the temperature in the focal region can be increased compared with the linear case. The current magnetic resonance imaging (MRI) resolution is not sufficient. Due to the inevitable averaging the measured temperature can be 10–30 °C lower than the peak temperature. Computational fluid dynamics can provide additional important information that is lost using a state of the art MRI device.

  8. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    SciTech Connect (OSTI)

    Ghazanfari, Samane; National Cell Bank of Iran, Pasteur Institute of Iran, Tehran ; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-10-23

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle {alpha}-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  9. Mercury levels in muscle of some fish species from the Dique Channel, Colombia

    SciTech Connect (OSTI)

    Olivero, J.; Navas, V.; Perez, A.

    1997-06-01

    Gold mining is an activity that has been increasing during the last ten years in Colombia. Most mining activities are carried out using mercury for gold amalgamation. In a recent publication we stated that in the Sur de Bolivar, the main gold mining zone in Colombia, the highest mercury concentration in hair was observed in fishermen. The Magdalena River, the largest and most important river in Colombia, receives all this contamination and carries it to the Atlantic Ocean through two means: The main river course and the Dique Channel. The Dique Channel is surrounded by many marshes, which are a major source of fish for nearly two hundred thousands people in northwestern Colombia. The goal of the present study was to determine, for the first time, the content of mercury in muscle tissue of the four most popular fish species purchased in some towns along the Dique Channel, to establish whether these concentrations fall within the WHO guidelines, and to identify those species which can be consumed with less risk. 11 refs., 1 fig., 2 tabs.

  10. Identification of three novel mutations in non-Ashkenazi Italian patients with muscle phosphofructokinase deficiency

    SciTech Connect (OSTI)

    Tsujino, S.; Shanske, S.; DiMauro, S. ); Servidel, S. ); Tonin, P. ); Azan, G. )

    1994-05-01

    The authors have identified three novel mutations in four non-Ashkenazi Italian patients with muscle phosphofructokinase (PFK-M) deficiency (Tarui disease). Patient 1 was homozygous for an A-to-C substitution at the 3' end of intron 6 of the PFK-M gene, changing the consensus splice-junction sequence AG to CG. The mutation leads to activation of two cryptic splice sites in exon 7, resulting in one 5 bp- and one 12 bp-deleted transcript. An affected brother was also homozygous, and both parents were heterozygous, for the splice-junction mutation. Patient 2 was homozygous for a G-to-C substitution at codon 39, changing an encoded arginine (CGA) to proline (CCA). Patient 3 was heterozygous for an A-to-C substitution at codon 543, changing an encoded aspartate (GAC) to alanine (GCC); the PFK-M gene on the other allele was not expressed, but sequencing of the reported regulatory region of the gene did not reveal any mutation. 34 refs., 6 figs., 2 tabs.

  11. Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus

    SciTech Connect (OSTI)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin Shammel; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.

    2015-06-11

    Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantation in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.

  12. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    SciTech Connect (OSTI)

    Moon, Chang Yoon; Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul ; Ku, Cheol Ryong; Cho, Yoon Hee; Lee, Eun Jig

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  13. A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle

    SciTech Connect (OSTI)

    Thevenard, Jessica; Mir, Lluis M.; Dupont-Deshorgue, Aurélie; Monboisse, Jean-Claude; Brassart-Pasco, Sylvie

    2013-03-22

    Highlights: ► A new therapeutic strategy based on tumstatin in vivo overexpression is proposed. ► pVAX1©–tumstatin electrotransfer in muscle mediates protein expression in muscle. ► A substantial expression of tumstatin is detected in the serum of electrotransfected mice. ► Tumstatin overexpression decreases tumor growth and increases mouse survival. -- Abstract: The NC1 domains from the different α(IV) collagen chains were found to exert anti-tumorigenic and/or anti-angiogenic activities. A limitation to the therapeutic use of these matrikines is the large amount of purified recombinant proteins, in the milligram range in mice that should be administered daily throughout the experimental procedures. In the current study, we developed a new therapeutic approach based on tumstatin (NC1α3(IV)) overexpression in vivo in a mouse melanoma model. Gene electrotransfer of naked plasmid DNA (pDNA) is particularly attractive because of its simplicity, its lack of immune responsiveness and its safety. The pDNA electrotransfer in muscle mediates a substantial gene expression that lasts several months. A pVAX1© vector containing the tumstatin cDNA was injected into the legs of C57BL/6 mice and submitted to electrotranfer. Sera were collected at different times and tumstatin was quantified by ELISA. Tumstatin secretion reached a plateau at day 21 with an expression level of 12 μg/mL. For testing the effects of tumstatin expression on tumor growth in vivo, B16F1 melanoma cells were subcutaneously injected in mice 7 days after empty pVAX1© (Mock) or pVAX1©–tumstatin electrotransfer. Tumstatin expression triggered a large decrease in tumor growth and an increase in mouse survival. This new therapeutic approach seems promising to inhibit tumor progression in vivo.

  14. Bladder Preservation for Localized Muscle-Invasive Bladder Cancer: The Survival Impact of Local Utilization Rates of Definitive Radiotherapy

    SciTech Connect (OSTI)

    Kozak, Kevin R.; Hamidi, Maryam [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Manning, Matthew [Division of Radiation Oncology, Moses Cone Regional Cancer Center, Greensboro, North Carolina (United States); Moody, John S., E-mail: john.moody@mosescone.com [Division of Radiation Oncology, Moses Cone Regional Cancer Center, Greensboro, North Carolina (United States)

    2012-06-01

    Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated with differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999-1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued research into bladder preservation strategies and suggest that definitive radiotherapy represents a viable initial treatment strategy for those who wish to attempt to preserve their native bladder.

  15. Alternative Fuels Data Center: Alabama Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  16. Pioneer Electric Coop, Inc (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @ConnectionsCard Facebook: https:www.facebook.comPECconnect?refbookmarks Outage Hotline: (800) 533-0323 Outage Map: www.pioneerelectric.comconten...

  17. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  18. Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 20 0 0 0 2000-2014 Extensions 0 0 0 0 0 2 1979-2014 New Field Discoveries 0 2 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 14 1979-2014 ...

  19. Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 21 29 3 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 105 102 98 91 62 ...

  20. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  1. Alabama Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 20 0 0 1 2009-2014 Extensions 0 0 0 0 0 1 2009-2014 New Field Discoveries 0 1 1 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 4 2009-2014 ...

  2. Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

    Gasoline and Diesel Fuel Update (EIA)

    1,727 1,342 1,298 1,210 1,006 413 1989-2013 Adjustments 0 61 -45 21 -166 2009-2013 Revision Increases 17 134 23 16 33 2009-2013 Revision Decreases 316 51 86 150 54 2009-2013 Sales...

  3. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 2005-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  4. Alabama Liquefied Natural Gas Additions to and Withdrawals from...

    U.S. Energy Information Administration (EIA) Indexed Site

    178 -21 -75 -22 63 -206 1980-2014 Additions 1,676 946 754 562 822 1,664 1980-2014 Withdrawals 1,498 968 829 583 759 1,869...

  5. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998

  6. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves 2,013 1,595 2,597 2,130 2,406 2,204 1996-2014 Lease Condensate (million bbls) 66 60 57 39 47 42 1998-2014 Total Gas (billion cu ft) 4,446 3,882 4,290 3,466 3,360 3,275 1996-2014 Nonassociated Gas (billion cu ft) 2,660 2,367 1,975 1,515 1,238 1,308 1996-2014 Associated Gas (billion cu ft) 1,786 1,515 2,315 1,951 2,122 1,967

  7. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36,984 28,384 27,217 23,714 21,027 21,010 22,537 23,488 21,619 24,186 23,647 25,742 2002 36,559 33,467 32,355 26,061 23,580 27,901 29,889 30,615 26,781 22,744 22,838 31,044 2003 39,779 34,222 26,412 23,422 20,310 22,858 27,147 32,162 21,482 18,885 20,502 29,389 2004 38,499 36,343 31,829 27,460 26,994 26,923 32,691 29,710 24,787 23,688 22,042 29,661 2005 32,785 29,012 29,689 22,622 22,525 26,381 30,759 31,841

  8. Alabama, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, New York.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  9. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361...

  10. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,200 1,802 2,585 1970's 2,987 663 4,610 13,161 29,357 38,921 43,600 61,267 90,012 90,695 1980's 111,836 125,624 133,298 125,889 136,427 143,420 145,625 155,143 175,054 180,300 1990's 186,542 223,876 413,614 446,321 578,863 580,125 582,301 435,088 434,470 420,535 2000's 401,336 391,981 386,502 370,910 338,735 317,206 306,144 289,618 277,553 255,965 2010's 240,703 218,574 215,710 196,326 181,054

  11. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 17,691 16,173 17,747 17,335 18,260 17,389 19,267 19,773 16,752 18,029 20,084 25,375 1992 33,868 32,773 33,371 33,712 33,880 34,185 35,896 34,273 34,038 36,327 35,078 36,215 1993 37,694 33,242 34,276 32,802 34,612 33,671 36,283 36,872 36,610 38,606 43,464 48,188 1994 49,348 45,585 49,910 48,530 48,932 43,483 50,975 50,604 41,760 50,104 49,878 49,753 1995 48,470 44,046 48,638 47,380 48,674 47,150 51,028 50,838 42,702 50,350 50,441 50,408

  12. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency programs with shared commonalities, including: the use of the EPS platform, community-based partnerships, financing products, and stakeholder education and training. ...

  13. Deep porosity preservation in the Norphlet Formation, Mobil Bay, Alabama

    SciTech Connect (OSTI)

    Ajdukiewicz, J.M.; Paxton, S.T.; Szabvo, J.O. )

    1991-03-01

    Compaction and pressure solution have commonly been assumed to destroy primary intergranular porosity in deeply buried sandstones. However, primary porosities of up to 20% are preserved at depths greater than 20,000 feet in the Norphlet Formation of Mobile Bay. Previous workers have called upon a number of mechanisms to preserve these high porosities in the Norphlet, specifically chlorite rim cements, gas emplacement, overpressuring, and decementation. In contrast, our study of data from 23 Norphlet wells, including 450 thin sections, indicates that these suggested mechanisms are not the primary cause of porosity preservation in the Norphlet. The authors propose an alternative interpretation: that in the Norphlet, as in other well-sorted, ductile-grain-poor sandstones, porosity loss from compaction did not go to completion under reservoir (premetamorphic) conditions, but stabilized at depths of about 5,000-8,000 feet and porosity values of about 26%. Porosity loss below these values is due to cementation. For cementation to occur, both an adequate source of cement and geochemical conditions favoring cement precipitation must be present. Computer simulations of Norphlet burial history, including post-depositional fluid-flow patterns, suggest that conditions favorable to quartz cementation never occurred in the bulk of the Norphlet because of the formation's stratigraphic position and isolation from a basinward source of silica-saturated fluids.

  14. Alabama Natural Gas Deliveries to Electric Power Consumers (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,835 27,660 25,326 2000's 42,215 68,868 112,403 86,129 117,056 104,786 145,528 175,736 164,266...

  15. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    134 129 129 98 88 108 1981-2014 Adjustments -4 3 0 -3 -1 18 2009-2014 Revision Increases 40 44 30 30 23 23 2009-2014 Revision Decreases 31 28 26 43 14 16 2009-2014 Sales 5 13 8 7 ...

  16. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    9,362 8,896 8,156 7,291 6,482 6,890 1981-2014 Adjustments 2 -106 -28 -429 76 548 1981-2014 Revision Increases 1,637 2,617 2,050 2,229 1,017 1,299 1981-2014 Revision Decreases 1,417 ...

  17. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,802 5,457 4,359 3,346 2,502 3,027 1981-2014 Adjustments -3 -25 72 -296 111 499 1981-2014 Revision Increases 997 1,814 740 866 443 561 1981-2014 Revision Decreases 1,021 1,000 ...

  18. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,863 3,793 4,196 4,358 4,293 4,253 1981-2014 Adjustments 7 -14 -21 -94 -94 135 1981-2014 Revision Increases 693 907 1,410 1,489 623 812 1981-2014 Revision Decreases 442 841 1,152 ...

  19. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    9,665 9,250 8,555 7,704 6,795 7,280 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 5,802 5,457 4,359 3,346 2,502 3,027 1981-2014 Natural Gas Associated-Dissolved, Wet ...

  20. Alabama Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,276 86,092 96,699 102,106 102,348 112,354 124,750 123,389 1990's 130,337 165,850 349,609 382,435 509,625 514,388 525,480 578,635 558,451 527,385 2000's 499,589 343,056 341,235 334,852 300,888 282,769 265,155 250,576 240,662 218,797 2010's 203,873 178,310 208,577 188,651 174,010

  1. Alabama Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 23,068 20,965 23,528 22,673 23,113 21,276 21,886 22,309 21,248 22,084 21,095 21,911 2007 21,865 19,575 21,444 20,217 20,863 19,763 20,509 21,924 20,846 21,254 20,587 21,727 2008 21,121 20,048 20,966 19,692 21,009 19,988 19,910 19,888 18,102 20,394 19,451 20,092 2009 18,047 18,112 19,722 18,630 19,546 18,558 19,364 18,677 17,622 16,696 15,613 18,209 2010 17,486 15,942 18,526 17,561 18,129 17,268 16,365 16,426 15,058 18,000 17,015 16,097

  2. Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,691 1,856 3,634 3,342 4,651 6,493 8,348 8,892 7,157 7,473 7,007 6,324 2002 9,105 8,006 7,301 7,217 7,316 12,396 15,228 15,892 11,855 7,064 5,415 5,608 2003 9,428 5,069 4,057 5,528 4,274 8,673 12,971 17,126 6,906 2,735 3,573 5,791 2004 9,038 8,270 8,672 8,552 10,409 11,388 17,481 14,662 9,689 7,254 4,995 6,647 2005 6,019 4,524 6,532 3,991 6,678 11,921 15,974 17,573 9,582 5,720 6,523 9,749 2006 4,041 5,197 7,726 9,059 11,642

  3. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 118,755 120,784 115,899 115,990 114,994 112,222 107,699 2010's 103,060 95,727 90,325 84,690 77,563

  4. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 9,639 8,887 9,929 9,711 10,105 9,883 10,111 10,139 9,919 10,290 9,985 10,156 2004 10,120 9,374 10,123 9,920 10,341 10,003 10,332 10,386 9,921 10,371 9,896 9,997 2005 9,828 9,012 9,974 9,668 9,940 9,642 9,752 9,630 9,408 9,847 9,641 9,558 2006 9,607 8,800 9,788 9,466 9,940 9,585 9,955 10,110 9,605 9,822 9,528 9,783 2007 9,767 8,821 9,767 9,452 9,767 9,452 9,767 9,767 9,452 9,767 9,452 9,767 2008 9,505

  5. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,252 13,534 14,746 13,227 12,911 11,989 11,891 12,319 12,134 13,613 11,767 12,672 2002 14,069 13,875 14,404 13,433 13,224 12,875 12,442 12,540 12,721 13,268 12,690 14,398 2003 15,463 14,505 13,359 12,784 12,651 11,707 11,923 12,800 12,339 13,365 13,235 14,381 2004 15,170 14,489 13,878 13,567 12,955 12,878 12,557 12,722 12,800 13,906 13,521 14,812 2005 14,959 13,377 14,398 12,900 12,229 11,710 12,259 11,816 11,009 11,518 11,913 13,013

  6. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.55 8.54 6.61 7.01 6.53 5.81 5.66 5.30 4.75 4.56 4.83 4.72 2002 5.87 5.70 5.22 5.22 5.82 4.82 4.75 4.54 4.82 4.58 5.69 5.55 2003 6.70 6.78 8.91 6.57 6.51 6.87 6.49 5.95 6.06 5.85 5.87 6.64 2004 7.54 7.38 6.81 6.79 7.14 7.63 7.41 7.26 6.77 6.58 7.56 8.95 2005 7.74 7.79 7.93 8.35 7.79 7.52 6.98 9.20 9.72 14.41 13.99 13.11 2006 13.35 11.26 10.17 9.52 8.93 8.33 7.90 8.96 8.58 6.80 9.28 10.11 2007 8.32 9.37 9.53 9.22 8.81 8.88 8.52 8.31 7.39

  7. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818

  8. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 248 230 180 1970's 627 355 3,644 11,271 27,865 37,814 41,427 57,227 85,599 85,815 1980's 65,294 79,244 75,003 90,801 101,821 107,342 107,184 117,241 129,524 128,411 1990's 135,276 170,847 355,099 388,024 515,272 519,661 530,841 388,596 392,394 381,701 2000's 363,467 356,810 356,061 346,145 316,021 296,528 286,220 270,407 257,884 236,029 2010's 222,932 195,581 215,710 196,326 181,054

  9. Alabama Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 12,166 10,588 11,626 11,028 11,340 10,914 11,212 10,599 10,119 9,709 9,137 9,973 1990 10,650 10,097 11,223 11,165 11,736 10,988 11,670 11,462 11,672 11,343 10,306 12,964 1991 13,267 11,866 13,131 13,020 13,906 13,174 14,400 15,273 11,850 15,207 15,502 20,250 1992 28,638 28,093 28,699 28,690 28,920 29,312 30,718 29,338 29,402 31,435 30,470 31,386 1993 32,873 29,095 29,508 28,430 30,361 29,058 31,132 31,622 31,465 33,401 38,311 42,767 1994

  10. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,406 7,044 7,392 4,722 2,856 1,709 1,457 1,383 1,404 1,862 3,646 7,240 1990 10,893 6,493 5,254 4,143 2,657 1,625 1,411 1,334 1,356 1,529 3,360 5,355 1991 7,299 8,327 6,724 3,891 2,059 1,583 1,434 1,368 1,389 1,793 3,886 6,396 1992 8,777 9,267 5,605 5,012 2,714 1,772 1,423 1,311 1,373 1,728 3,402 7,261 1993 8,110 8,189 8,716 5,668 2,848 1,641 1,430 1,328 1,330 1,526 3,853 6,727 1994 10,714 10,653 6,935 4,557 2,208 1,542 1,361 1,323 1,325

  11. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 5,280 2003 5,280 5,280 5,280 5,280 5,280 8,520 8,520 8,520 8,520 8,520 8,520 8,520 2004 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 8,520 11,015 11,015 11,015 2005 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2006 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 11,015 2007 11,015 11,015 11,015 11,015

  12. Alabama Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 9 0 -21 -70 -106 -95 -102 -92 -85 -54 -20 -4 1995 60 2 264 0 -27 -42 -35 -218 -592 73 189 400 1996 54 17 162 -153 -367 -670 -205 -395 -440 -117 129 761 1997 531 184 -25 -130 -271 -93 -43 -286 -262 -251 243 243 1998 396 187 248 -245 -144 -623 9 -200 401 -613 -1 139 1999 813 114 312 -137 -471 -210 -235 -81 -402 77 -134 189 2000 916 -307 -8 66 -90 -606 -82 0 110 142 203 85 2001 330 -241 604 -195 44 -576

  13. Alabama Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 17 12 5 2 1 1 1 1 0 1 4 10 1995 60 124 264 0 17 0 5 34 0 229 214 501 1996 285 202 303 39 23 - 113 - - 49 192 921 1997 828 285 38 38 0 68 64 0 0 0 270 270 1998 422 187 329 0 44 0 34 3 540 0 75 139 1999 813 114 326 508 76 3 99 121 57 77 32 256 2000 964 227 37 117 142 0 84 0 110 184 216 371 2001 741 62 690 128 251 42 95 180 3 120 7 95 2002 1,123 593 452 92 140 56 107 42 42 190 118 677 2003 2,031 398 108 141 99 79 191 489 44 399 626 1,421

  14. Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 9 8 9 9 9 9 9 9 9 9 9 9 2011 16 15 16 16 16 16 16 16 16 16 16 16 2012 16 15 16 16 16 16 16 16 16 16 16 16 2013 16 15 16 16 16 16 16 16 16 16 16 16 2014 19 17 19 18 19 18 19 19 18 19 18 19 2015 18 17 18 18 18 18 19 19 18 19 18 19 2016 21 19

  15. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 360 422 795 1970's 656 308 966 1,890 1,492 1,107 1,088 1,180 1,695 1,497 1980's 3,175 2,485 2,806 1,793 1,829 1,426 1,310 1,356 1,824 1,503 1990's 1,933 2,193 1,799 1,798 2,650 2,935 1,853 1,563 1,462 1,085 2000's 1,262 1,039 1,331 1,611 2,316 2,485 3,525 2,372 1,801 2,495 2010's 2,617 3,491 0

  16. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91 117 114 112 112 86 206 206 1999 92 73 67 77 67 87 87 90 85 64 145 150 2000 130 149 130 112 75 80 120 97 78 98 88 105 2001 91 72 78 76 87 81 73 94 108 86 93 101 2002 122 135 99 106 129 94 107 98 103 100 103 134 2003 116 143 147 108 141 141 145 126 127 139 138 140 2004 171 119 130 154 201 208 395 182 179 207 188 181 2005

  17. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,233 40,090 47,185 22,252 20,220 19,882 18,893 18,697 20,262 22,131 1990's 20,792 20,146 26,719 25,320 26,980 26,580 27,006 27,205 26,612 23,956 2000's 22,618 21,374 19,060 19,092 19,092 17,715 16,097 16,529 17,394 16,658 2010's 14,418 18,972 0

  18. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293

  19. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5.65 5.71 5.55 6.01 6.73 7.83 8.32 8.47 8.52 7.87 6.72 5.88 1990 5.62 6.01 6.22 6.48 7.22 8.27 8.62 8.71 8.71 8.45 6.85 6.43 1991 6.50 6.47 6.72 7.44 8.58 8.89 8.77 8.82 8.82 8.06 6.71 6.34 1992 6.19 6.01 6.67 6.24 6.98 8.00 8.93 9.06 8.94 8.36 7.36 6.42 1993 6.54 6.50 6.16 6.60 7.75 9.37 9.82 9.91 9.95 9.63 7.43 6.85 1994 6.40 6.38 7.16 7.46 8.90 9.74 9.95 9.91 9.82 9.67 8.58 7.40 1995 6.53 6.22 6.18 7.67

  20. Alabama Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  1. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,691 1,856 3,634 3,342 4,651 6,493 8,348 8,892 7,157 7,473 7,007 6,324 2002 9,105 8,006 7,301 7,217 7,316 12,396 15,228 15,892 11,855 7,064 5,415 5,608 2003 9,428 5,069 4,057 5,528 4,274 8,673 12,971 17,126 6,906 2,735 3,573 5,791 2004 9,038 8,270 8,672 8,552 10,409 11,388 17,481 14,662 9,689 7,254 4,995 6,647 2005 6,019 4,524 6,532 3,991 6,678 11,921 15,974 17,573 9,582 5,720 6,523 9,749 2006 4,041 5,197 7,726 9,059 11,642

  2. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 5.54 W 7.00 6.28 W 6.35 5.61 5.30 W W 4.75 6.48 2004 5.76 W W 6.12 6.88 6.56 6.28 6.08 5.44 W W 7.50 2005 6.67 W W W W 7.61 7.80 9.49 13.52 14.90 12.76 14.05 2006 10.47 9.13 7.73 7.96 6.98 6.81 7.12 7.74 6.56 6.25 6.99 7.37 2007 6.75 8.00 6.97 7.38 7.45 7.76 6.81 7.01 6.44 6.77 7.75 7.64 2008 8.83 10.01 W W W 13.64 12.44 9.52 9.16 6.03 8.45 7.29 2009 5.89 5.20 4.46 3.93 4.03 4.00 3.69

  3. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA 5,027,623 4,511,942 4,406,450 3,969,450 3,132,089 2,901,969 2,798,718 2,314,342 2,428,916 2010's 2,245,062 1,812,328 1,420,087 1,238,955 1,179,714 Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,242,169 5,110,327 5,052,936 2000's 4,967,694 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818 2,914,131 2,813,197 2,329,955 2,444,102 2010's

  4. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,70

  5. City of Florence, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    6,811 3,622.191 37,134.884 717 8,914.564 87,636.606 47,442 2008-09 5,069.531 58,666.446 39,743 988.076 10,071.714 6,812 3,477.51 43,293.875 718 9,535.117 112,032.035...

  6. Alabama Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

    6 18 19 18 14 13 1979-2014 Adjustments 1 0 3 1 -2 1 2009-2014 Revision Increases 3 4 1 1 1 0 2009-2014 Revision Decreases 0 0 1 1 1 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 2 2 2

  7. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,835 27,660 25,326 2000's 42,215 68,868 112,403 86,129 117,056 104,786 145,528 175,736 164,266 227,015 2010's 281,722 342,841 401,306 333,897 345,102 397,961

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 201,240 199,192 204,261 2000's 199,904 155,054 159,938 158,512 163,255 151,102 149,973 150,484 142,389 131,228 2010's 144,938 153,358 171,729 179,511 187,661

  8. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.86 2.58 2.98 2000's 4.52 5.20 3.57 5.81 6.24 9.67 7.32 7.19 10.03 4.30 2010's 4.85 W 3.09 4.14 4.74 3.06

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.46 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of Total Residential Deliveries

  9. Alabama Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -27 -142 1970's -566 -183 -129 -554 211 98 1990's 0 -639 73 -1,224 -162 -447 -164 2000's 430 -1,499 -154 -4,165 1,133 -216 -8,477 -140 -4,452 2,278 2010's -6,286 -7,357 2,456 5,002 -5,603 -3,817

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 509 435 1970's 587 809 439 516 621 532 1990's 55 1,448 2,125 1,860 1,774 2,482 2000's 2,452 2,414 3,631 6,025 13,867 15,356

  10. Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 17 12 5 2 1 1 1 1 0 1 4 10 1995 60 124 264 0 17 0 5 34 0 229 214 501 1996 285 202 303 39 23 - 113 - - 49 192 921 1997 828 285 38 38 0 68 64 0 0 0 270 270 1998 422 187 329 0 44 0 34 3 540 0 75 139 1999 813 114 326 508 76 3 99 121 57 77 32 256 2000 964 227 37 117 142 0 84 0 110 184 216 371 2001 741 62 690 128 251 42 95 180 3 120 7 95 2002 1,123 593 452 92 140 56 107 42 42 190 118 677 2003 2,031 398 108 141 99 79 191 489 44 399 626 1,421

  11. Gulf of Mexico-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    117,738 96,587 95,078 2012-2014 Total Liquids Extracted (Thousand Barrels) 5,783 5,035 5,105 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 7,442

  12. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would be developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  13. Percent of Industrial Natural Gas Deliveries in Alabama Represented...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.6 23.3 21.8 2000's 22.4 22.2 21.6 21.2 20.8 23.6 23.5 24.0 27.2 27.9 2010's 23.7 23.5 22.1...

  14. Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6 18 19 18 14 13 1979-2014 Adjustments 1 0 3 1 -2 1 2009-2014 Revision Increases 3 4 1 1 1 0 2009-2014 Revision Decreases 0 0 1 1 1 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 2 2 2 2 2 1

  15. Alabama Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 100.0 100.0 100.0 100.0 99

  16. Alabama Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  17. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 201,240 199,192 204,261 2000's 199,904 155,054 159,938 158,512 163,255 151,102 149,973 150,484 142,389 131,228 2010's 144,938 153,358 171,729 179,511 187,661 186,213

  18. Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.65 3.30 3.42 2000's 4.47 6.33 5.24 6.65 7.35 9.51 9.46 8.70 10.57 6.48 2010's 6.64 5.57 4.35 4.98 5.49 3.94

  19. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 536 577 1970's 1,153 992 568 1,070 410 434 1990's 694 1,375 3,349 2,022 2,220 2,646 2000's 2,022 3,913 3,785 10,190 12,734 15,572 20,604 20,009 31,208 21,020 2010's 23,026 22,766 21,195 17,966 34,286 33,004

  20. Alabama Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,948 2,724 2,570 2,304 1,670 2,121 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,919 2,686 2,522 2,204 1,624 1,980 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 29 38 48 100 46 141 1979-2014 Dry Natural Gas 2,871 2,629 2,475 2,228 1,597 2,036

  1. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 45,543 51,708 54,804 1970's 55,779 54,867 53,397 55,685 55,117 52,314 56,869 56,503 56,957 52,535 1980's 52,334 50,197 46,950 48,267 50,526 43,706 44,674 49,077 48,913 48,118 1990's 45,411 46,149 49,644 51,366 49,748 49,570 56,522 48,496 46,544 42,647 2000's 47,441 49,242 46,482 46,572 43,859 42,057 38,132 35,481 37,793 36,061 2010's 42,215 36,582 27,580 35,059 38,971 31,7

  2. Alabama Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,600 3,280 3,280 3,280 3,280 2000's 3,280 5,000 8,520 11,015 11,015 11,015 19,300 19,300 26,900 26,900 2010's 32,900 35,400 35,400 35,4

  3. Alabama Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -27 -142 1970's -566 -183 -129 -554 211 98 1990's 0 -639 73 -1,224 -162 -447 -164 2000's 430 -1,499 -154 -4,165 1,133 -216 -8,477 -140 -4,452 2,278 2010's -6,286 -7,357 2,456 5,002 -5,603 -3,817

  4. Alabama Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 509 435 1970's 587 809 439 516 621 532 1990's 55 1,448 2,125 1,860 1,774 2,482 2000's 2,452 2,414 3,631 6,025 13,867 15,356 12,127 19,868 26,756 23,298 2010's 16,740 15,408 23,651 22,968 28,683 29,18

  5. Alabama Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 3 0 3 4 3 4 2 51 45 56 2000's 62 76 78 95 107 153 111 88 84 80 2010's 105 192 193 190 224 220

  6. Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation 2,919 2,686 2,522 2,204 1,624 1,980 1979-2014 Adjustments 42 47 -48 47 -195 498 1979-2014 Revision Increases 90 208 470 84 50 70 1979-2014 Revision Decreases 336 176 163 256 79 43 1979-2014 Sales 2 270 586 11 373 2 2000-2014 Acquisitions 0 153 378 22 191 0 2000-2014 Extensions 21 29 3 0 0 0 1979-2014 New Field Discoveries 0 1 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 256 225 218 204 174 167

  7. Alabama Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

  8. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  9. Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.13 1.10 1.09 1970's 1.13 1.19 1.27 1.37 1.55 1.57 1.99 2.31 2.71 3.65 1980's 4.04 4.77 5.58 6.22 6.26 6.41 6.52 6.64 6.51 6.27 1990's 6.57 7.05 6.74 7.10 7.41 6.86 7.22 8.35 8.21 8.34 2000's 9.19 12.06 10.53 11.82 13.34 15.82 18.80 18.14 18.30 18.12 2010's 15.79 15.08 16.20 15.47 14.59 13.95

  10. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  11. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 1 2 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 2 0 2009-2010 Sales...

  12. Alabama State Energy Program, Summary of Reported Data From July...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Natural Gas 0.1 MMBtutherm 1.092 Fuel O il (Type 2) 0.14 MMBtugallon 1.158 PropaneLPG 0.09133 MMBtugallon 1.151 Kerosene 0.135 MMBtugallon 1.205 Wood 20 MMBtucord 1 ...

  13. EECBG Success Story: Alabama Justice Center Expands its Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Justice Center Expands its Solar Capabilities The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo...

  14. Alabama/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    a system integrator or installer. Contact the manufacturer for help or call your state energy office and local utility for a list of local system installers. A credible...

  15. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"Alabama Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. Solar LED Light Pilot Project Illuminates the Way in Alabama...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Brighter Lights, Safer Streets This is one of the 100 decorative solar-powered LED lights that replaced natural gas-powered streetlights in the city of Deming, New Mexico. | DOE ...

  18. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2014,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  19. Alabama - Seds - U.S. Energy Information Administration (EIA...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses ... spent fuel. Total Energy Comprehensive data summaries, comparisons, analysis, and ...

  20. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 ...